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ABSTRACT

We present a framework to sample from high-dimensional unnormalized densities
using physics-informed neural networks (PINNs). For various computational
science tasks, it is essential to draw samples from a target distribution where the
density is known up to a normalizing constant. Without access to any training
samples, existing methods based on normalizing flows and diffusion models rely
on the simulation of (stochastic) differential equations for training and suffer from
mode collapse. Our approach circumvents these issues by solving the underlying
continuity and Fokker-Planck equations using PINNs. Motivated by optimal
transport and Schrödinger bridges, we further incorporate regularizers based on
Hamilton-Jacobi-Bellman equations. Through evaluations on several benchmarks,
we demonstrate that our approach can mitigate mode collapse and significantly
outperform various baselines.

1 SAMPLING WITH STOCHASTIC PROCESSES

We are given a strictly positive, sufficiently smooth function qtarget : Rd → (0,∞) and our goal is to
sample from the density

ptarget =
qtarget
Z

, where Z :=

∫
qtarget(x) dx. (1)

To achieve this goal, we want to construct stochastic processes (Xt)t∈[0,T ] controlled by neural
networks such that

XT ∼ ptarget. (2)

Typically, the process X is assumed to start at a tractable prior density X0 ∼ pprior, for instance
a standard Gaussian pprior = N (0, I). Moreover, we assume that X is governed by a stochastic1

differential equation (SDE)

dXt = µ(Xt, t) dt+ σ(t) dBt, X0 ∼ pprior, (3)

where σ : [0, T ] → Rd×d is a given diffusion coefficient and the drift µ : Rd × [0, T ] → Rd is
parametrized by neural networks. We also might have additional constraints on the trajectories of X .

Recently, several such methods based on SDEs (nonzero σ) as well as ODEs (σ ≡ 0) have been
established. The former are, for instance, based on Schrödinger (half-)bridges, diffusion models, or
annealed flows (Vargas & Nüsken, 2023; Zhang & Chen, 2022; Berner et al., 2022; Richter et al.,
2023; Zhang et al., 2023; Vargas et al., 2023). The latter leverage continuous-time normalizing
flows and combinations with Monte Carlo (MCMC) methods (Wu et al., 2020; Midgley et al., 2022;
Matthews et al., 2022; Arbel et al., 2021), see Appendix A for further related work. However, all the
previously mentioned methods rely on simulating (parts of) the process X for training. This requires
time-discretizations and typically results in unstable and slow convergence.

∗Equal contribution.
1We will also consider the case where the diffusion coefficient σ is zero. The evolution in (3) then corresponds

to an ordinary differential equation (ODE), however X is still a stochastic process due to its random initial
condition given by pprior.
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In this work, we identify the partial differential equations (PDEs) governing the underlying dynamics
of many of these methods. Leveraging neural PDE solver, such as physics-informed neural net-
works (PINNs) (Raissi et al., 2017; Sirignano & Spiliopoulos, 2018), we show that this leads to
simulation- and discretization-free objectives. We compare various objectives and demonstrate strong
performance on challenging, high-dimensional distributions.

2 LEARNING THE EVOLUTION

Assuming that Xt has a sufficiently smooth density pX(·, t), we first note that the density satisfies
the Fokker-Planck equation

∂tpX = −div(pXµ) + 1
2 Tr(σσ

⊤∂xxpX), pX(·, 0) = pprior. (4)

For numerical stability, it is convenient to work with the log-density v := log pX satisfying the
equation

∂tv = Pσ,µ
FP (v), with Pσ,µ

FP (v) := −div(µ)−∇v · µ+ 1
2∥σ

⊤∇v∥2 + 1
2 Tr(σσ

⊤∂xxv). (5)

This nonlinear PDE can be viewed as a Hamilton-Jacobi-Bellman (HJB) equation and its derivation
follows from the Hopf-Cole transform, see also Evans (2010). Motivated by Máté & Fleuret (2023),
we want to use the unnormalized density qtarget in our parametrization of the log-density vw,z , i.e.,

vw,z(·, t) = t
T log

qtarget
z(t) +

(
1− t

T

)
log pprior +

t
T

(
1− t

T

)
w(·, t), (6)

where w and z are neural networks approximating the log-density and normalizing constant.

