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Abstract

We study the problem of multiview representation learning using kernel canonical corre-
lation analysis (KCCA) and establish non-asymptotic bounds on generalization error for
regularized empirical risk minimization. In particular, we give fine-grained high-probability
bounds on generalization error ranging from O(n−1/6) to O(n−1/5) depending on underlying
distributional properties, where n is the number of data samples. For the special case of
finite-dimensional Hilbert spaces (such as linear CCA), our rates improve, ranging from
O(n−1/2) to O(n−1). Finally, our results generalize to the problem of functional canonical
correlation analysis over abstract Hilbert spaces.

1 Introduction

Canonical correlation analysis (CCA) is a popular technique for multiview representation learning and
statistical data analysis. Given a pair of random vectors, CCA finds maximally correlated linear components
of the two vectors (Hotelling, 1936). CCA-based methods have recently been shown to improve unsupervised
learning of low-dimensional representations of data when multiple “views” of data are available (Vinokourov
et al., 2003; Hardoon et al., 2004; Arora and Livescu, 2013). The different views often contain complementary
information, and CCA-based multiview representation learning methods can take advantage of this information
to learn features that are useful for understanding the structure of the data and that is beneficial for
downstream tasks.

Various nonlinear extensions of these multiview learning techniques have also been proposed including kernel
CCA (Lai and Fyfe, 2000; Akaho, 2001; Hardoon et al., 2004; Fukumizu et al., 2007) based on positive definite
kernels wherein data are represented as functions in associated reproducing kernel Hilbert spaces (RKHS),
and deep neural network based extensions, e.g., deep CCA (Andrew et al., 2013)

While CCA and its nonlinear extensions have enjoyed tremendous empirical success, the theoretical un-
derstanding of the approaches to solving these problems has been somewhat limited. For example, only
recently, were we (as a community) able to give statistical and computational complexity bounds for CCA as
a stochastic optimization problem (aka a learning problem) (Allen-Zhu and Li, 2016; Ge et al., 2016; Arora
et al., 2017). In a similar spirit of understanding the data analysis techniques as learning problems, in this
paper, we look at Kernel CCA and focus on understanding the generalization properties.

However, moving from subspace learning (i.e., linear representations, e.g., using CCA) to learning representa-
tions in an RKHS has additional theoretical challenges associated with it. It is then natural to rely on kernel
duality, i.e., the representer theorem to reduce the empirical risk minimization (ERM) problem to a finite
dimensional optimization problem. Using kernel duality to formulate Kernel CCA was first studied by Lai
and Fyfe (2000), Akaho (2001), Melzer et al. (2001) and Bach and Jordan (2002).
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In this work, we are interested in understanding the statistical properties of the regularized empirical risk
minimizer (defined formally in the subsequent sections) using excess generalization error as the error criterion.
Informally, excess generalization error of an estimator is the excess error, incurred in objective (or cost),
compared to the best, with respect to the underlying data distribution (see Section 3 for a precise formula).
This problem has been studied in prior works of (Fukumizu et al., 2007; Fan and Lian, 2016), however their
results are asymptotic (see paragraph “Relation to prior work" for more details). Further, these works have
studied Kernel CCA in terms of estimation error (or convergence in parameters), and we emphasize that
studying the problem in terms of generalization error (or convergence in objective) is important for the
following reasons. (Modern) machine learning is typically posed as risk minimization problem where the goal
is to find parameters that are good in terms of the objective (aka generalization error or population risk)
rather than finding the true parameters (under some statistical model). Taking a learning view of the KCCA
problem, we therefore measure the quality of the solution in terms of the objective rather than distance from
a ground truth (which may or may not be unique). This error criterion has been used in the prior works,
such as Arora et al. (2017) and Wang et al. (2016), for (linear) CCA. Hence, the main goal in our work, is
to give “fine-grained" non-asymptotic guarantees on excess generalization error of regularized empirical risk
minimizer (a widely used estimator) for kernel CCA.

