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ABSTRACT

Complex multi-step reasoning tasks, such as solving mathematical problems or
generating code, remain a significant hurdle for even the most advanced large
language models (LLMs). Verifying LLM outputs with an Outcome Reward Model
(ORM) is a standard inference-time technique aimed at enhancing the reasoning
performance of LLMs. However, this still proves insufficient for reasoning tasks
with a lengthy or multi-hop reasoning chain, where the intermediate outcomes
are neither properly rewarded nor penalized. Process supervision addresses this
limitation by assigning intermediate rewards during the reasoning process. To
date, the methods used to collect process supervision data have relied on either
human annotation or per-step Monte Carlo estimation, both prohibitively expensive
to scale, thus hindering the broad application of this technique. In response to
this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree
Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-
quality process supervision data. This algorithm swiftly identifies the first error
in the Chain of Thought (CoT) with binary search and balances the positive and
negative examples, thereby ensuring both efficiency and quality. As a result, we
are able to collect over 1.5 million process supervision annotations to train Process
Reward Models (PRMs). This fully automated process supervision alongside the
weighted self-consistency algorithm is able to enhance LLMs’ math reasoning
performances. We improved the success rates of the instruction-tuned Gemini Pro
model from 51% to 69.4% on MATH500 and from 86.4% to 93.6% on GSM8K.
Similarly, we boosted the success rates of Gemma2 27B from 42.3% to 58.2%
on MATH500 and from 74.0% to 92.2% on GSM8K. The entire process operates
without any human intervention or supervision, making our method both financially
and computationally cost-effective compared to existing methods.

1 INTRODUCTION

Despite the impressive advancements achieved by scaling Large Language Models (LLMs) on
established benchmarks (Wei et al., 2022a), cultivating more sophisticated reasoning capabilities,
particularly in domains like mathematical problem-solving and code generation, remains an active
research area. Chain-of-thought (CoT) generation is crucial for these reasoning tasks, as it decomposes
complex problems into intermediate steps, mirroring human reasoning processes. Prompting LLMs
with CoT examples (Wei et al., 2022b) and fine-tuning them on question-CoT solution pairs (Perez
et al., 2021; Ouyang et al., 2022) have proven effective, with the latter demonstrating superior
performance. Furthermore, the advent of Reinforcement Learning with Human Feedback (RLHF;
Ouyang et al., 2022) has enabled the alignment of LLM behaviors with human preferences through
reward models, significantly enhancing model capabilities.

Beyond prompting and further training, developing effective decoding strategies is another crucial
avenue for improvement. Self-consistency decoding (Wang et al., 2023) leverages multiple reasoning
paths to arrive at a voted answer. Incorporating a verifier, such as an off-the-shelf LLM (Huang
et al., 2022; Luo et al., 2023), can further guide LLMs in reasoning tasks by providing a feedback
loop to verify final answers, identify errors, and suggest corrections. However, the gain of such
approaches remains limited for complex multi-step reasoning problems. Reward models offer a
promising alternative to verifiers, enabling the reranking of candidate outcomes based on reward
signals to ensure higher accuracy. Two primary types of reward models have emerged: Outcome
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Reward Models (ORMs; Yu et al., 2024; Cobbe et al., 2021), which provide feedback only at the
end of the problem-solving process, and Process Reward Models (PRMs; Li et al., 2023; Uesato
et al., 2022; Lightman et al., 2023), which offer granular feedback at each reasoning step. PRMs
have demonstrated superior effectiveness for complex reasoning tasks by providing such fine-grained
supervision.

Figure 1: Example tree structure built with our proposed OmegaPRM algorithm. Each node in the
tree indicates a state of partial chain-of-thought solution, with information including accuracy of
rollouts and other statistics. Each edge indicates an action, i.e., a reasoning step, from the last state.
Yellow edges are correct steps and blue edges are wrong.

