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ABSTRACT

There has been a recent surge of interest in fairness measurement and bias mit-
igation in machine learning, given the identification of significant disparities in
predictions from models in many domains. In part, this focused interest is due
to early failures of simple attempts at achieving “fairness through unawareness”
in practice. Non-sensitive data may be hopelessly coupled with the omitted sen-
sitive factors and systemic bias inevitably poisons the data in ways that may not
be recoverable as the resulting model seeks to describe the effects found in the
data on which it is trained. An effective way of preventing bias is to provide tools
to measure it from multiple perspectives and viewpoints, and to incorporate these
measures within Automated Machine Learning (AutoML) algorithms in search
of accurate and fair models. The emerging realization of the importance of such
metrics demands a long-standing missing feature, namely the ability to handle
multiple objectives and constraints at all stages of the ML pipeline. In this paper,
we introduce a novel AutoML framework that naturally supports multi-objective
optimization. It generates higher-dimensional Pareto fronts and permits a single
optimization process to efficiently achieve a proper approximation of the global
front that depicts the trade-off among multiple model fairness and model accuracy
measures. We show that both model training hyperparameters and fairness mit-
igation hyperparameters must be explored concurrently in order to characterize
this trade-off most effectively. Results from experiments on multiple commonly
investigated real-world case studies validate the effectiveness of our approach.

1 INTRODUCTION

It is not uncommon for an academic field to outpace legal and ethical precedence and understanding
as the unraveling of the implications of a new capability begins. It is often as the excitement over
the power and potential of a new breakthrough technology wanes, that society realizes the potential
dark side a new tool might have. This is true in physics, in genetics, and more recently in the world
of machine learning (ML) based artificial intelligence. The unparalleled success of deep learning
has arguably created a renaissance, refueling interest across the entire field of machine learning.
However, the same success has cast a shadow over the field of AI, as society realizes in the near
future, many important decisions with regard to human safety, health, and finances may one day be
made more accurately by powerful black-box entities, entities of which we have little understanding.

Modern ML algorithms are predominantly single-minded, designed to do whatever it takes to
achieve high accuracy with regard to a single unconstrained objective. This inability to account
for the plethora of real-life constraints that must be satisfied to deploy an ML model is its Achilles’
heel. An important concern in this light is how global accuracy reflects on the short- and long-term
consequences to minority groups and marginalized communities if we were to permit ML models
to play a pivotal role in decision making. Early research (O’Neil, 2016; Hicks, 2017; Noble, 2018;
Eubanks, 2018; Barocas et al., 2019) addresses and exposes the glaring weakness of modern ML
tools when it comes to addressing the issues of fairness and model bias to privileged subgroups. The
sources of model bias are likely to occur at all stages of the machine learning pipeline: from data
collection, to preparation, to model training and model calibration (Saleiro et al., 2018; Bellamy
et al., 2018; Agarwal et al., 2018b).
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It is becoming clear that machine learning models can no longer simply ignore the presence of
multiple objectives and constraints. Handling multiple objectives significantly increases complexity,
but as Zitzler et al. (2002) showed with the following theorem, finding a single performance measure
that adequately represents the multiple dimensions of the solution space simply isn’t possible:

Theorem 1. In general, solution quality for the m-objective optimization problem cannot be re-
duced to fewer than m performance measures.

This implies that algorithms such as Exponentiated Gradients (Agarwal et al., 2018b) will by them-
selves struggle as they seek to find a single merit function (in this case Lagrangian) balancing all
objectives. This desirability function definition will merely target a single point on the Pareto-front
and may miss providing the user a complete list of compromises among targeted objective functions.
Thus the totality of ML tools, from data preparation, to model tuning and training, to post processing
calibration must ultimately support the ability to juggle multiple nonlinear competing functions. An
important subcategory of ML tools is AutoML. It is now more important than ever for all AutoML
to naturally and robustly support multiple black-box objectives and constraints.

Recent research has emphasized the power of a model-free approach (Xiong et al., 2021) in the con-
text of AutoML showing that employing classic statistical analysis on parameter sensitivity and se-
lection results in a simple algorithm that is competitive with Bayesian search. While Bayesian is the
standard in many AutoML systems, its practical use in the multi-objective nonlinearly constrained
case is not yet well defined. One weakness is that the Bayesian model must converge before it can
be of use. In the multi-objective case, the Bayesian approach can become cumbersome as points
must be selected to optimize multiple models, one for each objective and constraint. In contrast,
model-free approaches have been supporting multiple objectives and constraints for decades (Deb
et al., 2000; Griffin et al., 2011).

Few existing approaches have numerically studied the effect of more than two objectives in a single
problem. Those that do simplify the problem while focusing on a single desirability function or
are satisfied with finding a few (of the infinite) Pareto points. Because the number of optimization
problems would grow like “n choose 2” (with n objectives) without general support, it is important
to be able to handle all objective functions and constraints simultaneously. This effectively enables
many related optimization problems to be solved simultaneously while sharing computing resources.