1.1 Our Contributions

Our main contributions are as follows.

1. We pose kernel CCA as a learning problem and give upper bounds on excess generalization error of
the regularized Empirical Risk Minimizer (ERM). Our results hold for the more general problem of
functional CCA in abstract Hilbert spaces. To the best of our knowledge, this is the first work which
establishes statistical rates of a finite sample estimator for functional CCA. As special cases, our
results give generalization bounds for Kernel CCA and linear CCA, and for both of these special
cases, we establish novel results compared to previous work (see below).

2. Under standard assumptions (see Assumption 1), we obtain non-asymptotic bounds on excess
generalization error of regularized ERM for kernel CCA, which are between O

(
n−1/6) to O(n−1/5)

depending on properties of the underlying distribution, where n is the number of data points (see
Theorem 1). In contrast, previous works only yield asymptotic guarantees. In the setting when the
Reproducing Kernel Hilbert Spaces (RKHS) are finite dimensional, we obtain faster rates ranging
from O

(
n−1/2) to O(n−1) (see Corollary 3). In the special case of linear CCA, our optimistic rate

(i.e. O
(
n−1)) is better that the previous result of Gao et al. (2017) and the worse case rate is better

in the regime where eigengap of covariance matrix at k is o(1/
√
n) (see Section 4 for details).

3. Our analysis provides insights on the role that regularization parameter plays towards trading off
approximation error (bias) and estimation error (variance) and in ensuring statistical consistency of
the estimator. In particular, in our bounds, the regularization parameter can decay as ω(n−1/2) and
ensure statistical consistency of the estimator – see paragraph “Regularization parameter" in Section
4 for details.

Our proof strategy is to decouple the estimation and approximation errors in the learning problem, bound
them separately and balance the tradeoff (between them). To bound the estimation error, the primary tool we
use is local Rademacher complexity analysis (Bartlett et al., 2002), which allows us to get a spectrum of rates,
from worst case to optimistic (depending on how “easy” the problem is). In the context of kernel methods,
these techniques have been applied to give improved rates for kernel principal component analysis (Blanchard
et al., 2007), support vector machines (SVMs) with random Fourier features (Gilbert et al., 2018) and other
kernel learning problems (Mendelson, 2003; Cortes et al., 2013; Ullah et al., 2018). Please see Section 5 for a
detailed proof sketch.

Relation to prior work. Herein, we informally discuss how our work compares with prior results. We
refer the reader to paragraph “Comparison with prior works", in Section 4 for more details. Previous
work has studied the the statistical properties of Kernel CCA through the lens of statistical estimation of
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Problem Error criterion Convergence rate Reference
Kernel CCA Parameter op(1) Fukumizu et al. (2007)
Kernel CCA Parameter Op(n−α/(α+1))† Fan and Lian (2016)
Kernel CCA Objective O(n−1/6) to O(n−1/5) Ours (Corollary 2)
(Linear) CCA Objective O((gap2n)−1)‡ Gao et al. (2017)
(Linear) CCA Objective O((gap

√
n)−1) to O((gap n)−1)‡ Ours (Corollary 3).

Table 1: Summarizing our results in context of relevant prior works. In the table, “Parameter" and “Objective"
stand for convergence in parameter and objective respectively (see Section 4 for details). †: obtained under
additional assumption on eigenvalues of covariance operators – see Eqn. (3), and α = min(αX , αY) therein.
‡ : gap = λ1(C)− λ2(C) is the eigengap.

