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Abstract

The main challenge in learning image-
conditioned robotic policies is acquiring a vi-
sual representation conducive to low-level con-
trol. Due to the high dimensionality of the
image space, learning a good visual represen-
tation requires a considerable amount of visual
data. However, when learning in the real world,
data is expensive. Sim2Real is a promising
paradigm for overcoming data scarcity in the
real-world target domain by using a simulator
to collect large amounts of cheap data closely
related to the target task. However, it is difficult
to transfer an image-conditioned policy from
sim to real when the domains are very visually
dissimilar. To bridge the sim2real visual gap,
we propose using natural language descriptions
of images as a unifying signal across domains
that captures the underlying task-relevant se-
mantics. Our key insight is that if two image
observations from different domains are labeled
with similar language, the policy should pre-
dict similar action distributions for both images.
We demonstrate that training the image encoder
to predict the language description or the dis-
tance between descriptions of a sim or real im-
age serves as a useful, data-efficient pretraining
step that helps learn a domain-invariant image
representation. We can then use this image en-
coder as the backbone of an IL policy trained
simultaneously on a large amount of simulated
and a handful of real demonstrations. Our ap-
proach outperforms widely used prior sim2real
methods and strong vision-language pretrain-
ing baselines by 25 to 40%. See additional
videos and materials at https://robin-lab.
cs.utexas.edu/lang4sim2real/.

1 Introduction

Recently, visual imitation learning (IL) has
achieved significant success on manipulation tasks
in household environments (Schaal, 1999; Brohan
et al., 2022). However, these methods rely on large
amounts of data in very similar domains to train
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Figure 1: Bridging the sim2real gap with language.
Robot images from simulation and the real world with
similar language descriptions (green & purple borders)
are mapped to similar features in language embedding
space, while sim and real images with different lan-
guage descriptions (teal & red) are mapped to faraway
locations. We propose using language embedding sim-
ilarities to re-shape the image embeddings (center) to
create a domain-invariant image space. A policy is
learned conditioned on these image embeddings from
both sim and real images (right).

data-hungry image-conditioned policies (Brohan
et al., 2022, 2023; Padalkar et al., 2023). Some
researchers collect large datasets of demonstrations
from mixed domains in hopes of improving gener-
alization. In this work, we explore a different ap-
proach: can we transfer a policy trained on cheaply
acquired, diverse simulation data to a real-world
target task with just a few demonstrations?

A solution to effectively leverage cheap sim data
while successfully fitting scarce real-world demon-
strations is to create a domain-agnostic visual rep-
resentation and use it for policy training. Such a
representation should enable the policy to use the
simulation image-action data as an inductive bias
to learn with few-shot real world data. This repre-

1

https://robin-lab.cs.utexas.edu/lang4sim2real/
https://robin-lab.cs.utexas.edu/lang4sim2real/


sentation must allow the policy to tap into the right
distribution of actions by being broad enough to
capture the task-relevant semantic state from image
observations, yet fine-grained enough to be con-
ducive to low-level control. For instance, a sim
and real image observation, both showing the robot
gripper a few inches above a pan handle, should
lie close together in the image embedding space to
lead to similar actions, even if the two images have
large differences in pixel space.

How might we acquire supervision for learn-
ing such a visual representation? Language is an
ideal medium for providing it. Descriptions of task-
relevant features in image observations, such as
whether or not a gripper is close to a pan handle,
serve as a unifying signal to align the representa-
tions of images between sim and real. We hypothe-
size that if a sim and real image have similar lan-
guage descriptions (e.g., “the gripper is open and
right above the pan handle”), then their underlying
semantic states are also similar, and thus the ac-
tions the policy predicts conditioned on each image
should also be semantically similar (e.g., moving
downward to reach the pan handle). The pretrained
embedding space of large language models (LLMs)
offers a well-tuned signal that can be leveraged to
measure the semantic similarity between real and
sim images via their associated language descrip-
tions (see Fig. 1). This simple insight allows us
to learn a domain-agnostic visual representation to
bridge the visual sim2real gap.

A popular paradigm in foundation model re-
search is to first pretrain the backbone on large
datasets, then add and train a task-specific head to
process the backbone outputs to perform a down-
stream task. We adopt this paradigm by first pre-
training an image encoder to predict the pretrained
embeddings of language descriptions of images
from roughly a few hundred trajectories in sim and
real, with language labels on each image. Then we
use this image encoder as our IL policy backbone
and train on action-labeled data from both the sim
and real domains simultaneously, with only a few
action-labeled real-world demonstrations.

In this paper, we introduce Lang4Sim2Real, a
lightweight framework for transferring between
any two domains that have large visual differences
but contain data across a similar distribution of
tasks. Our approach has the following advantages
over prior sim2real efforts: (1) Alleviates the need
for the engineering-intensive task of trying to ex-
actly match a sim environment to the real environ-

ment both visually and semantically, (2) Enables
sim2real transfer on tasks involving deformable ob-
jects that are hard to simulate, and (3) Bridges a
wide sim2real visual and physical gap.

In the few-shot setting, on multi-step real-world
tasks, these advantages enable Lang4Sim2Real to
outperform prior SOTA representation learning and
sim2real methods by 25-40%. To our knowledge,
this is the first work that shows that using language
to learn a domain-invariant visual representation
can help improve the sample efficiency and perfor-
mance of sim2real transfer.

2 Related Work

Our main contribution is a method to learn domain-
invariant image representations by exploiting natu-
ral language descriptions as a bridge between do-
mains for sim2real transfer. While we believe this
has not been explored before, significant related
research has been done in related fields.

2.1 Vision Pretraining for Robotics

Various works have found that vision-only pre-
training improves performance on visuomotor con-
trol. Prior work has explored pretraining objec-
tives ranging from masked image modeling (Ra-
dosavovic et al., 2023), image reconstruction (Zhao
et al., 2022; Gupta et al., 2022; Seo et al., 2023),
contrastive learning (Laskin et al., 2020; He et al.,
2020), video frame temporal ordering (Jing et al.,
2023), future frame prediction (Zhao et al., 2022),
and image classification (Yuan et al., 2022; Wang
et al., 2022) on internet-scale datasets such as Ima-
geNet (Deng et al., 2009), Ego4D (Grauman et al.,
2021), Something-Something (Goyal et al., 2017),
and Epic Kitchens (Damen et al., 2018). While
these vision-only pretraining objectives learn good
representations for robotic control within a specific
domain distribution (such as the real world), they
are not necessarily robust to the wide domain shifts
encountered during sim2real.

In vision-language pretraining, contrastive
learning (Radford et al., 2021) can learn valuable
representations for robotic tasks (Shridhar et al.,
2021, 2022). However, these pretrained visual rep-
resentations are often overly influenced by the se-
mantics of language captions. This results in a rep-
resentation that is too object-centric to differentiate
between different frames of a robot demonstration,
lacking the level of granularity needed for spatial-
temporal understanding. R3M (Nair et al., 2022)
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addresses this by learning semantics from language
labels of videos but also training with a time con-
trastive loss between video frames. Prior work in
multimodal representations (Zhu et al., 2023) found
language to be effective in aligning representations
learned across multiple modalities including depth
and audio. Instead of using language to bridge
modalities, our approach uses language to bridge
visual representations between domains.