If vw,z satisfies (5), i.e., ∂tvw,z = Pσ,µ
FP (vw,z), conservation of mass implies that z(T ) = Z and thus

the terminal condition vw,z(·, T ) = log ptarget is satisfied. Penalizing the square of the PDE residual
for vw,z in (5), this yields the loss

LFP(w, z, µ) := E
[
(∂tvw,z(ξ, τ)− Pσ,µ

FP (vw,z)(ξ, τ))
2
]
, (7)

where (ξ, τ) is a suitable random variable distributed on Rd × [0, T ]. As commonly done for PINNs,
we chose τ ∼ Unif([0, T ]) and ξ ∼ Unif(K) for a sufficiently large compact set K ⊂ Rd (that can
potentially depend on τ ). We refer to Appendix E.1 for other approaches.

Remark 2.1 (Deterministic vs. stochastic evolutions). Setting the diffusion coefficient σ to zero in (3)
yields an ordinary differential equation (ODE) with a deterministic evolution. When the drift µ is
controlled by a neural network, this is referred to as continuous-time normalizing flow (Papamakarios
et al., 2021; Rezende & Mohamed, 2015). The PDE in (4) reduces to the continuity equation

∂tpX = −div(pXµ), pX(·, 0) = pprior, (8)
and the log-density v satisfies that

∂tv = −div(µ)−∇v · µ. (9)
This is computationally cheaper than the stochastic case σ ̸= 0, where the computation of second-
order derivatives of v is required for the term 1

2 Tr(σσ
⊤∂xxv). Motivated by the success of diffusion

models (Ho et al., 2020; Kingma et al., 2021; Nichol & Dhariwal, 2021; Vahdat et al., 2021; Song &
Ermon, 2020) and their interpretation based on SDEs (Song et al., 2020), we still want to explore
whether the additional noise can be beneficial.

2.1 CONSTRAINING THE EVOLUTION

There are infinitely many combinations of drifts µ and log-densities vw,z that define a stochastic
evolution from the prior to the target distribution, i.e., minimize the loss in (7). The next paragraphs
show how we can adapt our loss to yield a unique solution.

Annealed flows: As already observed in Máté & Fleuret (2023), we can just define w ≡ 0 to anneal
between pprior and qtarget, bearing similarity with Annealed Importance Sampling (AIS) (Neal, 2001)
and Controlled Monte Carlo Diffusions (CMCD) (Vargas & Nüsken, 2023). Under mild conditions,
we can find both an ODE or an SDE governed by a potential µ = ∇Φ that has the prescribed
marginals, see Neklyudov et al. (2022). Accordingly, this yields the loss

Lanneal(z, µ) := LFP(0, z, µ). (10)
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Diffusion models: Let us now consider a non-zero diffusion coefficient σ in (3). Moreover, we
consider the drift µ = σσ⊤∇vw,z − f for a suitable function f to be specified later. Plugging it into
the differential operator in (5), we see that

Pσ,µ
FP (vw,z) = div(f) +∇vw,z · f − 1

2∥σ
⊤∇vw,z∥2 − 1

2 Tr(σσ
⊤∂xxvw,z) = −Pσ,f

FP (vw,z). (11)

If vw,z satisfies ∂tvw,z = Pσ,µ
FP (vw,z), we thus have that

∂t ⃗vw,z = −P ⃗σ, ⃗µ
FP ( ⃗vw,z) = P ⃗σ, ⃗f

FP ( ⃗vw,z), (12)

where we write ⃗σ for the time-reversal, i.e., ⃗σ(t) = σ(T − t). This means that we can identify
⃗vw,z = log pY as the log-density of the process

dYt = ⃗f(Yt, t) dt+ ⃗σ(t) dBt, Y0 ∼ ptarget, (13)

as also derived in Berner et al. (2022). Thus, a viable strategy is to pick f and σ such that pY (·, T ) ≈
pprior, see Song et al. (2020) for suitable choices, and minimize the loss

Ldiff(w, z) := LFP(w, z, σ, σσ
⊤∇vw,z − f) = E

[(
∂tvw,z(ξ, τ) + Pσ,f

FP (vw,z)(ξ, τ)
)2]