The primary bottleneck in developing PRMs lies in obtaining process supervision signals, which
require supervised labels for each reasoning step. Current approaches rely heavily on costly and
labor-intensive human annotation (Uesato et al., 2022; Lightman et al., 2023). Automating this
process is crucial for scalability and efficiency. While recent efforts using per-step Monte Carlo
estimation have shown promise (Wang et al., 2024a;b), their efficiency remains limited due to the
vast search space. To address this challenge, we introduce OmegaPRM, a novel divide-and-conquer
Monte Carlo Tree Search (MCTS) algorithm inspired by AlphaGo Zero (Silver et al., 2017) for
automated process supervision data collection. For each question, we build a Monte Carlo Tree, as
shown in Fig. 1, with the details explained in §3.3. This algorithm enables efficient collection of
over 1.5 million high-quality process annotations without human intervention. Our PRM, trained
on this dataset and combined with weighted self-consistency decoding, significantly improves the
performance of instruction-tuned Gemini Pro from 51% to 69.4% on MATH500 (Lightman et al.,
2023) and from 86.4% to 93.6% on GSM8K (Cobbe et al., 2021). We also boosted the success rates
of Gemma2 27B from 42.3% to 58.2% on MATH500 and from 74.0% to 92.2% on GSM8K.

Our main contributions are as follows:

• We propose a novel divide-and-conquer style Monte Carlo Tree Search algorithm for
automated process supervision data generation.
• The algorithm enables the efficient generation of over 1.5 million process supervision annota-

tions, representing the largest and highest quality dataset of its kind to date. Additionally, the
entire process operates without any human annotation, making our method both financially
and computationally cost-effective.
• We combine our verifier with weighted self-consistency to further boost the performance

of LLM reasoning. We significantly improves the success rates from 51% to 69.4% on
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MATH500 and from 86.4% to 93.6% on GSM8K for instruction-tuned Gemini Pro. For
Gemma2 27B, we also improved the success rates of from 42.3% to 58.2% on MATH500
and from 74.0% to 92.2% on GSM8K.

2 RELATED WORK

Improving mathematical reasoning ability of LLMs. Mathematical reasoning poses significant
challenges for LLMs, and it is one of the key tasks for evaluating the reasoning ability of LLMs.
With a huge amount of math problems in pretraining datasets, the pretrained LLMs (OpenAI, 2023;
Gemini Team et al., 2024; Touvron et al., 2023) are able to solve simple problems, yet struggle with
more complicated reasoning. To overcome that, the chain-of-thought (Wei et al., 2022b; Fu et al.,
2023) type prompting algorithms were proposed. These techniques were effective in improving the
performance of LLMs on reasoning tasks without modifying the model parameters. The performance
was further improved by supervised fine-tuning (SFT; Cobbe et al., 2021; Liu et al., 2024; Yu et al.,
2023) with high quality question-response pairs with full CoT reasoning steps.

Application of reward models in mathematical reasoning of LLMs. To further improve the
LLM’s math reasoning performance, verifiers can help to rank and select the best answer when
multiple rollouts are available. Several works (Huang et al., 2022; Luo et al., 2023) have shown that
using LLM as verifier is not suitable for math reasoning. For trained verifiers, two types of reward
models are commonly used: Outcome Reward Model (ORM) and Process Reward Model (PRM).
Both have shown performance boost on math reasoning over self-consistency (Cobbe et al., 2021;
Uesato et al., 2022; Lightman et al., 2023), yet evidence has shown that PRM outperforms ORM
(Lightman et al., 2023; Wang et al., 2024a). Generating high quality process supervision data is the
key for training PRM, besides expensive human annotation (Lightman et al., 2023), Math-Shepherd
(Wang et al., 2024a) and MiPS (Wang et al., 2024b) explored Monte Carlo estimation to automate the
data collection process with human involvement, and both observed large performance gain. Our
work shared the essence with MiPS and Math-Shepherd, but we explore further in collecting the
process data using MCTS.