2.2 Sim2Real

While we approach sim2real through vision-
language pretraining, there are many alternative,
well-researched techniques. Domain randomiza-
tion (Andrychowicz et al., 2020; Matas et al., 2018;
Tobin et al., 2017) involves varying physical param-
eters and visual appearances of the simulation to
train a policy that functions in a wide distribution
of domains that hopefully also covers the target
domain distribution. However, domain random-
ization attempts to be simultaneously performant
in an overly broad distribution of states, leading
to a suboptimal and conservative policy that takes
longer to train. System identification (Yu et al.,
2017; Kaspar et al., 2020) involves tuning the sim-
ulation parameters to match the real world in order
to create a custom-tailored simulation environment
that easily transfers to the real domain. However,
this process is very engineering intensive and of-
ten intractable to simulate all real world physical
interactions with high fidelity and throughput. In
contrast, our sim2real approach can handle large
source and target domain discrepancies with a few
target task demonstrations and does not require
system identification or domain randomization.

2.3 Domain-Invariant Representations

Several methods have been proposed to learn
domain invariant representations. The domain-
adaptation community has extensively researched
using Generative Adversarial Networks (GANs)
to map images from one distribution into another,
using pixel space as a medium of common rep-
resentation (James et al., 2019; Bousmalis et al.,
2017; Ho et al., 2021; Rao et al., 2020). However,
GANs require a large training dataset and are noto-
rious for unstable training. Additionally, enforcing
similarity on the input image side at the pixel level
is less efficient than our method, which encourages
cross-domain distributional similarity in a compact,
low-dimensional image encoder space. Further-
more, researchers in self-driving have studied using

semantic segmentation and depth maps (Müller
et al., 2018; Ai et al., 2023) as a common represen-
tation between domains, though their effectiveness
has only been demonstrated in navigation.

2.4 Language and Robotics

A growing body of work has investigated train-
ing multitask robotic policies conditioned on lan-
guage instruction embeddings (Jang et al., 2021;
Lynch and Sermanet, 2021; Mees et al., 2021,
2022; Shao et al., 2020; Sodhani et al., 2021;
Silva et al., 2021; Karamcheti et al., 2021), or a
combination of language instructions and goal im-
ages/demonstrations (Jiang et al., 2022; Shah et al.,
2023; Yu and Mooney, 2022). Our approach also
involves learning a language-conditioned policy,
but unlike prior work, our main novelty is using
language for a second use-case: as scene descrip-
tors during pretraining to pull together semanti-
cally similar image observations between two visu-
ally dissimilar domains. Language has also been
used for reward shaping in RL (Nair et al., 2021;
Goyal et al., 2019, 2020; Fan et al., 2022; Ma et al.,
2023), and as a high-level planner in long-horizon
tasks (Huang et al., 2022; Ahn et al., 2022; Chen
et al., 2022; Raman et al., 2023). These areas of
research are more ancillary to our contributions, as
we demonstrate our approach with IL instead of
RL and with fine-grained manipulation tasks that
do not require extensive planning.

3 Problem Setup

In this work, we address the problem of few-shot
visual imitation-learning (IL): learning a visuomo-
tor manipulation policy in the real world based on a
few real-world demonstrations. We assume access
to a large amount of simulation data and cast few-
shot IL as a sim2real problem. More concretely,
we render the few-shot IL problem as a k+1 multi-
task IL problem: k tasks from simulation and the
target task (with a few demonstrations) in the real
world. In general terms, we assume a source do-
main in which data can be acquired cheaply and a
target domain where data is expensive to collect.

In our setting, we consider access to two datasets
across two domains: Ds, which spans multiple
tasks in the source domain, and Dt

target, which
contains a small number of demonstrations of the
target task in the target domain we want to trans-
fer to. Thus, we assume that | Ds | >> | Dt

target |,
due to how expensive target domain data collec-
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tion is (such as in the real world). We make two
assumptions about the two domains. First, we as-
sume the source and target tasks are all of the same
general structure, such as multi-step pick-and-place
task compositions, but with different objects and
containers across different subtasks. Otherwise,
transfer would be infeasible in the low-data regime
if the source and target domain tasks lack similarity.
Second, to train a common policy for both domains,
we assume the domains share state and action space
dimensionality. We make no further assumptions
about the similarity between the two domains.

All of our data consist of expert trajectories.
Each trajectory, τ = {(It, st, [at, lt], ltask)}, is a
sequence of tuples containing an image observa-
tion, It (128 × 128 RGB), robot proprioceptive
state, st (end effector position and joint angles),
and a language instruction of the task, ltask. Note
that ltask is the same over all timesteps of all trajec-
tories in a given task. [at, lt] denotes that a trajec-
tory may optionally also include robot actions (in
which case we consider the trajectory a full demon-
stration) and/or a language description of the image
It. In the following sections, we identify with τ [L]
a trajectory with language descriptions lt, but no
actions at. Similarly, τ [A] is a full demonstration
with actions, at, but no language descriptions, lt.
The language labels for images can be automati-
cally generated (see Section 4.1).

During pretraining, we use τ [L] image-language
(It, lt) pairs from Ds ∪Dt

target. During policy
learning, we use τ [A] data: (It, st, at, ltask) tu-
ples from Ds ∪Dt

target. We define both steps for
Lang4Sim2Real in the next section.

4 Lang4Sim2Real

In our method, we adopt the common pretrain-
then-finetune learning paradigm (see Fig. 2). First,
we pretrain an image backbone encoder on cross-
domain language-annotated image data (Sec. 4.2).
Then, we freeze this encoder and train a policy
network composed of trainable adapter modules
and a policy head to perform behavioral cloning
(BC) (Schaal, 1999) on action-labeled data from
both domains (Sec. 4.3). To leverage the simulation
data, we train a k + 1 multi-task BC policy that
learns for k tasks in the source domain (sim) and 1
in the target domain (real, few shot).
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Figure 2: Method. (i) Top: During Image-Language
Pretraining, we train the image encoder fcnn using
the language embeddings associated with descriptions
of both sim and real image observations. fd

img and
fd
lang refer to the output features of the CNN and the

LLM, respectively, in domain d. With regression-based
loss (A) the image embeddings are pushed to predict
the corresponding language embeddings whereas with
distance based loss (B) the pair of image embeddings
is pushed together/apart based on the similarity of the
language embeddings. (ii) Bottom: During Multitask,
Multidomain BC, we freeze our pretrained fcnn, add
adapter modules and a policy head and allow the last
layer of the CNN to finetune, then train the resulting
multitask language-conditioned policy on Ds ∪Dt

target.