. (14)

Optimal transport and Schrödinger bridges: We can also seek the drift µ that additionally
minimizes an energy of the form

inf
µ

1
2

∫ T

0

E
[
∥µ(Xs, s)∥2

]
ds. (15)

For σ = 0, this is connected to optimal transport (OT) problems w.r.t. the Wasserstein metric (Ben-
amou & Brenier, 2000). For nonzero σ, this corresponds to the dynamic Schrödinger bridge (SB)
problem (Dai Pra, 1991). In these cases, the optimal solution can be written as µ := ∇Φ, where Φ
solves the Hamilton-Jacobi-Bellman (HJB) equation

∂tΦ = Pσ
HJBΦ, with Pσ

HJBΦ = − 1
2∥∇Φ∥2 − 1

2 Tr(σσ
⊤∂xxΦ), (16)

see Appendix B. We can add such regularization using the loss

LHJB(Φ) := E
[
(∂tΦ(ξ, τ)− PHJBΦ(ξ, τ))

2
]
. (17)

3 EXPERIMENTS

In the following section, we evaluate the above losses and regularizers on different benchmarks.
Specifically, we consider the following losses:

ODE / SDE: LFP(w, z, µ) (18)
ODE-anneal: Lanneal(z, µ) (19)
SDE-diffusion: Ldiff(w, z) (20)
OT / SB: LFP(w, z,∇Φ) + λLHJB(Φ), λ > 0. (21)

For the benchmarks, we follow Richter et al. (2023) and consider the following Gaussian mixture
model and Many-Well distribution.

Gaussian mixture model (GMM): We consider the density

qtarget(x) = ptarget(x) =
1

m

m∑
i=1

N (x;µi,Σi). (22)

Following Zhang & Chen (2022), we choose m = 9, Σi = 0.3 I, and

(µi)
9
i=1 = {−5, 0, 5} × {−5, 0, 5} ⊂ R2 (23)

to obtain well-separated modes.
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Figure 1: The groundtruth marginal in the first dimension and histograms of samples from our
best-performing ODE method on the 2-dimensional GMM (left) and 50-dimensional Many-Well
(right) examples.

Many-Well (MW): A typical problem in molecular dynamics considers sampling from the stationary
distribution of a Langevin dynamics. In our example we shall consider a d-dimensional many-well
potential, corresponding to the (unnormalized) density

qtarget(x) = exp

(
−

m∑
i=1

(x2
i − δ)2 − 1

2

d∑
i=m+1

x2
i

)
(24)

with m ∈ N combined double wells and a separation parameter δ ∈ (0,∞), see also Wu et al. (2020);
Berner et al. (2022). Note that, due to the many-well structure of the potential, the density contains 2m
modes. For these multimodal examples, we can compute reference solutions by numerical integration
since qtarget factorizes in the dimensions.

We compare against the Path Integral Sampler (PIS) (Zhang & Chen, 2022) and the Time-Reversed
Diffusion Sampler (DIS) (Berner et al., 2022), including the log-variance loss by Richter et al. (2023).
We refer to Appendix C and Appendix D for further details on our experiments.

Our results are summarized in Table 1. Comparing our losses in (18)–(21), we observe that the ODE
method typically works best. Moreover, we can also outperform our baselines on several metrics.
In Figure 1 we also see that it accurately covers the modes of the distributions. On the other hand,
we observe that the HJB regularization does not provide substantial improvements, and there is
no clear advantage of the methods with prescribed density (i.e., SDE-diffusion and ODE-anneal).
This indicates that, in general, the non-uniqueness of the ODE/SDE-objectives does not seem to
hurt performance. Finally, the additional computational complexity of considering SDE-based (as
opposed to ODE-based) methods appears not to pay off.

4 CONCLUSION

We provide a framework for using PINNs to sample from unormalized densities. In particular, we
propose to learn the controls of SDEs or ODEs as solutions to (systems of) PDEs that govern their
densities. First, this provides a unifying PDE perspective on various sampling methods that are based
on normalizing flows, diffusion models, optimal transport, and Schrödinger bridges. Moreover, it
yields flexible objectives that are free of time-discretizations and simulations.

