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Abstract
While demographic factors like age and gen-001
der change the way people talk, and in partic-002
ular, the way people talk to machines, there is003
little investigation into how large pre-trained004
language models (LMs) can adapt to these005
changes. To remedy this gap, we consider006
how demographic factors in LM language skills007
can be measured to determine compatibility008
with a target demographic. We suggest clinical009
techniques from Speech Language Pathology,010
which has norms for acquisition of language011
skills in humans. We conduct evaluation with a012
domain expert (i.e., a clinically licensed speech013
language pathologist), and also propose auto-014
mated techniques to complement clinical eval-015
uation at scale. Empirically, we focus on age,016
finding LM capability varies widely depending017
on task: GPT-3.5 mimics the ability of a typical018
6-15 year old at tasks requiring inference, and019
simultaneously, outperforms a typical 21 year020
old at memorization. GPT-3.5 also has trou-021
ble with social language use, exhibiting less022
than 50% of the tested pragmatic skills. Find-023
ings affirm the importance of considering de-024
mographic alignment and conversational goals025
when using LMs as public-facing tools. Code,026
data, and a package will be available.027

1 Introduction028

Demographic factors like age and gender impact029

the words we use (Sap et al., 2014; Giorgi et al.,030

2021) and, more broadly, the way we interact and031

communicate with each other (De Candia et al.,032

2022). Moreover, these same factors carry over in-033

fluence into our conversations with machines. Age034

group, in particular, impacts the way we converse035

with household dialogue systems like Alexa (Prad-036

han et al., 2019), conversational agents for health037

information access (Harrington et al., 2022), and038

intelligent systems for interactive tutoring (Ogan039

et al., 2012). Ultimately, to effectively communi-040

cate, dialogue systems must adapt and align with041

the pragmatic skills, semantic understanding, and042

Figure 1: HumBEL uses data from human clinical exams to
measure demographic factors of language models (LMs) and
test alignment of LM language use with demographic groups.
We propose human-in-the-loop and automated techniques.

common sense of their target demographic. De- 043

spite this, there is limited work on evaluating de- 044

mographic factors, and in particular, demographic 045

alignment in human-machine conversations. To 046

fill this gap, we propose the novel HumBEL evalu- 047

ation framework,1 which measures demographic 048

alignment of language models (LMs) with a tar- 049

get user demographic for the first time. While our 050

framework is general, we pay particular attention 051

to modern LMs to support the rapid development 052

of these technologies as public-facing tools. 053

In detail, HumBEL proposes a human-in-the-loop 054

evaluation protocol which collaborates with a field 055

of clinical experts (Speech Language Pathologists) 056

that have already actively studied demographic fac- 057

tors in human-human communication for over 98 058

years (Duchan and Hewitt, 2023). These clinical 059

experts administer language exams and compare to 060

normative data (from large, human patient popula- 061

tions) to determine whether a patient aligns with 062

a target demographic (e.g., their peers). HumBEL 063

works by collaborating with these domain-experts 064

to administer these same tests to a language model 065

(LM), so key differences between LMs and human 066

sub-populations are revealed (Figure 1). To com- 067

1Human demographic Based Evaluation of LMs
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plement our human-in-the-loop clinical exams, we068

also propose a novel statistical test and a suite of069

existing statistical techniques to confirm clinician070

findings at scale. While HumBEL is generally ap-071

plicable to any (categorical) demographic features,072

we focus this study on age demographics. Most073

importantly, our evaluation of LM alignment with074

different age categories can be used to examine075

robustness in matching conversation applications,076

but as a side-effect, our techniques are also able to077

assign a typical human age-equivalent to an LM078

for a specific language skill.2079

To demonstrate HumBEL, we evaluate GPT-3.5.080

Our key findings quantify gaps in common sense081

knowledge (about noun relationships), social lan-082

guage use, and inference skills compared to adult083

human populations. Further, we find inconsistency084

in language skills compared to normal human de-085

velopment: failures in social and inferential capa-086

bility are akin to error patterns of a typical 3-9 year087

old, while success at recollection surpasses a typ-088

ical 21 year old. Results highlight the potential089

for human-machine miscommunication, when the090

demographic factors of conversation are ignored.091

In the rest of this paper, we introduce our new092

proposal. In particular, we contribute:093

1. (§ 2.1) protocols for evaluation of demographic094

factors in LMs by domain experts, using clinical095

exams and detailed clinician error analyses096

2. (§ 2.2) statistical tools to complement clinical097

techniques at scale via novel statistical tests for098

demographic alignment and error analysis099

3. (§ 3) detailed evaluation of a current state-of-100

the-art LM (GPT-3.5) using above techniques101

4. experimental code and a python package for102

future researchers to easily apply103

5. publicly available data, including clinician an-104

notations of GPT-3.5 errors105

2 The HumBEL Framework: Human Age106

Based Evaluation of Language Models107

As just discussed, the HumBEL framework consists108

of two evaluation protocols. The first (preferred)109

evaluation protocol describes techniques to admin-110

ister a clinical exam to a LM via prompting, so that111

results can be carefully analyzed by a clinically112

licensed Speech Language Pathologist. The second113

describes automated alternatives, which are easier114

to conduct more frequently and at scale.115

2Significant care should be taken in interpretation of LM
age equivalents; i.e., see Limitations.