4.1 Automatic Language labeling of Images

To acquire image-language pairs for pretraining,
we implement an automated pipeline for label-
ing the images of a trajectory that occurs syn-
chronously during scripted policy demonstration
collection (see Appendix A.1).

However, our language labeling process need
not be synchronously coupled with scripted policy
demonstration collection. We describe a second
process in Appendix A.8.2 that uses VLMs to help
do language labeling, and using language from this
approach does not degrade performance.

4.2 Sim-Real Image-Language Pretraining

After collecting trajectories with language labels,
our first step in Lang4Sim2Real involves learning
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a domain-invariant representation that will enable
leveraging simulation data for few shot IL. For that,
we need to learn an image observation encoder,
fcnn : It → Rdcnn , that attains the following prop-
erty: it should preserve the semantic similarity of
scenes in images between the two domains. For
instance, if both image Is from Ds (sim) and im-
age It from Dt

target (real world) show the robot’s
gripper open and a few inches above the object to
grasp, even if from different viewing angles, then
we want their image embeddings to be close to-
gether in the learned image encoding space. This
will facilitate policy learning later, as the policy
will need to draw from a similar distribution of ac-
tions for similar scene semantics, which are now
already mapped into similar visual features.

Theoretically, off-the-shelf pretrained vision-
language models (VLMs) (Radford et al., 2021;
Nair et al., 2022) should already possess these prop-
erties as they were trained on a massive distribution
of image and language data. However, in the con-
text of robot manipulation, pretrained VLMs tend
to encode all observations of the trajectory into a
very narrow region of the embedding space with-
out sufficient distinction for task-relevant, semantic
aspects of the image such as the location of the
gripper in relation to the manipulated objects. This
renders them unsuitable without additional finetun-
ing for our application (see Sec. 6).

In Lang4Sim2Real, we propose an alternative
approach to obtain a visual representation with
the aforementioned desired property. We train a
ResNet-18 (He et al., 2015) from scratch as our im-
age encoder using image-language tuples (Is, ls)
from Ds and (It, lt) from Dt

target. We denote
this vision language pretraining dataset as DV L =
{(Id, ld) : (Id, ld) ∈ Ds ∪Dt

target}, where d is ei-
ther the source or target domain. The images are
observations collected during 100 demonstrations
from each of the tasks in Ds and 25-100 demon-
strations from Dt

target, totaling around 10k images
per domain. We assume that the two sets of lan-
guage descriptions in Ds and Dt

prior are similarly
distributed; otherwise, language may not help learn
domain-invariant features between Ds and Dt.

To effectively leverage language as a bridge be-
tween visually different domains, we need a well-
tuned (frozen) language model, flang : l → Rdlang ,
to map strings to dlang−dimensional language em-
beddings. We use off-the-shelf miniLM (Wang
et al., 2020), since prior work (Mees et al., 2022)
has demonstrated its effectiveness for language-

conditioned control policies compared to other
small, off-the-shelf language models.

Given the data and the language embedding
described above, we propose two variants in
Lang4Sim2Real for the image-language pretrain-
ing step that can obtain a sim-real agnostic rep-
resentation based on language supervision (see
Fig. 2(i)A-B):

4.2.1 Language-Regression
Our first variant is a straightforward use of lan-
guage supervision to shape the image embed-
ding space: predicting the language embedding
of the description, ld, given the embedding of
the corresponding image, Id. We sample image-
language pairs from the DV L dataset defined above:
(Id, ld) ∼ Ds ∪Dt

target. Let g : Rdcnn → Rdlang

be a single linear layer (language predictor in
Fig. 2(i)(A)) trained to minimize the following loss:

Lcnn,reg(DV L) =
∥∥∥g (fcnn(I

d)
)
− flang(l

d)
∥∥∥2

2
(1)

We use the loss to train both the language predictor
and the CNN backbone. The loss provides strong
language supervision by encouraging fcnn to di-
rectly regress toward the frozen language embed-
dings of the image descriptions, effectively making
the pretrained image encoder reflect the LLM em-
bedding space.

4.2.2 Language-Distance Learning
We also experiment with a second variant of image-
language pretraining that incorporates language
with a softer form of supervision. We posit that the
exact values of the language embeddings do not
themselves convey meaning; rather, key informa-
tion about the semantic similarity of two images
lies in the pairwise distances between their cor-
responding two language embeddings. Thus, we
design an objective to regress the image embedding
distances between a pair of images from the two
domains to their corresponding language distance:

Lcnn,dist(DV L) =
∥∥f⊤

cnn(I
s)fcnn(I

t)− d
(
ls, lt

)∥∥2

2
(2)

where the language distance function we use, d :
l × l → R is BLEURT (Sellam et al., 2020), a
commonly used learned similarity score between
two strings. We normalize d(·, ·) between 0 and 1
for all possible

(
ls, lt

)
pairs in our image-language

dataset, where 1 indicates the highest similarity be-
tween any two strings in the dataset. The output of
fcnn is unit normalized before taking the dot prod-
uct. When comparing both variants (see Sec. 6)
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we would like to assess if the additional degrees of
freedom from the looser distance supervision are
beneficial later on for policy training.

4.3 Multitask, Multidomain BC

Our second step in Lang4Sim2Real involves
learning a multi-domain, multi-task, language-
conditioned BC policy (see Fig. 2(ii)). By lever-
aging our learned domain-invariant representation
for robotic control, this policy should be able to
perform well in real-world task with only a few
demonstrations, thanks to the additional informa-
tion it can extract from simulation.

During this phase of policy learning, we freeze
all but the last layer to preserve the semantic
scene information encoded in the learned, domain-
invariant representation, fcnn, while enabling the
network to adapt to the new downstream task of
low-level control. We also insert trainable FiLM
layer blocks (Perez et al., 2018) as adapter modules
in fcnn to process the language instruction embed-
dings between the frozen convolution layers. Fi-
nally, we include a few fully-connected layers as a
policy head to process the image feature, fcnn(It),
and proprioceptive state, st, and train the resulting
policy π with BC loss to predict the mean and stan-
dard deviation of a multivariate Gaussian action
distribution, as described below.

Let our training dataset DBC = Ds ∪Dt
target

be a set of demonstrations τd, for domain d ∈
{source, target}. As explained in Sec. 3, each
demonstration is a sequence of tuples xt =(
Idt , s

d
t , a

d
t , ltask

)
containing the image observa-

tion, proprioceptive state, language instruction for
the task, and action at timestep t. We train with
the following standard BC negative log probability
loss (Pomerleau, 1988):

Lπ(DBC) =
1

B

∑
xt∼τd

τd∼DBC

− log π
(
ad
t

∣∣fcnn(I
d
t ), s

d
t , ltask

)
(3)

where B denotes the batch size.
The policy is trained on k + 1 tasks: k from

Ds (thousands of trajectories per task) and 1 from
Dt

target (≤ 100 trajectories, see Sec. 5). In each
batch, we sample m tasks uniformly at random
from the k + 1 tasks, and then query DBC for a
fixed number of transitions from trajectories for
each of the m selected tasks.