Monte Carlo Tree Search (MCTS). MCTS (Świechowski et al., 2021) has been widely adopted
in reinforcement learning (RL). AlphaGo (Silver et al., 2016) and AlphaGo Zero (Silver et al., 2017)
were able to achieve great performance with MCTS and deep reinforcement learning. For LLMs,
there are planning algorithms that fall in the category of tree search, such as Tree-of-Thought (Yao
et al., 2023) and Reasoning-via-Planing (Hao et al., 2023). Recently, utilizing tree-like decoding to
find the best output during the inference-time has become a hot topic to explore as well, multiple
works (Feng et al., 2023; Ma et al., 2023; Zhang et al., 2024; Tian et al., 2024; Feng et al., 2024;
Kang et al., 2024) have observed improvements in reasoning tasks.

3 METHODS

3.1 PROCESS SUPERVISION

Process supervision is a concept proposed to differentiate from outcome supervision. The reward
models trained with these objectives are termed Process Reward Models (PRMs) and Outcome
Reward Models (ORMs), respectively. In the ORM framework, given a query q (e.g., a mathematical
problem) and its corresponding response x (e.g., a model-generated solution), an ORM is trained
to predict the correctness of the final answer within the response. Formally, an ORM takes q and x
and outputs the probability p = ORM(q, x) that the final answer in the response is correct. With a
training set of question-answer pairs available, an ORM can be trained by sampling outputs from a
policy model (e.g., a pretrained or fine-tuned LLM) using the questions and obtaining the correctness
labels by comparing these outputs with the golden answers.

In contrast, a PRM is trained to predict the correctness of each intermediate step xt in the solution.
Formally, pt = PRM([q, x1:t−1], xt), where x1:i = [x1, . . . , xi] represents the first i steps in the
solution. This provides more precise and fine-grained feedback than ORMs, as it identifies the exact
location of errors. Process supervision has also been shown to mitigate incorrect reasoning in the
domain of mathematical problem solving. Despite these advantages, obtaining the intermediate signal
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for each step’s correctness to train such a PRM is non-trivial. Previous work (Lightman et al., 2023)
has relied on hiring domain experts to manually annotate the labels, which is and difficult to scale.

3.2 PROCESS ANNOTATION WITH MONTE CARLO METHOD

In two closely related works, Math-Shepherd (Wang et al., 2024a) and MiPS (Wang et al., 2024b),
the authors propose an automatic annotation approach to obtain process supervision signals using the
Monte Carlo method. Specifically, a “completer” policy is established that can take a question q and
a prefix solution comprising the first t steps x1:t and output the completion — often referred to as a
“rollout” in reinforcement learning — of the subsequent steps until the final answer is reached. As
shown in Fig. 2(a), for any step of a solution, the completer policy can be used to randomly sample
k rollouts from that step. The final answers of these rollouts are compared to the golden answer,
providing k labels of answer correctness corresponding to the k rollouts. Subsequently, the ratio of
correct rollouts to total rollouts from the t-th step, as represented in Eq. (1), estimates the “correctness
level” of the prefix steps up to t. Regardless of false positives, x1:t should be considered correct as
long as any of the rollouts is correct in the logical reasoning scenario.

ct = MonteCarlo(q, x1:t) =
num(correct rollouts from t-th step)
num(total rollouts from t-th step)

(1)

Taking a step forward, a straightforward strategy to annotate the correctness of intermediate steps
in a solution is to perform rollouts for every step from the beginning to the end, as done in both
Math-Shepherd and MiPS. However, this brute-force approach requires a large number of policy
calls. To optimize annotation efficiency, we propose a binary-search-based Monte Carlo estimation.

Monte Carlo estimation using binary search. As suggested by Lightman et al. (2023), supervising
up to the first incorrect step in a solution is sufficient to train a PRM. Therefore, our objective is
locating the first error in an efficient way. We achieve this by repeatedly dividing the solution and
performing rollouts. Assuming no false positives or negatives, we start with a solution with potential
errors and split it at the midpoint m. We then perform rollouts for s1:m with two possible outcomes:
(1) cm > 0, indicating that the first half of the solution is correct, as at least one correct answer can
be rolled out from m-th step, and thus the error is in the second half; (2) cm = 0, indicating the
error is very likely in the first half, as none of the rollouts from m-th step is correct. This process
narrows down the error location to either the first or second half of the solution. As shown in Fig. 2(b),
by repeating this process on the erroneous half iteratively until the partial solution is sufficiently
small (i.e., short enough to be considered as a single step), we can locate the first error with a time
complexity ofO(k logM) rather thanO(kM) in the brute-force setting, whereM is the total number
of steps in the original solution.