2.1 Clinical Evaluation by Speech Language 116

Pathologist 117

In this section, we use examples from the com- 118

monly used CELF5 (Preschool) clinical exam 119

(Wiig et al., 2013) to describe our protocols.3,4,5 120

This test is used throughout our paper, but our ideas 121

generalize to other common clinical tests. 122

2.1.1 Description of CELF5 Exam 123

CELF5 is composed of multiple sub-tests with 24- 124

40 questions each, which assess syntactic, semantic, 125

and pragmatic use of language in 5-8 year olds. 126

1. Word Classes (WC) presents 3-4 words and 127

asks test subject to identify the two words that 128

go together best. It measures semantic knowl- 129

edge and ability to apply this knowledge to de- 130

termine and rank word associations. 131

2. Formulated Sentences (FS) presents 1-2 words 132

and asks subject to provide a sentence which 133

uses the(se) word(s). It measures syntactic and 134

semantic correctness of the provided sentence. 135

3. Recalling Sentences (RS) presents a sentence 136

and asks subject to repeat the sentence. It mea- 137

sures memorization and reproduction ability. 138

4. Understanding Spoken Paragraphs (USP) 139

presents a story and asks subject questions about 140

the story. It primarily measures recollection abil- 141

ity with occasional need for inference. 142

5. Pragmatics Profile (PP) analyzes social error 143

patterns in test subjects, observed during admin- 144

istration of other sub-tests and other interaction. 145

2.1.2 Exam Administration via Prompting 146

Prompting is the standard technique in which tex- 147

tual output is generated from LMs. We use prefix 148

prompting, in which input text is provided to the 149

LM and the LM is sampled based on this input to 150

complete the text. In this way, questions from the 151

5 discussed tests can be administered to the LM 152

and the LM response (i.e., the text-completion) can 153

be evaluated by the clinician with relevant observa- 154

tions noted for each question. Since the integrity 155

of exam results requires precise adherence to the 156

3 Note, any examples of test materials provided during dis-
cussion are adaptions of the original materials per publishing
agreement with Pearson, Inc. While different, the examples
are designed to convey similar qualitative insight to the reader;
e.g., the LM prompt or types of errors made by the LM.

4Clinical Evaluation of Language Fundamentals, Fifth
Edition, CELF-5 Copyright © 2013 NCS Pearson, Inc. Repro-
duced with permission. All rights reserved.

5Clinical Evaluation of Language Fundamentals, Fifth Edi-
tion, CELF-5 is a trademark, in the US and/or other countries,
of Pearson Education, Inc. or its affiliates(s).
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SLP QA Comp
Carefully consider the following words
and tell me the two words that go to-
gether best: "[W]", ...

Instruction: Carefully consider the fol-
lowing words and tell me...
Student:

Among the words "[W]", "[X]", "[Y]",
and "[Z]", the two words that go to-
gether best are

Table 1: Examples from different prompt protocols for the Word Classes test. SLP follows CELF5 directives exactly.3 QA adds a
mechanism to inform the LM of its speaker role. Comp re-frames as a likely seen prefix (i.e., in training). We test these and 70+
other prompt/parameter variations. See sensitivity analysis in Appendix C.

CELF5 protocols for scoring/evaluation, we ad-157

here to these as much as possible. We do identify158

two primary limitations in administering CELF5 to159

common LMs and provide solutions below:160

1. First, LMs are optimized for text-completion161

rather than instruction following,6 making typ-162

ical administration of the test challenging. To163

control for performance drops induced by this,164

we use multiple prompt formats (see Table 1).165

The SLP protocol follows the CELF5 directives166

exactly, while the QA and Comp protocols should167

be better tailored for LMs. Sensitivity analysis168

(Appendix C) with 70+ additional configura-169

tions suggests prompt and parameter variations170

do not significantly impact LM performance.171

2. Secondly, LMs lack the ability to perceive vi-172

sually and take action in an embodied setting.173

Therefore, we limit the types of tests adminis-174

tered (i.e., those in § 2.1.1) and tailor these tests175

for a language-only medium when appropriate176

(see Modifications). Investigation of the impact177

of this choice is left for future work. Indeed, the178

necessity of visual/embodied stimuli to inform179

lexical semantics has been hypothesized (Bisk180

et al., 2020) and CELF5 scores may be used in181

the future to provide a principled answer.182

2.1.3 Exam Administration via Chat183

While the experimental focus is on text-completion184

models like InstructGPT, we also conduct a prelim-185

inary analysis and compare to a chat-based model186

(i.e., ChatGPT) denoted Chat. Here, we can follow187

CELF5 directives more precisely, but still modify188

tests to accommodate the limited turn-based chat189

medium; i.e., removing visual cues, taking scores190

with/without evaluation of non-verbal skills, etc.191

2.2 Automation of Clinical Techniques192

In this part, we describe automated techniques for193

two important aspects of the clinical exam: (1)194

qualitative analysis of errors through clinician notes195

and (2) determination of human demographic align-196

6Instruct- and ChatGPT work towards bridging this gap,
but results indicate this problem is not totally solved.

ment for the LM on a task. We use the Word 197

Classes test (WC) as an example application. 198

2.2.1 Data 199

We build a large-scale WC test (WC large) by 200

combining two publicly available data sources: 201

1. Word Associations: We build associated word 202

pairs using cue and association words from 203

the WAX dataset (Liu et al., 2022a) collected 204

from human annotators by presenting a cue and 205

asking for spontaneous associations (with ex- 206

planation). This dataset is transformed into a 207

large-scale version of the WC test by randomly 208

sampling two additional association words for 209

each human labeled word pair and presenting 210

the quadruple to a subject using the existing 211

WC prompt protocols. All four test words (i.e., 212

the target pair and two additional associations) 213

are presented in random order and filtered to 214

prevent overlap in target pairs by chance. 215

2. Age Norms: In clinical exams, human devel- 216

opmental standards are determined from exam 217

score data (i.e., age norms) that indicate the age 218

at which one expects the observed score in a 219

human population. To do this automatically for 220

new WC questions, we use a test-based age-of- 221

acquisition (AoA) dataset (Dale and O’rourke, 222

1976; Brysbaert and Biemiller, 2017), which de- 223

termines the AoA of 40K English words. Word 224

AoA is determined by the age at which 50- 225

70% of a human population knows the word 226

according to a definition matching test (see Ap- 227

pendix A), called Def in experiments (§ 3). For 228

WC large, AoA is the max AoA of the target 229

words (i.e., the typical age at which a human 230

can select the target pair without guessing). 231

Applying AoA estimates to the word association 232

data leads to about 10K new WC questions with ac- 233

companying explanations and projected age norms. 234

2.2.2 Automated Analysis of Errors 235

We isolate some influential factors in typical word 236

acquisition by humans based on discussion with a 237

licensed Speech Language Pathologist; i.e., these 238

question/response features were deemed useful for 239
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analyzing errors in notes during clinical exams. We240

limit our analysis to features that can be automati-241

cally determined.7 The target pair features include:242

unordered parts-of-speech inferred from explana-243

tions in the WAX dataset, relation types from the244

WAX dataset, and morphological complexity. We245

also consider presence of explanations by GPT.246

Details on feature extraction are in Appendix D.247

Statistical Tests In lieu of detailed notes, we pro-248

pose a variety of statistical tests to determine as-249

sociation and impact of the various features just250

discussed. The χ2-statistic provides a basic test for251

the association of each feature with the occurrence252

of an LM error. Furthermore, specific hypotheses253

about the impact of particular parts-of-speech, rela-254

tions, and other features can be estimated using a255

Linear Probability Model (LPM). For example, an256

LPM allows us to estimate the effect size257

Pr{LM error | Relation=Function}
−Pr{LM error | Relation ̸= Function}.