We benchmark our methods on multimodal target distributions with up to 50 dimensions. While
some SDE-based methods are still unstable, ODE-based variants yield competitive methods that can
outperform various baselines. We anticipate that our methods can be improved even further using
combinations with simulation-based losses as well as common tricks for PINNs, see Appendix D.
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Table 1: Metrics for the Gaussian mixture distribution and the Many-Well in two dimensions d. We
report errors for estimating the log-normalizing constant ∆ logZ as well the standard deviations
∆std of the marginals. Furthermore, we report the normalized effective sample size ESS and the
Sinkhorn distance W2

γ (Cuturi, 2013), see Appendix D.1 for details. The arrows ↑ and ↓ indicate
whether we want to maximize or minimize a given metric.

Problem Method ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM PIS-KL (Zhang & Chen, 2022) 1.094 0.467 0.0051 1.937
(d = 2) PIS-LV (Richter et al., 2023) 0.046 0.020 0.9093 0.023

DIS-KL (Berner et al., 2022) 1.551 0.064 0.0226 2.522
DIS-LV Richter et al. (2023) 0.056 0.020 0.8660 0.004
SDE 2.140 1.507 0.9985 3.306
SDE-diffusion 0.041 0.057 0.9043 0.037
SB 3.147 0.137 0.0005 2.717
ODE 0.001 0.021 0.9980 0.017
ODE-anneal 6.122 0.912 0.0003 3.642
OT 0.130 0.022 0.7874 0.497

MW PIS-KL (Zhang & Chen, 2022) 3.567 1.699 0.0004 1.409
(d = 5,m = 5, δ = 4) PIS-LV (Richter et al., 2023) 0.214 0.121 0.6744 0.001

DIS-KL (Berner et al., 2022) 1.462 1.175 0.0012 0.431
DIS-LV (Richter et al., 2023) 0.375 0.120 0.4519 0.001
SDE 0.161 0.123 0.8167 0.016
SDE-diffusion 3.969 0.427 0.0124 0.004
SB 29.095 1.565 0.0879 0.764
ODE 0.007 0.119 0.9904 0.007
ODE-anneal 0.025 0.121 0.9506 0.005
OT 137.66 0.403 0.0558 0.122

MW PIS-KL (Zhang & Chen, 2022) 0.101 6.821 0.8172 0.001
(d = 50,m = 5, δ = 2) PIS-LV (Richter et al., 2023) 0.087 6.823 0.8453 0.000

DIS-KL (Berner et al., 2022) 1.785 6.854 0.0225 0.009
DIS-LV (Richter et al., 2023) 1.783 6.855 0.0227 0.009
SDE 0.104 6.824 0.9027 0.003
SDE-diffusion 1.989 6.803 0.1065 0.016
SB 189.71 7.552 0.0106 0.051
ODE 0.038 6.820 0.9510 0.001
ODE-anneal 1.759 6.821 0.2100 0.017
OT 0.104 6.824 0.9027 0.001
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Nikolas Nüsken and Lorenz Richter. Interpolating between BSDEs and PINNs–deep learning for
elliptic and parabolic boundary value problems. arXiv preprint arXiv:2112.03749, 2021a.
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A RELATED WORK

There are numerous Monte Carlo-based methods for sampling from unnormalized densities, including
Markov chain Monte Carlo (MCMC) (Kass et al., 1998), Annealed Importance Sampling (AIS) (Neal,
2001), and Sequential Monte Carlo (SMC) (Del Moral et al., 2006; Doucet et al., 2009). However,
these methods typically only guarantee asymptotic convergence to the target density, with potentially
slow convergence rates in practical scenarios (Robert et al., 1999). Variational methods, such as mean-
field approximations (Wainwright et al., 2008) and normalizing flows (Papamakarios et al., 2021),
offer an alternative approach. In these methods, the problem of density estimation is transformed
into an optimization problem by fitting a parametric family of tractable distributions to the target
density. In the context of normalizing flows, we want to mention works on constructing better loss
functions (Felardos et al., 2023) or gradient estimators (Vaitl et al., 2022).