parameters. (i.e by bounding estimation error). In particular, the works that are most related to ours are
that of of Fukumizu et al. (2007) and Fan and Lian (2016). Under standard assumptions, Fukumizu et al.
(2007) established statistical consistency of the regularized ERM solution if the regularization parameter
λ = ω(n−1/3). More recently, Fan and Lian (2016) established minimax statistical rates for Kernel CCA under
additional assumptions on the problem. The guarantees in both Fukumizu et al. (2007) and Fan and Lian
(2016) are asymptotic. Fukumizu et al. (2007) show that as number of samples n→∞, the estimation error
goes to 0, in probability. The work of Fan and Lian (2016) gave rates but these are also in the convergence in
probability sense. To elaborate, they consider the event that the estimation error random variable grows
faster that certain sequence in n, and show that probability of this event is limiting to 0. These notions
do not give any quantitative finite sample guarantees, and are even weaker than convergence in mean. On
the other hand, our guarantees are non-asymptotic - the bounds hold with probability, say at least 1− δ,
over the randomness in data for any sample size; and importantly the sample complexity bounds only has
poly(log(1/δ)) dependence in the failure parameter δ - what are known as “high confidence" guarantees.

In Table 1, we give a summary of our results in context of prior works.

Organization. The rest of the paper is organized as follows. We give mathematical preliminaries in
Section 2. In Section 3, we present functional and kernel CCA as learning problems, emphasizing the role of
kernel duality and regularization. In Section 4, we present our main result and discuss various implications.
Finally, in Section 5, we conclude a brief sketch of the proof.

2 Preliminaries

In this section, we quickly review some mathematical preliminaries in functional analysis; a didactic treatment
of random variables in Hilbert spaces, reproducing kernel Hilbert spaces and Local Rademacher complexity is
presented in Appendix A.

Let (HX ,FX , ρX ) and (HY ,FY , ρY) be two measurable Hilbert spaces where HX , HY are separable spaces,
FX , FY are σ-fields and ρX , ρY are probability measures. Let

{
eXi
}
i∈N and

{
eYi
}
i∈N be an orthonormal

basis for HX and HY respectively. Let h1, h
′
1 ∈ HX and h2, h

′
2 ∈ HY . We use 〈h1, h

′
1〉ρX or 〈h1, h

′
1〉HX , as

per convenience, to denote the inner product between two elements. Similarly we use ‖h1‖ρX or ‖h1‖HX for
norms.

An operator D : HY → HX is bounded if its operator norm ‖D‖, defined as ‖D‖ := sup{‖Dh‖HX ,h ∈
HY , ‖h‖HY ≤ 1} < ∞. The outer product h1 ⊗L(HY ,HX ) h2 is an operator from HY to HX , which acts as
(h1 ⊗L(HY ,HX ) h2)h = 〈h2, h〉HY h1 for h ∈ HY . The adjoint operator of D, denoted as D∗ : HX → HY , is
defined as 〈h1,Dh2〉HX = 〈D∗h1, h2〉HY .

A bounded operator is self-adjoint if D∗ = D. An operator D : HY → HX is Hilbert-Schmidt if its
Hilbert-Schmidt norm, denoted as ‖D‖L(HY ,HX ) :=

∑
i∈N
∥∥DeYi

∥∥2
HX

=
∑
i,j∈N

〈
DeYi , eXj

〉
HX

< ∞. We use
L(HY ,HX ) to denote all Hilbert-Schmidt operators from HY to HX . For the sake of brevity, we use L(HX )
to denote Hilbert-Schmidt operators from HX to HX . An operator D : HX → HY is compact if the image of
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every bounded subset of HX is a relatively compact subset of HY . A compact operator D : HX → HX is
trace-class if ‖D‖L1(H) :=

∑
i≥1
〈
(DD∗)1/2e1

i , e
1
i

〉
HX

<∞, where ‖D‖L1(HX ) denotes the nuclear norm of D.
An operator D : HX → HX is positive if ∀ f ∈ HX , 〈f,Df〉HX ≥ 0. The identity operator IX : HX → HX is
defined as IX f = f ∀ f ∈ HX .