(1)258

while controlling for other features such as typical259

human age-of-acquisition for the word pair and any260

other features included in the model. For details on261

both testing procedures see Appendix F. Example262

applications are provided in later results (§ 3).263

2.2.3 Automated Determination of LM Age264

While we focus on age, these novel statistical tests265

can measure any categorical demographics.266

Test Divergence We base our first test for LM267

age on a statistic called the test divergence (Sicilia268

and Alikhani, 2022). For an evaluation function h269

and language model LM the test-divergence is:270

TDa(LM) = E[|h(D)− h(D̂)|];

(D,C) ∼ Ga; D̂ ∼ LM(C).
(2)271

Here, Ga is called the goal distribution and typi-272

cally represents a distribution of human dialogues.273

We incorporate new dependence on the age group274

a, which restricts the human reference population.275

With this interpretation, D is a random human di-276

alogue about the context C and D̂ is a dialogue277

sampled from the language model about this same278

context; context can be a prompt, an image, both279

(for perceptually grounded models), or any other280

information source which grounds the dialogue. In281

this paper, C will correspond to a test question (or,282

equivalent LM prompt) in the WC large dataset283

7We use the spacy package.

and h will indicate whether the response D (or 284

D̂) is correct. C follows a uniform distribution 285

over questions in WC large where AoA (§ 2.2.1) 286

is either (1) exactly equal to a, or (2) ≤ a. We 287

disambiguate between these two cases throughout. 288

The TD Test for LM Age Granted the test- 289

divergence as a test statistic, we are interested in the 290

following null H0 and alternative HA hypotheses: 291

H0 : LM errors align with age group a 292
HA : LM errors fail to align with age group a 293

Thus, we grant the LM benefit of the doubt and 294

reject the model LM aligns with an age group if we 295

establish evidence against this claim. Formally, we 296

define alignment when a model’s error patterns are 297

within a tolerance γ: i.e., if TDa(LM) ≤ γ. In En- 298

glish, this means the expected difference between 299

the LM performance and human (aged a) perfor- 300

mance on each test question is no more than the 301

tolerance γ where tolerance allows us to account 302

for any (human) subjectivity in question responses. 303

Then, with this, we can rewrite our hypotheses: 304

H0 : TDa(LM) ≤ γ, HA : TDa(LM) > γ. 305

In turn, a test at confidence 100× (1−α)% rejects 306

the null if the p-value is bounded by α 307

p = Pr(T̂a − γ ≤ Ta − γ | H0) ≤ α (3) 308

where T̂a is the observed estimate of TDa(LM) (i.e., 309

an empirical average) and Ta is the r.v. representing 310

this empirical average. For the WC large dataset, 311

n·Ta is a Binomial random variable and probability 312

under the Binomial distribution gives the p-value 313

exactly. In other cases, the test outcome may be 314

continuous or the test h may be learned from data 315

similar to work by Bruni and Fernández (2017). 316

Here, Hoeffding’s or PAC type bounds can yield 317

p-values (Shalev-Shwartz and Ben-David, 2014). 318

The Mean Test for LM Age As we will see in 319

later results, the statistic/test just described will 320

often be preferred because it incorporates infor- 321

mation about individual question outcomes, mak- 322

ing it more sensitive to correlation between h(D) 323

and h(D̂). Still, we may not have access to the 324

individual human question outcomes h(D). In- 325

stead, we might only know the average outcome 326

µa = E[h(D)] with D ∼ Ga. Following the same 327

logic as before, we can use this to test alignment: 328

H0 : E[R] = n · µa, HA : E[R] < n · µa. 329

where R is the empirical sum of correct GPT re- 330

sponses
∑

i h(D̂i) and n is the question count. 331

Note, this leads to a standard Binomial test. 332
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Figure 2: Accuracy of InstructGPT on WC large and Def.;
AoA is defined in § 2.2.1. Solid line tests pairs at most the
AoA. Dotted tests pairs exactly at the AoA.

Figure 3: Vertical axis shows p-values from mean tests. Red
dashed line is α = 0.05. µa is estimated based on Dale and
O’rourke (1976), accounting for chance and subjectivity of
gold associations (see Appendix B).

