
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVE MATHEMATICAL REASONING IN LANGUAGE
MODELS WITH AUTOMATED PROCESS SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex multi-step reasoning tasks, such as solving mathematical problems or
generating code, remain a significant hurdle for even the most advanced large
language models (LLMs). Verifying LLM outputs with an Outcome Reward Model
(ORM) is a standard inference-time technique aimed at enhancing the reasoning
performance of LLMs. However, this still proves insufficient for reasoning tasks
with a lengthy or multi-hop reasoning chain, where the intermediate outcomes
are neither properly rewarded nor penalized. Process supervision addresses this
limitation by assigning intermediate rewards during the reasoning process. To
date, the methods used to collect process supervision data have relied on either
human annotation or per-step Monte Carlo estimation, both prohibitively expensive
to scale, thus hindering the broad application of this technique. In response to
this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree
Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-
quality process supervision data. This algorithm swiftly identifies the first error
in the Chain of Thought (CoT) with binary search and balances the positive and
negative examples, thereby ensuring both efficiency and quality. As a result, we
are able to collect over 1.5 million process supervision annotations to train Process
Reward Models (PRMs). This fully automated process supervision alongside the
weighted self-consistency algorithm is able to enhance LLMs’ math reasoning
performances. We improved the success rates of the instruction-tuned Gemini Pro
model from 51% to 69.4% on MATH500 and from 86.4% to 93.6% on GSM8K.
Similarly, we boosted the success rates of Gemma2 27B from 42.3% to 58.2%
on MATH500 and from 74.0% to 92.2% on GSM8K. The entire process operates
without any human intervention or supervision, making our method both financially
and computationally cost-effective compared to existing methods.

1 INTRODUCTION

Despite the impressive advancements achieved by scaling Large Language Models (LLMs) on
established benchmarks (Wei et al., 2022a), cultivating more sophisticated reasoning capabilities,
particularly in domains like mathematical problem-solving and code generation, remains an active
research area. Chain-of-thought (CoT) generation is crucial for these reasoning tasks, as it decomposes
complex problems into intermediate steps, mirroring human reasoning processes. Prompting LLMs
with CoT examples (Wei et al., 2022b) and fine-tuning them on question-CoT solution pairs (Perez
et al., 2021; Ouyang et al., 2022) have proven effective, with the latter demonstrating superior
performance. Furthermore, the advent of Reinforcement Learning with Human Feedback (RLHF;
Ouyang et al., 2022) has enabled the alignment of LLM behaviors with human preferences through
reward models, significantly enhancing model capabilities.

Beyond prompting and further training, developing effective decoding strategies is another crucial
avenue for improvement. Self-consistency decoding (Wang et al., 2023) leverages multiple reasoning
paths to arrive at a voted answer. Incorporating a verifier, such as an off-the-shelf LLM (Huang
et al., 2022; Luo et al., 2023), can further guide LLMs in reasoning tasks by providing a feedback
loop to verify final answers, identify errors, and suggest corrections. However, the gain of such
approaches remains limited for complex multi-step reasoning problems. Reward models offer a
promising alternative to verifiers, enabling the reranking of candidate outcomes based on reward
signals to ensure higher accuracy. Two primary types of reward models have emerged: Outcome

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Reward Models (ORMs; Yu et al., 2024; Cobbe et al., 2021), which provide feedback only at the
end of the problem-solving process, and Process Reward Models (PRMs; Li et al., 2023; Uesato
et al., 2022; Lightman et al., 2023), which offer granular feedback at each reasoning step. PRMs
have demonstrated superior effectiveness for complex reasoning tasks by providing such fine-grained
supervision.

Figure 1: Example tree structure built with our proposed OmegaPRM algorithm. Each node in the
tree indicates a state of partial chain-of-thought solution, with information including accuracy of
rollouts and other statistics. Each edge indicates an action, i.e., a reasoning step, from the last state.
Yellow edges are correct steps and blue edges are wrong.

The primary bottleneck in developing PRMs lies in obtaining process supervision signals, which
require supervised labels for each reasoning step. Current approaches rely heavily on costly and
labor-intensive human annotation (Uesato et al., 2022; Lightman et al., 2023). Automating this
process is crucial for scalability and efficiency. While recent efforts using per-step Monte Carlo
estimation have shown promise (Wang et al., 2024a;b), their efficiency remains limited due to the
vast search space. To address this challenge, we introduce OmegaPRM, a novel divide-and-conquer
Monte Carlo Tree Search (MCTS) algorithm inspired by AlphaGo Zero (Silver et al., 2017) for
automated process supervision data collection. For each question, we build a Monte Carlo Tree, as
shown in Fig. 1, with the details explained in §3.3. This algorithm enables efficient collection of
over 1.5 million high-quality process annotations without human intervention. Our PRM, trained
on this dataset and combined with weighted self-consistency decoding, significantly improves the
performance of instruction-tuned Gemini Pro from 51% to 69.4% on MATH500 (Lightman et al.,
2023) and from 86.4% to 93.6% on GSM8K (Cobbe et al., 2021). We also boosted the success rates
of Gemma2 27B from 42.3% to 58.2% on MATH500 and from 74.0% to 92.2% on GSM8K.

Our main contributions are as follows:

• We propose a novel divide-and-conquer style Monte Carlo Tree Search algorithm for
automated process supervision data generation.
• The algorithm enables the efficient generation of over 1.5 million process supervision annota-

tions, representing the largest and highest quality dataset of its kind to date. Additionally, the
entire process operates without any human annotation, making our method both financially
and computationally cost-effective.
• We combine our verifier with weighted self-consistency to further boost the performance

of LLM reasoning. We significantly improves the success rates from 51% to 69.4% on

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

MATH500 and from 86.4% to 93.6% on GSM8K for instruction-tuned Gemini Pro. For
Gemma2 27B, we also improved the success rates of from 42.3% to 58.2% on MATH500
and from 74.0% to 92.2% on GSM8K.

2 RELATED WORK

Improving mathematical reasoning ability of LLMs. Mathematical reasoning poses significant
challenges for LLMs, and it is one of the key tasks for evaluating the reasoning ability of LLMs.
With a huge amount of math problems in pretraining datasets, the pretrained LLMs (OpenAI, 2023;
Gemini Team et al., 2024; Touvron et al., 2023) are able to solve simple problems, yet struggle with
more complicated reasoning. To overcome that, the chain-of-thought (Wei et al., 2022b; Fu et al.,
2023) type prompting algorithms were proposed. These techniques were effective in improving the
performance of LLMs on reasoning tasks without modifying the model parameters. The performance
was further improved by supervised fine-tuning (SFT; Cobbe et al., 2021; Liu et al., 2024; Yu et al.,
2023) with high quality question-response pairs with full CoT reasoning steps.