We hypothesize that cross-domain image-
language pretraining (Sec. 4.2) improves policy

learning because it helps ensure that image ob-
servations of different domains depicting semanti-
cally similar scenes map into similar regions of the
learned embedding space. This accelerates learn-
ing not only on Ds data but also helps alleviate data
scarcity in Dt

target, alleviating common issues with
visual distribution shift and enabling our method
to leverage simulation data to compensate for the
lack of real-world action-labeled data, improving
sim2real transfer.

5 Experimental Setup

We evaluate Lang4Sim2Real in sim2real, where
the few shot IL is defined in the real world and we
use simulation to address the data scarcity. Fig-
ure 5 in the Appendix for detailed frame rollouts
of each task. In a slight overload of notation from
Sec. 3, here we use Ds and Dt to denote the source
and target domains, respectively. We additionally
present results in sim2sim in Appendix A.10.

5.1 Sim2Real Environment Differences

We employ a setup with a wide sim2real gap that
we aim to bridge using language that includes dif-
ferences in control frequency, task goals, visual
observation appearance, objects, and initial posi-
tions. More details can be found in Appendix A.7.

5.2 Evaluation and Environment Details

For all experiments, we measure task success rate.
In sim2real, this is calculated through 2 seeds, 10
trials per seed, for a total of 20 trials per table entry.

For each task, we design Robosuite (Zhu et al.,
2020) Mujoco (Todorov et al., 2012) simulation
environments. For the real environment, we use
Operational Space Control (Khatib, 1987) for carte-
sian space end-effector control. In both simulation
and real, we work with a 7-DOF Franka Emika
Panda arm and use a common action space consist-
ing of the continuous xyz delta displacement and a
continuous gripper closure dimension.

For each task suite, we collect data from simu-
lated domain Ds and real target domain Dt. All
demonstrations in sim and real are collected with a
scripted policy (see Appendix for further details).
Sim trajectories range from 200-320 timesteps
long, operated at 50Hz, while real trajectories
run at 2Hz and range from 18-45 timesteps. Our
three task suites allow us to test the effectiveness
of Lang4Sim2Real for sim2real in a wide vari-
ety of control problems: (1) simple stacking, (2)

6



Figure 3: The columns depict the three task suites. From
Left to Right: Stack Object, Multi-step Pick and Place,
and Wrap Wire tasks. Top row: simulation Ds, Bottom
row: sim2real Dt

target. Lang4Sim2Real can bridge a
considerable sim2real gap (Sec. 5.1).

multi-step long-horizon pick and place, and (3) de-
formable, hard-to-simulate object manipulation.

5.3 Task Suite 1: Stack Object

In our first task suite, the robot must move an object
to a target. In the simulated domain Ds, the target
is on top of a wooden coaster, and there are four
objects: milk carton, soda can, bread, and cereal
box, which correspond to the four tasks. Both
the object and coaster positions are randomized
over the entire workspace. We collect and train on
400 demonstrations per task (1600 total) as our Ds

simulation data. Dt is a real world environment in
which the object is randomly placed on the left mat
and the target task Dt

target is to move the object
onto the right mat and open the gripper by the end
of 20 timesteps.

5.4 Task Suite 2: Multi-step Pick and Place

Our second suite of tasks is longer-horizon. In
simulation, the robot must first put an object in the
pot, then grasp the pot by its handle and move it
onto the stove. We categorize this as a 2-step pick-
and-place task. We use the same four object-task
mappings from Sec. 5.3. The object, pot, and stove
locations are all randomized within a quadrant of
the workspace.

In the sim2real setup, Ds consists of 1400 tra-
jectories per task in simulation, while Dt is the real
task of putting a carrot into a bowl, then putting
the bowl onto a plate (see Fig. 3), and ending with
the gripper open after 50 timesteps. In addition
to success rate (Section 5.2), we measure average
number of subtasks completed, allowing partial

credit if the robot only succeeds in placing the car-
rot in the bowl, but not if only the bowl is placed
on the plate.

5.5 Task Suite 3: Wrap Wire

Our final suite of tasks involves wrapping a long de-
formable wire around a fixed object. In simulation
Ds, we approximate a wire with a chain of spheres
connected with free joints, and the task is to wrap
the chain around a fixed cylinder (see Fig. 3). A
trajectory is successful if the first link of the chain
has traveled ≥ 5π

3 radians (5/6ths of a full revo-
lution) around the cylinder. Our simulation data
consists of two tasks: wrapping counterclockwise
and clockwise. The initial position of the end of
the chain is randomized over a region to the left of
the cylinder. Ds contains 400 trajectories per task.

The target task Dt
target is to first grasp the plug,

then wrap the cord around the base of a blender in
the middle of the workspace, and finally put the
plug down, similar to what one might do before
putting the appliance away.

5.6 Baselines

We consider three sets of baselines: no pretrain-
ing, where the CNN is initialized from scratch,
prior sim2real approaches (MMD (Tzeng et al.,
2014), Domain randomization (Tobin et al., 2017),
and ADR+RNA (OpenAI et al., 2019)), and strong
vision-language foundation models (CLIP (Rad-
ford et al., 2021) and R3M (Nair et al., 2022)).

5.7 Our Method Variants and Ablations

In our evaluations, we compare language regres-
sion (Section 4.2.1) and language distance (Sec-
tion 4.2.2), the two pretraining variants of our ap-
proach. We also ablate away the effects of lan-
guage on our pretraining approach in a method
called “stage classification,” where the pretraining
task is to predict the stage index of an image (see
Section 4.1) instead the language embedding or
embedding distance.

6 Experimental Results

We train and evaluate with 25, 50, or 100 Dt
target

demonstrations. Results are shown in Table 1. The
methods (rows) are grouped into non-pretrained
baselines, prior sim2real baselines, our method
variants and ablations, and pretrained SOTA base-
lines. Our method achieves the highest success
rates over all task suites. To further analyze the ef-
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Table 1: sim2real: Performance by number of real world trajectories

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt) – ✓ 20 30 45 0 30 35 0.45 1.05 1.05 20 15 45
No Pretrain (Ds+Dt) ✓ ✓ 35 20 55 45 25 55 1.15 1.0 1.4 25 20 20

MMD ✓ ✓ 25 35 80 20 10 35 0.8 0.9 1.1 5 10 20
Domain Random. ✓ ✓ 40 60 40 10 10 25 0.7 0.6 0.7 0 0 0

ADR+RNA ✓ ✓ 35 30 35 15 25 40 0.85 0.8 1.3 0 10 0

Lang Reg. (ours) ✓ ✓ 40 75 80 60 80 90 1.45 1.8 1.9 45 40 45
Lang Dist. (ours) ✓ ✓ 60 45 80 55 70 75 1.35 1.65 1.6 30 25 75

Stage Classif. ✓ ✓ 40 60 60 50 60 50 1.45 1.55 1.5 30 40 50

CLIP (frozen) ✓ ✓ 25 5 15 10 15 40 0.3 0.45 1.0 35 35 30
R3M (frozen) ✓ ✓ 30 45 65 15 60 55 0.7 1.4 1.5 5 25 25

fectiveness of our method, we pose and investigate
the following experimental questions.