3.3 MONTE CARLO TREE SEARCH

Although binary search improves the efficiency of locating the first error in a solution, we are still not
fully utilizing policy calls as rollouts are simply discarded after stepwise Monte Carlo estimation. In
practice, it is necessary to collect multiple PRM training examples (a.k.a., triplets of question, partial
solution and correctness label) for a question (Lightman et al., 2023; Wang et al., 2024a). Instead
of starting from scratch each time, we can store all rollouts during the process and conduct binary
searches from any of these rollouts whenever we need to collect a new example. This approach
allows for triplets with the same solution prefix but different completions and error locations. Such
reasoning structures can be represented as a tree, as described in previous work like Tree of Thought
(Yao et al., 2023).

Formally, consider a state-action tree representing detailed reasoning paths for a question, where
a state s contains the question and all preceding reasoning steps, and an action a is a potential
subsequent step from a specific state. The root state is the question without any reasoning steps:
rroot = q. The policy can be directly modeled by a language model as π(a|s) = LM(a|s), and the
state transition function is simply the concatenation of the preceding steps and the action step, i.e.,
s′ = Concatenate(s, a).
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Problem: Let p(x) be a monic polynomial of degree 4.
Three of the roots of p(x) are 1, 2, 3. Find p(0)+p(4). Golden Answer: 24

Solution: Since three of the roots of p(x) .... Final Answer 20.   ✘

  Problem: ....
  Since three of the roots of
  p(x) are 1, 2 and 3, we can
  write: 

Rollout 1: .... Final Answer 24.   ✔

Rollout 2: .... Final Answer 24.  ✔

Rollout 3: .... Final Answer 20.  ✘

MC = 0.67

(a) Monte Carlo estimation of a prefix solution.

?

MC = 0.25

MC = 0.5

MC = 0
First error step

? ? ? ? ? ? ?

✔ ✔ ✔ ✔

✘

? ?? ?

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

? ?

✔
1 2 3 4 5 6 7 8

✔ ✔

✔ NA

(b) Error locating using binary search.

0

1 3

2

0
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6

Selected

Select Binary Search

0

1 3

2

4

5

6

Maintain

N++

MC, Q

MC, Q

MC, Q

(c) Three stages in an iteration of the MCTS process.

Figure 2: Illustration of the process supervision rollouts, Monte Carlo estimation using binary search
and the MCTS process. (a) An example of Monte Carlo estimation of a prefix solution. Two out of
the three rollouts are correct, producing the Monte Carlo estimation MC(q, x1:t) = 2/3 ≈ 0.67. (b)
An example of error locating using binary search. The first error step is located at the 7th step after
three divide-and-rollouts, where the rollout positions are indicated by the vertical dashed lines. (c)
The MCTS process. The dotted lines in Select stage represent the available rollouts for binary search.
The bold colored edges represent steps with correctness estimations. The yellow color indicates a
correct step, i.e., with a preceding state s that MC(s) > 0 and the blue color indicates an incorrect
step, i.e., with MC(s) = 0. The number of dashes in each colored edge indicates the number of steps.

Collecting PRM training examples for a question can now be formulated as constructing such a
state-action tree. This reminds us the classic Monte Carlo Tree Search (MCTS) algorithm, which
has been successful in many deep reinforcement learning applications (Silver et al., 2016; 2017).
However, there are some key differences when using a language model as the policy. First, MCTS
typically handles an environment with a finite action space, such as the game of Go, which has fewer
than 361 possible actions per state (Silver et al., 2017). In contrast, an LM policy has an infinite action
space, as it can generate an unlimited number of distinct actions (sequences of tokens) given a prompt.
In practice, we use temperature sampling to generate a fix number of k completions for a prompt,
treating the group of k actions as an approximate action space. Second, an LM policy can sample
a full rollout until the termination state (i.e., reaching the final answer) without too much overhead
than generating a single step, enabling the possibility of binary search. Consequently, we propose an
adaptation of the MCTS algorithm named OmegaPRM, primarily based on the one introduced in
AlphaGo (Silver et al., 2016), but with modifications to better accommodate the scenario of PRM
training data collection. We describe the algorithm details as below.