Application of reward models in mathematical reasoning of LLMs. To further improve the
LLM’s math reasoning performance, verifiers can help to rank and select the best answer when
multiple rollouts are available. Several works (Huang et al., 2022; Luo et al., 2023) have shown that
using LLM as verifier is not suitable for math reasoning. For trained verifiers, two types of reward
models are commonly used: Outcome Reward Model (ORM) and Process Reward Model (PRM).
Both have shown performance boost on math reasoning over self-consistency (Cobbe et al., 2021;
Uesato et al., 2022; Lightman et al., 2023), yet evidence has shown that PRM outperforms ORM
(Lightman et al., 2023; Wang et al., 2024a). Generating high quality process supervision data is the
key for training PRM, besides expensive human annotation (Lightman et al., 2023), Math-Shepherd
(Wang et al., 2024a) and MiPS (Wang et al., 2024b) explored Monte Carlo estimation to automate the
data collection process with human involvement, and both observed large performance gain. Our
work shared the essence with MiPS and Math-Shepherd, but we explore further in collecting the
process data using MCTS.

Monte Carlo Tree Search (MCTS). MCTS (Świechowski et al., 2021) has been widely adopted
in reinforcement learning (RL). AlphaGo (Silver et al., 2016) and AlphaGo Zero (Silver et al., 2017)
were able to achieve great performance with MCTS and deep reinforcement learning. For LLMs,
there are planning algorithms that fall in the category of tree search, such as Tree-of-Thought (Yao
et al., 2023) and Reasoning-via-Planing (Hao et al., 2023). Recently, utilizing tree-like decoding to
find the best output during the inference-time has become a hot topic to explore as well, multiple
works (Feng et al., 2023; Ma et al., 2023; Zhang et al., 2024; Tian et al., 2024; Feng et al., 2024;
Kang et al., 2024) have observed improvements in reasoning tasks.

3 METHODS

3.1 PROCESS SUPERVISION

Process supervision is a concept proposed to differentiate from outcome supervision. The reward
models trained with these objectives are termed Process Reward Models (PRMs) and Outcome
Reward Models (ORMs), respectively. In the ORM framework, given a query q (e.g., a mathematical
problem) and its corresponding response x (e.g., a model-generated solution), an ORM is trained
to predict the correctness of the final answer within the response. Formally, an ORM takes q and x
and outputs the probability p = ORM(q, x) that the final answer in the response is correct. With a
training set of question-answer pairs available, an ORM can be trained by sampling outputs from a
policy model (e.g., a pretrained or fine-tuned LLM) using the questions and obtaining the correctness
labels by comparing these outputs with the golden answers.

In contrast, a PRM is trained to predict the correctness of each intermediate step xt in the solution.
Formally, pt = PRM([q, x1:t−1], xt), where x1:i = [x1, . . . , xi] represents the first i steps in the
solution. This provides more precise and fine-grained feedback than ORMs, as it identifies the exact
location of errors. Process supervision has also been shown to mitigate incorrect reasoning in the
domain of mathematical problem solving. Despite these advantages, obtaining the intermediate signal

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for each step’s correctness to train such a PRM is non-trivial. Previous work (Lightman et al., 2023)
has relied on hiring domain experts to manually annotate the labels, which is and difficult to scale.

3.2 PROCESS ANNOTATION WITH MONTE CARLO METHOD

In two closely related works, Math-Shepherd (Wang et al., 2024a) and MiPS (Wang et al., 2024b),
the authors propose an automatic annotation approach to obtain process supervision signals using the
Monte Carlo method. Specifically, a “completer” policy is established that can take a question q and
a prefix solution comprising the first t steps x1:t and output the completion — often referred to as a
“rollout” in reinforcement learning — of the subsequent steps until the final answer is reached. As
shown in Fig. 2(a), for any step of a solution, the completer policy can be used to randomly sample
k rollouts from that step. The final answers of these rollouts are compared to the golden answer,
providing k labels of answer correctness corresponding to the k rollouts. Subsequently, the ratio of
correct rollouts to total rollouts from the t-th step, as represented in Eq. (1), estimates the “correctness
level” of the prefix steps up to t. Regardless of false positives, x1:t should be considered correct as
long as any of the rollouts is correct in the logical reasoning scenario.

ct = MonteCarlo(q, x1:t) =
num(correct rollouts from t-th step)
num(total rollouts from t-th step)

(1)

Taking a step forward, a straightforward strategy to annotate the correctness of intermediate steps
in a solution is to perform rollouts for every step from the beginning to the end, as done in both
Math-Shepherd and MiPS. However, this brute-force approach requires a large number of policy
calls. To optimize annotation efficiency, we propose a binary-search-based Monte Carlo estimation.

Monte Carlo estimation using binary search. As suggested by Lightman et al. (2023), supervising
up to the first incorrect step in a solution is sufficient to train a PRM. Therefore, our objective is
locating the first error in an efficient way. We achieve this by repeatedly dividing the solution and
performing rollouts. Assuming no false positives or negatives, we start with a solution with potential
errors and split it at the midpoint m. We then perform rollouts for s1:m with two possible outcomes:
(1) cm > 0, indicating that the first half of the solution is correct, as at least one correct answer can
be rolled out from m-th step, and thus the error is in the second half; (2) cm = 0, indicating the
error is very likely in the first half, as none of the rollouts from m-th step is correct. This process
narrows down the error location to either the first or second half of the solution. As shown in Fig. 2(b),
by repeating this process on the erroneous half iteratively until the partial solution is sufficiently
small (i.e., short enough to be considered as a single step), we can locate the first error with a time
complexity ofO(k logM) rather thanO(kM) in the brute-force setting, whereM is the total number
of steps in the original solution.