In this work, we provide a comprehensive PDE perspective on SDE-based sampling methods. Our
approach is loosely inspired by Máté & Fleuret (2023), however, extended to diffusion models, optimal
transport (OT), and Schrödinger bridges (SBs). Moreover, we consider other parametrizations and
do not rely on the ODE for sampling the collocation points (ξ, τ). For a corresponding mean-field
games (MFG) perspective, we refer to Zhang & Katsoulakis (2023). We also mention path space
measure perspectives on SDE-based methods in Vargas & Nüsken (2023); Richter et al. (2023).

The PDE for diffusion models has been derived in Berner et al. (2022) based on prior work by Pavon
(1989); Fleming & Rishel (2012) in stochastic optimal control. We refer to Chen et al. (2016) for
the corresponding PDEs prominent in OT and SBs. Versions of the Hamilton-Jacobi-Bellman (HJB)
regularizer have been used for normalizing flows in generative modeling by Onken et al. (2021), for
generalized SBs by Liu et al. (2022); Koshizuka & Sato (2022), for MFG by Ruthotto et al. (2020);
Lin et al. (2021), and for generative adversarial models by Yang & Karniadakis (2020).

For the usage of PINNs for a generalized SB in the context of colloidal self-assembly, we refer
to Nodozi et al. (2023). An orthogonal direction to our approach is using divergence-free neural
networks, which automatically satisfy the continuity equation and only require to fit the boundary
distributions ptarget and pprior (Richter-Powell et al., 2022). We also mention that higher-dimensional
Fokker-Planck equations have also been tackled with time-varying Gaussian mixtures (Chen & Majda,
2018), and there exist SDE-based neural solvers for HJB equations (Richter & Berner, 2022; Nüsken
& Richter, 2021b) and combinations with PINNs (Nüsken & Richter, 2021a).

Finally, we want to highlight recent works on simulation-free learning of (stochastic) dynamics using
flow matching (Tong et al., 2023; Lipman et al., 2022) and action matching techniques (Neklyudov
et al., 2022). However, these methods rely on samples from the target distribution ptarget. Similarly,
many works on solving SB and OT problems using deep learning require samples from the target
distribution (Chen et al., 2021; De Bortoli et al., 2021; Fernandes et al., 2021; Vargas et al., 2021).

B HJB EQUATION

Let us present a sketch of the proof that the optimal drift can be represented as a gradient field, see
also Neklyudov et al. (2022); Koshizuka & Sato (2022); Benamou & Brenier (2000); Caluya &
Halder (2021). Let us consider the optimization problem

inf
µ

1

2

∫ T

0

∫
Rd

∥µ∥2 p dxds (25)

s.t. ∂tp = −div(pµ) +
1

2
Tr(σσ⊤∂xxp), p(·, 0) = pprior p(·, T ) = ptarget. (26)

for a sufficiently smooth density p. Introducing a Lagrange multiplier Φ: Rd × [0, T ] → R, we can
rewrite the problem as

sup
Φ

inf
µ

∫ T

0

∫
Rd

1

2
∥µ∥2 p+Φ

(
∂tp+ div(pµ)− 1

2
Tr(σσ⊤∂xxp)

)
dxds. (27)

Using integration by parts, we can calculate∫ T

0

Φ∂tp ds =
[
Φp
]s=T

s=0
−
∫ T

0

p ∂tΦds. (28)

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

and ∫
Rd

ΦTr(σσ⊤∂xxp) dx =

∫
Rd

pTr(σσ⊤∂xxΦ) dx, (29)

where we assume that p and its partial derivatives vanish sufficiently fast at infinity. Using the product
rule and Stokes’ theorem, we obtain that∫

Rd

Φdiv(pµ) dx =

∫
Rd

div(Φpµ) dx−
∫
Rd

p µ · ∇Φdx = −
∫
Rd

p µ · ∇Φdx. (30)

Leveraging Fubini’s theorem and combining the last three calculations with (27), we obtain that

sup
Φ

inf
µ

∫
Rd

∫ T

0

(
1

2
∥µ∥2 − µ · ∇Φ

)
p−

(
∂tΦ+

1

2
Tr(σσ⊤∂xxΦ)

)
p ds+

[
Φp
]s=T

s=0
dx. (31)