Tree Structure. Each node s in the tree contains the question q and prefix solution x1:t, together
with all previous rollouts {(s, ri)}ki=1 from the state. Each edge (s, a) is either a single step or a
sequence of consecutive steps from the node s. The nodes also store a set of statistics,

{N(s),MC(s), Q(s, r)},
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where N(s) denotes the visit count of a state, MC(s) represents the Monte Carlo estimation of a state
as specified in Eq. (1), and Q(s, r) is a state-rollout value function that is correlated to the chance of
selecting a rollout during the selection phase of tree traversal. Specifically,

Q(s, r) = α1−MC(s) · β
len(r)

L , (2)

where α, β ∈ (0, 1] and L > 0 are constant hyperparameters; while len(r) denotes the length of a
rollout in terms of number of tokens. Q is supposed to indicate how likely a rollout will be chosen for
each iteration and our goal is to define a heuristic that selects the most valuable rollout to search with.
The most straightforward strategy is uniformly choosing rollout candidates generated by the policy in
previous rounds; however, this is obviously not an effective way. Lightman et al. (2023) suggests
surfacing the convincing wrong-answer solutions for annotators during labeling. Inspired by this, we
propose to prioritize supposed-to-be-correct wrong-answer rollouts during selection. We use the term
supposed-to-be-correct to refer to the state with a Monte Carlo estimation MC(s) closed to 1; and
use wrong-answer to refer that the specific rollout r has a wrong final answer. The rollout contains
mistakes made by the policy that should have been avoided given its high MC(s). We expect a PRM
that learns to detect errors in such rollouts will be more useful in correcting the mistakes made by
the policy. The first component in Eq. (2), α1−MC(s), has a larger value as MC(s) is closer to 1.
Additionally, we incorporate a length penalty factor β

len(r)
L , to penalize excessively long rollouts.

Select. The selection phase in our algorithm is simpler than that of AlphaGo (Silver et al., 2016),
which involves selecting a sequence of actions from the root to a leaf node, forming a trajectory with
multiple states and actions. In contrast, we maintain a pool of all rollouts {(si, rij)} from previous
searches that satisfy 0 < MC(si) < 1. During each selection, a rollout is popped and selected
according to tree statistics, (s, r) = argmax(s,r)[Q(s, r) + U(s)], using a variant of the PUCT
(Rosin, 2011) algorithm,

U(s) = cpuct

√∑
iN(si)

1 +N(s)
, (3)

where cpuct is a constant determining the level of exploration. This strategy initially favors rollouts
with low visit counts but gradually shifts preference towards those with high rollout values.

Binary Search. We perform a binary search to identify the first error location in the selected rollout,
as detailed in §3.2. The rollouts with 0 < MC(s) < 1 during the process are added to the selection
candidate pool. All divide-and-rollout positions before the first error become new states. For the
example in Fig. 2(b), the trajectory s[q] → s[q, x1:4] → s[q, x1:6] → s[q, x1:7] is added to the tree
after the binary search. The edges s[q]→ s[q, x1:4] and s[q, x1:4]→ s[q, x1:6] are correct, with MC
values of 0.25 and 0.5, respectively; while the edge s[q, x1:6]→ s[q, x1:7] is incorrect with MC value
of 0.

Maintain. After the binary search, the tree statistics N(s), MC(s), and Q(s, r) are updated.
Specifically, N(s) is incremented by 1 for the selected (s, r). Both MC(s) and Q(s, r) are updated
for the new rollouts sampled from the binary search. This phase resembles the backup phase in
AlphaGo but is simpler, as it does not require recursive updates from the leaf to the root.

Tree Construction. By repeating the aboved process, we can construct a state-action tree as
the example illustrated in Fig. 1. The construction ends either when the search count reaches a
predetermined limit or when no additional rollout candidates are available in the pool.