What is the impact of our pretraining ap-
proach? Our method nearly doubles the success
rate of both non-pretrained baselines in most task
suites. This indicates that Lang4Sim2Real can
bridge a wide sim2real gap. This may be because
image observations with similar language descrip-
tions tend to have similar action labels. We inves-
tigate the correlation between language similarity
and action distributions in Appendix A.2.

How does our method compare to prior
sim2real baselines? Our method outperforms all
of the prior sim2real baselines we tested against
(second row-group in Table 1), which collectively
do relatively poorly in most settings, highlighting
the difficulty of the sim2real problem in our setup.

How does our method compare to prior vision-
language pretrained representations? Our method
outperforms both pretrained baselines across the
board, including R3M, which is the strongest base-
line on stack object and multi-step pick-and-place.
When trained on increasing amounts of real-world
data, both R3M and CLIP tend to plateau. This
suggests that CLIP and R3M do not scale as well
as our method when provided more data, despite
being pretrained on internet-scale video and image
data while our method was pretrained on images
from just a few hundred sim and real trajectories.

What is the effect of language in learning
shared representations? “Stage classification” in
Table 1 ablates away the impact of language. It
performs worse than our approach, demonstrating
that language is important in our pretraining.

How do our two image-language pretraining
variants compare? We compare our two pretrain-

ing variants (Sections 4.2.1 and 4.2.2). Wen per-
forming language pretraining for visual representa-
tions, the more constraining regression loss outper-
forms the less constraining distance-matching loss
on average sim2real performance.

Finally, we examine a few additional questions
to better understand the performance of our method
under slight changes to the data and problem setup.
Results and discussion are in Appendix A.9.

7 Conclusion and Discussion

Vision-based policies struggle with distributional
shift during sim2real transfer. To address this
challenge, we introduced a low-data-regime visual
pretraining approach that leverages language to
bridge the sim2real visual gap with only 25-100
real-world trajectories with automatically gener-
ated language labels. Our approach outperforms
state-of-the-art vision-language foundation models
and prior sim2real approaches across 3 task suites
involving multi-step long-horizon tasks and hard-
to-simulate deformable objects.

One of the main limitations of our work is that
it targets a specific distribution and domain of real-
world tasks and operates in the low-data regime for
both pretraining and policy learning, so it does not
yield general-purpose visual representations that
can be applied to a wide distribution of target tasks.

An avenue for future work involves exploring
sim2real by combining existing pretraining ap-
proaches such as time-contrastive learning and
masked image modeling in conjunction with the
language-based pretraining we propose, as adding
temporal or masked prediction terms to the objec-
tive may enable more fine-grained representations
that complement the coarseness of language.
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A Appendix

A.1 Scripted Policy for Real-World Data
Collection

Algorithm 1 Scripted Wrap Wire
1: centerPos← blender center position
2: placeAttempted← False
3: targetDistToCenter← 0.15
4: numTimesteps← 45
5: direction← true if clockwise, false if counterclockwise
6: for t in [0, numTimesteps) do
7: wirePos← position of the graspable part of the wire
8: eePos← end effector position
9: pickPosDist← ∥eePos− wirePos∥2

10: done← is wrapped > 11π
6

from the start to end of
wire around centerPos in direction

11: if placeAttempted then
12: action← 0
13: else if object not grasped AND pickPosDist > dist-

Thresh then
14: // Move toward wire
15: action← wirePos − eePos
16: else if object not grasped then
17: // gripper is very close to wire
18: action← pickPos − eePos
19: close gripper // Object is in gripper
20: else if wire not lifted then
21: action← [0, 0, 1] // Move up
22: else if not done then
23: relPos← eePos− centerPos
24: distToCenter← ∥relPos∥2
25: normRelPos ← (relPos/distToCenter) ∗

targetDistToCenter
26: actionMaintainDistance ← relPos ∗

(targetDistToCenter − distToCenter) // move
toward/away from center

27: actionMoveTangent ←
[−normRelPos[1], normRelPos[0], 0.0] // Move
tangent to the blender

28: if direction then
29: actionMoveTangent ←

actionMoveTangent ∗ −1
30: end if
31: action ← actionMaintainDistance +

actionMoveTangent
32: else
33: action← open gripper // Drop wire
34: placeAttempted← True
35: end if
36: end for

Algorithm 2 Scripted Pick and Place Function
function PICKPLACE(pickPos, dropPos, distThresh,
placeAttempted)

eePos← end effector position
dropPosDist← ∥eePos− dropPos∥2
pickPosDist← ∥eePos− pickPos∥2
if placeAttempted then

action← 0
else if object not grasped AND pickPosDist > dist-

Thresh then
// Move toward target object

action← pickPos − eePos
else if object not grasped then

// gripper is very close to object
action ← (pickPos − eePos, close gripper) //

Object is in gripper
else if object not lifted then

// Move gripper upward to avoid hitting other
objects/containers

action← [0, 0, 1]
else if dropPosDist > distThresh then

// Move toward target container
action← dropPos − eePos

else
action ← open gripper // Object falls into con-

tainer
placeAttempted← True

end if
noise ∼ N (0, 0.1)
action← action + noise

return action, placeAttempted
end function

Algorithm 3 Stack Object
1: pickPos← target object position
2: dropPos← target container position
3: numTimesteps← 18
4: distThresh← 0.02
5: placeAttempted← False
6: for t in [0, numTimesteps) do
7: action, placeAttempted ← PICKPLACE(pickPos,

dropPos, distThresh, placeAttempted)
8: s′ ← env.step(action)
9: end for

Algorithm 4 Scripted 2-step Pick and Place
1: pickPos← [object position, first container position]
2: dropPos← [first container position, second container

position]
3: numTimesteps← 45
4: distThresh← 0.02
5: placeAttempted← [False, False]
6: si ← 0 // step index (starts at 0, and increments to 1

when first pick-place step is complete)
7: stepCompleted← [False, False]
8: for t in [0, numTimesteps) do
9: action, placeAttempted[si] ← PICK-

PLACE(pickPos[si], dropPos[si], distThresh,
placeAttempted[si])

10: if stepIsSuccessful(si) AND not
stepsCompleted[si] then

11: stepsCompleted[si]← True
12: si ← 1
13: end if
14: s′ ← env.step(action)
15: end for
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A.2 Does Language Similarity Imply Action
Distribution Similarity?

We hypothesize that one of the ways language is
an effective bridge for sim2real transfer is that the
sim and real action distributions of the demonstra-
tions are similar when the image observations have
similar language descriptions. Figure 4 shows the
action distribution similarities between sim and
real when the language descriptions are similar
(top row), and when the language descriptions are
different (bottom row). Each column represents
a component of the action distribution. We plot
three components: z-axis actions, xy-magnitude
(which is the ℓ2 norm of the (x, y) action dimen-
sions), and the gripper dimension. We observe that
action distributions are indeed more similar for im-
ages described by similar language than for images
described by different language.

