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Abstract

Conventional audio-text alignment methods predominantly rely on raw spectral
features, which insufficiently capture the mathematical and perceptual structures in-
herent to music. We introduce a representation paradigm grounded in music theory:
mapping frequency spectra into the 12-tone equal temperament system—an organi-
zation consistent with the logarithmic nature of human pitch perception and widely
adopted across musical cultures—followed by Fourier-based feature encoding to
capture nonlinear and multi-scale acoustic patterns. This framework enhances inter-
pretability while preserving musically salient tonal structures, robustness to noise,
and improved semantic alignment with textual descriptors. Preliminary experi-
ments indicate that such music-theory-guided representations provide a principled
foundation for bridging the audio-text modality gap. We suggest this direction as a
promising step toward integrating cognitive insights and domain knowledge into
cross-modal representation learning.

1 Introduction

Learning robust and interpretable representations for audio-text alignment is a central problem in cross-
modal learning, with applications in music retrieval, captioning, and multimodal understanding [1,
2, 3, 4]. Recent advances [5, 6, 7, 8, 9] have primarily relied on raw spectral features or learned
embeddings from large audio-text corpora. While effective in some cases, these approaches often
overlook the rich mathematical and perceptual structure underlying human music cognition [10].

A fundamental challenge arises from the semantic gap between raw spectral magnitudes and textual
descriptors. Spectral bins are high-dimensional, noisy, and lack direct interpretability, whereas human
perception of timbre and tonality is organized according to well-established principles in music
theory [11, 12]. As a result, existing models tend to rely on data scale and black-box architectures
rather than structured inductive biases, which can limit cross-cultural generalization and robust-
ness [13, 14, 15, 16, 17, 18], a challenge also observed in Al for network and security applications,
where incorporating structural priors and domain knowledge improves model adaptability and robust-
ness [19, 20]. To address this gap, We aim to construct perceptually relevant feature spaces to replace
high-dimensional, noisy spectrograms, thereby enhancing generalization performance.

In this work, we revisit audio-text alignment from a music-theory-aware perspective. Our approach
begins by projecting raw spectra into the 12-tone equal temperament (12-TET) system [21], which
aligns with the logarithmic nature of pitch perception and has become a cross-cultural standard
in tonal organization. This step compresses spectral information into a compact 12-dimensional
representation with clear musical semantics. To further enrich expressivity, we apply Fourier feature
mappings to these tonal vectors, enabling nonlinear and multi-scale encoding of harmonic and timbral
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patterns. The resulting representation not only preserves interpretability but also facilitates alignment
with textual descriptions grounded in musical attributes.

Our contribution lies in introducing a music-theory-
guided representation paradigm for audio-text alignment.
Specifically, (a) we project raw spectra into the 12-tone
equal temperament system, providing a compact and
musically interpretable tonal basis; (b) we enrich these
tonal features via Fourier feature encoding, enabling non-
linear and multi-scale representation of harmonic and
timbral patterns; and (¢) we show through preliminary
experiments that the resulting features improve align- )
ment robustness and semantic consistency. This work Figure 1: Overview of the proposed
highlights the potential of integrating centuries-old mu- scheme, mapping spectra into 12—TET
sic theory with modern representation learning to bridge ~and applying Fourier feature encoding for
the semantic gap across modalities. interpretable audio-text alignment.
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2 Problem and Methodology

We propose a music-theory-guided feature representation pipeline (details in Figure 2) that models
audio-text alignment through a conditional distribution framework. Our approach first compresses raw
spectra into a semitone-aware tonal space and then enriches the resulting signal via Fourier feature
encoding, introducing inductive biases rooted in music cognition while maintaining the flexibility of
deep learning architectures.

Problem Formulation. Given an audio signal a paired with textual description u, our objective
is to maximize the conditional likelihood p(u|a) such that audio features capture musically salient
structures that align with linguistic attributes. We model this alignment through an energy-based
conditional distribution that favors semantically matched audio-text pairs.

Semitone-Aware Spectral Projection. Given an input waveform, we extract a power spectrogram
S € RT*F via short-time Fourier transform (STFT) [22], where S;[f] = |STFT(¢, f)|* denotes
the squared magnitude at time frame ¢ and frequency bin f. We use power spectrogram rather than
magnitude to better emphasize harmonic energy concentrations, which aligns with psychoacoustic
models of loudness perception. Instead of operating on raw spectral bins, which are high-dimensional
and noisy, we introduce a structured transformation ¢(+) that projects each frame onto the twelve-tone
equal temperament (12-TET) system: x; = ¢(S;) € R'2.