The goal of this paper is not to attempt to answer the challenging problem of deciding which fairness
metrics are warranted. Rather, we seek to enhance the growing toolbox for end users and data
scientists who ultimately must juggle high-dimensional Pareto fronts, derived from these metrics, by
leveraging a host of algorithms that are predominantly single objective in nature. We provide data
scientists a framework that intercepts, at the highest level, all the sensitive key factors that affect
accuracy and fairness currently passed off as the “user’s responsibility to control and adjust.” Our
approach optimizes the bias mitigation hyperparameters and model hyperparameters simultaneously
to simplify and improve the user experience. The numerical results show that solving the full-
space optimization problem is more efficient than focusing on two selected dimensional subspace
objectives, and it delivers more insights into the accuracy and fairness trade-offs.

2 RELATED WORK

There has been an explosion of interest in the area of fairness measurement and bias mitigation
within the ML community (Mehrabi et al., 2019; Barocas et al., 2019; Garg et al., 2020). Fair-
ness efforts generally focus on three distinct phases: (1) pre-processing (such as data preparation,
cleansing, sampling); (2) in-process (model training and tuning); and (3) post-processing (such as
calibration and assessment).

Pre-processing methods are applied on the original data directly so as to eliminate biases before
fitting any machine learning models. There are studies (Hajian & Domingo-Ferrer, 2012; Hajian,
2013) that discuss methodologies to clean data so that discriminative decision rules will be changed
to nondiscriminative ones. Some research suggests not collecting sensitive data to avoid building a
discriminative model (Veale & Binns, 2017). Other work such as Calmon et al. (2017) present a
framework to probabilistically transform data in order to adjust the unbalances. More pre-processing
methods can be found in (Agarwal et al., 2018a; Donini et al., 2018; Kroll, 2015). However, in
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general, simply taking actions on the original data alone cannot guarantee that the final model will
be nondiscriminative.

In-process methods take fairness into consideration in the training stage of the model-building pro-
cess. Zafar et al. (2017) address bias mitigation by adding fairness constraints when training models.
In their framework, they can choose to maximize accuracy under fairness constraints or maximize
fairness under accuracy constraints. The choice of the best model depends upon real situations. Fair-
ness constraints are applied in many settings (Kairouz et al., 2019; Corbett-Davies & Goel, 2018;
Agarwal et al., 2018b). On the other hand, fairness can be tackled through single objective opti-
mization where fairness factors are considered while designing the optimization metric (Bechavod
& Ligett, 2017; Beutel et al., 2019; Xie et al., 2020; Madras et al., 2019). Unfortunately, there is
no universal metric that works for all fairness related problems. The ability to successfully address
fairness through single objective optimization, depends on both problem type and metric design.

Post-processing methods try to modify the classification results after the classifiers are trained by
adding requirements to account for fairness. A number of studies (Fish et al., 2016; Chouldechova,
2017; Corbett-Davies et al., 2017) propose various methods to deal with the fairness concern after
a model is trained. Inevitably, by doing this, the final classification model will be biased mathemat-
ically and researchers need a large amount of sensitive data to adjust the model. To make matters
worse, there are no standard post-processing methods that can always be applied to address fairness;
it is dependent upon the problem and data.

Liu & Vicente (2020) use a stochastic multi-objective optimization in model training to handle two
objectives: one for model accuracy and one for fairness. The accuracy/fairness trade-off Pareto
front is generated rather than a single solution, and the application of a stochastic approximation-
based approach allows the Pareto front to be updated for streaming data cases. However, that ap-
proach requires modification of the training algorithm. Cruz et al. (2021) trade off model accu-
racy and fairness through optimization of model hyperparameters and multiple objectives. Here, a
decomposition-based approach to multi-objective optimization is employed, where two objectives
are combined into a single scalar output under the assumptions that the Pareto front for the accu-
racy/fairness trade-off is convex. This approach requires a priori specification of preference among
objectives using a weighting parameter.

3 OUR APPROACH

It is understood that AutoML is itself a challenging NP-hard problem. Most previous work is pri-
marily focused on the single objective case with variable bounds. Thus we build on the Autotune
framework (Koch et al., 2018; Gardner et al., 2019) which uses a hybrid strategy that combines a
genetic algorithm that natively supports multiple objectives paired with direct-search that has been
lifted to the higher dimensional objective cases. The approach has been shown to be robust across
a number of applications (Koch et al., 2017; Hughes et al., 2020). Gardner et al. (2019) propose
a black-box optimization framework that supports multi-level parallel hybrid derivative-free opti-
mization for AutoML problems in the presence of multiple objectives and constraints.