A.3 Detailed Policy Network Architecture &
Hyperparameters

For the policy backbone, we use a ResNet-18 ar-
chitecture but made changes to the strides and
number of channels to adapt the network to our
128 × 128 × 3 image size. Hyperparameters are
shown in Table 4. A detailed layer-by-layer archi-
tecture figure of our policy is shown in Figure 7.
During policy training, only the last CNN layer,
FiLM blocks, and policy head (FC layers) are fine-
tuned, while all other layers are kept frozen.

A.4 Task and Data Details

Figure 5 provides film strips of trajectories from
the source domain data Ds, target domain prior
task data Dt

prior, and target domain target task data
Dt

target, for each of the three task suites.

A.5 State Space Details

The robot proprioception space is 22-dimensional,
consisting of the robot’s xyz end-effector position,
gripper state, and sine and cosine transformations
of the 7 joint angles. The image observation space
is 128× 128 RGB images.

A.6 Training Hyperparameters

Table 5 shows our BC training hyperparameters.
In each training iteration, we sample 4 random

tasks from our training buffer and get 57 samples
per task, for a total batch size of 228.

Table 5: Imitation learning hyperparameters.

Attribute Value
Number of Tasks per Batch 4
Batch Size per Task 57
Learning Rate 3× 10−4

A.7 Sim2Sim and Sim2Real Differences

In our sim2sim experiments, Ds and Dt are both
sim environments with the following differences:

1. Camera point-of-view: Ds image observa-
tions are third person (looking toward the
robot), and Dt image observations are first
person (over the shoulder), a large change of
viewing angle.

2. Friction and Damping: Joint friction and
damping coefficients are 5× and 50× higher
in Dt than Ds, which significantly changes
the dynamics.

In our sim2real experiments, Ds in sim and Dt

in real have the following differences:

1. Control frequency: The simulated Ds policy
runs at 50Hz while the real world Dt policy
runs at 2Hz.

2. Objects: The objects on the scene in each
task differ between simulation and real data,
except the robot itself.

3. Visual Observation: Backgrounds and cam-
era angles are markedly different between the
two domains.

4. Initial positions: The initial object and robot
positions are different across sim and real.

A.8 Labeling Image Observations with
Language

A.8.1 Language labeling during Scripted
Policy

We automatically label image observations with
language descriptions during the scripted policy
data collection process. Each image is assigned a
stage number based on the if-case of the scripted
policy, which corresponds to a semantic positional
arrangement between the gripper and the relevant
objects on the scene. Stage numbers map 1-to-1 to
the template language strings shown in Table 2.
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Table 2: Language Description Templates of Image Observations

Task Template String
Pick and Place gripper open, reaching for {objName}, out of {contName}

gripper open, moving down over {objName}, out of {contName}
gripper closing, with {objName}, out of {contName}
gripper closed, moving up with {objName}, out of {contName}
gripper closed, moving sideways with {objName}, out of {contName}
gripper closed, with {objName}, above {contName}
gripper open, dropped {objName}, in {contName}

Wrap Wire gripper open, reaching for {graspObjName}
gripper open, moving down over {graspObjName}
gripper closing around {graspObjName}
gripper closed, moving up with {graspObjName}
{direction} left
{direction} front
{direction} right
{direction} back
gripper open, above {graspObjName} with {flexWraparoundObjName} fully wrapped
gripper open, above {graspObjName} with {flexWraparoundObjName} fully unwrapped

Variable Possible Values
objName milk, bread, can, cereal, pot, carrot, bowl, bridge
contName coaster, pot, stove, bowl, plate
flexWraparoundObjName beads, cord, ethernet cable
graspObjName last bead, white plug, bridge
direction clockwise, counterclockwise

Figure 4: These plots show the action distribution of demonstrations across both sim and real, broken down by
each component of the action: xy-action magnitude, z-axis actions, and gripper actions. The first row shows
simulation (green) and real world (blue) action distributions for images described by similar language. The second
row shows the same distribution of simulation actions (green) as in the first row, but compared with real-world
action distributions from images labeled with very different language from the sim actions (blue). Notably, the
action distributions are generally similar for images with similar language (first row), and different for images with
different language (second row). This suggests that pretraining our CNN on language embedding prediction benefits
downstream policy learning because it allows the domain-invariant learned representations to tap into similar action
distributions for completing a task.

For example, for the pick-and-place/stack ob- ject task, we define 7 stages and 7 corresponding
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Figure 5: This table builds on Figure 3 and depicts the 3 datasets for each task with filmstrips. The rows show the
three task suites while each column represents one of the three datasets we use during pretraining or policy learning.
Our main results in Tables 1 and 6 use Ds ∪Dt

target for pretraining and policy learning, whereas our results in
Table 3 use Ds ∪Dt

prior for pretraining and Ds ∪Dt
target for policy learning. This table shows the visual differences

between sim and real, as well as the task in Dt
prior versus Dt

target.

language string templates, where the first stage
is when the gripper moves toward a point above
the object, the second stage is when the gripper
moves downward toward the object, and so on. For
the 2-step pick-and-place task, we use 14 stages—
2 consecutive lists of the 7 individual pick place
string templates, where the object and container
variables of each template are filled in with the
proper names.

Though our approach to labeling image observa-
tions with language was done during demonstration
collection, we emphasize that images can be auto-
matically labeled with language in hindsight after
demonstrations are collected. For instance, one can
run an object detector on the images to estimate
the position of the gripper in relation to the scene
objects. This information can be used to determine
what stage in a pick-and-place trajectory an image
observation falls into.

A.8.2 Alternative Approach: Language
labeling with off-the-shelf VLMs

To relax the requirement that our automated lan-
guage labeling process must occur synchronously

with a scripted policy collecting demonstrations,
we implemented an alternative approach that is de-
coupled from the demonstration collection process.
First, we use an off-the-shelf open-vocabulary ob-
ject detector model, GroundingDINO (Liu et al.,
2023), to output bounding boxes for the relevant
objects on the scene. No finetuning of Ground-
ingDINO is required. Second, we train a CNN-
based gripper state predictor to predict the gripper
position (x, y, z) as well as whether the gripper is
opened or closed in a given image. This network
is trained on previously collected (image, gripper
position, gripper opened/closed) data from 100 tra-
jectories, and takes one minute to train on a single
A5000 GPU. Using these two models, we can get
the gripper state and position relative to the objects,
enabling us to predict a stage number that corre-
sponds fairly closely with the actual stage number
as outputted by our scripted policy. Finally, we ver-
ified that training our method on VLM-derived lan-
guage annotations does not degrade performance.
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Table 3: sim2real: Performance in Ds ∪Dt
target ∪Dt

prior setting by Number of Target Task Demonstrations

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target Dt

prior 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt data only) – ✓ ✓ 45 30 65 40 20 30 1.15 0.9 1.15 25 45 35
No Pretrain (Ds+Dt data) ✓ ✓ ✓ 20 55 25 45 30 50 1.25 1.2 1.4 15 30 30