3.3 MONTE CARLO TREE SEARCH

Although binary search improves the efficiency of locating the first error in a solution, we are still not
fully utilizing policy calls as rollouts are simply discarded after stepwise Monte Carlo estimation. In
practice, it is necessary to collect multiple PRM training examples (a.k.a., triplets of question, partial
solution and correctness label) for a question (Lightman et al., 2023; Wang et al., 2024a). Instead
of starting from scratch each time, we can store all rollouts during the process and conduct binary
searches from any of these rollouts whenever we need to collect a new example. This approach
allows for triplets with the same solution prefix but different completions and error locations. Such
reasoning structures can be represented as a tree, as described in previous work like Tree of Thought
(Yao et al., 2023).

Formally, consider a state-action tree representing detailed reasoning paths for a question, where
a state s contains the question and all preceding reasoning steps, and an action a is a potential
subsequent step from a specific state. The root state is the question without any reasoning steps:
rroot = q. The policy can be directly modeled by a language model as π(a|s) = LM(a|s), and the
state transition function is simply the concatenation of the preceding steps and the action step, i.e.,
s′ = Concatenate(s, a).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Problem: Let p(x) be a monic polynomial of degree 4.
Three of the roots of p(x) are 1, 2, 3. Find p(0)+p(4). Golden Answer: 24

Solution: Since three of the roots of p(x) Final Answer 20. ✘

 Problem:
 Since three of the roots of
 p(x) are 1, 2 and 3, we can
 write:

Rollout 1: Final Answer 24. ✔

Rollout 2: Final Answer 24. ✔

Rollout 3: Final Answer 20. ✘

MC = 0.67

(a) Monte Carlo estimation of a prefix solution.

?

MC = 0.25

MC = 0.5

MC = 0
First error step

? ? ? ? ? ? ?

✔ ✔ ✔ ✔

✘

? ?? ?

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

? ?

✔
1 2 3 4 5 6 7 8

✔ ✔

✔ NA

(b) Error locating using binary search.

0

1 3

2

0

1 3

2

4

5

6

Selected

Select Binary Search

0

1 3

2

4

5

6

Maintain

N++

MC, Q

MC, Q

MC, Q

(c) Three stages in an iteration of the MCTS process.

Figure 2: Illustration of the process supervision rollouts, Monte Carlo estimation using binary search
and the MCTS process. (a) An example of Monte Carlo estimation of a prefix solution. Two out of
the three rollouts are correct, producing the Monte Carlo estimation MC(q, x1:t) = 2/3 ≈ 0.67. (b)
An example of error locating using binary search. The first error step is located at the 7th step after
three divide-and-rollouts, where the rollout positions are indicated by the vertical dashed lines. (c)
The MCTS process. The dotted lines in Select stage represent the available rollouts for binary search.
The bold colored edges represent steps with correctness estimations. The yellow color indicates a
correct step, i.e., with a preceding state s that MC(s) > 0 and the blue color indicates an incorrect
step, i.e., with MC(s) = 0. The number of dashes in each colored edge indicates the number of steps.

Collecting PRM training examples for a question can now be formulated as constructing such a
state-action tree. This reminds us the classic Monte Carlo Tree Search (MCTS) algorithm, which
has been successful in many deep reinforcement learning applications (Silver et al., 2016; 2017).
However, there are some key differences when using a language model as the policy. First, MCTS
typically handles an environment with a finite action space, such as the game of Go, which has fewer
than 361 possible actions per state (Silver et al., 2017). In contrast, an LM policy has an infinite action
space, as it can generate an unlimited number of distinct actions (sequences of tokens) given a prompt.
In practice, we use temperature sampling to generate a fix number of k completions for a prompt,
treating the group of k actions as an approximate action space. Second, an LM policy can sample
a full rollout until the termination state (i.e., reaching the final answer) without too much overhead
than generating a single step, enabling the possibility of binary search. Consequently, we propose an
adaptation of the MCTS algorithm named OmegaPRM, primarily based on the one introduced in
AlphaGo (Silver et al., 2016), but with modifications to better accommodate the scenario of PRM
training data collection. We describe the algorithm details as below.

Tree Structure. Each node s in the tree contains the question q and prefix solution x1:t, together
with all previous rollouts {(s, ri)}ki=1 from the state. Each edge (s, a) is either a single step or a
sequence of consecutive steps from the node s. The nodes also store a set of statistics,

{N(s),MC(s), Q(s, r)},

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where N(s) denotes the visit count of a state, MC(s) represents the Monte Carlo estimation of a state
as specified in Eq. (1), and Q(s, r) is a state-rollout value function that is correlated to the chance of
selecting a rollout during the selection phase of tree traversal. Specifically,

Q(s, r) = α1−MC(s) · β
len(r)

L , (2)

where α, β ∈ (0, 1] and L > 0 are constant hyperparameters; while len(r) denotes the length of a
rollout in terms of number of tokens. Q is supposed to indicate how likely a rollout will be chosen for
each iteration and our goal is to define a heuristic that selects the most valuable rollout to search with.
The most straightforward strategy is uniformly choosing rollout candidates generated by the policy in
previous rounds; however, this is obviously not an effective way. Lightman et al. (2023) suggests
surfacing the convincing wrong-answer solutions for annotators during labeling. Inspired by this, we
propose to prioritize supposed-to-be-correct wrong-answer rollouts during selection. We use the term
supposed-to-be-correct to refer to the state with a Monte Carlo estimation MC(s) closed to 1; and
use wrong-answer to refer that the specific rollout r has a wrong final answer. The rollout contains
mistakes made by the policy that should have been avoided given its high MC(s). We expect a PRM
that learns to detect errors in such rollouts will be more useful in correcting the mistakes made by
the policy. The first component in Eq. (2), α1−MC(s), has a larger value as MC(s) is closer to 1.
Additionally, we incorporate a length penalty factor β

len(r)
L , to penalize excessively long rollouts.

Select. The selection phase in our algorithm is simpler than that of AlphaGo (Silver et al., 2016),
which involves selecting a sequence of actions from the root to a leaf node, forming a trajectory with
multiple states and actions. In contrast, we maintain a pool of all rollouts {(si, rij)} from previous
searches that satisfy 0 < MC(si) < 1. During each selection, a rollout is popped and selected
according to tree statistics, (s, r) = argmax(s,r)[Q(s, r) + U(s)], using a variant of the PUCT
(Rosin, 2011) algorithm,

U(s) = cpuct

√∑
iN(si)

1 +N(s)
, (3)

where cpuct is a constant determining the level of exploration. This strategy initially favors rollouts
with low visit counts but gradually shifts preference towards those with high rollout values.

