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Abstract
Through recognizing causal subgraphs, causal
graph learning (CGL) has risen to be a promis-
ing approach for improving the generalizability of
graph neural networks under out-of-distribution
(OOD) scenarios. However, the empirical suc-
cesses of CGL techniques are mostly exemplified
in classification settings, while regression tasks,
a more challenging setting in graph learning, are
overlooked. We thus devote this work to tackling
causal graph regression (CGR); to this end we re-
shape the processing of confounding effects in ex-
isting CGL studies, which mainly deal with clas-
sification. Specifically, we reflect on the predic-
tive power of confounders in graph-level regres-
sion, and generalize classification-specific causal
intervention techniques to regression through a
lens of contrastive learning. Extensive experi-
ments on graph OOD benchmarks validate the effi-
cacy of our proposals for CGR. The model imple-
mentation and the code are provided on https:
//github.com/causal-graph/CGR.

1. Introduction
Causal graph learning (CGL) (Lin et al., 2021) holds par-
ticular importance due to its relevance in fields such as drug
discovery (Qiao et al., 2024) and climate modeling (Zhao
et al., 2024). However, previous CGL studies focus on classi-
fication settings. Some of them cannot be directly extended
to regression tasks, such as property prediction (Rollins
et al., 2024), traffic flow forecasting (Li et al., 2021), and
credit risk scoring (Ma et al., 2024), because the transition
from finite to infinite support makes discrete labels unavail-
able. Graphs thus cannot be informatively grouped. A
systematical understanding of how CGL techniques should
be adapted to graph-level regression is still under-explored.
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Figure 1. Structural causal model (SCM) for graph regression.

The core methodology of causal learning involves the identi-
fication and differentiation of causal features from confound-
ing ones. As shown in Figure 1, causal features C are those
directly deciding responses Y , whereas confounding fea-
tures S (shorthand for “spurious”) solely present spurious
correlations. Therefore, understanding how causal features
(as well as confounding features) and responses interact
plays a central role in practical designing of causal learning
methods. From this perspective, causal graph regression
(CGR) warrants specialized handling since the interaction
between features and responses therein is significantly differ-
ent from classification. Furthermore, regression is in general
a more challenging task than classification, and techniques
working for classification, Perceptron (Rosenblatt, 1958) for
example, may not apply to regression.

Specifically in CGL, the identification of causal subgraphs
is seemingly transferable since this step, explicitly or im-
plicitly, relies on the calculation of mutual information and
is compatible with both settings (c.f. Section 3.2). How-
ever, the empirical performance of this vanilla adaptation
on regression tasks is dwarfed by empirical risk minimiza-
tion (Vapnik, 1991, ERM) w.r.t. least squares loss (see the
results in Sections 5.3 and 5.4).

To crack CGR, we revisit the processing of confounding ef-
fects, which conceptually constitutes causal graph learning
along with causal subgraph identification as shown in Fig-
ure 1. Existing CGL methods, such as CAL (Sui et al., 2022)
and DisC (Fan et al., 2022), are built on a strong assumption
that confounding subgraphs contain strictly no predictive
power. We reflect on this assumption and speculate it is
hardly practical due to the contradiction with real-world
observations: in molecular property prediction, for example,
molecular weight is noncausal to toxicity while does exhibit
strong correlations.
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In this work, we develop an enhanced graph information
bottleneck (GIB) loss function, which no longer takes the
strong assumption. Moreover, some confounding effect
processing techniques, such as backdoor adjustment (Sui
et al., 2022; 2024) and counterfactual reasoning (Guo et al.,
2025), heavily rely on discrete label information and cannot
be adapted to regression at all. We follow the principle of
those methods and generalize it from class separation to
instance discrimination; the discrimination principle aligns
with the philosophy of contrastive learning (CL) and CL
techniques are therefore leveraged to tackle CGR in our
proposal.

Following the intuition, we develop a new framework for
causal graph regression, which spotlights the confounding
effects within. In summary, our contributions are as follows:

• To the best of our knowledge, we are the first to explicitly
consider the predictive role of confounding features in
graph regression tasks, a critical yet overlooked aspect in
graph OOD generalization.

• We introduce a new causal intervention approach that
generates random graph representations by leveraging a
contrastive learning loss to enhance causal representation,
outperforming label-dependent methods.

• Extensive experiments on OOD benchmarks demonstrate
that our method significantly improves generalization in
graph regression tasks.

2. Related Work
Out-of-distribution (OOD) challenges in graph learning has
drawn significant attention, particularly in methods aiming
to disentangle causal and confounding factors (Ma, 2024).
Existing approaches can be broadly categorized into invari-
ant learning (Wu et al., 2022a), causal modeling (Sui et al.,
2024), and stable learning (Li et al., 2022).

Invariant learning focuses on identifying features that
remain stable across different environments, filtering out
spurious correlations in the process. While not explicitly
grounded in causal reasoning, prior studies (Wang & Veitch,
2022; Mitrovic et al., 2020) have highlighted its inherent
connection to causality. Methods in invariant learning, such
as CIGA (Chen et al., 2022), GSAT (Miao et al., 2022),
and GALA (Chen et al., 2024), aim to learn invariant repre-
sentations by isolating causal components.

However, these approaches are typically designed for clas-
sification tasks, limiting their out-of-distribution (OOD)
generalization capability in regression settings. Post-hoc
methods, such as PGExplainer (Luo et al., 2020) and Reg-
Explainer (Zhang et al., 2023), attempt to discover invariant
subgraphs after training. However, these methods fail to
equip the model with the ability to learn invariant represen-

tations during the training process.