3.1 THE AUTOTUNE FRAMEWORK

Autotune is designed to be an AutoML framework that’s capable of tuning hyperparameters and ar-
chitectures for many of the popular machine learning model types: decision trees, forests, gradient
boosted trees, neural networks, support vector machines, factorization machines, Bayesian network
classifiers, and more. The tuning of models is performed by a hybrid set of search methods that
is customizable by the user. Autotune also employs multiple levels of parallelism for efficient ex-
ecution by parallelizing both model training and model tuning. The following Figure 1 shows a
high-level depiction of Autotune’s design. Machine learning algorithms define the type of model
that will be built while the search methods are responsible for proposing various hyperparameter
configurations for consideration. Each unique configuration is stored in a cache to improve perfor-
mance. The model evaluator component is responsible for training and scoring the models associated
with the various hyperparameter configurations. And finally, the search and evaluation manager is
charged with coordinating all these activities and ultimately saving the best models.
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Autotune makes no assumptions about the objective functions it is optimizing which makes it a
perfect candidate for derivative-free optimization techniques to be employed (Taddy et al., 2009;
Plantenga, 2009; Gray et al., 2010; Griffin & Kolda, 2010). Derivative-free methods can be used
whether derivatives are available or not, so long as the the optimization problem being solved
doesn’t include a large number of decision variables (Gray & Fowler, 2011). When using opti-
mization techniques to tune the hyperparameters of a machine learning model, there is no objective
function structure that can be exploited. In such cases, the objective function is seen as a mapping
operator connecting a unique hyperparameter configuration to an objective value. Derivative-free
optimization is the perfect choice for such use cases.
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Figure 1: The Autotune framework.
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Figure 2: Example Pareto Front.

Autotune’s execution is iterative and each iteration repeats the following steps:

1. Search methods submit new points for evaluation
2. Black-box objective functions are called to evaluate each of the new points
3. The computed metrics for each evaluated point are returned back to the search methods

3.2 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization is a natural fit for tuning the hyperparameters of machine learning
models. It’s easy to imagine cases where a data scientist would want to build models that maximize
accuracy while also minimizing bias. In these types of cases, the desired result is a set of solutions
that demonstrate the trade-off between the multiple objectives. The idea is to identify a set of
solutions that exhibit the compromise that is necessary between the objectives. In such a set, a given
solution could not be improved in any one objective without getting worse in another objective.
Identifying this set of solutions is therefore the goal of the multi-objective optimization performed
by Autotune.

Mathematically, multi-objective optimization can be defined in terms of dominance and Pareto op-
timality. For a k objective minimizing optimization problem, a point (solution) x is dominated by a
point y if fi(x) ≥ fi(y) for all i = 1, . . . , k and fj(x) > fj(y) for some j = 1, . . . , k.

A set of nondominated solutions defines a Pareto front. Figure 2 shows a Pareto front with respect
to two objectives, f1(x) and f2(x) (Gardner et al., 2019). In this example, both objectives are
being minimized so the solutions are improving as they move down and left in the figure. The
figure shows 10 points that are plotted with respect to the two objectives. In this example, point
a dominates {e, f, j}, b dominates {e, f, g, j}, c dominates {g, h, j}, and d dominates {i, j}. The
blue line in the figure depicts the true Pareto front for this example problem. The figure shows how
point c has not converged to the true Pareto front yet, but is still not dominated by any of the other
points shown. Thus, point c contains points around it that have smaller values of f1 and f2 but
unfortunately, these points have not been identified yet.

When mitigating model bias and tuning for fairness, Autotune’s ability to optimize over multiple
objectives becomes extremely important. The default hybrid search strategy in Autotune provides
an effective way of conducting multi-objective optimization.
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3.3 HYBRID SEARCH STRATEGY

Many common multi-objective optimization strategies focus entirely on the use of metaheuris-
tics (Elsken et al., 2018; Michel et al., 2019; Shenfield & Rostami, 2017). Conversely, the default
approach used in Autotune is a hybrid strategy that combines global search (Goldberg, 1989) with
an efficient direct local search approach (Griffin et al., 2008). This hybrid strategy allows Autotune
to benefit from the strengths of both types of approaches. It begins with a Latin Hypercube Sampling
(LHS) to seed the population of points. This initial LHS feeds into a Genetic Algorithm (GA) which
searches the solution space for favorable hyperparameter configurations. By using a GA, Autotune
is able to solve the multi-objective problem directly and ultimately evolve a Pareto-optimal set of
solutions in a single run of the optimization. Other approaches require multiple problems being
solved independently. In addition to the GA providing a global search, Autotune performs local
searches using a Generating Set Search (GSS) algorithm in promising regions of the search space.
This GSS strategy enables Autotune to refine promising solutions and ultimately push the Pareto
front of points along. The GSS algorithm is configured to improve objective function values while
also reducing the crowding distance of points on the Pareto front. Autotune also uses the averaged
Hausdorff distance (Schütze et al., 2012) as a way of measuring convergence. The Hausdorff dis-
tance metric is used to compare solutions from one iteration to the next and provide a single metric
that indicates how far a Pareto front has progressed in that iteration. If the improvement from itera-
tion to iteration stalls, Autotune will eventually terminate. Algorithm 1 provides a high-level view
of the hybrid search strategy used by Autotune.