3 Results: Applying HumBEL to GPT333

3.1 Clinical Evaluation Results334

Table 3 shows CELF5 test scores and age equiv-335

alents for InstructGPT (text-davinci-002) and336

select results for ChatGPT (gpt-3.5-turbo). We337

discuss qualitative clinician observations with sup-338

porting quantitative analyses, providing italicized339

takeaways for conversational applications of GPT.340

While this part focuses on InstructGPT, compari-341

son to ChatGPT is provided in § 3.3. For sensitivity342

analysis to prompt/parameters, see Appendix C.343

Modifications To adapt the Word Classes for344

language models, we remove any visual stim-345

uli. We also include a further modified test WC∗.346

While official clinical evaluation stipulates the eval-347

uator should prematurely conclude the WC test if348

4 sequential incorrect answers are provided, this349

stopping rule (ceiling) is based on human devel-350

opment (i.e., easier words are presented earlier),351

which GPT may not follow. For comparison, WC∗352

reports evaluation without a ceiling. Similarly, we353

modify the Pragmatics Profile PP since it mea-354

sures social language capabilities which are not355

observable in prompt-only or turn-based chat medi-356

ums; e.g., non-verbal cues and initiative behaviors.357

The profile with these items removed is called PP∗.358

Recollection vs. Inference InstructGPT excels359

at memorization, but has trouble making inferences.360

Of all the tests, Word Classes (WC) most requires361

the ability to make new inferences from existing 362

(lexical semantic) knowledge. This is also the task 363

that InstructGPT performs worst at, demonstrating 364

alignment with the ability of a 6 year old. While In- 365

structGPT was generally more successful on other 366

tasks, the evaluating clinician observed errors in 367

USP were also frequently due to trouble drawing 368

inferences. When InstructGPT provided explana- 369

tions for answers on WC, the clinician observed 370

flawed or irrelevant logic in more than 59% of cases. 371

See Table 2 for examples of inferential and other 372

language application errors. Note, this pitfall of 373

GPT also induces a large variation in scores (e.g., 374

from age equivalent over 21 to under 4) which is 375

certainly atypical of human norms. Despite some 376

negatives, the impressive proficiency of GPT at 377

recollection suggests it would excel in conversa- 378

tional applications requiring rote information ex- 379

traction. In applications requiring inference about 380

word meanings, one might consider communicat- 381

ing the error patterns of GPT, depending on target 382

interlocutor age and conversational goals. 383

Difficult Relations InstructGPT has more trou- 384

ble with functional roles, categories, and antonyms. 385

On Word Classes (WC), the evaluating clinician 386

identified multiple errors for each of these relation 387

types. For functional roles, InstructGPT fails to rec- 388

ognize relationships like "[X] goes in [Y]" or "[X] 389

used for [Y]". It also failed to recognize categories 390

like "body parts", "senses" and dichotomous pairs 391

used to describe the same concept; e.g., "brief" and 392

"long".3 Table 2 shows examples. 393

Atypical Semantic Errors According to hu- 394

man developmental standards, InstructGPT under- 395

stands some "hard" words better than "easy" words. 396

In particular, the clinician observed error patterns in 397

semantic knowledge which were distinct from typi- 398

cal patterns in children. While InstructGPT failed 399

frequently at comparatively "easy" word relations 400

(e.g., shirt and jacket), it succeeded at "harder" re- 401

lations (e.g., copious and teem).3 In the data, this 402

is exemplified by WC and the modified test WC∗. 403

The difference in scores implies InstructGPT ac- 404

cumulated sequential errors early in the test on 405

"easy" word relations, while still succeeding later 406

on "hard" relations. This example hits home the 407

necessity of considering human demographics in 408

evaluation, since GPT does not appear to conform 409

to human preconceptions of how knowledge builds. 410

This disconnect can lead to significant misunder- 411
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Test InstructGPT Clinician Observation
WC Among the words "car", "water", "stroller", and "boat", the two words that go

together best are "car" and "boat". Both are types of transport.
Misses functional goes in re-
lation for boat, water

WC Among the words "singing", "loving", "touching", and "tasting" the two words that
go together best are "singing" and "loving." This is because both words involve
using your voice and express affection.

Misses categorical sense rela-
tion for touch, taste

USP Melanie greeted Miss Grace because she was happy to see her. Missing context: Grace is old
camp instructor

USP ["throw-and-chase" is] a game where one person throws a ball and the other person
goes to chase it.

Not fact based. Fact-based an-
swer is found in context

Table 2: Examples of inferential and other language application errors by InstructGPT in CELF5 exam. Explanations are
provided by the evaluating clinician. Examples are adapted for publication per agreement with Pearson.3

Instruct WC WC∗ FS RS USP PP PP* WC WC∗ FS RS PP
SLP 3% 50% 94% 88% 93% 3:2 7:5 21:5+ 21:5+
QA 28% 50% 85% 96% 93% 39% 48% 5:3 7:5 12:7 21:5+ < 3
Comp 35% 60% 90% 100% 88% 5:11 8:10 15:1 21:5+
Chat 83% 83% - - 75% 45% 60% 14:7 14:7 - - < 3

Table 3: (Left) Test scores reported as percent of highest possible score. (Right) Age equivalent (year:month) for scores on Left.
CELF5 age equivalents are not available for USP or PP∗. Chat results are discussed in § 3.3.

standings in conversational applications.412

Social Error Patterns InstructGPT fails to con-413

sider context, leading to lower social capability.414

In particular, the clinician observed key behaviors415

of InstructGPT based on the Pragmatics Profile416

(PP). InstructGPT said illogical things given the417

surrounding context and displayed misunderstand-418

ing of directions and goals. For example, some419

cases are exemplified during WC and USP in Ta-420

ble 2. Clinician also observed GPT provided too421

much information when answering questions. Note,422

these contextual issues are exacerbated by an LMs423

limited interactive capabilities; e.g., inability to424

use non-verbal aspects of language and initiate. We425

consider how these factors affect PP scores through426

PP∗ which removes these (20/50) test items: the427

score increases considerably, but is still far from428

normal for humans of any age. Overall, the limited429

social capabilities of instruction following models430

“out-of-the-box” suggests further work is needed to431

adapt them to (social) conversation applications.432

3.2 Automated Evaluation Results433

As before, we focus in this part on InstructGPT434

with comparison to ChatGPT in § 3.3. Performance435

of InstructGPT8 on WC large and Def is provided436

in Figure 2 with p-values from a mean test for LM437

age in Figure 3. We provide performance of human438

annotators on a 1% (n = 108) sample of WC439

8Intended answer is extracted using the first uttered test
words (2 for WC large and 1 for Def); this was based on
clinician observation on CELF5. Human evaluation of the rule
on WC large (n = 108) also showed 100% intent recovery.