Notation. We use capital Roman letters (e.g., A) to denote matrices and operators, small Roman letters
(e.g., a) for vectors and small letters (e.g., a) for scalars. Operators over the space of Hilbert-Schmidt
operators are represented using capital Fraktur letters, e.g., A. For a Hilbert-Schmidt operator D, λi(D)
denotes its ith eigenvalue. Similarly, σi(D) denotes the ith singular value of D. We use PkD to denote the top
rank k projection of D; for example, if the Singular Value Decomposition (SVD) of D is D =

∑
i∈N λiui ⊗ vi,

then PkD =
∑k
i=1 ui ⊗ vi. We use Ik ∈ Rk×k to denote a k × k identity matrix. Natural numbers are denoted

by N; [n] denotes natural numbers from 1 to n.

3 Problem Setup and Background

We begin by recalling the finite dimensional CCA problem. For paired random vectors, x ∈ X ⊆ RdX and
y ∈ Y ⊆ RdY , with some unknown joint distribution ρ, Canonical Correlation Analysis (CCA) can be posed
as the following problem.

maximize
U∈RdX×k,V∈RdY×k

〈
UV>,Ex,y

[
xy>

]〉
such that U>Ex

[
xx>

]
U = Ik,V>Ey

[
yy>

]
V = Ik,

where 〈A,B〉 = Trace(A>B) is the standard inner product on matrices.

Functional CCA. We can generalize the above formulation to abstract Hilbert spaces. In particular, when
x and y are random variables in Hilbert spaces HX and HY , respectively, the functional CCA problem can
be formulated as,

maximize
U∈L(HX ,Rk),V∈L(HY ,Rk)

〈UV∗,CXY〉L(HY ,HX ) such that U∗CXU = Ik,V∗CYV = Ik,

where CX = E
[
x ⊗L(HX ) x

]
and CY = E

[
y⊗L(HY) y

]
are auto-covariance operators, and CXY =

E
[
x ⊗L(HY ,HX ) y

]
is a cross-covariance operator (we refer the reader to Appendix A for a definition).

Kernel CCA. Nonlinear CCA extends the problem of CCA in to a high dimensional feature space using
nonlinear feature maps. Kernel CCA is one popular variant of nonlinear CCA where the feature maps are
implicit in the kernel functions. It can be viewed as a special case of functional CCA with RKHS HX and
HY over X and Y associated with kernel functions kX and kY , respectively:

maximize
U∈L(HX ,Rk),V∈L(HY ,Rk)

〈UV∗,CXY〉L(HY ,HX ) such that U∗CXU = Ik,V∗CYV = Ik,

where CX = E
[
kX (x, ·)⊗L(HX ) kX (x, ·)

]
,CY = E

[
kY(y, ·)⊗L(HY) kY(y, ·)

]
are auto-covariance operators,

and CXY = E
[
kX (x, ·)⊗L(HY ,HX ) kY(y, ·)

]
is the cross-covariance operator.

Basis transformation. An alternative equivalent formulation of CCA is obtained by rotating the compo-
nents in the canonical basis. We then get the following formulation.

maximize
U∈L(HX ,Rk),V∈L(HY ,Rk)

〈
UV∗,C−1/2

X CXYC−1/2
Y

〉
L(HY ,HX )

such that U∗U = Ik,V∗V = Ik.

At first, the reformulation above seems to require that the auto-covariance operators are invertible. In the
context of kernel CCA, if the feature space corresponding to the kernel function is finite dimensional (for
example, when using polynomial kernels), then invertibility can hold. However, it does not hold in general,
for example when using a Gaussian kernel, the auto-covariance operators can no longer be trace-class. This
is a problem since the standard assumption of random variables being bounded implies the corresponding
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auto-covariance operators are trace class and therefore we have a contradiction. However, note that we can
instead write the above equivalently as,

maximize
U∈L(HX ,Rk),V∈L(HY ,Rk)

〈UV∗,C〉L(HY ,HX ) s.t. C1/2
X CC1/2

Y = CXY ,U∗U = Ik,V∗V = Ik. (1)

The existence and uniqueness of such an operator C, bounded as ‖C‖ ≤ 1, is established in Baker (1973,
Theorem 1) and also discussed in Section 2.2 of Fukumizu et al. (2007). As in Fukumizu et al. (2007), we
assume that C is compact and abuse the notation to write C = C−1/2

X CXYC−1/2
Y even when these are not

invertible.