Binary Search. We perform a binary search to identify the first error location in the selected rollout,
as detailed in §3.2. The rollouts with 0 < MC(s) < 1 during the process are added to the selection
candidate pool. All divide-and-rollout positions before the first error become new states. For the
example in Fig. 2(b), the trajectory s[q] → s[q, x1:4] → s[q, x1:6] → s[q, x1:7] is added to the tree
after the binary search. The edges s[q]→ s[q, x1:4] and s[q, x1:4]→ s[q, x1:6] are correct, with MC
values of 0.25 and 0.5, respectively; while the edge s[q, x1:6]→ s[q, x1:7] is incorrect with MC value
of 0.

Maintain. After the binary search, the tree statistics N(s), MC(s), and Q(s, r) are updated.
Specifically, N(s) is incremented by 1 for the selected (s, r). Both MC(s) and Q(s, r) are updated
for the new rollouts sampled from the binary search. This phase resembles the backup phase in
AlphaGo but is simpler, as it does not require recursive updates from the leaf to the root.

Tree Construction. By repeating the aboved process, we can construct a state-action tree as
the example illustrated in Fig. 1. The construction ends either when the search count reaches a
predetermined limit or when no additional rollout candidates are available in the pool.

3.4 PRM TRAINING

Each edge (s, a) with a single-step action in the constructed state-action tree can serve as a training
example for the PRM. It can be trained using the standard classification loss

Lpointwise =

N∑
i=1

ŷi log yi + (1− ŷi) log(1− yi), (4)

where ŷi represents the correctness label and yi = PRM(s, a) is the prediction score of the PRM.
Wang et al. (2024b) have used the Monte Carlo estimation as the correctness label, denoted as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ŷ = MC(s). Alternatively, Wang et al. (2024a) have employed a binary labeling approach, where
ŷ = 1[MC(s) > 0], assigning ŷ = 1 for any positive Monte Carlo estimation and ŷ = 0 otherwise.
We refer the former option as pointwise soft label and the latter as pointwise hard label. In addition,
considering there are many cases where a common solution prefix has multiple single-step actions, we
can also minimize the cross-entropy loss between the PRM predictions and the normalized pairwise
preferences following the Bradley-Terry model (Christiano et al., 2017). We refer this training method
as pairwise approach, and the detailed pairwise loss formula can be found in Section Appendix B.

We use the pointwise soft label when evaluating the main results in §4.1, and a comparion of the
three objectives are discussed in §4.3.

4 EXPERIMENTS

Data Generation. We conduct our experiments on the challenging MATH dataset (Hendrycks
et al., 2021). We use the same training and testing split as described in Lightman et al. (2023),
which consists of 12K training examples and a subset with 500 holdout representative problems from
the original 5K testing examples introduced in Hendrycks et al. (2021). We observe similar policy
performance on the full test set and the subset. For creating the process annotation data, we use the
questions from the training split and set the search limit to 100 per question, resulting 1.5M per-step
process supervision annotations. To reduce the false positive and false negative noise, we filtered out
questions that are either too hard or too easy for the model. Please refer to Appendix A for details.
We use α = 0.5, β = 0.9 and L = 500 for calculating Q(s, r) in Eq. (2); and cpuct = 0.125 in Eq. (3).
We sample k = 8 rollouts for each Monte Carlo estimation.

Models. In previous studies (Lightman et al., 2023; Wang et al., 2024a;b), both proprietary models
such as GPT-4 (OpenAI, 2023) and open-source models such as Llama2 (Touvron et al., 2023) were
explored. In our study, we perform experiments with both proprietary Gemini Pro (Gemini Team
et al., 2024) and open-source Gemma2 (Gemma Team et al., 2024) models. For Gemini Pro, we
follow Lightman et al. (2023); Wang et al. (2024a) to initially fine-tune it on math instruction data,
achieving an accuracy of approximately 51% on the MATH test set. The instruction-tuned model is
then used for solution sampling. For open-source models, to maximize reproducibility, we directly
use the pretrained Gemma2 27B checkpoint with the 4-shot prompt introduced in Gemini Team et al.
(2024). The reward models are all trained from the pretrained checkpoints.

Metrics and baselines. We evaluate the PRM-based majority voting results on GSM8K (Cobbe
et al., 2021) and MATH500 (Lightman et al., 2023) using PRMs trained on different process super-
vision data. We choose the product of scores across all steps as the final solution score following
Lightman et al. (2023), where the performance difference between product and minimum of scores
was compared and the study showed the difference is minor. Baseline process supervision data
include PRM800K (Lightman et al., 2023) and Math-Shepherd (Wang et al., 2024a), both publicly
available. Additionally, we generate a process annotation dataset with our Gemini policy model using
the brute-force approach described in Wang et al. (2024a;b), referred to as Math-Shepherd (our impl)
in subsequent sections.

4.1 MAIN RESULTS

Table 1 and Fig. 3 presents the performance comparison of PRMs trained on various process an-
notation datasets. OmegaPRM consistently outperforms the other process supervision datasets.
Specifically, the fine-tuned Gemini Pro achieves 69.4% and 93.6% accuracy on MATH500 and
GSM8K, respectively, using OmegaPRM-weighted majority voting. For the pretrained Gemma2 27B,
it also performs the best with 58.2% and 92.2% accuracy on MATH500 and GSM8K, respectively.
It shows superior performance comparing to both human annotated PRM800K but also automatic
annotated Math-Shepherd. More specifically, when the number of samples is small, almost all the
PRM models outperforme the majority vote. However, as the number of samples increases, the
performance of other PRMs gradually converges to the same level of the majority vote. In contrast,
our PRM model continues to demonstrate a clear margin of accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

22 23 24 25 26

N = number of solutions per problems

56

58

60

62

64

66

68

70

%
 P

ro
bl

em
s

So
lv

ed

Majority Vote
+OmegaPRM
+PRM800K
+Shepherd
+Shepherd (ours)

(a) Gemini Pro on MATH500.

22 23 24 25 26

N = number of solutions per problems

89

90

91

92

93

94

%
 P

ro
bl

em
s

So
lv

ed

Majority Vote
+OmegaPRM
+PRM800K
+Shepherd
+Shepherd (ours)

(b) Gemini Pro on GSM8K.