large in Appendix Table 4. 440

Overall Performance Coarse-grained results for 441

InstructGPT are generally consistent with the clin- 442

ical evaluation results in § 3.1. Accuracy, which 443

is equivalent to the WC∗ score in Table 3, is con- 444

sistent with the clinical evaluation based on a 95% 445

confidence interval.9 It is notable that WC large 446

may be more difficult, as exhibited by human dis- 447

agreements (see Table 4). Overall, the general take- 448

aways of the clinical exam can be confirmed in 449

these coarse-grained results. For example, Instruct- 450

GPT appears to succeed at the recollection task Def, 451

which only requires recalling a definition, and per- 452

form worse at the inference task WC large. Also, 453

GPT shows a spike in performance when word pair 454

AoA is 19 (exactly), demonstrating unnatural word 455

acquisition compared to human age standards. 456

Automated Determination of LM Age Based 457

on p-values in Figure 3, we determine Instruct- 458

GPT to align with ages 9- or 11-and-under for 459

WC large, depending on whether Ga contains 460

questions with word pair AoA exactly a or ≤ a, 461

respectively. This can be seen by excluding all 462

ages where the means test rejects the null that GPT 463

aligns with age group a (i.e., dipping below red 464

line of significance). When word pair AoA is ex- 465

actly 19, the means test succeeds in identifying the 466

aforementioned "unnatural" spike in performance 467

by correctly failing to reject the null. Overall, the 468

means test is consistent with the clinical evaluation. 469

9Via Hoeffding’s inequality with n = 40 examples tested
in WC∗, the two-sided interval has lower bound of 39%.
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Figure 4: Expected increase in probability of GPT error
on WC large for different categories of word pairs. LPM
estimates are significant at confidence 99% (with Bonferroni
correction) except H4. Estimates are near true effect size for
large samples (see Appendix F).

Automated Analysis of Errors In Appendix Fig-470

ure 6, we visualize the influential factors on lan-471

guage errors discussed in § 2.2.2 and determine472

each has statistically significant association with473

the errors of InstructGPT. We also consider 6 hy-474

potheses about these factors which were formulated475

through discussions with the evaluating clinician.476

Details are given in Appendix E. Hypotheses are477

tested with an LPM (see Appendix F), and results478

in Figure 4 confirm observations from the CELF5479

exam (§ 3.1). We report each hypothesis and corre-480

sponding effect size ∆ (increase in % error) below:481

• H1: InstructGPT has more trouble when target482

pairs include adverbs or adjectives (∆ = 3.5).483

• H2: InstructGPT has more trouble when the as-484

sociated pair do not share POS (∆ = 3.1).485

• H3: InstructGPT has more trouble with particu-486

lar relation types (∆ = 11).487

• H4: InstructGPT has more trouble with morpho-488

logically complex words (∆ = 2.3).489

• H5: GPT does worse when it explains (∆ = 6.2).490

• H6: InstructGPT has more trouble as word pair491

AoA increases (∆ = 0.5; i.e., 5% from 9 to 19).492

3.3 Comparison of Instruct- and ChatGPT493

Clinical Results While we focus on Instruct-494

GPT, we also explored performance of a chat-based495

model (ChatGPT; gpt-3.5-turbo) on CELF5. We496

focused on subtests WC, USP, and PP. These tests497

target aspects of inference and social language use498

(among other things) for which InstructGPT was499

poorly aligned with adult age groups. Findings500

(Table 3) indicate ChatGPT improves upon infer-501

ence about word meanings with 23%-48% higher502

scores on WC and WC∗ compared to InstructGPT.503

ChatGPT also improved upon the PP subtest by504

9%. Albeit, this score still aligns poorly with the505

pragmatics skills of adult humans. According to506

clinician notes, ChatGPTs safety features and lim-507

ited chat medium (turn-based text) still severely508

limits its pragmatic abilities on CELF5. It tends 509

to avoid providing subjective opinions (even when 510

asked), is incapable of many non-verbal aspects of 511

social language, and does not initiate in conversa- 512

tion (e.g., ask questions). 513

Automated Results We also conduct a full auto- 514

mated analysis on ChatGPT. The automated Mean 515

test for LM demographic alignment shows Chat- 516

GPT aligns with ages 15-and-under when AoA is 517

≤ a on WC large, which again agrees with the 518

CELF5 clinical examination. In testing, the human 519

correctness parameter µa for the Mean test was in- 520

creased to make the Mean test more sensitive, but 521

this was within bounds on µa specified by Dale and 522

O’rourke (1976). The impact of changing µa does 523

speak to the need for careful demographic selection, 524

since small differences in human populations can 525

change LM alignment. For the analysis of errors, 526

H1-H6 are consistent with results for InstructGPT, 527

except for H3: ChatGPT actually does better when 528

it explains, whereas InstructGPT does worse. Over- 529

all, these results echo the clinician observations 530

that ChatGPT has somewhat improved skill making 531

new inferences about word meanings. Full auto- 532

mated results for ChatGPT will be released with 533

code and an accompanying technical report. 534

3.4 Simulated Results with TD Test for Age 535

In the last section, we used the Means test for LM 536

age because we did not have access to sample hu- 537

man question outcomes from different age groups 538

and can only estimate the test parameter µa. Next, 539

we simulate data to show the benefit of the TD test 540

when access to human outcomes is available. 541

Setup Figure 5 shows results applying tests to 542

LM and human samples GPT v.H as well as two 543

(same age) human samples H v.H. Ideally, a test 544

should fail to reject the null for all H v.H experi- 545

ments and be sensitive for GPT v.H experiments, 546

rejecting the null when appropriate. To conduct 547

tests and study variation, we require multiple hu- 548

man samples. Since we only have one (used to 549

define WC large), we simulate human test perfor- 550

mance with a random variable Hi defined: 551

Hi =

{
h(D̂i) with prob. ρ,

Bernoulli
(

µ−ρE[h(D̂i)]
1−ρ

)
else

(4) 552

So, we have Pr(Hi = 1) = µ regardless, and 553

ρ controls the extent to which the model LM and 554

the sampled human agree. For all experiments in 555
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Figure 5: Bounds on p-values for TD and Means test. Red dotted line is significance level 0.05.