MMD ✓ ✓ ✓ 35 30 40 70 45 35 1.65 1.25 1.2 15 0 20
Domain Random. ✓ ✓ ✓ 25 45 60 15 15 20 0.9 0.55 0.85 0 5 5

ADR+RNA ✓ ✓ ✓ 15 10 20 50 5 50 1.35 0.7 1.25 15 10 20

Lang Reg. (ours) ✓ ✓ – 50 55 85 55 80 95 1.2 1.8 1.95 25 50 55
Lang Dist. (ours) ✓ ✓ – 30 65 70 25 50 65 0.95 1.4 1.5 15 25 60

Stage Classif. ✓ ✓ – 70 60 70 20 60 85 0.9 1.5 1.8 15 20 70

CLIP (frozen) ✓ ✓ ✓ 30 25 35 25 45 35 0.55 0.95 0.95 35 40 45
R3M (frozen) ✓ ✓ ✓ 80 70 80 75 75 85 1.6 1.55 1.75 30 25 20

Table 4: Policy π hyperparameters.

Attribute Value
Input Height 128
Input Width 128
Input Channels 3
Number of Kernels [16, 32, 64, 128]
Kernel Sizes [7, 3, 3, 3, 3]
Conv Strides [2, 2, 1, 1, 1]
Maxpool Stride 2
Fully Connected Layers [1024, 512, 256]
Hidden Activations ReLU
FiLM input size 384
FiLM hidden layers 0
Spatial Softmax Temperature 1.0
Learning Rate 3× 10−4

Policy Action Distribution GaussianN (µ, σ)
Policy Outputs (µ, σ)
Image Augmentation Random Crops
Image Augmentation Padding 4

A.9 Additional Experimental Questions and
Results

What is the effect of pretraining on image-
language pairs where the language granularity is
reduced? We evaluate the impact of reduced lan-
guage granularity on sim2real performance. See
Appendix A.9.1 for results.

How does our method perform if we cannot pre-
train directly on image-language pairs from the
target task? There are scenarios in which we might
not have access to the real-world target task Dt

target

during the pretraining phase, as pretraining is often
done without knowledge of the downstream task.
To investigate this, we introduce a real-world prior
task Dt

prior that we pretrain on, and use real-world
target task data Dt

target only during imitation learn-
ing. The advantage of this problem setup is that we
can reuse the same fcnn for multiple downstream
real-world target tasks as long as they are suffi-

ciently similar to the real-world prior task. In this
modified problem setup, our method still mostly
outperforms all baselines, which demonstrates that
our method does not overfit to the real-world task
it sees during pretraining. See Appendix A.9.2 for
full results.

A.9.1 Impact of Language Granularity on
Performance

To examine the impact of decreasing language gran-
ularity on sim2real performance, we segment the
trajectories into fewer and fewer stages, until the
extreme case where the entire trajectory has only
a single stage, which means that all images across
all trajectories of a task have the same exact lan-
guage description embedding. The language de-
scriptions we use for each stage, for varying num-
bers of stages per task, are displayed in Tables 8
(2-step pick-and-place) and 9 (wire wrap).

Results are shown in Table 7. The trend is noisy,
but in general, decreasing language granularity
hurts performance slightly. Still, our method is
robust to lower granularity, which matches our hy-
pothesis that our pretraining approach provides sig-
nificant performance gains simply by pushing sim
and real images into a similar embedding distribu-
tion even if the language granularity is extremely
coarse.

A.9.2 sim2real results with no pretraining on
Dt

target

In Tables 1 and 6, we presented results in a setting
where we both pretrained and did policy learning
on two datasets, Ds and Dt

target. Sometimes it is
unrealistic to assume that during pretraining, we
have access to the downstream target task we are ul-
timately interested in. In such scenarios, it may be
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more realistic to assume we instead have real-world
data for a prior task, Dt

prior. Thus, in this setting,
we experiment with pretraining on Ds ∪Dt

prior and
training our policy on Ds ∪Dt

target.
Our method uses extra language labels during

pretraining that the baselines do not have access
to. While these language labels can be acquired at
scale, to compensate for this data advantage, we
decided to give all baselines an augmented Dt

prior

dataset that includes action-labeled demonstrations,
in addition to the target task, Dt

target. Note that
our method is not given Dt

prior action-labeled data:
it is trained only on Dt

prior images with language
labels during image-language pretraining (Sec. 4.2)
but not during BC policy learning. Therefore,
the baselines in a sense serve as upper bounds
as they are given

∣∣Dt
prior

∣∣ = 50 additional action-
labeled demonstrations. In other words, during pol-
icy learning, the baselines train on action-labeled
demonstrations from Ds ∪Dt

prior ∪Dt
target while

ours are only trained on Ds ∪Dt
target. Results are

shown in Table 3.
How different are Dt

prior and Dt
target? In

sim2sim and sim2real for stack object and 2-step
pick-and-place, the robot interacts with different
objects in the two real-world tasks. Instead of a
carrot as in Dt

target, in Dt
prior, the robot interacts

with a paper box for the stack object task suite and
a rigid toy wooden block for 2-step pick-and-place.

In sim2sim on wire wrap, Dt
prior contains data

of the beads being wrapped clockwise, instead of
counterclockwise in Dt

target. In sim2real for wire
wrap, the plug, cord, and blender in Dt

target are
replaced by a wooden block, ethernet cable, and
spool, respectively, in Dt

prior data. The differences
between Dt

prior and Dt
target can be visually exam-

ined in Figure 5.
What trends are different between Table 3 (with

Dt
prior) and Table 1 (without Dt

prior)? Most of
the trends are similar. Re-examining our main
experimental questions, we see that our method
still nearly doubles the success rate of both non-
pretrained baselines, outperforms all three prior
sim2real baselines, and that using language regres-
sion is important to achieve the most gains from
pretraining (language regression outperforms stage
classification and language distance, on average).
However, in this new problem setting in sim2real,
R3M outperforms our method in the lowest data
regime with 25 target task demonstrations, per-
haps because of the additional 50 Dt

prior demonstra-
tions that our method does not train on. However,

Figure 6: As in Figure 3, columns depict the three task
suites. From Left to Right: Stack Object, Multi-step
Pick and Place, and Wrap Wire tasks. Top row: simula-
tion Ds, Bottom row: sim2sim Dt

target.

on 50 and 100 trajectories for the longer-horizon
multi-step pick and place task, our method achieves
higher sim2real performance than the best of either
pretrained baseline.

A.10 sim2sim Experiments
We also evaluate our method in the sim2sim set-
ting where we test the transfer abilities between
two simulated domains with visual and physical
differences. Sim2sim serves as a platform to evalu-
ate in depth the behavior of Lang4Sim2Real with a
fully controlled domain gap.