22 23 24 25 26

N = number of solutions per problems

40

45

50

55

60

%
 P

ro
bl

em
s

So
lv

ed

Majority Vote
+OmegaPRM
+PRM800K
+Shepherd
+Shepherd (ours)

(c) Gemma2 27B on MATH500.

22 23 24 25 26

N = number of solutions per problems

75

80

85

90

%
 P

ro
bl

em
s

So
lv

ed
Majority Vote
+OmegaPRM
+PRM800K
+Shepherd
+Shepherd (ours)

(d) Gemma2 27B on GSM8K.

Figure 3: A comparison of PRMs trained with different process supervision datasets, evaluated by
their ability to search over many test solutions using a PRM-weighted majority voting. We visualize
the variance across many sub-samples of the 128 solutions we generated in total per problem.

Table 1: The performance comparison of PRMs trained with different process supervision datasets.
The numbers represent the percentage of problems solved using PRM-weighted majority voting with
k = 64.

MATH500 GSM8K
Gemini Pro Gemma 2 27B Gemini Pro Gemma 2 27B

MajorityVote@64 67.2 54.7 92.7 90.6
+ Math-Shepherd 67.2 57.4 92.7 90.5
+ Math-Shepherd (our impl) 67.2 55.2 91.8 91.4
+ PRM800K 67.6 57.2 92.9 91.7
+ OmegaPRM 69.4 58.2 93.6 92.2

4.2 STEP DISTRIBUTION

An important factor in process supervision is the number of steps in a solution and the length of each
step. Previous works (Lightman et al., 2023; Wang et al., 2024a;b) use rule-based strategies to split a
solution into steps, e.g., using newline as delimiters. In contrast, we propose a more flexible method
for step division, treating any sequence of consecutive tokens in a solution as a valid step. We observe
that many step divisions in Math-Shepherd lack semantic coherence to some extent. Therefore, we
hypothesize that semantically explicit cutting is not necessary for training a PRM.

In practice, we first examine the distribution of the number of steps per solution in PRM800K and
Math-Shepherd, as shown in Fig. 4, noting that most solutions have less than 20 steps. During binary
search, we aim to divide a full solution into 16 pieces. To calculate the expected step length, we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 10 20 30
Number of Steps per Solution

0

1

2

3

C
ou

nt

×104 Math-Shepherd

0 20 40
Number of Steps per Solution

0

2

4

6

C
ou

nt

×103 PRM800K

Figure 4: Number of steps distribution.

divide the average solution length by 16. The binary search terminates when a step is shorter than
this value. The resulting distributions of step lengths for OmegaPRM and the other two datasets are
shown in Fig. 5. This flexible splitting strategy produces a step length distribution similar to that of
the rule-based strategy.

0 50 100 150 200
Per-step Length (in number of tokens)

0

1

2

3

C
ou

nt

×105 Math-Shepherd

0 50 100 150 200
Per-step Length (in number of tokens)

0

2

4

6

8

C
ou

nt

×104 PRM800K

0 50 100 150 200
Per-step Length (in number of tokens)

0.0

0.5

1.0

1.5

2.0

C
ou

nt

×105 OmegaPRM

Figure 5: Step length distribution in terms of number of tokens.

4.3 PRM TRAINING OBJECTIVES

Table 2: Comparison of different training objectives for PRMs.

Soft Label Hard Label Pairwise

PRM Accuracy (%) 70.1 63.3 64.2

As outlined in §3.4, PRMs can be trained using multiple objectives. We construct a small process
supervision test set using the problems from the MATH test split. We train PRMs using pointwise
soft label, pointwise hard label and pairwise loss respectively, and evaluate how accurately they can
classify the per-step correctness. Table 2 presents the comparison of different objectives, and the
pointwise soft label is the best among them with 70.1% accuracy.

4.4 ALGORITHM EFFICIENCY

As described in Section §3.2 and §3.3, we utilize binary search and Monte Carlo Tree Search to
improve the efficiency of OmegaPRM process supervision data collection by effectively identifying
the first incorrect step and reusing rollouts in Monte Carlo estimation. To quantitatively measure
the efficiency of OmegaPRM, we collected process supervision data using both brute-force-style
method (Wang et al., 2024a;b) and OmegaPRM with the same computational budget. As a result, we
were able to generate 200K data points using the brute-force algorithm compared to 15 million data
points with OmegaPRM, demonstrating a 75-times efficiency improvement. In practice, we randomly
down-sampled OmegaPRM data to 1.5 million for PRM training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 LIMITATIONS

There are some limitations with our paper, which we reserve for future work:

Automatic process annotation is noisy. Our method for automatic process supervision annotation
introduces noise in the form of false positives and negatives, but experiments indicate that it can
still effectively train a PRM. The PRM trained on our dataset performs better than one trained on
the human-annotated PRM800K dataset. The precise impact of noise on PRM performance remains
uncertain. For future research, a comprehensive comparison of human and automated annotations
should be conducted. One other idea is to integrate human and automated annotations, which could
result in more robust and efficient process supervision.

Human supervision is still necessary. Unlike the work presented in AlphaGo Zero (Silver et al.,
2017), our method requires the question and golden answer pair. The question is necessary for LLM
to start the MCTS and the golden answer is inevitable for the LLM to compare its rollouts with
and determine the correctness of the current step. This will limit the method to the tasks with such
question and golden answer pairs. Therefore, we need to adapt the current method further to make it
suitable for open-ended tasks.

6 CONCLUSION

In conclusion, we introduce OmegaPRM, a divide-and-conquer Monte Carlo Tree Search algorithm,
designed to automate the process supervision data collection for LLMs. By efficiently pinpointing
the first error in the Chain-of-Thought and balancing data quality, OmegaPRM addresses the short-
comings of existing methods. Our automated approach enables the collection of over 1.5 million
process supervision annotations, which are used to train a PRM. Leveraging this automated process
supervision with the weighted self-consistency algorithm, we improve LLM mathematical reasoning
performance, achieving a 69.4% success rate on the MATH benchmark — a 18.4% absolute increase
over the base model which amounts to a relative improvement of 36%. Additionally, our method
significantly reduces data collection costs compared to human annotation and brute force Monte-Carlo
sampling. These findings highlight OmegaPRM’s potential to enhance LLM capabilities in complex
multi-step reasoning tasks.

REFERENCES

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. arXiv preprint arXiv:1706.03741, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2024.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In Proceedings of the 11th International Conference on Learning
Representations (ICLR), May 2023.