Algorithm 1 Hybrid Search Strategy in Autotune (with asynchronous parallel evaluations)

Require: Population size np, and evaluation budget nb.
Require: Number of centers nc < np and initial step-size ∆̂ and sufficient decrease α ∈ (0, 1).

1: Generate and evaluate initial parent-points P using LHS with |P| = np.
2: Populate reference cache-tree,R, with unique points from P .
3: Associate p ∈ P with step ∆p initialized to ∆̂. Let F denote approximate Pareto front.
4: while (|R| ≤ nb) do
5: Select A ⊂ F for local search, such that |A| = nc.
6: for p ∈ A do . Search along compass directions
7: Set Tp = {}. For ei ∈ I set Tp = Tp ∪ {p+ ∆pei} ∪ {p−∆pei}
8: end for
9: Generate child-points C via crossover and mutations on P . Set T = C ∪p∈A Tp.

10: Evaluate T ∩ R using fast tree-search look-up onR. Evaluate T −R and add toR.
11: Update P with new generation C and initial step ∆̂.
12: for p ∈ A do
13: If |Tp ∩ F| > 0, select new p ∈ F . Pattern search success
14: Else set ∆p = ∆p/2 . Pattern search failure
15: end for
16: end while

Using both global and local search dramatically improves Autotune’s robustness. The global search
is important because it provides good starting points for the local searches. If the hyperparameter
optimization problem happens to be convex, the local search would be sufficient, and the additional
overhead added by the global search would be unnecessary. However, if the underlying solution
landscape has many local minima, the local search alone could get stuck and fail to find better
solutions. Instead of trying to guess which approach is best, Autotune simultaneously runs both
global and local searches. The two search strategies run concurrently while sharing computational
resources and function evaluations. Autotune can handle integer and categorical hyperparameters
using strategies similar to those in Griffin et al. (2011). The approach used by Autotune can be
likened to a GA with an additional “growth” step. This “growth” step is where the local search
algorithms are used to refine promising points in the GA’s population of points. By allocating a
small fraction of the total evaluation budget, the local search can refine the fitness score (or objective
function value) in the neighborhood around the promising points found by the GA.
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3.4 MULTI-LEVEL PARALLELIZATION

When tuning both classical machine learning hyperparameters along with bias mitigation hyperpa-
rameters, many hyperparameter settings need to be explored. This process can become computa-
tionally expensive which highlights the importance of Autotune’s ability to train and score models
in parallel in a distributed computing environment. Autotune can simultaneously apply multiple
instances of global and local searches in parallel. Given an appropriate number of threads and pro-
cessors, this strategy can result in run time and solution quality being similar to a scenario where
you were able to select the best global and local search combination before execution. Due to the
sharing that takes place between the global and local searches, this parallel hybrid approach is much
more robust when compared to other hybrid approaches that simply use the result from one search
as the starting place for the second method.

Autotune’s parallel design is extremely powerful and capable of efficiently using compute grids of
any size. When Autotune proposes a new set of hyperparameter values for evaluation, this evaluation
is handed off to a worker session that will execute the appropriate scripts to train and score a new
ML model. In addition to training and scoring, the new model will be evaluated by a bias-mitigation
tool to assess the appropriate fairness metrics. Since each of these script executions is independent,
they can be executed in parallel. Autotune manages these parallel evaluations and can effectively
scale up to utilize all resources available in a computing environment.

4 EXPERIMENTS AND RESULTS

To evaluate the ability of Autotune to effectively tune machine learning models that are both accurate
and fair, we conducted several sets of experiments. Each of these experiments used the same basic
setup. A Python script was used to define the objective functions of the hyperparameter optimization
performed by Autotune. The Python script uses scikit-learn from Pedregosa et al. (2011) to train a
logistic regression model and then applies the Fairlearn package from Bird et al. (2020) to evaluate
the new model for bias.

4.1 SCALABILITY OF AUTOTUNE

For our first experiment, we tested how well Autotune scales as the available computing resources
increase. As described above, we used scikit-learn to build logistic regression models and the Fair-
learn package for assessing fairness metrics when building our models. For this experiment we used
the popular Adult data set from the UCI Machine Learning Repository (Dua & Graff, 2017) and
Autotune was configured to execute a maximum of 500 objective function evaluations. Figure 3
shows overall runtimes for Autotune on various size computing grids. The figure shows that when
Autotune is run in a computing environment with a single worker node, the overall runtime is 4,423
seconds. The runtime is reduced to 127 seconds when using 64 computing nodes. This represents a
speed up of about 35x, which is significant considering the computational overhead associated with
startup and extra coordination between worker nodes.
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Figure 3: Autotune runtimes with dif-
ferent numbers of worker nodes (or par-
allel Python sessions). Autotune scales
well to efficiently use all available com-
puting resources. In an environment
with only 1 worker node, Autotune eval-
uates objective functions sequentially
within a single Python session. When
run with 64 worker nodes, Autotune is
able to run 64 Python sessions in par-
allel, allowing for total runtime to be
reduced from 4423 seconds to 127 sec-
onds.
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4.2 IMPORTANCE OF MULTI-OBJECTIVE TUNING