Causal modeling leverages structural causal models
(SCMs) to improve the performance of graph neural net-
works (GNNs) on out-of-distribution (OOD) data. These
approaches incorporate various traditional causal inference
techniques, such as backdoor adjustment (e.g., CAL (Sui
et al., 2022), CAL+ (Sui et al., 2024)), frontdoor adjustment
(e.g., DSE (Wu et al., 2022c)), instrumental variables (e.g.,
RCGRL (Gao et al., 2023)), and counterfactual reasoning
(e.g., DisC (Fan et al., 2022)). By simulating causal inter-
ventions through supervised training, these methods aim to
achieve OOD generalization. However, they often disregard
the predictive potential of confounding features, which hin-
ders effective disentanglement. Moreover, the supervised
loss functions tailored for classification tasks are not easily
adaptable to regression problems, as the inherent complexity
of regression introduces additional challenges.

Stable learning aims to ensure consistent performance
across environments by reweighting samples or balancing
covariate distributions. For example, StableGNN (Fan
et al., 2023) employs a regularizer to reduce the influence
of confounding variables. However, such methods often
rely on heuristic reweighting strategies, which may not fully
disentangle causal from confounding factors.

In addition to graph-based approaches, traditional machine
learning methods have also explored causality in regression
tasks. For instance, Pleiss et al. (2019) observed that causal
features tend to concentrate in a low-dimensional subspace,
whereas non-causal features are more randomly distributed.
Similarly, Amini et al. (2020) proposed a framework for
learning continuous targets by placing an evidence prior on
a Gaussian likelihood function and training a non-Bayesian
neural network to infer the hyperparameters of the evidence
distribution. These methods highlight the potential of lever-
aging causal insights for improved regression performance.

3. Preliminaries and Notations
Along this paper, we denote a graph G as (A,X). Here,
A ∈ {0, 1}n×n is the adjacency matrix indicating connec-
tivity among n nodes (Aij = 1 if nodes i and j are con-
nected, otherwise 0); X ∈ Rn×d is the node feature matrix,
where each row Xi represents the d-dimensional feature
vector of node i. The regression task in graph learning is
to learn a function f : G 7→ y, where y ∈ R denotes the
response for the graph G.

3.1. Causal Graph Learning

In causal graph learning, a graph G can be split into a causal
subgraph C and a confounding subgraph S. This process
is non-trivial and our proposed paradigm will hinge on the
output of this process. We follow the definition in Sui et al.
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(2022) and first introduce the construction of the causal
subgraph C:

C := (Medge ⊙A,Mnode ·X), (1)

where the mask matrix Medge ∈ [0, 1]n×n and the diagonal
matrix Mnode (whose diagonal elements are in [0, 1]) will
filter out the non-causal nodes and edges. The confounding
subgraph is then the “complement”: S := G− C.

In our framework, these masks Medge and Mnode are not pre-
defined. Instead, they are learnable soft masks, generated by
MLPs conditioned on the representations of G. The param-
eters of these MLPs are optimized end-to-end as part of the
overall model training, enabling the model to autonomously
learn how to construct C and S. Further architectural details
are provided in Appendix B and illustrated in Figure 2.

Notably, mutual information plays an essential role in CGL,
and we introduce its calculation, exemplified by the mutual
information between the hidden embedding vectors (learned
by a graph neural network) of the causal subgraphs and the
original graphs, as follows:

I(C;G) := EC,G [log p(C | G)/p(C)] , (2)

where we follow the convention in CGL literature and abuse
the notation C,G to represent a random variable following
the underlying distribution of embedding pairs Hg,i’s
and Hc,i’s. In particular, those hidden embeddings are
assumed Gaussian and the joint distribution can thus be
well-estimated by sample embedding pairs. We refer read-
ers interested to Miao et al. (2022, Appendix A) for more
details. Moreover, the computation/approximation of the
mutual information terms is a crucial component in causal
graph learning, while still under-explored for CGR; we will
dissect the computation of our proposed terms in Section 4.2
through deriving the variational bounds.

3.2. Graph Information Bottleneck

The information bottleneck (Tishby et al., 2000; Tishby &
Zaslavsky, 2015, IB) principle aims to balance the trade-off
between preserving the information necessary for predic-
tion and discarding irrelevant redundancy. Specifically, IB
suggests to maximize I(Z;Y ) while minimizing I(Z;X)
for regular data compression, where Z is the compressed
representation, X is the input, and Y is the response.

Graph information bottleneck (GIB) (Wu et al., 2020) ex-
tends the IB principle to graph-structured data, facilitating
the identification of subgraphs that are most relevant for
predicting graph-level responses. By minimizing the mutual
information I(C;G) between the extracted causal subgraph
C and the original graph G, GIB reduces redundant informa-
tion. However, GIB alone does not guarantee the extraction
of a purely causal subgraph, as isolating causal effects re-

quires additional interventions (Miao et al., 2022; Chen
et al., 2022).

Formally, the GIB objective is expressed as:

−I(C;Y ) + αI(C;G), (3)

where I(C;Y ) quantifies the predictive information re-
tained by C (and thus needs to maximize). I(C;G) serves
as a regularizer to exclude irrelevant details from the origi-
nal graph; the parameter α controls the trade-off between
information preservation and compression.

3.3. Causal Intervention in GNNs

We borrow the structural causal model (SCM) diagram in
Figure 1 to illustrate the causal intervention techniques.
As shown in Figure 1, the graph G decides both the causal
subgraph C and the confounding subgraph S, and the former
C affects the prediction of response Y . In more detail,

• C ← G → S: Graph data G encodes both C, which
directly impacts Y , and S, which introduces spurious
correlations.

• S → C → Y : The causal feature C has the potential to
predict Y not only directly but also indirectly through its
influence along this backdoor path S → C → Y .

In causal inference, confounder S incurs spurious correla-
tions, preventing the discovery of underlying causality. To
address this issue, backdoor adjustment methods focus on
the interventional effect P (Y |do(C)), and suggest to esti-
mate it by stratifying over S and calculating the conditional
distribution P (Y |C, S) (Pearl, 2014; Sui et al., 2024).