In view of the binomial formula, we observe that the minimizer is given by
µ = ∇Φ. (32)

We can thus write (31) as

inf
Φ

∫
Rd

∫ T

0

(
∂tΦ+

1

2
∥∇Φ∥2 + 1

2
Tr(σσ⊤∂xxΦ)

)
p ds−

[
Φp
]s=T

s=0
dx, (33)

which corresponds to the action matching objective in Neklyudov et al. (2022). We also refer
to Neklyudov et al. (2022) for existence and uniqueness results. If we additionally minimize (25)
over all densities p with p(·, 0) = pprior and p(·, T ) = ptarget, we obtain the problem

inf
Φ,p

∫
Rd

∫ T

0

(
∂tΦ+

1

2
∥∇Φ∥2 + 1

2
Tr(σσ⊤∂xxΦ)

)
pds−

[
Φp
]s=T

s=0
dx, (34)

Computing the functional derivative w.r.t. p, we obtain the first-order optimality condition

∂tΦ = −1

2
Tr(σσ⊤∂xxΦ)−

1

2
∥∇Φ∥2, (35)

which yields the HJB equation in (16).

C LOG-LIKELIHOODS AND IMPORTANCE WEIGHTS

This section describes ways to compute the log-likelihood and importance weights for samples XT

obtained from the stochastic process X .

ODEs: In the setting of normalizing flows, we can compute the evolution of the log-density along
the trajectories. Using d

dtXt = µ(Xt, t), we can show that
d

dt
v(Xt, t) = (∇v · µ− div(µ)−∇v · µ)(Xt, t) = −div(µ)(Xt, t), (36)

which is often referred to as the change-of-variables formula. Recalling that v = log pX , we can then
compute the (unnormalized) importance weights

w(k) :=
qtarget
pXT

(X
(k)
T ) (37)

of samples (X(k)
T )Kk=1.

SDEs: If we have (an approximation to) the score ∇v = ∇ log pX of an SDE X , we can transform
it into an ODE with the same marginals using

µODE = µSDE − 1

2
σσ⊤∇v. (38)

The above relation can be verified via the Fokker-Planck equation (4), and the resulting ODE is
often referred to as probability flow ODE (Song et al., 2020). Note that this also allows us to use the
change-of-variables formula in (36) for SDEs.

The log-likelihoods can be simulated together with the ODE in (3) and allow us to compute importance
weights in the target space Rd. If the optimal drift of the SDE can be described via a change of path
measures, such as for the annealed flows (Vargas & Nüsken, 2023) or diffusion models (Berner et al.,
2022), we can also perform importance sampling in path space C([0, T ],Rd).
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D EXPERIMENTS

In this section, we describe our metrics as well as our implementation.

D.1 METRICS

We evaluate the performance of our methods on the following metrics.

Normalizing constants: We could obtain an estimate log z(T ) of the log-normalizing constant
logZ by our parametrization in (6). However, since we are interested in the sample quality of our
models, we use the log-likelihood to compute a lower bound for logZ, see Appendix C. Note that we
do not employ importance sampling for estimating the log-normalizing constant.

Standard deviations: We also analyze the error when approximating coordinate-wise standard
deviations of the target distribution ptarget, i.e.,

1

d

d∑
k=1

√
V[Xi], where X ∼ ptarget, (39)

using samples (X(k)
T )Kk=1 from our model.

Effective sample size: One would like to have the variance of the importance weights small, or,
equivalently, maximize the (normalized) effective sample size

ESS :=

(∑K
k=1 w

(k)
)2

n
∑K

k=1(w
(k))2

. (40)

The computation of the importance weights is outlined in Appendix C.

D.2 IMPLEMENTATION

Networks: We use a Fourier-MLP as in Zhang & Chen (2022) for the networks w. For the network
µ, we experimented with both Fourier-MLPs and standard MLPs with residual connections. For
ODE-anneal we also parametrize z by a small Fourier-MLP. For the other methods, z does not need
to depend on t, and we just use a single trainable parameter.