3.4 PRM TRAINING

Each edge (s, a) with a single-step action in the constructed state-action tree can serve as a training
example for the PRM. It can be trained using the standard classification loss

Lpointwise =

N∑
i=1

ŷi log yi + (1− ŷi) log(1− yi), (4)

where ŷi represents the correctness label and yi = PRM(s, a) is the prediction score of the PRM.
Wang et al. (2024b) have used the Monte Carlo estimation as the correctness label, denoted as

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ŷ = MC(s). Alternatively, Wang et al. (2024a) have employed a binary labeling approach, where
ŷ = 1[MC(s) > 0], assigning ŷ = 1 for any positive Monte Carlo estimation and ŷ = 0 otherwise.
We refer the former option as pointwise soft label and the latter as pointwise hard label. In addition,
considering there are many cases where a common solution prefix has multiple single-step actions, we
can also minimize the cross-entropy loss between the PRM predictions and the normalized pairwise
preferences following the Bradley-Terry model (Christiano et al., 2017). We refer this training method
as pairwise approach, and the detailed pairwise loss formula can be found in Section Appendix B.

We use the pointwise soft label when evaluating the main results in §4.1, and a comparion of the
three objectives are discussed in §4.3.

4 EXPERIMENTS

Data Generation. We conduct our experiments on the challenging MATH dataset (Hendrycks
et al., 2021). We use the same training and testing split as described in Lightman et al. (2023),
which consists of 12K training examples and a subset with 500 holdout representative problems from
the original 5K testing examples introduced in Hendrycks et al. (2021). We observe similar policy
performance on the full test set and the subset. For creating the process annotation data, we use the
questions from the training split and set the search limit to 100 per question, resulting 1.5M per-step
process supervision annotations. To reduce the false positive and false negative noise, we filtered out
questions that are either too hard or too easy for the model. Please refer to Appendix A for details.
We use α = 0.5, β = 0.9 and L = 500 for calculating Q(s, r) in Eq. (2); and cpuct = 0.125 in Eq. (3).
We sample k = 8 rollouts for each Monte Carlo estimation.

Models. In previous studies (Lightman et al., 2023; Wang et al., 2024a;b), both proprietary models
such as GPT-4 (OpenAI, 2023) and open-source models such as Llama2 (Touvron et al., 2023) were
explored. In our study, we perform experiments with both proprietary Gemini Pro (Gemini Team
et al., 2024) and open-source Gemma2 (Gemma Team et al., 2024) models. For Gemini Pro, we
follow Lightman et al. (2023); Wang et al. (2024a) to initially fine-tune it on math instruction data,
achieving an accuracy of approximately 51% on the MATH test set. The instruction-tuned model is
then used for solution sampling. For open-source models, to maximize reproducibility, we directly
use the pretrained Gemma2 27B checkpoint with the 4-shot prompt introduced in Gemini Team et al.
(2024). The reward models are all trained from the pretrained checkpoints.

Metrics and baselines. We evaluate the PRM-based majority voting results on GSM8K (Cobbe
et al., 2021) and MATH500 (Lightman et al., 2023) using PRMs trained on different process super-
vision data. We choose the product of scores across all steps as the final solution score following
Lightman et al. (2023), where the performance difference between product and minimum of scores
was compared and the study showed the difference is minor. Baseline process supervision data
include PRM800K (Lightman et al., 2023) and Math-Shepherd (Wang et al., 2024a), both publicly
available. Additionally, we generate a process annotation dataset with our Gemini policy model using
the brute-force approach described in Wang et al. (2024a;b), referred to as Math-Shepherd (our impl)
in subsequent sections.