4. Revisiting Confounding Effects for CGR
In this section, we present a causal graph regression
paradigm that integrates an enhanced graph information
bottleneck (GIB) objective with causal discovery, reshaping
the processing of confounding effects in CGL.

4.1. Overview

We first provide an overview of how graph inputs are turned
into regression outputs. As shown in Figure 2, we follow
the framework of Sui et al. (2024) and first encode graph
embeddings Hg,i’s using a GNN-based encoder. Attention
modules are then adopted to generate soft masks for extract-
ing causal and confounding subgraphs (c.f. Equation (1)).
These subgraphs are processed through two GNN modules
(Gc and Gs) with shared parameters to extract causal (Hc,i’s)
and confounding (Hs,i’s) representations, which are passed
through distinct readout layers for regression.

The optimization features an enhanced graph information
bottleneck (GIB) loss LGIB, comprising the causal part Lc

and the confounding part Ls, to disentangle causal signals
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Figure 2. Given a mini-batch of graphs, (1) the GNN encoder computes the graph embeddings Hg , and an attention layer generates soft
masks to extract causal and confounding subgraphs. (2) GNN Gc processes the causal subgraph C, generates its representation Hc, and
employs readout to predict responses; it is optimized with causal subgraph loss Lc. (3) GNN Gs, sharing parameters with Gc, processes
the confounding subgraph S, generates Hs, and applies readout for prediction; it is optimized with confounding subgraph loss Ls. (4)
For causal intervention, contrastive learning guides the process. Given a graph Hg,i, the positive sample is a mixed graph Hmix,ij from
random addition, while any other graph Hg,k serves as the negative sample. The causal intervention loss LCI is used accordingly.

(c.f. Section 4.2). Also, counterfactual samples (Hmix,ij)
are generated by randomly injecting confounding repre-
sentations into causal ones; unsupervised learning is then
performed, guided by contrastive-learning-based causal in-
tervention loss LCI (c.f. Section 4.3). More implementation
details of the overall framework are deferred to Appendix B.

4.2. Enhanced GIB Objective

CGL adopts the GIB objective to extract subgraphs that
retain essential predictive information while excluding re-
dundant components (Zhang et al., 2023), which aligns with
the disentanglement of causal subgraph C and confounding
subgraph S in CGL. Original GIB assumes the confounding
subgraph S is pure noise and cannot predict the response
Y (Chen et al., 2022), while as we discussed in Section 1
S may still contain information that is predictive of the re-

sponse Y . In its current form, the GIB framework overlooks
this aspect, causing the model to allocate all Y -relevant
information to C and to potentially lose meaningful content.

This limitation leads to incomplete causal disentangle-
ment, which impacts the generalization of models to out-
of-distribution (OOD) settings. To overcome this issue, we
propose an enhanced GIB loss function that takes the predic-
tive roles of both C and S into consideration. By introduc-
ing mutual information terms on S during optimization, we
avoid overburdening C with all relevant information, and
consequently enable a more precise disentanglement.

Overall, our enhanced GIB objective is defined as follows:

−I(C;Y ) + αI(C;G)− βI(S;Y ), (4)

which formally extends the original GIB objective by in-
troducing a confounder-related term I(S;Y ) to capture the
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predictive capacity of S, along with a parameter β. In par-
ticular, we intentionally exclude the I(S;G) term because,
in the SCM diagram of Figure 1, S primarily introduces
shortcut rather than directly encoding causality; overly im-
posing structural regularization on S can disrupt disentan-
glement and lead to suboptimal separation between C and
S. Notably, the conceptual objective (4) is incomputable in
practice. We devote the remainder of this subsection to the
practical computation of Equation (4) for CGR.

Variational bounds for approximating I(C;G). The mu-
tual information I(C;G) is mathematically defined based
on the marginal distributin p(C) =

∑
G p(C|G)p(G).

Since p(C) is intractable, a variational distribution q(C)
is introduced and induces an upper bound:

I(C;G) ≤ Ep(G)

[
KL
(
p(C | G)∥q(C)

)]
. (5)

To efficiently compute the KL divergence in Equation (5),
we follow the literature (Chechik et al., 2003; Kingma et al.,
2013) and assume that p(C | G) and q(C) are multivariate
Gaussian distributions:

p(C | G) = N (µϕ(G),Σϕ(G)), q(C) = N (0, I), (6)

where µϕ(G) and Σϕ(G) are the mean vector and covari-
ance matrix estimated by GNNs. To simplify computa-
tion and stabilize training, we further assume Σϕ(G) is an
identity matrix, removing the need to learn covariance pa-
rameters. This simplification is not only practical but also
theoretically justified, as any full-rank covariance can be
whitened without loss of generality (Chechik et al., 2003,
Appendix A). KL

(
p(C | G)∥q(C)

)
then reduces to:

1

2

[
tr(Σϕ(G)) + ∥µϕ(G)∥2 − d− log detΣϕ(G)

]
=
1

2
∥µϕ(G)∥2.

(7)

where d is the dimensionality of C. Further substituting
Equation (7) into Equation (5), we obtain an upper bound
for I(C;G):

I(C;G) ≤ 1

2
Ep(G)

[
∥µϕ(G)∥2

]
, (8)

which serves as an easy-to-compute proxy for I(C;G).