Parameters: We choose T = 1 and pprior = N (0, I). We set σ to a constant value, i.e., σ(x, t) =
σ̄ I, where σ̄ ∈ {0,

√
2}. For the diffusion model, we pick a simple VP-SDE from Song et al. (2020)

with f(x, t) := − σ̄2

2 x to satisfy that pY (·, T ) ≈ pprior (for sufficiently large σ̄ and T ).

Training and inference: We train with batch-size 4096 for 200k gradient steps using the Adam
optimizer with exponentially decaying learning rate. For simulating the SDEs and ODEs during infer-
ence, we use the Euler-Maruyama and Fourth-order Runge-Kutta (with 3/8 rule) scheme, respectively.
We use 100k samples to evaluate our methods. Finally, we performed a grid-search over the penalty
parameter λ of the HJB loss LHJB and over the initial learning rate as well as its decay per step.

E LIMITATIONS AND EXTENSIONS

In this section, we mention potential limitations and extensions of our framework.

E.1 SAMPLING

Let us investigate two choices of how to choose the random variables (ξ, τ) to penalized the loss
in (7). We will show how these choices allow to balance exploration and exploitation.

12
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Uniform We can simply chose τ ∼ Unif([0, T ]) and ξ ∼ Unif(K) for a sufficiently large compact
set K ⊂ Rd. This choice allows us to uniformly explore the domain K, which is particularly
interesting at the beginning of the training. Moreover, different from most other methods, we do
not need to rely on (iterative) simulations of the SDE in (3). In order to specify K, however, we
need prior information to estimate the domain where v is above some minimal threshold. We
incur an approximation error if the set K is chosen too small. On the other hand, if it is too large,
low probability areas of ptarget can lead to instabilities and might require clipping. This could
be circumvented by picking a distribution ξ that is supported on the whole spatial domain Rd.
Alternatively, we can use adaptive methods as outlined in the next paragraphs.

Along the Trajectories We can also simulate the SDE using the partially learned drift coefficient µ
to exploit the learned dynamics. This corresponds to the choices τ ∼ Unif([0, T ]) and ξ ∼ Xτ . Note
that we just use the SDE/ODE for sampling the collocation points, and we are not backpropagating
through the solver (to update the drift µ). In other words, we detach ξ from the computational graph.

Moreover, we want to mention improved sampling strategies for PINNs, see, e.g., Tang et al. (2023);
Chen et al. (2023). Similar to Quasi-Monte Carlo methods, one could also leverage low-discrepancy
samplers for the time coordinate τ , as, e.g., used by Kingma et al. (2021).

E.2 PINNS

It is commonly known that PINNs can be sensitive to hyperparameter settings. We can make use
of a plethora of tricks that have been proposed to stabilize their training (Wang et al., 2023). For
instance, for the neural networks, one could additionally consider random weight factorization and
Fourier features for the spatial coordinates. Moreover, we can choose the penalty parameter λ for
the HJB loss LHJB adaptively based on the residuals and their gradients. We also mention that the
computation of divergences and Laplacians using automatic differentiation can be prohibitive in
very high dimensions and might require (stochastic) estimators, such as Hutchinson’s trace estimator.
Alternatvely, we could also explore the OT-Flow architecture for Φ, which has been successfully
employed by Onken et al. (2021); Koshizuka & Sato (2022); Ruthotto et al. (2020).

E.3 NOISE SCHEDULE

We can consider time-dependent diffusion coefficients σ, which have been successfully employed for
diffusion models. For instance, we can adapt the VP-SDE in Song et al. (2020) with

⃗σ(t) :=
√
2β(t) I and ⃗f(x, t) := −β(t)x, (41)

where

β(t) :=
1

2

((
1− t

T

)
σmin +

t

T
σmax

)
. (42)

Our framework also allows for diffusion coefficients σ which depend on the spatial coordinate x.
Finally, we could also learn the diffusion, for instance, using the parametrization σ = diag(exp(s))
for a neural network s.

E.4 MEAN-FIELD GAMES

More generally, we could extend our framework to (stochastic) mean-field games (MFG), mean-field
control problems, and generalized SBs (Benamou et al., 2017; Zhang & Katsoulakis, 2023; Liu et al.,
2022; Lin et al., 2021; Koshizuka & Sato, 2022; Ruthotto et al., 2020).
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