Figure 5, we conduct 25 trials. Hi is simulated556

using Eq. (4), h(D̂i) is given by GPT performance557

on WC large, and questions for age a comprise558

all questions whose AoA is less than or equal to a.559

We estimate µ and γ from data.10560

Failure of Means Test As the agreement param-561

eter ρ between the sampled human and the model562

LM increases, tests using the TD statistic adapt ap-563

propriately, failing to reject at higher and higher564

ages. So, using TD allows us to account for con-565

text well. In comparison, the result of the means566

test is unchanged, demonstrating a benefit of using567

the TD statistic (when possible).568

4 Related Works569

Psycho-linguistic Study of LMs Other tools de-570

rived from psychology and linguistics exist across571

previous work on LMs. Sahu et al. (2021) use572

Bloom’s Taxonomy (Bloom, 1956) to improve con-573

text in LM prompts for QA. Hovy and Yang (2021)574

develop a taxonomy of social factors to consider575

for LM evaluation. Cong (2022) evaluate GPT-3576

using psycholinguistic tests, and Chang and Bergen577

(2022) use word age-of-acquisition to study devel-578

opment of LM word knowledge (during training)579

compared to humans. Comparatively, HumBEL is580

the first work to directly measure the alignment581

of an LM with a human sub-population, providing582

systematic techniques for automatic and clinician-583

in-the-loop evaluation of demographic factors.584

LM Evaluation and Human-Likeness Evalua-585

tion strategies for generated text include metrics586

based on n-gram matching (Papineni et al., 2002;587

Lin, 2004; Vedantam et al., 2015) as well as metrics588

based on neural models (Sellam et al., 2020; Zhang589

et al., 2019; Inan et al., 2021). Bruni and Fernandez590

(2017); Ippolito et al. (2020); Dou et al. (2022) also591

propose (human or model) adversaries to discrimi-592

nate between human and generated text. Our work593

is most related to those works considering evalu-594

10µ is lower bound of a 95% Hoeffding interval around the
acc. in Table 4; γ is disagreement across sim. samples of Hi.

ation of human-likeness (and properties thereof). 595

For example, our techniques target commonsense 596

knowledge, inference, and social factors as studied 597

in a variety of works (Nair et al., 2020; Kassner and 598

Schütze, 2020; Liu et al., 2022b). Our work builds 599

on broad goals of evaluating human-likeness, not 600

only in the types of tasks we test, but also in the 601

communication of the results to the practitioner, 602

presenting qualitative and quantitative results in 603

terms of human demographic information. 604

NLP Tasks Many of the SLP tasks we consider 605

have existing counterparts appearing in the NLP 606

literature. For example, USP is a narrative QA task 607

(Kočiský et al., 2018) and WC is, in some respects, 608

akin to word association tests used to evaluate se- 609

mantic modeling of words (Bolukbasi et al., 2016; 610

Caliskan et al., 2017; Liu et al., 2022b). Our work 611

extends this literature by incorporating clinician-in- 612

the-loop feedback for the design and evaluation of 613

these tasks, and furthermore, is the first to incor- 614

porate human demographic data for comparison of 615

LM performance to human sub-populations. 616

5 Conclusion 617

We present HumBEL, which evaluates demographic 618

factors of conversation in language models by using 619

novel clinician-in-the-loop statistical techniques. 620

Our framework moves beyond measuring superfi- 621

cial coherence of large language models, instead 622

working towards a human-explainable way to test 623

LMs for language use and context relevance (Clark, 624

1996), and to compare this language use to the hu- 625

man sub-populations that interact with these mod- 626

els. For example, our techniques provide insight 627

on the utility of LMs for inference, information- 628

extraction, and social applications. Furthermore, 629

in building connections between human and LM 630

development, diverse research communities may 631

find LMs useful for studying language disorders in 632

humans as well. We make the code and data of our 633

framework publicly available, so future researchers 634

can make use of our suite of automated statistical 635

techniques, and protocols for clinician evaluation. 636
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Limitations637

First and foremost, we wish to be careful about638

claiming our proposed techniques ascribe an in-639

tellectual age to any AI model. It is not yet clear640

whether the tests for human language ability we use641

are an appropriate "all-in-one" assessment for arti-642

ficial intelligence, especially considering the vast643

range of specific tasks in the literature at which arti-644

ficial agents can achieve super-human performance.645

While the tasks we study are good indicators of646

general language skills in humans, connections be-647

tween our framework and performance generaliza-648

tion of AI models on untested reasoning and social649

language tasks are unknown. For example, factors650

such as overfitting, adversarial robustness, stochas-651

ticity, and prompt sensitivity can all play a new652

distinct role for AI models. Thus, it is better to take653

care and interpret our framework as designed to654

investigate alignment of LM language use/skills to655

the language use/skills of particular human demo-656

graphic groups on particular language tasks. As657

noted, there is still significant benefit to this more658

careful interpretation, since our framework serves659

to assess model fit in conversational AI with con-660

sideration of interlocutor demographics and goals.661

Second, the nature of language models produces662

a gap in evaluation protocols between children and663

these models. While we take a number of steps to664

alleviate these issues, there is still need for this gap665

to be bridged completely; i.e., so that normative age666

data is most accurate. Taking clinical evaluation to667

perceiving and embodied models is one possibil-668

ity. One can also consider collecting new normative669

data on tasks designed for a language-only medium,670

or, consider using fine-grained metrics more com-671

monly used by SLPs; e.g., preferring percentile672

rank among same age peers over age equivalents.673

Third, we do not explicitly consider inter-674

annotator (i.e., inter-clinician agreement). The675

CELF5 exam does already come with estimates676

of inter-clinician agreement on evaluations with677

humans, but it is possible that working with lan-678

guage models produces new challenges that will679

ultimately invalidate this estimate. Fourth, more680

human data is needed to test statistics like the test681

divergence on real world data. Finally, our work682

does not explore in-depth automated analyses on683

other problem areas of LMs such as social lan-684

guage; i.e., while our clinician-in-the-loop analysis685

does consider pragmatics, our automated analysis686

focuses on inference.687

Ethics Statement 688

The proposed approach does not explicitly evalu- 689

ate societal biases inherited by language models, 690

so any harm or bias associated with these models 691

should be considered separately. General methods 692

that propose to mitigate harms can help to resolve 693

these issues, along with careful human evaluations. 694

For readers or users of our framework to gain 695

access to test questions, they may need to purchase 696

licenses from the company, university, or research 697

lab that publishes and produces these tests. Our use 698

of the CELF5 examination is consistent with our 699

publishing agreement with Pearson, Inc. 700

Our human subject board approved our protocol. 701

Human subjects participated voluntarily and were 702

compensated according to the regulations approved 703

by our human subject review board. 704
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A Determination of Word AoA918