Variational bounds for approximating I(C;Y ), I(S;Y ).
We first recall I(C;Y ) mathematically reads:

I(C;Y ) = H(Y )−H(Y | C), (9)

where H(Y ) denotes the entropy of Y , representing the
overall uncertainty in the target variable. Since H(Y ) re-
mains constant, maximizing I(C;Y ) reduces to minimizing
the conditional entropy H(Y | C), given by:

H(Y | C) = −EC,Y [log p(Y | C)]. (10)

The computation of H(Y | C) is supposed to hinge on
the hidden embeddings Hc,i’s produced by a GNN Gc (see
Section 4.1); we model the conditional distribution p(Y |
Hc) as a Gaussian distribution:

p(Y | Hc) = N (Y ;µ(c), σ
2
(c)), (11)

where µ(c) and σ2
(c) represent the scalar conditional mean

and variance of Y (estimated by networks) given a causal
subgraph representation Hc. The probability density func-
tion for this Gaussian is:

p(Y | Hc) =
1√

2πσ2
(c)

exp

(
−
(Y − µ(c))

2

2σ2
(c)

)
. (12)

Substituting Equation (12) into Equation (10), we can fur-
ther approximate H(Y | C) through empirical data:

1

N

N∑
i=1

[
(Yi − µ(c),i)

2

2σ2
(c),i

+
1

2
log(2πσ2

(c),i)

]
, (13)

where N represents sample size, Yi is the target response for
the i-th sample. and µ(c),i and σ2

(c),i are the corresponding
mean and variance of Y given Hc,i.

If a constant conditional variance (i.e., σ2
(c) = 1) is assumed,

a choice adopted for stability and aligning with approaches
in (Nix & Weigend, 1994; Yu et al., 2024), then I(C;Y ) (or,
equivalently, −H(Y | C)) reduces to the least squares loss:

− 1

N

N∑
i=1

[
(Yi − µ(c),i)

2

2σ2
(c),i

+
1

2
log(2πσ2

(c),i)

]

∝− 1

N

N∑
i=1

(Yi − µ(c),i)
2, (14)

which turns to the causal subgraph objective LCP.

Similarly, the mutual information I(S;Y ) can induce the
confounding subgraph objective

LSP ∝ −
1

N

N∑
i=1

(Yi − µ(s),i)
2. (15)

Empirically, we employ two independent readout layers to
compute the causal and confounding subgraph mean µ(c),i’s
and µ(s),i’s.

In summary, our enhanced GIB objective can be decom-
posed into two distinct loss components: the causal sub-
graph loss Lc(G,C, Y ) = −I(C;Y ) + αI(C;G) and the
confounding subgraph loss Ls(S, Y ) = −I(S;Y ). The
complete enhanced GIB objective we propose is:

LGIB = Lc + βLs

= −I(C;Y ) + αI(C;G)− βI(S;Y ),

and in practice we use−LCP +αEp(G)

[
∥µϕ(G)∥2

]
−βLSP.
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4.3. Causal Intervention

To further strengthen causal learning in CGR, we introduce
a causal intervention loss and reshape the processing of con-
founding effects therein. In general, our approach injects
randomness at the graph level by randomly pairing con-
founding subgraphs with target causal subgraphs from the
entire dataset. By generating counterfactual graph represen-
tations through the random combination of these subgraphs,
we effectively implement causal intervention.

This strategy can be understood as an implicit realization
of backdoor adjustment (Pearl, 2014) in the representation
space. In existing research on graph classification tasks (Fan
et al., 2022; Sui et al., 2024), causal intervention is typi-
cally modeled by predicting P (Y |C, S) through intervened
graphs, adjusting for causal effects by comparing predictive
distributions under different confounding conditions. How-
ever, in regression tasks, Y is a continuous variable, and
directly modeling P (Y |C, S) becomes significantly more
challenging. To overcome this, we follow the spirit of con-
trastive learning to get rid of the reliance on explicit labels.

In more detail, following Sui et al. (2022), we use a random
addition method to pair the confounding subgraph with the
target causal subgraph , which gives Hmix:

Hmix,ij = Hc,i +Hs,j . (16)

Comparing the predictions of Hmix with the original graph’s
labels, as shown in Sui et al. (2022), can inadvertently force
the mixed graph to discard all confounding effects, thereby
nullifying the intended causal disentanglement.

To mitigate this issue, we suggest learning causal represen-
tations through contrastive learning. Specifically, the causal
subgraph, when combined with different confounding sub-
graphs, consistently produces mixed graph representations
that are aligned with the original graph representation. This
formulation enables the model to learn causal subgraphs
that are invariant across varying confounders, and to avoid
the causal subgraphs boiled down to non-informative ones.

To achieve this, we propose a causal intervention loss guided
by contrastive learning. Specifically, the method aligns the
representation of the original graph with that of its cor-
responding random mixture graph, while simultaneously
ensuring that representations of unrelated graphs remain
distinct. In implementation, draw inspiration from the In-
foNCE loss (Oord et al., 2018), we treat Hg and Hmix from
the same causal subgraph as positive pairs, and Hg with
representations of other graphs within the batch as negative
pairs. Formally, the mixed graph contrastive loss is defined
as:

LCI = −
1

B

B∑
i=1

log
exp(sim(Hg,i, Hmix,ij)∑B

k=1,k ̸=i exp(sim(Hg,i, Hg,k)
,

(17)

where B is the batch size, Hmix,ij is the representation of
the mixed graph combining the i-th causal subgraph and the
j-th confounding subgraph, and Hg,i is the representation
of the original graph.

Remark 4.1. The ultimate loss used in our paradigm is a
simple combination of the GIB objective and the causal
intervention loss: L = LGIB + λLCI.

5. Experiments
In this section, we evaluate the prediction performance and
OOD generalization ability of our method. We comprehen-
sively compare our method with existing models to demon-
strate the superior generalization ability of our method on
regression tasks. We briefly introduce the dataset, baselines,
and experimental settings here.

5.1. Datsets

GOOD-ZINC. GOOD-ZINC is a regression task in the
GOOD benchmark (Gui et al., 2022), which aims to test
the out-of-distribution performance of real-world molecu-
lar property regression datasets from the ZINC database
(Gómez-Bombarelli et al., 2018). The input is a molecular
graph containing up to 38 heavy atoms, and the task is to
predict the restricted solubility of the molecule (Jin et al.,
2018; Kusner et al., 2017). GOOD-ZINC includes four
specific OOD types: Scaffold-Covariate, Scaffold-Concept,
Size-Covariate, and Size-Concept. Scaffold OOD involves
changes in molecular structures, while Size OOD varies
graph size. Each can manifest as Covariate Shift (P (X)
changes, P (Y |X) remains stable) or Concept Shift (spuri-
ous correlations in training break in testing).