4.1 MAIN RESULTS

Table 1 and Fig. 3 presents the performance comparison of PRMs trained on various process an-
notation datasets. OmegaPRM consistently outperforms the other process supervision datasets.
Specifically, the fine-tuned Gemini Pro achieves 69.4% and 93.6% accuracy on MATH500 and
GSM8K, respectively, using OmegaPRM-weighted majority voting. For the pretrained Gemma2 27B,
it also performs the best with 58.2% and 92.2% accuracy on MATH500 and GSM8K, respectively.
It shows superior performance comparing to both human annotated PRM800K but also automatic
annotated Math-Shepherd. More specifically, when the number of samples is small, almost all the
PRM models outperforme the majority vote. However, as the number of samples increases, the
performance of other PRMs gradually converges to the same level of the majority vote. In contrast,
our PRM model continues to demonstrate a clear margin of accuracy.
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(a) Gemini Pro on MATH500.
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(b) Gemini Pro on GSM8K.
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(c) Gemma2 27B on MATH500.
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(d) Gemma2 27B on GSM8K.

Figure 3: A comparison of PRMs trained with different process supervision datasets, evaluated by
their ability to search over many test solutions using a PRM-weighted majority voting. We visualize
the variance across many sub-samples of the 128 solutions we generated in total per problem.

Table 1: The performance comparison of PRMs trained with different process supervision datasets.
The numbers represent the percentage of problems solved using PRM-weighted majority voting with
k = 64.

MATH500 GSM8K
Gemini Pro Gemma 2 27B Gemini Pro Gemma 2 27B

MajorityVote@64 67.2 54.7 92.7 90.6
+ Math-Shepherd 67.2 57.4 92.7 90.5
+ Math-Shepherd (our impl) 67.2 55.2 91.8 91.4
+ PRM800K 67.6 57.2 92.9 91.7
+ OmegaPRM 69.4 58.2 93.6 92.2

4.2 STEP DISTRIBUTION

An important factor in process supervision is the number of steps in a solution and the length of each
step. Previous works (Lightman et al., 2023; Wang et al., 2024a;b) use rule-based strategies to split a
solution into steps, e.g., using newline as delimiters. In contrast, we propose a more flexible method
for step division, treating any sequence of consecutive tokens in a solution as a valid step. We observe
that many step divisions in Math-Shepherd lack semantic coherence to some extent. Therefore, we
hypothesize that semantically explicit cutting is not necessary for training a PRM.

In practice, we first examine the distribution of the number of steps per solution in PRM800K and
Math-Shepherd, as shown in Fig. 4, noting that most solutions have less than 20 steps. During binary
search, we aim to divide a full solution into 16 pieces. To calculate the expected step length, we

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 10 20 30
Number of Steps per Solution

0

1

2

3

C
ou

nt

×104 Math-Shepherd

0 20 40
Number of Steps per Solution

0

2

4

6

C
ou

nt

×103 PRM800K

Figure 4: Number of steps distribution.

divide the average solution length by 16. The binary search terminates when a step is shorter than
this value. The resulting distributions of step lengths for OmegaPRM and the other two datasets are
shown in Fig. 5. This flexible splitting strategy produces a step length distribution similar to that of
the rule-based strategy.
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Figure 5: Step length distribution in terms of number of tokens.

4.3 PRM TRAINING OBJECTIVES

Table 2: Comparison of different training objectives for PRMs.

Soft Label Hard Label Pairwise

PRM Accuracy (%) 70.1 63.3 64.2

As outlined in §3.4, PRMs can be trained using multiple objectives. We construct a small process
supervision test set using the problems from the MATH test split. We train PRMs using pointwise
soft label, pointwise hard label and pairwise loss respectively, and evaluate how accurately they can
classify the per-step correctness. Table 2 presents the comparison of different objectives, and the
pointwise soft label is the best among them with 70.1% accuracy.