Gemini Team, Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry, Lepikhin, Timothy Lillicrap,
Jean baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew Dai, Katie Millican, Ethan Dyer, Mia
Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson,
Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel,
Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan
Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener,
Luke Vilnis, Oscar Chang, Nobuyuki Morioka, George Tucker, Ce Zheng, Oliver Woodman, Nithya
Attaluri, Tomas Kocisky, Evgenii Eltyshev, Xi Chen, Timothy Chung, Vittorio Selo, Siddhartha
Brahma, Petko Georgiev, Ambrose Slone, Zhenkai Zhu, James Lottes, Siyuan Qiao, Ben Caine,
Sebastian Riedel, Alex Tomala, Martin Chadwick, Juliette Love, Peter Choy, Sid Mittal, Neil
Houlsby, Yunhao Tang, Matthew Lamm, Libin Bai, Qiao Zhang, Luheng He, Yong Cheng, Peter
Humphreys, Yujia Li, Sergey Brin, Albin Cassirer, Yingjie Miao, Lukas Zilka, Taylor Tobin,
Kelvin Xu, Lev Proleev, Daniel Sohn, Alberto Magni, Lisa Anne Hendricks, Isabel Gao, Santiago
Ontanon, Oskar Bunyan, Nathan Byrd, Abhanshu Sharma, Biao Zhang, Mario Pinto, Rishika
Sinha, Harsh Mehta, Dawei Jia, Sergi Caelles, Albert Webson, Alex Morris, Becca Roelofs, Yifan
Ding, Robin Strudel, Xuehan Xiong, Marvin Ritter, Mostafa Dehghani, Rahma Chaabouni, Abhijit
Karmarkar, Guangda Lai, Fabian Mentzer, Bibo Xu, YaGuang Li, Yujing Zhang, Tom Le Paine,
Alex Goldin, Behnam Neyshabur, Kate Baumli, Anselm Levskaya, Michael Laskin, Wenhao
Jia, Jack W. Rae, Kefan Xiao, Antoine He, Skye Giordano, Lakshman Yagati, Jean-Baptiste
Lespiau, Paul Natsev, Sanjay Ganapathy, Fangyu Liu, Danilo Martins, Nanxin Chen, Yunhan
Xu, Megan Barnes, Rhys May, Arpi Vezer, Junhyuk Oh, Ken Franko, Sophie Bridgers, Ruizhe
Zhao, Boxi Wu, Basil Mustafa, Sean Sechrist, Emilio Parisotto, Thanumalayan Sankaranarayana
Pillai, Chris Larkin, Chenjie Gu, Christina Sorokin, Maxim Krikun, Alexey Guseynov, Jessica
Landon, Romina Datta, Alexander Pritzel, Phoebe Thacker, Fan Yang, Kevin Hui, Anja Hauth,
Chih-Kuan Yeh, David Barker, Justin Mao-Jones, Sophia Austin, Hannah Sheahan, Parker Schuh,
James Svensson, Rohan Jain, Vinay Ramasesh, Anton Briukhov, Da-Woon Chung, Tamara von
Glehn, Christina Butterfield, Priya Jhakra, Matthew Wiethoff, Justin Frye, Jordan Grimstad, Beer
Changpinyo, Charline Le Lan, Anna Bortsova, Yonghui Wu, Paul Voigtlaender, Tara Sainath, Shane
Gu, Charlotte Smith, Will Hawkins, Kris Cao, James Besley, Srivatsan Srinivasan, Mark Omernick,
Colin Gaffney, Gabriela Surita, Ryan Burnell, Bogdan Damoc, Junwhan Ahn, Andrew Brock,
Mantas Pajarskas, Anastasia Petrushkina, Seb Noury, Lorenzo Blanco, Kevin Swersky, Arun Ahuja,
Thi Avrahami, Vedant Misra, Raoul de Liedekerke, Mariko Iinuma, Alex Polozov, Sarah York,
George van den Driessche, Paul Michel, Justin Chiu, Rory Blevins, Zach Gleicher, Adrià Recasens,
Alban Rrustemi, Elena Gribovskaya, Aurko Roy, Wiktor Gworek, Sébastien M. R. Arnold, Lisa
Lee, James Lee-Thorp, Marcello Maggioni, Enrique Piqueras, Kartikeya Badola, Sharad Vikram,
Lucas Gonzalez, Anirudh Baddepudi, Evan Senter, Jacob Devlin, James Qin, Michael Azzam, Maja
Trebacz, Martin Polacek, Kashyap Krishnakumar, Shuo yiin Chang, Matthew Tung, Ivo Penchev,
Rishabh Joshi, Kate Olszewska, Carrie Muir, Mateo Wirth, Ale Jakse Hartman, Josh Newlan,
Sheleem Kashem, Vijay Bolina, Elahe Dabir, Joost van Amersfoort, Zafarali Ahmed, James
Cobon-Kerr, Aishwarya Kamath, Arnar Mar Hrafnkelsson, Le Hou, Ian Mackinnon, Alexandre
Frechette, Eric Noland, Xiance Si, Emanuel Taropa, Dong Li, Phil Crone, Anmol Gulati, Sébastien
Cevey, Jonas Adler, Ada Ma, David Silver, Simon Tokumine, Richard Powell, Stephan Lee, Kiran
Vodrahalli, Samer Hassan, Diana Mincu, Antoine Yang, Nir Levine, Jenny Brennan, Mingqiu
Wang, Sarah Hodkinson, Jeffrey Zhao, Josh Lipschultz, Aedan Pope, Michael B. Chang, Cheng Li,
Laurent El Shafey, Michela Paganini, Sholto Douglas, Bernd Bohnet, Fabio Pardo, Seth Odoom,
Mihaela Rosca, Cicero Nogueira dos Santos, Kedar Soparkar, Arthur Guez, Tom Hudson, Steven
Hansen, Chulayuth Asawaroengchai, Ravi Addanki, Tianhe Yu, Wojciech Stokowiec, Mina Khan,
Justin Gilmer, Jaehoon Lee, Carrie Grimes Bostock, Keran Rong, Jonathan Caton, Pedram Pejman,
Filip Pavetic, Geoff Brown, Vivek Sharma, Mario Lučić, Rajkumar Samuel, Josip Djolonga,
Amol Mandhane, Lars Lowe Sjösund, Elena Buchatskaya, Elspeth White, Natalie Clay, Jiepu
Jiang, Hyeontaek Lim, Ross Hemsley, Zeyncep Cankara, Jane Labanowski, Nicola De Cao, David
Steiner, Sayed Hadi Hashemi, Jacob Austin, Anita Gergely, Tim Blyth, Joe Stanton, Kaushik
Shivakumar, Aditya Siddhant, Anders Andreassen, Carlos Araya, Nikhil Sethi, Rakesh Shivanna,
Steven Hand, Ankur Bapna, Ali Khodaei, Antoine Miech, Garrett Tanzer, Andy Swing, Shantanu
Thakoor, Lora Aroyo, Zhufeng Pan, Zachary Nado, Jakub Sygnowski, Stephanie Winkler, Dian
Yu, Mohammad Saleh, Loren Maggiore, Yamini Bansal, Xavier Garcia, Mehran Kazemi, Piyush
Patil, Ishita Dasgupta, Iain Barr, Minh Giang, Thais Kagohara, Ivo Danihelka, Amit Marathe,
Vladimir Feinberg, Mohamed Elhawaty, Nimesh Ghelani, Dan Horgan, Helen Miller, Lexi Walker,
Richard Tanburn, Mukarram Tariq, Disha Shrivastava, Fei Xia, Qingze Wang, Chung-Cheng
Chiu, Zoe Ashwood, Khuslen Baatarsukh, Sina Samangooei, Raphaël Lopez Kaufman, Fred