ReactionOOD-SOOD. In addition to the GOOD bench-
mark, we also used three S-OOD datasets in the Reac-
tionOOD benchmark (Wang et al., 2023), namely Cycload-
dition (Stuyver et al., 2023), E2&SN2 (von Rudorff et al.,
2020), and RDB7 (Spiekermann et al., 2022), which are
designed to extract information outside the structural dis-
tribution during molecular reactions. Cycloaddition and
RDB7 have two domains: Total Atom Number (where the
total number of atoms in a reaction exceeds the training
range) and First Reactant Scaffold (where the first reactant
has a new molecular scaffold unseen in training), while
E2&SN2 dataset contains reactions with molecules whose
scaffold cannot be properly defined, which prevents the
scaffold from being an applicable domain index for this
dataset. The definitions of two shifts Covariate and Concept
in ReactionOOD are consistent with those in GOOD.

5.2. Baselines and Setup

As our framework is general and aims to address distribu-
tion shifts, we compare it against several baseline methods.
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Table 1. OOD generalization performance on GOOD-ZINC dataset, with boldface being the best and underline being the runner-up.

GOOD-ZINC

SCAFFOLD SIZE

COVARIATE CONCEPT COVARIATE CONCEPT

ID OOD ID OOD ID OOD ID OOD

ERM 0.1188±0.0030 0.1660±0.0093 0.1174±0.0013 0.1248±0.0018 0.1222±0.0061 0.2331±0.0169 0.1304±0.0010 0.1406±0.0002
IRM 0.1258±0.0033 0.2313±0.0243 0.1176±0.0052 0.1245±0.0062 0.1217±0.0014 0.5840±0.0039 0.1331±0.0045 0.1338±0.0011
VREX 0.0978±0.0016 0.1561±0.0021 0.1928±0.0021 0.1271±0.0020 0.1841±0.0009 0.2276±0.0005 0.1206±0.0008 0.1289±0.0039
MIXUP 0.1348±0.0025 0.2157±0.0098 0.1192±0.0026 0.1296±0.0049 0.1431±0.0070 0.2573±0.0042 0.1625±0.0121 0.1660±0.0063
DANN 0.1152±0.0021 0.1734±0.0005 0.1284±0.0031 0.1289±0.0020 0.1053±0.0081 0.2254±0.0140 0.1227±0.0008 0.1271±0.0039
CORAL 0.1252±0.0043 0.1734±0.0034 0.1173±0.0029 0.1260±0.0024 0.1164±0.0004 0.2243±0.0147 0.1246±0.0062 0.1270±0.0020
CIGA 0.1568±0.0034 0.2986±0.0041 0.1926±0.0120 0.2415±0.0115 0.1500±0.0001 0.6102±0.0148 0.3560±0.0160 0.3240±0.0451
DIR 0.2483±0.0056 0.3650±0.0032 0.2510±0.0001 0.2619±0.0076 0.2515±0.0529 0.4224±0.0679 0.4831±0.0823 0.3630±0.0872
GSAT 0.0890±0.0031 0.1419±0.0043 0.0928±0.0029 0.0999±0.0029 0.0876±0.0032 0.2112±0.0033 0.1002±0.0013 0.1043±0.0001
OURS 0.0514±0.0061 0.1046±0.0007 0.0659±0.0041 0.0518±0.0007 0.0466±0.0034 0.1484±0.0033 0.0577±0.0008 0.0580±0.0004

Empirical Risk Minimization (ERM) (Vapnik, 1991) serves
as a non-OOD baseline for comparison with OOD methods.
We consider both Euclidean and graph-based state-of-the-
art OOD approaches: (1) Euclidean OOD methods include
IRM (Arjovsky et al., 2019), VREx (Krueger et al., 2021),
GroupDRO (Sagawa et al., 2019), DANN (Ganin et al.,
2016), Coral (Sun & Saenko, 2016), and Mixup (Zhang,
2017); (2) Graph OOD methods include CIGA (Chen et al.,
2022), GSAT (Miao et al., 2022), and DIR (Wu et al.,
2022b).

For a fair comparison, all methods are implemented with
consistent architectures and hyperparameters, ensuring that
performance differences arise solely from the method itself.
To provide reliable results, each experiment is repeated three
times with different random seeds, and we report the mean
and standard error of the results. Detailed settings and hy-
perparameter configurations are described in Appendix A.4.

5.3. Results of GOOD

As shown in Table 1, our proposed method achieves SOTA
performance on GOOD-ZINC, consistently outperforming
all baseline methods across both domains (Scaffold and
Size) and under different distribution shifts (Covariate and
Concept). Specifically, in terms of Mean Absolute Error
(MAE), our method demonstrates significant improvements
in both in-distribution (ID) and out-of-distribution (OOD)
settings.

For instance, in the Scaffold domain under the Covariate
shift, our method achieves an MAE of 0.0514±0.0061 (ID)
and 0.1046±0.0007 (OOD), outperforming GSAT, the next-
best method, by 42.2% in ID and 26.3% in OOD perfor-
mance. Similarly, under the Concept shift, our method
achieves 0.0659±0.0041 (ID) and 0.0518±0.0007 (OOD),
representing improvements of 29.0% and 48.1%, respec-
tively, over GSAT.