In this experiment, we demonstrate Autotune’s ability to tune with respect to multiple objectives
at one time and why this is important. In the “Single Objective Optimization” columns of Table
1 we show the results of running Autotune three different times. Each of these three executions of
Autotune is tuning a logistic regression model with respect to a single objective. For this experiment,
we are using the German Credit Data from the UCI Machine Learning Repository (Dua & Graff,
2017). Though overall runtime is not considered for this experiment, it’s worth noting that for this
case, Autotune was configured to execute a maximum of 500 objective function evaluations.

The table shows each tuning objective along the top, and each of the three columns contains the
values of the various metrics that were obtained from each execution of Autotune. For instance,
if you look at the column labeled “Accuracy”, you can see the values that were obtained when we
set up Autotune to tune simply for maximizing the accuracy of the model. When run in this way,
Autotune was able to find a model with an accuracy of 0.773 (or 77.3%). Further investigation of
this model demonstrated a “Demographic Parity” value of 0.027, and an “Error Parity” value of
0.003.

The next column shows the results of executing Autotune a second time. This time Autotune was
configured with a single objective to minimize the fairness metric “Demographic Parity”. As the
table shows, when focused on minimizing demographic parity, Autotune was able to achieve a value
of 0 for that fairness metric. However, the model found by Autotune only had an accuracy of 0.7
(or 70%). These results in the ”Single Objective Optimization” columns of Table 1 show that when
tuning with respect to a single objective, the other metrics of interest can suffer.

The final column in Table 1 shows the results of a single execution of Autotune when configured
to optimize all three objectives simultaneously. In this case, the table shows that we are able to
achieve the best values for each of the three metrics in a single execution of Autotune. In most real-
world scenarios, it is common to be interested in optimizing multiple objectives. When the values
of those objectives are at odds with each other, having a system capable of optimizing over multiple
objectives at once is the best way to find the best possible values for each of the objectives.

Single Objective Multi-
Objective

Maximize
Accuracy

Minimize
Demographic
Parity

Minimize
Error
Parity

All 3
Objectives

Accuracy 0.773 0.700 0.760 0.773
Demographic Parity 0.027 0 0.013 0
Error Parity 0.003 0.028 0 0

Table 1: Power of Tuning Multiple Objectives Simultaneously: The “Single Objective Optimiza-
tion” columns show the results of each of the three metrics when tuning with respect to each of the
single metrics. The diagonal values (0.773, 0, 0) represent the best attainable values for each metric.
The“Multi-Objective Optimization” column shows the results when tuning with respect to all three
metrics at once. In this case, we obtain the best for all three objectives in one execution of Autotune.

4.3 IMPACT OF FAIRNESS HYPERPARAMETERS

Fairness mitigation algorithms all seek to find a balance point between what are often conflicting
objectives – multiple measures of model accuracy and measures of prediction fairness. The algo-
rithms necessarily must surface to the user a set of one or more hyperparameters that can control the
strength of the mitigation algorithm. For example, if the reweighing scheme is too strong, the overall
accuracy may degrade beyond a point for which the model is no longer useful. On the other hand,
if the setting is too weak, the inherent bias may only be negligibly improved, making the model
similarly unusable due to unacceptable levels of bias.

Because there is no well-defined optimal single point, mitigation algorithms must surface “steering”
parameters that drive the algorithm toward the user’s preferred balance point that compromises op-
timal accuracy versus optimal fairness. Similarly, when we transform the machine learning problem
and/or data, the optimal model training hyperparameters also will necessarily change. Thus, the data
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scientist, when attempting to mitigate bias, must balance both classical ML model hyperparameters
as well as new mitigation hyperparameters simultaneously. This implies a new AutoML class of
problems that are inherently multi-objective.
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Figure 4: Comparing tuning with and
without Fairlearn parameters. Tuning
with the COMPAS data set, with respect
to two objectives: Accuracy and Demo-
graphic Parity. Pink triangles show the
Pareto front when tuning only the re-
gression hyperparameters. Green stars
show the Pareto front when adding the
Fairlearn parameters to the list of hyper-
parameters being tuned. By adding the
Fairlearn parameters we achieve a dom-
inant Pareto front shown by the green
stars.

For this experiment, we used the Correctional Offender Management Profiling for Alternative Sanc-
tions (COMPAS) Recidivism Risk Score Data (Larson et al., 2016). This data set is commonly used
to demonstrate the importance of bias mitigation strategies in machine learning. Figure 4 shows the
results of tuning with and without the Fairlearn mitigation hyperparameters as part of the tuning pro-
cess. Without including the fairness mitigation hyperparameters, the resulting Pareto front is sparse,
and is strongly dominated by the Pareto front resulting from an approach that handles both sets of
hyperparameters simultaneously.