We now discuss a final assumption. Note that since CX and CY are self-adjoint, a spectral decompo-
sition of CX and CY exists. Let CX :=

∑∞
i=1 λi(CX )φXi ⊗L(HX ) φ

X
i and CY :=

∑∞
i=1 λi(CY)φYi ⊗L(HY)

φYi where
{
φXi
}
i

and
{
φYi
}
i

are the eigenfunctions of CX and CY respectively. We define

γij := Ex,y

[〈
φXi ⊗L(HY ,HX ) φ

Y
i ,CXY

〉
L(HY ,HX )

]
. We assume that maxi,j

∣∣∣∣ γij

λi(CX )
√
λi(CY)

∣∣∣∣ ≤ 1 and

maxi,j
∣∣∣∣ γij√

λi(CX )λi(CY)

∣∣∣∣ ≤ 1. With abuse of notation, this means that the operators C−1
X CXYC−1/2

Y and

C−1/2
X CXYC−1

Y are bounded, and their operator norms bounded by 1. These assumptions have appeared in
previous works Fukumizu et al. (2007) and Fan and Lian (2016) and ensures existence of a solution to the
kernel CCA problem.

Observe that the solution to the CCA problem in Eqn. (1) is given by the singular value decomposition
(SVD) of C. In particular, let uC

1 , uC
2 , . . . , uC

k and vC
1 , vC

2 , . . . , vC
k be the top-k left and right singular functions

of C, respectively. We define UC : Rk → HX such that UCb =
∑k
i=1 biuC

i , where b ∈ Rk ; and similarly VC.
The solution to the CCA problem in Eqn. (1) is UC and VC.

Empirical Risk Minimization (ERM). We now discuss the learning problem and a finite sample
estimator. Let {(xi, yi)}ni=1 be n data points drawn i.i.d. from ρ. We first define empirical counterparts
of auto covariance and cross-covariance operators. We define Cn

X : HX → HX and Cn
Y : HY → HY as

Cn
X = 1

n

∑n
i=1 xi ⊗L(HX ) xi and Cn

Y = 1
n

∑n
i=1 yi ⊗L(HY) yi, respectively. Similarly, the empirical cross-

covariance operator CnXY = 1
n

∑n
i=1 xi ⊗L(HY ,HX ) yi. We also define Cn := (CnX )−1/2 CnXY

(
CnY
)−1/2. ERM is

formulated as,

maximize
U∈L(HX ,Rk),V∈L(HY ,Rk)

〈UV∗,Cn〉L(HY ,HX ) such that U∗U = Ik,V∗V = Ik.

The solution to the ERM problem above, analogously, are the singular functions of Cn. Let un1 ,un2 , . . . ,unk
and vn1 , vn2 , . . . , vnk be the top-k left and right singular functions of Cn respectively. We define Un : Rk → HX
such that Unb =

∑k
i=1 biuni , where b ∈ Rk, and similarly Vn.

Excess Generalization error. As motivated in Section 1, we are interested in studying the kernel CCA
problem from the point of view of learning, i.e., generalization error. The excess generalization error of an
estimator is the excess error incurred, in objective, compared to the best, with respect to the underlying
distribution. The excess generalization error of ERM solutions (i.e. (Un,Vn)) is the following,

E(Un,Vn) = 〈UCV∗C −UnV∗n,C〉L(HY ,HX ) .