In the Size domain, our method also achieves remarkable
results. Under the Covariate shift, it achieves an MAE
of 0.0466±0.0034 (ID) and 0.1484±0.0033 (OOD), which
translate to 46.8% lower ID error and 29.7% lower OOD

error compared to GSAT. Similarly, under the Concept shift,
our approach yields an MAE of 0.0577±0.0008 (ID) and
0.0580±0.0004 (OOD), improving upon GSAT by 42.4%
and 44.4%, respectively.

In addition to achieving lower MAE values, our method
exhibits significantly reduced variances compared to other
approaches, highlighting its stability under diverse condi-
tions. These findings confirm the strong generalization ca-
pability of our method across different domains and types
of distributional shifts.

5.4. Results of ReactionOOD

Table 2 and Table 3 highlight the robust generalization abil-
ity of our method across multiple datasets and evaluation
settings, as measured by RMSE. Our method achieves the
best OOD performance in 6 out of 10 cases and ranks sec-
ond in 2 cases. Notably, in cases where another method
outperforms ours, the performance gap is within a small
margin.

For instance, in the Cycloaddition dataset, under the to-
tal atom number domain with a concept shift, Our method
achieves an OOD RMSE of 5.53 ± 0.12, outperforming all
baseline methods. While some non-causal baselines (e.g.,
Coral in this specific setting, achieving an ID RMSE of 4.10
± 0.05 versus our 4.41 ± 0.22) might get better ID perfor-
mance by exploiting spurious but predictive features, such
approaches can become less reliable under OOD conditions
(e.g., Coral’s OOD RMSE degrades to 5.74 ± 0.04). In con-
trast, our method’s focus on identifying and removing these
spurious features contributes to its stable and superior OOD
performance. Even in other Cycloaddition cases where ours
ranks second, such as the same domain with a covariate
shift, the OOD RMSE (4.42 ± 0.24) is only 0.06 away from
the best-performing method (4.36 ± 0.15).

In RDB7, a smaller dataset within the ReactionOOD where
causal inference can be more difficult, our method achieves
the lowest OOD RMSE (15.73 ± 0.37) under the concept
shift. Our method’s principled focus on true causal features,
which leads to better OOD generalization ability and stabil-
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Table 2. OOD generalization performance on Cycloaddition and RDB7 dataset.

DATASET METHODS

FIRST REACTANT SCAFFOLD TOTAL ATOM NUMBER

COVARIATE CONCEPT COVARIATE CONCEPT

ID OOD ID OOD ID OOD ID OOD

CYCLOADDITION

ERM 4.38±0.04 4.80±0.38 4.79±0.03 5.60±0.02 3.77±0.01 4.36±0.15 4.22±0.04 5.69±0.03
IRM 15.30±0.05 21.16±0.01 17.55±0.03 18.64±0.25 17.53±0.17 17.44±0.14 23.14±0.02 22.56±0.01
VREX 5.54±0.02 6.69±0.48 5.02±0.05 6.14±0.09 4.79±0.03 5.22±0.06 4.92±0.14 6.39±0.04
MIXUP 4.51±0.04 5.24±0.83 4.90±0.01 5.90±0.05 3.90±0.13 4.53±0.03 4.11±0.09 5.93±0.13
DANN 4.42±0.03 4.68±0.12 4.81±0.01 5.75±0.06 3.87±0.05 4.65±0.10 4.18±0.02 5.68±0.10
CORAL 4.36±0.07 4.95±0.30 4.82±0.03 5.72±0.16 4.39±0.59 5.05±0.48 4.10±0.05 5.74±0.04
CIGA 5.26±0.04 5.67±0.04 5.30±0.29 5.64±0.03 4.93±0.05 6.62±1.09 5.03±0.09 6.21±0.06
DIR 4.94±0.02 5.31±0.79 5.85±0.20 6.30±0.38 5.52±0.03 6.86±0.05 5.21±0.12 7.09±0.03
GSAT 4.42±0.05 4.63±0.05 4.87±0.01 5.69±0.01 3.81±0.01 4.56±0.01 4.12±0.04 5.64±0.11
OURS 4.57±0.13 4.22±0.09 4.53±0.04 5.37±0.05 4.06±0.01 4.42±0.24 4.41±0.22 5.53±0.12

RDB7

ERM 10.28±0.05 22.95±0.90 11.38±0.08 14.81±0.05 10.86±0.01 7.66±0.55 11.28±0.15 15.79±0.24
IRM 59.87±0.02 76.51±0.46 65.72±0.13 63.03±0.13 63.55±0.02 69.06±0.37 81.14±0.02 46.84±0.42
VREX 16.62±0.18 21.89±0.02 14.62±0.04 18.28±0.09 14.60±0.01 13.84±0.07 34.66±1.56 32.59±3.28
MIXUP 10.76±0.07 23.49±0.09 11.89±0.05 15.64±0.10 11.13±0.02 10.78±0.17 11.66±0.04 17.21±0.28
DANN 10.28±0.05 23.54±0.07 11.28±0.01 14.93±0.05 10.77±0.22 8.29±0.10 11.34±0.05 16.28±0.15
CORAL 10.30±0.12 22.19±0.63 11.12±0.03 14.81±0.06 10.61±0.01 8.04±0.14 11.33±0.08 16.13±0.08
CIGA 14.97±0.75 30.08±0.84 18.68±1.94 21.35±1.34 16.48±0.69 19.12±1.85 20.58±1.54 18.53±1.30
DIR 14.34±0.68 26.99±0.49 17.13±1.76 20.18±1.86 14.03±2.06 15.01±0.98 13.52±0.51 16.60±1.09
GSAT 10.52±0.04 23.45±0.11 11.26±0.25 14.85±0.12 10.80±0.01 8.66±0.10 11.58±0.03 16.08±0.41
OURS 10.12±0.08 23.11±0.46 11.26±0.02 14.94±0.25 10.51±0.08 6.84±0.32 11.46±0.06 15.73±0.37

Table 3. OOD generalization performance on E2&SN2 dataset.