4.4 HIGHER ORDER MULTI-OBJECTIVE TUNING

As previously mentioned, the ability to optimize over multiple objectives simultaneously when tun-
ing machine learning models is extremely important. In this experiment, we further demonstrate the
power of Autotune and its ability to tune hyperparameters with respect to more than two objectives.
For this experiment we used the popular Adult data set from the UCI Machine Learning Repository
(Dua & Graff, 2017). The Adult data is curated from census data.

We chose a total of five metrics we would use to measure model quality: accuracy, demographic
parity, equalized odds, true positive parity, and false positive parity. We first configured Autotune
to build machine learning models, only considering two of the performance metrics at a time. We
allowed Autotune to evaluate a total of 500 candidate models before returning the nondominated
models that were found. We ran in this configuration four different times, each time optimizing both
model accuracy and one of the four Fairlearn metrics. We then ran Autotune a fifth time with the
same limit of 500 evaluations, only this time we configured Autotune to optimize over all five of the
metrics at the same time.

The plots in Figure 5 show the results from these 5 executions of Autotune. Each of the four plots
in Figure 5 shows the trade-off between model accuracy and one of the Fairlearn metrics. The red
circles in each of the plots show the results that were obtained when Autotune was solving each of
the bi-objective optimization problems. The blue stars in the plots show the Pareto front found by
solving the problem with five objectives. In each of these plots, the five-objective Pareto front is
projected to the two dimensions shown in the plot.

Since we are attempting to maximize accuracy while minimizing the Fairlearn metrics, the upper
left corner of each plot represents the area of the solution space where the trade-off between the two
objectives is balanced. All four of the Pareto fronts shown in Figure 5 are similar in that a portion of
the Pareto front along the top of the plot is relatively close to flat. These nearly-flat regions indicate
solutions where a significant improvement in bias reduction can be achieved for very little loss in
model accuracy. Given this shape of each of these Pareto fronts, the upper left portion of each plot
represents a promising region for potentially desirable solutions. As an example, looking at the plot
showing True Positive Parity vs. Model Accuracy, you can see that more than 20% of true positive
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Figure 5: Adult Data: A single Autotune execution with 500 model evaluations is capable of iden-
tifying just as good of a solution as four individual Autotune executions with a total of 2000 model
evaluations. This clearly shows the strength of being able to tune machine learning models with
respect to larger numbers of objectives.

parity difference can be gained by giving up less than 1% of model accuracy. This is the type of
insight that can only be gained by tuning such models in a multi-objective setting.

The plots all show that by solving a five-objective optimization problem, we are able to find just as
good of a Pareto front in each of these cases. This is significant because by solving the five-objective
problem once, Autotune is able to achieve this result in a maximum of 500 model evaluations. How-
ever, to achieve the same results for each of the Fairlearn metrics, we had to solve four individual
Autotune executions, each using up to 500 evaluations. This means that by optimizing for all five
objectives simultaneously, we were able to do just as well as solving four different Autotune prob-
lems, except instead of executing 2000 objective function evaluations, we only needed 500 objective
function evaluations.

5 CONCLUSION

In this paper we have described Autotune, an AutoML framework capable of building machine
learning models in a way that can efficiently account for both model accuracy and model fairness.
With the ever-increasing popularity of bias mitigation strategies in machine learning, a framework
like Autotune that is able to build models with a consideration for fairness metrics is extremely
timely and important. Autotune is flexible in that it allows for hybrid search strategies to be defined
by the user. It is also able to effectively scale based on the computing resources available to it.
Through experimentation, we have demonstrated the importance of Autotune’s ability to consider
multiple objectives simultaneously when tuning a machine learning model. By allowing a user to
configure higher numbers of tuning objectives, Autotune is able to build models that exhibit the
trade-offs between all the objectives. We have also shown why it is important to include fairness
parameters along with machine learning hyperparameters in the tuning process. By tuning both sets
of hyperparameters at once, we were able to achieve superior results to those systems that only tune
one set of hyperparameters at a time.
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REPRODUCIBILITY STATEMENT

The experimental results presented in this paper were obtained using widely available and com-
monly used data sets (German Credit data set, UCI Adult data set, COMPAS data set), an open
source model training routine (sklearn.linear model.LogisticRegression), an open source fairness
measurement and mitigation tool (Fairlearn package described in (Bird et al., 2020)), and a propri-
etary optimization framework, Autotune. The sensitive attribute studied was gender (male/female)
for the German credit data and Adult data set and African American for the COMPAS data set.
The logistic regression model training hyperparameters as well as the Fairlearn bias mitigation hy-
perparameters and their ranges are given in the Appendix. In part, the contribution of this work
includes the development and application of a proprietary optimization framework, Autotune, that
supports multi-objective optimization using robust and efficient hybrid search strategies – critical
functionality missing from many hyperparameter tuning packages. While the implementation of
this framework is not freely available, the algorithm for the default hybrid search strategy is given in
this paper. The core search methods – combination of Latin Hypercube Sampling, a multi-objective
Genetic Algorithm, and a Generating Set Search algorithm – are available in various literature and
coded form (Goldberg, 1989; Griffin et al., 2008; Elsken et al., 2018; Michel et al., 2019; Shenfield
& Rostami, 2017). A sample script used by Autotune for the experiments is included in Appendix.
More experiment scripts and programs will be publicly available at a later time.
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A APPENDIX