Recall, we use a test-based age-of-acquisition919

dataset (Dale and O’rourke, 1976; Brysbaert920

and Biemiller, 2017) to determine word age-of-921

acquisition (AoA) of 40K English words. Age is922

determined by U.S. K-12 grade-level and adapted923

to typical age equivalents (discussed later). Word924

grade-level is determined via multiple-choice test925

in which target word definitions are provided and926

subjects select the target amongst multiple alterna-927

tives. A word is assigned to the earliest level at928

which 67-80% of subjects answer correctly, equat-929

ing to about 50% of subjects "knowing" the word at930

this level (accounting for chance). A word’s AoA is931

then inferred from grade-level via typical grade-to-932

age mapping for U.S. K-12; i.e., age = grade + 5.933

Tests were given to U.S. (Midwest) students across934

a range of socio-economic and racial backgrounds935

with each specific word-meaning administered to936

about 200 subjects. As noted, besides WC large,937

we also test GPT-3.5 on this multiple-choice test938

for matching word definitions, called Definitions939

(Def). Alternatives are selected randomly and the940

prompt is: Among the words "[W]", "[X]", "[Y]",941

and "[Z]", the word that most means "[Defn.]" is.942

B Estimating Human Mean Correctness943

In experiments, we use a similar approach as Dale944

and O’rourke (1976) to estimate µa from word945

AoA, accounting for guessing and subjectivity of946

the task. From test results of Dale and O’rourke947

(1976), we make a reasonable assumption that948

about 50% of humans at a particular age level know949

a word at this age level. For a human to be correct950

on the WC task, they must both know the target951

words and agree with the annotation. To compute952

probability for the latter, we estimate probability953

of agreement from Table 4 using the upperbound954

of a 95% Hoeffding interval for the reported % dis-955

agreement (to be conservative).11 Then, assuming956

agreement and knowledge are independent, this957

means 38% of humans aged a will be correct based958

on knowledge. Finally, accounting for guessing959

using the score correction of Diamond and Evans960

(1973), this means we should expect about 47% of961

humans aged a to answer correctly.962

11Agreement is 100 less the % disagreement. Results with-
out the upperbound – i.e., using exact observed disagreement–
are slightly different, but takeaways are generally consistent.

C Prompt and Parameter Sensitivity 963

Although testing for the impact of various prompts 964

and parameters is impractical when evaluation is 965

done by a clinician, our automated version of the 966

WC test provides a more practical alternative to 967

explore the impact of these model choices. We test 968

different parameter settings for nucleus sampling 969

(i.e., top_p ∈ {0.8, 0.9, 0.95}) and temperature 970

scaling (i.e., temp ∈ {0, 0.5, 0.7, 1}) as well as 11 971

different prompts with varying aspects of the key 972

prompt differences highlighted in Table 1. All in 973

all, we test differences in GPT performance of a 974

total of 77 different prompt/parameter settings on 975

sample of 100 examples from WC large. The 976

standard deviation in the LM scores was only 3% 977

and a χ2 test for independence between the settings 978

and the error rates indicates there is no statistically 979

significant association between the settings and the 980

error rates. That is, performance was not signifi- 981

cantly impacted by prompt/parameter settings. 982

D Feature Extraction for Error Analysis 983

1. Part of Speech (POS) While word POS is 984

dependent on context, the explanations in the 985

WAX dataset (Liu et al., 2022a) provide an op- 986

portunity to infer the annotator’s intended POS 987

for the word association. In particular, we can 988

apply open-source POS parsers12 to the annota- 989

tor explanation. This strategy assumes an expla- 990

nation uses a word in the same POS as intended 991

for the word association. In case an annotator 992

does not use the full word pair, we use "X" for 993

unknown. Results in Figure 6 suggest GPT-3.5 994

error rates can vary widely based on the pairs 995

POS, exhibiting particular association with ad- 996

verbs, adjectives, and pairs having distinct POS. 997

2. Relation The WAX dataset also contains rela- 998

tion categories for word associations. Recall, 999

the results of the clinical exam suggested partic- 1000

ular relations are challenging for GPT-3.5 and 1001

the results in Figure 6 seem to suggest this as 1002

well; e.g., as in the clinical exam, functional 1003

relations are hard for GPT-3.5 to identify. 1004

3. Morphological Complexity We also consider 1005

Morphological Features within the Universal 1006

Dependencies framework (Nivre et al., 2016), 1007

which describe semantic and grammatical prop- 1008

erties of words. We define morphological com- 1009

plexity as the total number of morphological 1010

12We use the spacy package.
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Figure 6: Proportion plot for features associated with InstructGPT errors on WC large. Association is significant at confidence
99% according to χ2 test with Bonferroni correction. Infrequent categories not shown.

Figure 7: Results in Figure 3, re-reported without using a
Hoeffding interval to estimate disagreement. Key results (i.e.,
lowest age estimate) differs only by a grade level.