METHODS
COVARIATE CONCEPT

ID OOD ID OOD

ERM 4.45±0.04 5.47±0.27 4.87±0.02 5.04±0.02
IRM 11.61±0.18 21.54±1.07 20.95±0.02 17.57±0.03
VREX 4.58±0.02 5.48±0.13 10.75±1.54 8.77±2.31
MIXUP 4.55±0.09 5.55±0.01 4.69±0.08 5.11±0.01
DANN 4.51±0.06 5.38±0.04 4.48±0.10 5.04±0.02
CORAL 4.44±0.11 5.68±0.20 4.54±0.02 4.97±0.07
CIGA 5.05±0.35 6.57±0.52 4.65±0.26 5.39±0.47
DIR 5.61±0.26 6.59±0.31 6.56±0.34 6.29±0.11
GSAT 4.55±0.01 5.69±0.05 4.55±0.09 5.04±0.03
OURS 4.40±0.03 4.83±0.10 4.53±0.12 5.03±0.09

ity. Even though causal methods generally face challenges
in smaller datasets (Guo et al., 2020), our approach consis-
tently outperforms other listed causal intervention baselines
such as CIGA in all RDB7 settings. In the E2&SN2 dataset,
our method delivers the best OOD RMSE (4.83 ± 0.10)
under the covariate shift and achieves highly competitive
results under the concept shift (5.03 ± 0.09).

As noted in OOD-GNN (Tajwar et al., 2021), no method
consistently performs best on every dataset due to varying
distribution shifts and inductive biases. Our approach, de-
signed under more general and weaker assumptions which
do not assume that spurious features are non-predictive,
aims to tackle a wider range of real-world distribution shifts.

5.5. Effectiveness of OURS in Classification Task

To validate the generality and effectiveness of our proposed
losses, LGIB and LCI, we conduct ablation studies on the
GOOD-Motif dataset under the size domain setting. The

results, evaluated in terms of accuracy, are reported on the
OOD dataset, as shown in Figure 3. The ablation study on
LGIB aims to examine our hypothesis that confounders pos-
sess certain predictive power; thus, this experiment excludes
the causal intervention loss LCI Conversely, the ablation
study on LCI evaluates whether the contrastive learning-
driven causal intervention loss can independently achieve
strong OOD performance. Therefore, in this experiment,
we do not incorporate the predictive power of confounding
factors.

Predictive power of confounding subgraphs. The left
panel compares minimizing confounding subgraph predic-
tion alone versus introducing constraints to model their pre-
dictive ability. The results show that ignore the predictive
role of confounding subgraphs leads to incomplete disen-
tanglement and weaker OOD generalization, demonstrating
that accounting for their influence is crucial.

Effectiveness of contrastive learning. The right panel
compares using predictions from randomly generated coun-
terfactual graphs as causal intervention loss versus our pro-
posed contrastive learning loss. The results show that our
contrastive learning approach, initially validated in regres-
sion tasks, is equally effective in classification tasks, high-
lighting its general applicability.

These studies confirm the importance of explicitly modeling
confounding subgraphs and the robustness of our contrastive
learning loss for OOD generalization. More experimental
results are provided in the Appendix A.5.
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Figure 3. Ablation study on confounder predictive power (left) and causal intervention methods (right) for OOD generalization on
GOOD-Motif.

6. Conclusion
In this work, we propose a recipe for causal graph regres-
sion through reshaping the processing of confounding ef-
fects in existing CGL classification-specific techniques. In
particular, we develop an enhanced graph information bot-
tleneck (GIB) loss function which highlights the impact of
confounding effects and consequently benefits the recogni-
tion of causal subgraphs. Moreover, we revisit the causal
intervention technique, which randomly combines causal
subgraphs and confounder from the same class (label) to
eliminate confounding effects. Adapting this technique to
regression requires removal of label information; to this end,
we analyze the principle of causal intervention and propose
to connect it with unsupervised contrastive learning loss. Ex-
perimental results on graph OOD benchmarks demonstrate
the effectiveness of our proposed techniques in improving
the generalizability of graph regression models.
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A. Supplementary Experiments
A.1. GOOD Benchmark

The Graph Out-Of-Distribution (GOOD) benchmark is the most comprehensive and authoritative benchmark for assessing
the OOD generalization of graph learning models. It includes 11 datasets, covering six graph-level and five node-level
tasks, with 51 dataset splits across covariate shift, concept shift, and no shift scenarios. Among them, nine datasets focus
on classification (binary and multi-class), one (GOOD-ZINC) on regression, and one (GOOD-PCBA) on multi-objective
binary classification. GOOD is the first benchmark to incorporate both covariate and concept shifts within the same domain,
enabling controlled comparisons. It evaluates 10 state-of-the-art OOD methods, including four tailored for graphs, resulting
in 510 dataset-model combinations. As a result, GOOD provides a systematic and rigorous framework for benchmarking
OOD generalization in graph learning

A.2. ReactionOOD Benchmark

The ReactionOOD benchmark is a specialized out-of-distribution (OOD) evaluation framework designed to systematically
assess the generalization capabilities of machine learning models in predicting the kinetic properties of chemical reactions.
It introduces three distinct levels of OOD shifts—structural, conditional, and mechanistic—and comprises six datasets, all
formulated as regression tasks. Structural OOD (S-OOD) examines variations in reactant structures, including shifts based
on total atomic count (E2 & SN2) and reactant scaffolds (RDB7, Cycloaddition). Conditional OOD (C-OOD) investigates
the effect of environmental conditions on kinetic properties, considering shifts in temperature (RMG Lib. T) and combined
temperature-pressure settings (RMG Lib. TP). Mechanistic OOD (M-OOD) explores the impact of different reaction
mechanisms (RMG Family) on kinetic property predictions.