A.10.1 Experimental Setup
In sim2sim, Ds and Dt are both sim environ-
ments with large differences in camera point-of-
view (third person vs. first person), joint friction,
and damping. More details between the two envi-
ronments in sim2sim and sim2real can be found
in Appendix A.7.

For sim2sim evaluation, we also run two seeds
per setting and take a success rate averaged over
720 trials between the two seeds in the final few
hundred epochs of training.

For all three task suites, we define a new Dt

simulated environment with differences from Ds

as enumerated in Sec. 5.1. On wire wrap, for our
Dt sim environment, we additionally swapped the
spheres for capsules and changed the color and tex-
ture of the table, robot arm, and objects to increase
the sim2sim gap.

A.10.2 Experimental Results
See Table 6 for results. As in sim2real, our
method nearly doubles the success rate of both non-
pretrained baselines in most task suites. Between
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the non-pretrained baselines, training on Ds sim
demonstrations in sim2real provides little bene-
fit on stack object, increases average performance
by ≈ 20% on multi-step pick-and-place, but de-
creases average performance by ≈ 10% on wrap
wire. However, in sim2sim, it provides a 10-15%
increase on most tasks. This suggests that the
sim2sim gap is small enough to benefit from using
Ds even without pretraining, but that the sim2real
gap is large enough for pretraining to be needed to
leverage Ds.

In sim2sim, our method also outperforms R3M
and CLIP across the board. Averaging the perfor-
mance on stacking and multi-step pick-and-place,
our method outperforms R3M by 15-30% and CLIP
by 25-40%. On the wrap wire task, our method and
R3M perform comparably, probably because the
task is quite a bit easier for all methods in simula-
tion.

While in sim2real we saw a marked improve-
ment of language regression over stage classifica-
tion, in sim2sim, we see similar performance be-
tween the two. Again, we believe that the sim2sim
gap, which is narrower than the sim2real gap in
our experiments, leads to many of our pretraining
variants and ablations to do similarly when their
performance is noticeably different in sim2real.
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Table 6: sim2sim: Success Rate by Task (%)

Pretraining Stack Object Multi-step Pick and Place Wrap Wire

1 2 3 4 avg 1 2 3 4 avg 1

None (Dt data only) 15.2± 6.5 18.9± 6.7 31.9± 8.5 25.4± 9.2 22.9 20.8± 7.5 17.7± 4.4 16.3± 5.0 17.3± 8.1 18.0 69.2± 8.3
None (Ds+Dt data) 22.5± 9.2 32.3± 9.8 37.9± 8.8 29.2± 8.3 30.5 28.4± 10.9 31.3± 10.7 13.9± 5.5 27.8± 10.2 25.4 82.1± 6.8

Lang Reg. (ours) 20.6± 8.1 57.3 ± 8.1 63.1± 7.7 32.5 ± 6.3 43.4 54.0± 7.2 62.5 ± 12.1 76.0± 8.7 58.5± 9.3 62.8 90.7± 5.4
Lang Dist. (ours) 23.8± 5.4 57.3 ± 10.6 66.9± 5.6 27.9± 10.8 44.0 65.5 ± 13.1 56.7± 9.9 78.6 ± 5.1 54.4± 11.5 63.8 90.0± 5.0

Stage Classif. 30.4 ± 10.4 52.7± 6.0 67.5 ± 8.3 27.9± 7.1 44.6 63.1± 9.9 62.1± 9.3 55.4± 8.5 67.7 ± 9.7 62.1 91.4 ± 3.6

CLIP (frozen) 1.7± 0.4 1.9± 1.9 3.8± 2.5 4.0± 2.7 2.9 36.1± 14.3 39.9± 8.9 28.8± 8.9 48.4± 11.9 38.3 75.6± 7.7
R3M (frozen) 4.5± 3.3 9.0± 4.8 19.8± 6.9 15.4± 5.4 12.2 49.4± 11.6 36.5± 11.9 47.0± 14.1 56.0± 10.0 47.2 90.2± 4.4

Table 7: sim2real: Performance with Varying Language Granularity

Method Multi-step Pick and Place Wrap Wire
Success Rate (%) Subtasks Completed Success Rate (%)

25 50 100 25 50 100 25 50 100

No Pretrain (Dt) 40 20 30 1.15 0.9 1.15 25 45 35
No Pretrain (Ds +Dt) 45 30 50 1.25 1.2 1.4 15 30 30

all-stages 55 80 95 1.2 1.8 1.95 25 50 55
half-stages 45 60 65 1.15 1.45 1.55 5 35 25

2-stages 35 45 75 1.05 1.3 1.6 20 50 40
1-stage 55 65 80 1.3 1.55 1.75 15 15 45

1 stage per domain 10 50 50 0.65 1.3 1.25 15 15 20
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Table 8: sim2real: Language annotations and language granularity on 2-step real-world pick-and-place

All-stages Half-stages 2-stage 1-stage
gripper open, reaching
for carrot, out of bowl

gripper open, reaching
for carrot, out of bowl

picking carrot and
putting in bowl

random language
embedding

gripper open, moving
down over carrot, out of
bowl
gripper closing, with
carrot, out of bowl

gripper closing, with
carrot, out of bowl

gripper closed, moving
up with carrot, out of
bowl

gripper closed, moving
up with carrot

gripper closed, moving
sideways with carrot,
out of bowl
gripper closed, with car-
rot, above bowl
gripper open, dropped
carrot, in bowl

gripper open, dropped
carrot, in bowl

gripper open, reaching
for bowl, out of plate

gripper open, reaching
for bowl, out of plate

picking bowl and
putting in plate

gripper open, moving
down over bowl, out of
plate
gripper closing, with
bowl, out of bowl

gripper closing, with
bowl, out of plate

gripper closed, moving
up with bowl, out of
plate

gripper closed, moving
up with bowl

gripper closed, moving
sideways with carrot,
out of bowl
gripper closed, with
bowl, above plate
gripper open, dropped
bowl, in plate

gripper open, dropped
bowl, in plate
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Table 9: sim2real: Language annotations and language granularity on wire wrap

All-stages half-stages 2-stage 1-stage
gripper open, reaching
for plug

gripper open, reaching
for plug

picking and wrapping
beads around cylinder random language

embedding

gripper open, moving
down over plug
gripper closing around
plug

gripper closing and
lifting plug

gripper closed, moving
up with plug
counter-clockwise left

counter-clockwisecounter-clockwise
front
counter-clockwise right
counter-clockwise back
clockwise left

clockwiseclockwise front
clockwise right
clockwise back
gripper open, above
plug with wire fully
wrapped

gripper open, above
blender with wire fully
wrapped

beads fully wrapped

gripper open, above
plug with wire fully un-
wrapped

gripper open, above
blender with wire fully
unwrapped
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Figure 7: Detailed Policy Network Architecture. Fire denotes layers trained during policy learning. The early CNN
modules are kept frozen to maintain the intermediate representations learned from the pretraining phase.
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