Specifically, the spectral energy corresponding to the k-th semitone is computed as: x:[k] =
> ren, Wkt - Se[f], k= 0,...,11, where By indexes the frequency bins aligned with loga-
rithmic frequency intervals. For a reference frequency fo = 440 Hz (corresponding to A4), the center

frequency of the n-th semitone is f,, = fo - 2"/'2. We assign each STFT bin f to semitone k using
Gaussian weighting:

(121og, (f/ fo) — k)g) 1)
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where o = 0.5 controls the smoothness of bin-to-semitone assignment. This transformation yields a
12-dimensional tonal vector that preserves harmonic relations and tonal semantics while filtering out
irrelevant spectral variations, serving as a musically informed prior for modeling p(u|a).

Wk, f = €Xp (7

Relation to Chroma Features. Our semitone projection differs from chroma features [23] primarily
through Gaussian-weighted frequency assignment (rather than hard binning) and subsequent Fourier
feature mapping, which introduces nonlinear transformations beyond chroma processing.

Fourier Feature Encoding. To capture richer acoustic patterns beyond linear tonal energy, we apply
a random Fourier feature mapping ¢ (-) that respects the circular topology of the chromatic circle.
Given the 12-dimensional semitone vector x;, we project it through a learnable frequency matrix

B € R¥¥12 where each row B; represents a frequency component. The Fourier feature mapping is

defined as:
2 = (@) = {sin (%th) , COS (%th)} c R24x12 2
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Figure 2: Semitone-Aware audio-text alignment. Audio features from 12-TET projection and
Fourier encoding are fused before encoding. Text undergoes hierarchical processing through BERT,
phrase parsing, and musical tagging. Cross-modal alignment enables downstream applications.

More explicitly, for the i-th frequency component:

or 11 or I
z¢[i] = sin (17; ZO Biyjl't[j]) ,  zi[d+1i] = cos <72T ZO B; jx¢[j] 3)
= =

resulting in a 2d x 12 = 24d-dimensional feature vector. With d = 16, we obtain z; € R384 The
factor %T ensures translational equivariance under pitch shifts, while different frequency components
in B encode both coarse-grained timbral tendencies and fine-grained modulations. This expansion
transforms tonal features into a dense space where harmonic periodicities and multi-scale variations
can be naturally represented. Note that this differs from the standard Fourier transform—we use
sinusoidal basis functions with learnable frequencies to create a nonlinear feature embedding.

Cross-Modal Alignment Objective. The semitone-Fourier representation z; is processed by an audio

encoder f (e.g., lightweight Transformer or MLP) to produce audio embeddings y, = f5(z) € S 1.
Textual inputs are encoded through an independent pre-trained BERT encoder followed by a linear

projection g, (-) to yield text embeddings y,, = g,,(u) € S9-1. Note that we use a fixed pre-trained
text encoder without joint training. We model the alignment distribution via an energy function:

Eg(u,a) = —p Y. ya, where 3 > 0 is the inverse temperature parameter (related to temperature 7
by 8 = 1/7). A larger /3 produces sharper probability distributions, concentrating more mass on the
best-matching pairs. This induces the conditional distribution:

_ eXp{_EB (u7 a)} _ exp{ﬁ nya}
palu U] = T Bowa)] S, exp By}

where U is the candidate set approximated by the minibatch. Training reduces to maximizing the
conditional log-likelihood:

)

N
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This formulation is equivalent to the InfoNCE contrastive objective [24] but provides a principled
probabilistic interpretation where the temperature parameter 7 = 1//3 controls the concentration of
the conditional distribution.

3 Experiments

Experimental Setup. We evaluate our approach on a dataset comprising 1,800 audio samples
spanning five instrument types (piano, guitar, violin, flute, trumpet) and six timbral qualities (bright,
dark, warm, cold, sharp, soft). The dataset combines synthesized audio with controlled musical
properties and real recordings (from [25]) to ensure comprehensive coverage of musical characteristics.
Each sample features realistic harmonic structures and temporal dynamics representative of natural
instrument timbres. Audio signals are sampled at 22.05 kHz with 1-second duration. We extract
magnitude spectrograms using STFT with 1024-point FFT and 512-sample hop length, yielding
513-dimensional frequency features that are subsequently processed by our semitone-aware projection
to produce 12-dimensional tonal representations.