A.3. GOOD-ZINC Dataset Details

Table 4 presents the number of graphs/nodes in different dataset splits for the GOOD-ZINC dataset. The dataset is analyzed
under three types of distribution shifts: covariate, concept, and no shift. Each row represents the number of graphs/nodes
in training, in-distribution (ID) validation, ID test, out-of-distribution (OOD) validation, and OOD test sets. The no-shift
scenario serves as a baseline with no distributional difference between training and test sets.

Table 4. Details of GOOD-ZINC dataset.
Dataset Shift Train ID validation ID test OOD validation OOD test

GOOD-ZINC
covariate 149674 24945 24945 24945 24946
concept 101867 21828 21828 43539 60393
no shift 149673 49891 49891 - -

A.4. Experimental Settings

We use the GOOD-ZINC dataset from the GOOD benchmark and the S-OOD tasks from ReactionOOD, excluding other
OOD tasks from ReactionOOD as they are still under maintenance. Our baseline results on ReactionOOD have been
acknowledged by the original authors. We use a three-layer GIN as the backbone model, with 300 hidden dimensions, which
is consistently applied in both OURS and baseline models. The model is trained for 300 epochs, with the learning rate
adjusted using the cosine annealing strategy. The initial learning rate is set to 0.001, with a minimum value of 1e-8 . For the
OURS model, all tunable hyperparameters in the loss function L are set to 0.5.

A.5. Ablation Studies

Effectiveness Analysis To evaluate the effectiveness of the proposed loss functions LGIB and LCI in improving the
model’s OOD generalization ability, we conducted a series of ablation studies across four ood datasets: ZINC, Cycloaddition,
E2SN2, and RDB7. Ours w/o BO serves as the baseline model, where both loss functions are removed, and only the
causal subgraph readout layer’s l1 loss is used for optimization. Ours w/o GIB ablates LGIB , eliminating the constraint
on confounding subgraphs to assess the impact of removing confounder control on generalization. Conversely, Ours w/o
CI removes LCI while keeping LGIB , allowing us to examine the contribution of the causal intervention loss to OOD
generalization. Ours represents the complete model, incorporating both loss functions for optimization. Notably, ZINC is
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Figure 4. The comparison of different components.

evaluated using MAE, while the other datasets adopt RMSE as the evaluation metric. Given that the ZINC results are small
(approximately 0.0x), we scale them by a factor of 10 in the Figure 4 for better visualization and comparison.

The results reveal several key insights. The full model (green) consistently achieves the lowest RMSE across all datasets,
demonstrating the effectiveness of jointly applying both the enhanced GIB loss and the CI loss. Removing both components
(yellow) leads to the worst performance, confirming that both components are essential. Between the two losses, removing
CI (orange) generally causes a larger degradation than removing GIB (blue), suggesting that CI plays a more dominant role.
On E2SN2, however, GIB contributes more significantly. These results indicate that GIB and CI provide complementary
benefits, and that using both yields the best OOD generalization.

Parameter Sensitivity Analysis In this experiment, we analyzed the sensitivity of loss function hyperparameters under
different settings in the Cycloaddition dataset, focusing on two key components of our proposed loss function: the
hyperparameter λ for the causal intervention term and α, β for the confounding constraint term. The results in Figure 5
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Figure 5. Parameter sensitivity.

indicate that, there is no clear trend toward getting better or worse for α. For β, which balances the GIB loss, there is
a gradual increase in RMSE when it is too large, especially in scaffold-covariate settings, suggesting an optimal range
around 0.3–0.6. For λ, which controls the causal intervention loss, has the strongest impact. A suitable parameter interval
(0.2–0.4) consistently leads to lower RMSE, while overly large or small λ causes performance degradation, especially in the
size-concept setting. This demonstrates the importance of carefully tuning λ to achieve effective OOD generalization.
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B. Framework Details
Given a GNN-based encoder f(·) and a graph Gi = (Ai, Xi), the graph representation is computed as:

Hg,i = f(Ai, Xi), (18)

Then, to estimate attention scores, inspired by (Sui et al., 2022), we utilize separate MLPs for nodes and edges. The node
attention scores, which can be seen as the node-level soft mask can be computed as:

Mnode, M̄node = σ(MLPnode(Hg,i)), (19)

where σ denotes the softmax operation applied across attention dimensions. Similarly, edge-level soft masks are determined
by concatenating node embeddings from connected edges, followed by an edge-specific MLP:

Medge, M̄edge = σ(MLPedge([Hg,i[row], Hg,i[col]])), (20)

These soft masks serve as weighting mechanisms, allowing the model to focus on the most relevant nodes and edges while
maintaining differentiability.

Next, we decompose the initial graph to causal and confounding attened-subgraph:

Ci = {Ai ⊙Medge, Xi ⊙Mnode} , (21)

Si =
{
Ai ⊙ M̄edge, Xi ⊙ M̄node

}
. (22)

To encode these subgraphs, Ci and Si are processed through a pair of GNNs with shared parameters, extracting causal and
confounding representations Hc and Hs, respextively. Finally, the representations of the two subgraphs are respectively
used to obtain the predictions of the regression task through the corresponding readout layers.

C. Variational Bounds for the GIB Objective
The mutual information I(C;G) quantifies the dependency between C and G and is defined as:

I(C;G) = Ep(C,G)

[
log

p(C | G)

p(C)

]
. (23)

However, computing the marginal distribution p(C) =
∑

G p(C | G)p(G) is intractable, to overcome this challenge, we
approximate p(C) with a variational distribution q(C). Substituting q(C) into Eq. (23), we reformulate I(C;G) as:

I(C;G) = Ep(C,G)

[
log

p(C | G)

q(C)

]
−KL

(
p(C)∥q(C)

)
. (24)

The KL divergence term KL
(
p(C)∥q(C)

)
is non-negative, providing an upper bound for I(C;G):

I(C;G) ≤ Ep(G)

[
KL
(
p(C | G)∥q(C)

)]
. (25)
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