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alcober, Axel Stjerngren, Paul Komarek, Katerina Tsihlas, Anudhyan Boral, Ramona Comanescu,
Jeremy Chen, Ruibo Liu, Chris Welty, Dawn Bloxwich, Charlie Chen, Yanhua Sun, Fangxiaoyu
Feng, Matthew Mauger, Xerxes Dotiwalla, Vincent Hellendoorn, Michael Sharman, Ivy Zheng,
Krishna Haridasan, Gabe Barth-Maron, Craig Swanson, Dominika Rogozińska, Alek Andreev,
Paul Kishan Rubenstein, Ruoxin Sang, Dan Hurt, Gamaleldin Elsayed, Renshen Wang, Dave
Lacey, Anastasija Ilić, Yao Zhao, Adam Iwanicki, Alejandro Lince, Alexander Chen, Christina Lyu,
Carl Lebsack, Jordan Griffith, Meenu Gaba, Paramjit Sandhu, Phil Chen, Anna Koop, Ravi Rajwar,
Soheil Hassas Yeganeh, Solomon Chang, Rui Zhu, Soroush Radpour, Elnaz Davoodi, Ving Ian
Lei, Yang Xu, Daniel Toyama, Constant Segal, Martin Wicke, Hanzhao Lin, Anna Bulanova,
Adrià Puigdomènech Badia, Nemanja Rakićević, Pablo Sprechmann, Angelos Filos, Shaobo Hou,
Víctor Campos, Nora Kassner, Devendra Sachan, Meire Fortunato, Chimezie Iwuanyanwu, Vitaly
Nikolaev, Balaji Lakshminarayanan, Sadegh Jazayeri, Mani Varadarajan, Chetan Tekur, Doug
Fritz, Misha Khalman, David Reitter, Kingshuk Dasgupta, Shourya Sarcar, Tina Ornduff, Javier
Snaider, Fantine Huot, Johnson Jia, Rupert Kemp, Nejc Trdin, Anitha Vijayakumar, Lucy Kim,
Christof Angermueller, Li Lao, Tianqi Liu, Haibin Zhang, David Engel, Somer Greene, Anaïs
White, Jessica Austin, Lilly Taylor, Shereen Ashraf, Dangyi Liu, Maria Georgaki, Irene Cai,
Yana Kulizhskaya, Sonam Goenka, Brennan Saeta, Ying Xu, Christian Frank, Dario de Cesare,
Brona Robenek, Harry Richardson, Mahmoud Alnahlawi, Christopher Yew, Priya Ponnapalli,
Marco Tagliasacchi, Alex Korchemniy, Yelin Kim, Dinghua Li, Bill Rosgen, Kyle Levin, Jeremy
Wiesner, Praseem Banzal, Praveen Srinivasan, Hongkun Yu, Çağlar Ünlü, David Reid, Zora Tung,
Daniel Finchelstein, Ravin Kumar, Andre Elisseeff, Jin Huang, Ming Zhang, Ricardo Aguilar,
Mai Giménez, Jiawei Xia, Olivier Dousse, Willi Gierke, Damion Yates, Komal Jalan, Lu Li,
Eri Latorre-Chimoto, Duc Dung Nguyen, Ken Durden, Praveen Kallakuri, Yaxin Liu, Matthew
Johnson, Tomy Tsai, Alice Talbert, Jasmine Liu, Alexander Neitz, Chen Elkind, Marco Selvi,
Mimi Jasarevic, Livio Baldini Soares, Albert Cui, Pidong Wang, Alek Wenjiao Wang, Xinyu
Ye, Krystal Kallarackal, Lucia Loher, Hoi Lam, Josef Broder, Dan Holtmann-Rice, Nina Martin,
Bramandia Ramadhana, Mrinal Shukla, Sujoy Basu, Abhi Mohan, Nick Fernando, Noah Fiedel,
Kim Paterson, Hui Li, Ankush Garg, Jane Park, DongHyun Choi, Diane Wu, Sankalp Singh,
Zhishuai Zhang, Amir Globerson, Lily Yu, John Carpenter, Félix de Chaumont Quitry, Carey
Radebaugh, Chu-Cheng Lin, Alex Tudor, Prakash Shroff, Drew Garmon, Dayou Du, Neera Vats,
Han Lu, Shariq Iqbal, Alex Yakubovich, Nilesh Tripuraneni, James Manyika, Haroon Qureshi, Nan
Hua, Christel Ngani, Maria Abi Raad, Hannah Forbes, Jeff Stanway, Mukund Sundararajan, Victor
Ungureanu, Colton Bishop, Yunjie Li, Balaji Venkatraman, Bo Li, Chloe Thornton, Salvatore
Scellato, Nishesh Gupta, Yicheng Wang, Ian Tenney, Xihui Wu, Ashish Shenoy, Gabriel Carvajal,
Diana Gage Wright, Ben Bariach, Zhuyun Xiao, Peter Hawkins, Sid Dalmia, Clement Farabet,
Pedro Valenzuela, Quan Yuan, Ananth Agarwal, Mia Chen, Wooyeol Kim, Brice Hulse, Nandita
Dukkipati, Adam Paszke, Andrew Bolt, Kiam Choo, Jennifer Beattie, Jennifer Prendki, Harsha
Vashisht, Rebeca Santamaria-Fernandez, Luis C. Cobo, Jarek Wilkiewicz, David Madras, Ali
Elqursh, Grant Uy, Kevin Ramirez, Matt Harvey, Tyler Liechty, Heiga Zen, Jeff Seibert, Clara Huiyi
Hu, Andrey Khorlin, Maigo Le, Asaf Aharoni, Megan Li, Lily Wang, Sandeep Kumar, Norman
Casagrande, Jay Hoover, Dalia El Badawy, David Soergel, Denis Vnukov, Matt Miecnikowski, Jiri
Simsa, Praveen Kumar, Thibault Sellam, Daniel Vlasic, Samira Daruki, Nir Shabat, John Zhang,
Guolong Su, Jiageng Zhang, Jeremiah Liu, Yi Sun, Evan Palmer, Alireza Ghaffarkhah, Xi Xiong,
Victor Cotruta, Michael Fink, Lucas Dixon, Ashwin Sreevatsa, Adrian Goedeckemeyer, Alek
Dimitriev, Mohsen Jafari, Remi Crocker, Nicholas FitzGerald, Aviral Kumar, Sanjay Ghemawat,
Ivan Philips, Frederick Liu, Yannie Liang, Rachel Sterneck, Alena Repina, Marcus Wu, Laura
Knight, Marin Georgiev, Hyo Lee, Harry Askham, Abhishek Chakladar, Annie Louis, Carl Crous,
Hardie Cate, Dessie Petrova, Michael Quinn, Denese Owusu-Afriyie, Achintya Singhal, Nan
Wei, Solomon Kim, Damien Vincent, Milad Nasr, Christopher A. Choquette-Choo, Reiko Tojo,
Shawn Lu, Diego de Las Casas, Yuchung Cheng, Tolga Bolukbasi, Katherine Lee, Saaber Fatehi,
Rajagopal Ananthanarayanan, Miteyan Patel, Charbel Kaed, Jing Li, Shreyas Rammohan Belle,
Zhe Chen, Jaclyn Konzelmann, Siim Põder, Roopal Garg, Vinod Koverkathu, Adam Brown, Chris
Dyer, Rosanne Liu, Azade Nova, Jun Xu, Alanna Walton, Alicia Parrish, Mark Epstein, Sara
McCarthy, Slav Petrov, Demis Hassabis, Koray Kavukcuoglu, Jeffrey Dean, and Oriol Vinyals.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Perrin, Sébastien M. R. Arnold,
Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy
Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas
Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun
Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe
Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin
Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals,
Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian
Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He,
Quan He, Feng Wen, Jianye Hao, and Jun Yao. Mindstar: Enhancing math reasoning in pre-trained
llms at inference time. arXiv preprint arXiv:2405.16265, 2024.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336,
2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew Chi-Chih Yao. Augmenting math word problems
via iterative question composing. arXiv preprint arXiv:2401.09003, 2024.