features attached to at least one of the the words1011

in the association. High corresponds to more1012

than 4 features, medium corresponds 3-4 fea-1013

tures, and low corresponds to 2 or less features.1014

Our working assumption is that the number of1015

features is a loose indicator of the complexity1016

of the a word’s meaning and can thus introduce1017

challenges for GPT-3.5. The results in Figure 61018

do appear to confirm this hypothesis.1019

4. Explanations Lastly, we consider if GPT-3.51020

provides an (unprompted) explanation of its rea-1021

soning behind an answer. Interestingly, this1022

occurs more times than not on the WC large1023

dataset. While our intuition may tell us this1024

means GPT-3.5 is more confident in the answer,1025

the clinical evaluation actually demonstrated1026

that GPT-3.5 often provided illogical explana-1027

tions that may appear off-topic or overly com-1028

plex to humans. Results in Figure 6 seem to1029

confirm these findings, indicating that expla-1030

nations typically led to worse performance at1031

identifying associations.1032

E Hypothesis Selection1033

Below, we provide some details discussed with1034

the evaluating clinician which led to the suite of1035

hypotheses we test.1036

• H1: InstructGPT has more trouble when the as-1037

sociated pair includes an adverb or adjective.1038

Clinician observations indicate trouble with mod- 1039

ifiers in CELF5 examination. This hypothesis is 1040

confirmed in Figure 4 where we estimate a 3.5% 1041

increase in probability of error when at least one 1042

word in the pair is an adjective or adverb. 1043

• H2: InstructGPT has more trouble when the as- 1044

sociated pair do not share POS. Distinct POS 1045

can indicate more complex relationships across 1046

word pairs, which is a noted problem for GPT in 1047

CELF5 evaluation. This hypothesis is confirmed 1048

with a similar effect size as H1. 1049

• H3: InstructGPT has more trouble with particu- 1050

lar relation types. Building on the last hypothe- 1051

sis, we isolate "easy" word pair relations includ- 1052

ing {action, location, phrase, and synonym }, so 1053

the remaining "hard" word pair relations overlap 1054

with types of relations our clinician noted as diffi- 1055

cult for GPT. Unknown relations are assumed to 1056

be hard. Results in Figure 4 confirm this hypoth- 1057

esis where we estimate a relatively large 11% 1058

increase in error probability for "hard" relations. 1059

• H4: InstructGPT has more trouble with morpho- 1060

logically complex words. As before, assuming 1061

the complexity of a word is tied to its count of 1062

morphological features, we would expect GPT 1063

to have trouble with words having medium or 1064

high morphological feature count. We estimate 1065

an effect size similar to H1 and H2. 1066

• H5: GPT does worse when it explains. Clinician 1067

evaluation on the Pragmatics checklist reveals un- 1068

trustworthy, illogical explanations by GPT. Test- 1069

ing at scale reveals GPT has more errors when it 1070

attempts to explain its reasoning with a relatively 1071

large estimated effect size of 6%. 1072

• H6: InstructGPT has more trouble as the word 1073

pair AoA increases. While we include word pair 1074

AoA in our analysis as a potential confounder for 1075

which to control, it is also interesting to see how 1076

this variable impacts the performance of GPT. 1077

We estimate a 0.5% increase in probability of 1078

13



error for each unit increase in AoA; e.g., a word1079

pair AoA of 19 would cause 5% greater chance1080

of error than an AoA of 9.1081

F Overview of Statistical Tools1082

χ2 Test The χ2 test is commonly used to deter-1083

mine statistical association between two categorical1084

variables (Freund et al., 2004). In our case, the two1085

categorical variables are (1) the occurrence of a1086

language application error by GPT and (2) one of1087

the categorical features of the word pair discussed1088

in § 2.2.2. The test uses a contingency table; i.e.,1089

a table of counts formed by letting one of the vari-1090

ables define the columns, the other variable define1091

the rows, and filling each element with the number1092

of occurrences observed for each pair of categories.1093

Then, the test uses the statistic1094

χ2 =
∑k

i=1

(observedi − expectedi)
2

expectedi

(5)1095

where k is the number of elements in the contin-1096

gency table, observedi is the observed frequency of1097

each element of the table, and expectedi is the ex-1098

pected frequency under the assumption that the two1099

categorical variables are independent (i.e., the null1100

hypothesis). Aptly, the distribution of the statistic is1101

asymptotically χ2 and a p-value can be calculated1102

accordingly. We use a Bonferroni correction to con-1103

trol for multiple testing (i.e., across the multiple1104

features we present as well as those not presented).1105

Linear Probability Model Consider a n×1 vec-1106

tor of dependent variables Y and a n×m matrix1107

of independent variables X where n is the number1108

of observations and m is a number of features for1109

each observation. In our case, Y is a binary vector1110

indicating the occurrence of a GPT language appli-1111

cation error and X is a matrix (m = 4) with the1112

3 categorical features (discussed in § 2.2.2), and1113

the last column being the word pair AoA (§ 2.2.1).1114

With this notation, the Linear Probability Model1115

(LPM) assumes a conditional probability model:1116

Pr(Y = 1|X) =


1, Xβ > 1

0, Xβ < 0

Xβ, else
(6)1117

where β is an unknown parameter vector of im-1118

plied dimension. Supposing Pr(Xβ > 1) =1119

Pr(Xβ < 0) = 0, the LPM reduces to the as-1120

sumption: Pr(Y = 1|X) = Xβ, in which case,1121

the standard OLS estimate1122

β̂ = (XTX)−1XTY (7)1123

Hum. A1 ̸= A2 κ GPT ̸= Hum.
84% 15% 0.82 56% 40%

Table 4: Sample (n = 108) WC large scores of 2 annota-
tors aged 19+ (left) and InstructGPT (right). Annotators %
disagreement and Cohen’s κ is reported. GPT avg. % disagree-
ment with annotators is reported. Annotators were students
prompted using the same directives as GPT; i.e., which two
words go together best?

Figure 8: AoA of individual words from dataset of Dale and
O’rourke (1976) used to create WC large.

provides a consistent estimator for the true param- 1124

eter β (Horrace and Oaxaca, 2003). Techniques 1125

for heteroscedasticity (i.e., unequal variance of er- 1126

rors) like White’s robust covariance matrix (White, 1127

1980) can also be used to conduct hypothesis test- 1128

ing for significance of the coefficient estimates 1129

(Horrace and Oaxaca, 2003). We use these tech- 1130

niques for the coefficient estimates and statistical 1131

tests in § 3 Figure 4. As before, we employ a Bon- 1132

ferroni correction to control for multiple testing. 1133

1134

Figure 9: AoA of word pairs in WC large. Some expected
accumulation in higher ages occurs (i.e., from taking a max).
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Drawbacks of LPMs Notably, the LPM has been1135

criticized by some because it is a somewhat frag-1136

ile model of the Bernoulli process governing Y1137

(Gomila, 2021). For example, if Xβ > 1 or1138

Xβ < 0 are probable, the interpretation of the1139

model is unclear. Indeed, mathematically, when1140

the presumed model is not true (e.g., when there1141

are data such that Xβ > 1) the least square esti-1142

mates for the LPM coefficients in Eq. (7) are biased1143

(Horrace and Oaxaca, 2003). For this reason, Lo-1144

gistic Regression is often used instead. In our case,1145

via standard testing procedures, one cannot refute1146

the correctness of the LPM with data (Horrace and1147

Oaxaca, 2003; Battey et al., 2019). Further, a logis-1148

tic regression analysis led to the same takeaways1149

as presented in the main text. Thus, we opt to show1150

results for an LPM in the main text, since these are1151

generally more easily interpreted (i.e., they show1152

percent change instead of change in log odds).1153
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