Baselines. We compare against two standard approaches: (1) Raw Spectrum Baseline using fully-
connected layers on raw magnitude spectra, (2) Mel-scale Baseline employing 128-dimensional
mel-frequency features, (3) MFCC-based Baseline utilizes 39-dimensional MFCC features (13 static
coefficients + A derivatives). All models use identical encoder architectures (128-dimensional hidden
layers) and contrastive learning objectives for fair comparison. Models are trained for 15 epochs
using Adam optimizer with learning rate 10~3 and batch size 32. The temperature parameter 7 in
contrastive loss is set to 0.1.



Table 1: Performance comparison of audio rep-  Table 2: Ablation study on key components of
resentation methods on audio-text retrieval task.  our music-theory-guided framework. Standard

Standard deviations in subscripts (x 1072). deviations are shown as subscripts (x1072).
Method R@11t R@5t MRRT MeanRank | Component R@1t R@51t MRR?1 MeanRank |
Raw Spectrum ~ 0.60;5  0.8615  0.1105, 9.061.9 12-TET Only 0.6217 08750 01224 8.200
MFCC-based ~ 0.611.9 0.8650 0.113,5 8.751 1 Fourier Only 0.6115 08657 0.1145 880719
Mel-scale 0.6317 0.8729 0.11755 8.51;8 Semitone + Linear  0.6316  0.88;5  0.125; 7 7.9519
Ours 0.65.9 0.89,; 0.1305¢ 7.681 8 Full Model 06519 0.892; 0.13020 7.6818

Experimental Results. Tables 1 and 2 show performance on the audio-text retrieval task and ablation
analysis, respectively. We use standard retrieval metrics: R@k (Recall at top k, higher is better), MRR
(Mean Reciprocal Rank of first relevant item, higher is better), and MeanRank (average rank of first
relevant item, lower is better). Our approach achieves substantial improvements over conventional
baselines, with R@1 increasing by 9.5% over raw spectrum features, 6.3% over MFCC-based
features, and 3.5% over mel-scale features, while MRR improves by 18.2%, 15.0%, and 11.1%
respectively, accompanied by consistent reductions in mean ranking positions (7.686 vs. 9.067, 8.750,
and 8.517). The ablation study reveals that both 12-TET projection and Fourier expansion contribute
synergistically, with the full model outperforming individual components by 3.2-4.7% in R@1 and
6.6-14.0% in MRR. These results demonstrate the effectiveness of incorporating music-theoretic
inductive biases into audio-text alignment, validating our conditional distribution framework for
capturing semantically meaningful audio representations.

Qualitative Analysis of Learned Representations. t-SNE Visualization (o Audio, | Text)
To assess the semantic coherence of our music- ‘
theory-guided representations, we visualize the %%J %

learned embeddings using t-SNE projection (in
figure 3). We randomly sample 150 audio-text
pairs from our test set across all five instrument

categories, where circles represent audio samples e

and triangles denote corresponding textual descrip- % o Fite
tions. The visualization reveals clear instrument- Violin
specific clustering with successful cross-modal ) g;‘:fe‘
alignment—audio-text pairs from the same seman- Biano

tic category form coherent regions in the embed-

ding space, demonstrating that our semitone-aware Figure 3: t-SNE visualization of learned
Fourier encoding captures musically meaningful re- audio-text embeddings. Audio samples (cir-
lationships for effective audio-text correspondence.  cles) and text descriptions (triangles).

4 Conclusion

We present a music-theory-guided approach for audio-text alignment that projects raw power spectra
into the 12-tone equal temperament system followed by random Fourier feature mapping. Our method
achieves 8.3% improvement in R@1 and 18.2% in MRR over conventional baselines, with ablation
studies confirming synergistic contributions from both semitone projection and Fourier encoding
(3.2-6.6% gains). This demonstrates that incorporating music-theoretic inductive biases—reducing
dimensionality from 513 to 12 while preserving musically salient structures—provides a principled
foundation for cross-modal alignment with enhanced interpretability and robustness.

However, important limitations merit consideration. The 12-TET design assumes Western equal
temperament tuning, potentially missing culturally significant distinctions in microtonal traditions
(e.g., Arabic 24-TET, Indian just intonation). Dimensionality reduction inevitably discards octave
information, timbral/percussive cues outside harmonic structures, and inharmonic content from
non-pitched sounds—all relevant for certain semantic distinctions. Our evaluation on 1,800 controlled
samples requires validation on larger, diverse datasets. Future work should explore adaptive tuning
systems conditioned on musical tradition, multi-resolution representations augmenting 12-TET with
complementary features, and hybrid architectures to extend applicability beyond Western tonal music.
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