Liangchen Luo, Zi Lin, Yinxiao Liu, Lei Shu, Yun Zhu, Jingbo Shang, and Lei Meng. Critique ability
of large language models. arXiv preprint arXiv:2310.04815, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
arXiv preprint arXiv:2105.11447, 2021.

Christopher D. Rosin. Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 2016. URL https://doi.org/10.
1038/nature16961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. nature, 550(7676):354–359, 2017.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing. arXiv preprint arXiv:2404.12253,
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. LLaMA 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In Proceedings of the 11th International Conference on Learning Representations (ICLR), May
2023.

14

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. arXiv preprint arXiv:2402.02658, 2024b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and Denny
Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Proceedings of
the 36th Conference on Neural Information Processing Systems (NeurIPS), Dec 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. arXiv preprint arXiv:2311.09724, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
search: A review of recent modifications and applications. arXiv preprint arXiv:2103.04931, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A QUESTION FILTERING

During the evaluation of partial solution correctness using MC estimation, false negative noise may
be introduced when a question is too hard for the model, thus no correct rollout can be found even
with correct partial solution. Or false positive noise may be introduced when a question is too easy,
that model can conclude in correct answer given partial solution with wrong step. It is not possible
to exclude such noise completely, but we can reduce the chance by filtering out questions that are
either too hard or too easy for the model. Specifically, we ran a k = 32 rollouts for each question in
the 12K training data, and filter out the questions that with no correct answer (too hard) or no wrong
answer (too easy) in the 32 rollouts.

B PAIRWISE LOSS FORMULA

When training with pairwise labels, the Bradley-Terry model (people typically use this objective to
train reward models in RLHF) generally accepts two probability scalars summing up to 1. When we
select the two actions as a pair, there are two cases. The first case is that one sample with a zero MC
value, and the other sample with a positive MC value. The second case is that both samples are with
positive MC values. The first case is straight-forward, and a normalization step is required for the
second case.

Assume the two MC values are p and q, and they follow the Bernoulli distribution: P (X = 1) = p
and P (Y = 1) = q. We need to calculate the probability that action X is preferred over action Y and
vice versa.

P (X > Y) = P (X = 1, Y = 0) = p(1− q),
P (X < Y) = P (X = 0, Y = 1) = (1− p)q,
P (X = Y) = P (X = 0, Y = 0) + P (X = 1, Y = 1) = (1− p)(1− q) + pq.

(5)

For the tied situation, each action has half the chance of being preferred. Thus,

P (action X is preferred) = P (X > Y) + 1/2 ∗ P (X = Y) = 1/2 ∗ (1 + p− q),
P (action Y is preferred) = P (X < Y) + 1/2 ∗ P (X = Y) = 1/2 ∗ (1 + q − p). (6)

Now the MC values are normalized and we can train with the pairwise loss.

16

	Introduction
	Related Work
	Methods
	Process Supervision
	Process Annotation with Monte Carlo Method
	Monte Carlo Tree Search
	PRM Training

	Experiments
	Main Results
	Step Distribution
	PRM Training Objectives
	Algorithm Efficiency

	Limitations
	Conclusion
	Question Filtering
	Pairwise Loss Formula