A.1 OBJECTIVE FUNCTION DESCRIPTION

In our approach we used the Fairlearn package described Bird et al. (2020) implementing exponen-
tial gradient reduction and grid search described in Agarwal et al. (2018b). The latter approach was
recommended for the case when the number of objectives (or constraints) is small. In the latter case,
Bird et al. (2020) treat the problem as multi-objective, provided the user code to generate a Pareto
front after their algorithm exits. The grid search algorithm itself generates a set of Lagrange multi-
pliers Λ = {λ1, . . . , λP } with λi ∈ Rm, wherem denotes the dimensions of the fairness constraints
and P denotes the number of models the user is willing to train. They then transform the underlying
training problem for each λi ∈ Λ (as recommended by Agarwal et al. (2018b)) and proceed to
generate P models that vary in both accuracy and fairness.

As mentioned earlier, the purpose of this paper is not to access the strength or promote a particular
approach. Rather, we seek to provide a mechanism to incorporate any fairness mitigation hyper-
parameters surfaced by developers to improve models in a multi-objective sense, including those
mitigating bias. In terms of Beutel et al. (2019) they have effectively created a map F (λ) with
F : Rm → Rk where m denotes the dimension of λ (e.g. the number of constraints and k denotes
the number of objectives to include (but not necessarily limited to) accuracy and corresponding
fairness metrics as defined by Bird et al. (2020).
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Note covered in Bird et al. (2020) is the observation that it is recommended to tune model training
hyperparameters whenever the training data changes. Of course this might be done beforehand,
however, this implies that the fairness mitigation transformations are all similar, which is not guar-
anteed for more complex pipelines. Further, there is no reason that tuning the models itself does
not have some impact on the fairness scores as well as accuracy Chakraborty et al. (2019). Thus
it makes sense to capture intermediate models that may be produce while tuning model hyperpa-
rameters and fairness hyperparameters simultaneously. Thus we define the composite AutoML and
fairness multi-objective optimization problem as

min
λ∈Rm and h∈Rn

F (λ, h) (1)

subject to λ` ≤ λ ≤ λu, (2)
h` ≤ h ≤ hu,

where F : Rm ×Rn → Rk, λ is used as in Bird et al. (2020) during grid search, and h corresponds
to typical optimization and model hyperparameters tuned during training to improve accuracy on
a given test or validation set. Here [λ`, λu] and [h`, hu] denotes corresponding bounding boxes
containing promising regions of improvement.

Note that rather than tuning the hyperparameters of the grid-search algorithm described in Agarwal
et al. (2018b) itself, we directly tune the same hyperparameters as their proposed algorithm. There
are a couple of reasons this is preferable. First our approach starts with a Latin Hypercube Sampling
(LHS), that should be superior to a simple grid-search and applicable to even greater dimensions.
Second, for in-processing type mitigation algorithms they often must train many models to obtained
a preferred set of solutions. It thus makes sense to work at a lower level so that we can measure
and assess every model we trained for quality and ensure all Pareto points are kept and leveraged.
Thus our F (λ, h) is in this case tuning the same hyperparameters as the corresponding grid-search
algorithm with respect to the λ variables. This of course will be far more efficient than tuning what
is arguably also a tuning algorithm. A final observation is that our algorithm makes no distinctions
currently between the mitigation hyperparameters λ and the classical hyperparameters denoted by
h; that is we apply Algorithm 1 to the problem

min
v∈Rn+m

F (v)

subject to v` ≤ v ≤ vu,
,

where v = (λ, h), F (λ, h) is redefined simply as F (v), v` = (λ`, h`), and vu = (λu, hu). In
Figure 6 we demonstrate the power of a sophisticated multiobjective algorithm using an algorithm
such as grid-search as essentially a starting point.

A.2 VALUE OF GA AND GSS WHEN TUNING

As previously described, Autotune uses a hybrid search strategy that includes a Latin Hypercube
Sample (LHS), a Genetic Algorithm (GA), and a Generating Set Search (GSS) all working together
to find the best possible solutions. Many hyperparameter tuning systems are doing things like ran-
dom search or grid search and we have become convinced through experimentation that the GA and
GSS are vital components of Autotune, especially when considering a multi-objective setting with
various types of hyperparameters being tuned. Figure 6 illustrates the significant improvement that
can be realized by running the full hybrid search strategy with the GA and GSS. In the figure, the
2 red circles represent the Pareto front found by simply running Autotune’s initial iteration which
involves evaluating the solutions proposed by the LHS. Those solutions are completely dominated
by the green diamonds which are the solutions identified by allowing the full Autotune hybrid search
strategy to execute together.