4.4 ALGORITHM EFFICIENCY

As described in Section §3.2 and §3.3, we utilize binary search and Monte Carlo Tree Search to
improve the efficiency of OmegaPRM process supervision data collection by effectively identifying
the first incorrect step and reusing rollouts in Monte Carlo estimation. To quantitatively measure
the efficiency of OmegaPRM, we collected process supervision data using both brute-force-style
method (Wang et al., 2024a;b) and OmegaPRM with the same computational budget. As a result, we
were able to generate 200K data points using the brute-force algorithm compared to 15 million data
points with OmegaPRM, demonstrating a 75-times efficiency improvement. In practice, we randomly
down-sampled OmegaPRM data to 1.5 million for PRM training.
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5 LIMITATIONS

There are some limitations with our paper, which we reserve for future work:

Automatic process annotation is noisy. Our method for automatic process supervision annotation
introduces noise in the form of false positives and negatives, but experiments indicate that it can
still effectively train a PRM. The PRM trained on our dataset performs better than one trained on
the human-annotated PRM800K dataset. The precise impact of noise on PRM performance remains
uncertain. For future research, a comprehensive comparison of human and automated annotations
should be conducted. One other idea is to integrate human and automated annotations, which could
result in more robust and efficient process supervision.

Human supervision is still necessary. Unlike the work presented in AlphaGo Zero (Silver et al.,
2017), our method requires the question and golden answer pair. The question is necessary for LLM
to start the MCTS and the golden answer is inevitable for the LLM to compare its rollouts with
and determine the correctness of the current step. This will limit the method to the tasks with such
question and golden answer pairs. Therefore, we need to adapt the current method further to make it
suitable for open-ended tasks.

6 CONCLUSION

In conclusion, we introduce OmegaPRM, a divide-and-conquer Monte Carlo Tree Search algorithm,
designed to automate the process supervision data collection for LLMs. By efficiently pinpointing
the first error in the Chain-of-Thought and balancing data quality, OmegaPRM addresses the short-
comings of existing methods. Our automated approach enables the collection of over 1.5 million
process supervision annotations, which are used to train a PRM. Leveraging this automated process
supervision with the weighted self-consistency algorithm, we improve LLM mathematical reasoning
performance, achieving a 69.4% success rate on the MATH benchmark — a 18.4% absolute increase
over the base model which amounts to a relative improvement of 36%. Additionally, our method
significantly reduces data collection costs compared to human annotation and brute force Monte-Carlo
sampling. These findings highlight OmegaPRM’s potential to enhance LLM capabilities in complex
multi-step reasoning tasks.
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Paul Kishan Rubenstein, Ruoxin Sang, Dan Hurt, Gamaleldin Elsayed, Renshen Wang, Dave
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APPENDIX

A QUESTION FILTERING

During the evaluation of partial solution correctness using MC estimation, false negative noise may
be introduced when a question is too hard for the model, thus no correct rollout can be found even
with correct partial solution. Or false positive noise may be introduced when a question is too easy,
that model can conclude in correct answer given partial solution with wrong step. It is not possible
to exclude such noise completely, but we can reduce the chance by filtering out questions that are
either too hard or too easy for the model. Specifically, we ran a k = 32 rollouts for each question in
the 12K training data, and filter out the questions that with no correct answer (too hard) or no wrong
answer (too easy) in the 32 rollouts.

B PAIRWISE LOSS FORMULA

When training with pairwise labels, the Bradley-Terry model (people typically use this objective to
train reward models in RLHF) generally accepts two probability scalars summing up to 1. When we
select the two actions as a pair, there are two cases. The first case is that one sample with a zero MC
value, and the other sample with a positive MC value. The second case is that both samples are with
positive MC values. The first case is straight-forward, and a normalization step is required for the
second case.

Assume the two MC values are p and q, and they follow the Bernoulli distribution: P (X = 1) = p
and P (Y = 1) = q. We need to calculate the probability that action X is preferred over action Y and
vice versa.

P (X > Y ) = P (X = 1, Y = 0) = p(1− q),
P (X < Y ) = P (X = 0, Y = 1) = (1− p)q,
P (X = Y ) = P (X = 0, Y = 0) + P (X = 1, Y = 1) = (1− p)(1− q) + pq.

(5)

For the tied situation, each action has half the chance of being preferred. Thus,

P (action X is preferred) = P (X > Y ) + 1/2 ∗ P (X = Y ) = 1/2 ∗ (1 + p− q),
P (action Y is preferred) = P (X < Y ) + 1/2 ∗ P (X = Y ) = 1/2 ∗ (1 + q − p). (6)

Now the MC values are normalized and we can train with the pairwise loss.
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