A.3 VARIABLE DESCRIPTIONS AND BOUNDS USED

In this section we list and describe the variable bounds used for both mitigation and model tun-
ing parameters. While the approach is not specific to any model type as it is largely a black-box
optimization approach, for all examples we used logistic regression as a base model type. For the
logistic regression we tuned the following model and mitigation hyperparameters:
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Figure 6: Comparing tun-
ing with and without GA and
GSS. Tuning with the COM-
PAS data set, with respect to 2
objectives: Accuracy and De-
mographic Parity. Red cir-
cles show the solutions found
by simply running Autotune’s
initial LHS. Green diamonds
are the solutions found by
running the full hybrid search
strategy in Autotune (LHS,
GA, GSS).

Description Type Range Role
Optimality tolerance float [1e-10 .1] model tuning
Regularization strength float [1e-12, 100] model tuning
Solver type categorical { liblinear, saga, lbfgs, newton-cg } model tuning
Use Bias/Fit-intercept categorical {true, false} model tuning
Number of CPU cores integer [1,6] model tuning
Lagrange multipliers float vector [0,2e] mitigation

Table 2: Hyperparameter Variable Description. In this table we specify the hyperparameters used
to perform multi-objective optimization and their corresponding range, type, and role. The first five
are primarily used when perform classic model tuning to improve accuracy. We include the number
of cores as this can affect the solution found and hence the corresponding objective values. The last
vector of hyperparameters represents the mitigation hyperparameters used by Agarwal et al. (2018b)
to perform grid search over the space of Lagrange multipliers. The dimension is typically small but
depends on the definition of the constraints formulated by Bird et al. (2020).

Those hyperparamters seem most sensitive with respect to fairness and accuracy metrics. As men-
tioned earlier, we use directly the Lagrange multipliers λ as defined in Agarwal et al. (2018b) using
the hypercube [0, 2e] as corresponding bounds. Internally λ is used to generate a weight vector as
well as a modification to the target variable for the underlying training algorithm. As is typical in
AutoML, the fairness and accuracy metrics are computed with respect to a test set to reduce the
chance of over-training with respect to the given hyperparameters.

A.4 SAMPLE SCRIPT

The following is a sample script that was used to execute the Autotune system and tune a logistic
regression model. In this example, we are tuning a total of 9 hyperparameters: 5 model-related and
4 pertaining to fairness. The script defines the hyperparameters being tuned (which are presented
as decision variables to the optimization solver) and also indicates the list of 5 objectives that we
wish for the solver to consider when solving the problem. This example specifies the name of a
shell script (fairObj.sh) that it wants the optimizer to use as the definition of its black-box objective
function. This particular script calls Python code that uses scikit-learn to train and score the model
and then uses the Fairlearn package to assess the model’s fairness with respect to sensitive attributes.

optimization .solveBlackbox /
/* Define decision variables for the hyperparameter optimization */
decVars = {

{name=”vartol”, type=’C’, lb=1e−10, ub=.1} /* optimality tolerance */
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{name=”varc”, type=’C’, lb=1e−12, ub=100} /* inverse regularization */
{name=”varisolve”, type=’I ’, lb=0, ub=3} /* solver type */
{name=”varibias”, type=’I ’, lb=0, ub=1} /* use bias / fit − intercept */
{name=”varnjobs”, type=’I ’, lb=1, ub=6} /* cpu cores */
{name=”varlam1”, type=’C’, lb=0, ub=2} /* lagrange multiplier 1 */
{name=”varlam2”, type=’C’, lb=0, ub=2} /* lagrange multiplier 2 */
{name=”varlam3”, type=’C’, lb=0, ub=2} /* lagrange multiplier 3 */
{name=”varlam4”, type=’C’, lb=0, ub=2} /* lagrange multiplier 4 */

}

/* Define the 5 objectives for the optimization problem */
obj = {

{name=’acc’, type=’max’}, /* model accuracy */
{name=’dempar’, type=’min’}, /* demographic parity */
{name=’eodds’, type=’min’}, /* equalized odds */
{name=’tpospar’, type=’min’}, /* true positive parity */
{name=’fpospar’, type=’min’} /* false positive parity */

}

/* Define the objective function that will be called by the
optimizatino solver . Here we pass the name of shell script
that calls the appropriate Python script to train and score
a model and then assess the model for fairness .
*/
func = {eval=”fairObj .sh”}

/* Define optimization parameters */
maxfunc = 500
popsize = 100
nparallel = 64

/* Specify output tables for saving results */
cacheOut = {name=”cacheOut”, replace=true},
primalOut = {name=”primalOut”, replace=true};
;
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