Kernel duality. Note that even if we establish statistical convergence of the estimator, we cannot talk
about computational aspects as these are infinite dimensional objects. However, in the special case of RKHS,
we can appeal to kernel duality to guarantee efficient computation. In the context of CCA, by observing
that the solution should lie in the span of data, Akaho (2001) and Bach and Jordan (2002) show that the
empirical problem is equivalent to solving the following finite dimensional optimization problem.

maximize
U∈Rn×k,V∈Rn×k

〈
UV>, 1

n
KXKY

〉
such that 1

n
U>K2

XU = Ik,
1
n

V>K2
YV = Ik,
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where KX and KY are n×n kernel matrices with (KX )ij = kX (xi, xj) and (KY)ij = kY(yi, yj). Solving
this typically takes O

(
n2k

)
time and O

(
n2) space. However, there are faster approximate alternatives,

for example, those based on approximate feature maps (Rahimi and Recht, 2007; Kar and Karnick, 2012),
Nyström’s method (Drineas and Mahoney, 2005) and sketching (Yang et al., 2015).

3.1 Regularization

Empirical risk minimization (ERM) is one of the most popular learning rules. However, without an appropriate
inductive bias, e.g., in the form of a regularizer, the ERM solution may fail to generalize. For the ERM problem
corresponding to canonical correlation analysis, a natural regularizer is a variant of Tikhonov regularization
(Groetsch, 1984), which can be described as follows. Define Cn,λXX := CnX + λX IX , Cn,λYY := CnY + λY IY and
Cn,λ := (Cn,λXX )− 1

2 CnXY(Cn,λYY )−1/2, where λX and λY are regularization parameters, and IX and IY are the
identity operators over HX and HY , respectively. The regularized ERM problem for CCA (Hardoon et al.,
2004; Vinokourov et al., 2002) is then given as:

maximize
U∈L(HX ,Rk),V∈L(HY ,Rk)

〈
UV∗,Cn,λ

〉
L(HY ,HX ) such that U∗U = Ik,V∗V = Ik.

The regularization above corresponds to shifting the spectrum of the auto-covariance operators for λX , λY > 0,
so that all eigenvalues are positive. Intuitively, we can see that this regularizer biases the problem to tradeoff
solutions which maximize correlation and are not along directions with small (non-zero) variance. Specifically,
since for all practical purposes, we only observe finitely many samples, and so the presence of very small
eigenvalues magnifies the spurious correlations observed. It is therefore imperative to minimize the effect of
such small eigenvalues.

We emphasize that regularization parameters λX and λY should be viewed as parameters dependent on n,
as is standard in statistical machine learning. Moreover, in such problems, it is usually expected that the
regularization parameter decays fast with the number of samples, e.g., as poly(1/n). In Section 4, we discuss
the approximation and estimation error tradeoff and how to set the regularization parameters appropriately to
optimize it, to have a small overall excess generalization error. In the case where the auto-covariance operators
are already positive definite, i.e., their eigenvalues are lower bounded away from zero, the regularization
parameters can be viewed as minimum eigenvalues of the corresponding operators. This gives us the rates for
kernel CCA in finite dimensional Hilbert spaces, as presented in Corollary 3.

4 Main Results

We first collectively state all necessary and simplifying assumptions, and then state our main theorem. All
these assumptions are standard and have appeared in the previous works, and we discussed some of these in
the prior section.
Assumption 1. We assume that the Hilbert spaces HX and HY are separable, random variables x and y are
centered and bounded as, ‖x‖HX ≤ β and ‖y‖HY ≤ β almost surely, that C, defined in Eqn. (1), is compact and
the singular values of C are distinct. We assume that

∥∥∥CX−1CXYCY−1/2
∥∥∥ ≤ 1 and

∥∥∥CX−1/2CXYCY−1
∥∥∥ ≤ 1.

Theorem 1 (Functional CCA). Let x and y be random variables in Hilbert spaces HX and HY , and let
ρ be the joint distribution over HX × HY , and ρX and ρY denote its marginals. Under the conditions of
Assumption 1, given data samples (x1, y1), (x2, y2), . . . , (xn, yn) drawn i.i.d. from ρ, with probability at least
1− δ, the excess generalization error of regularized ERM, Unλ, vn,λ, is bounded as,

〈
UCV∗C −Un,λV∗n,λ,C

〉
L(HY ,HX ) ≤ 4k

(√
λX +

√
λY

)(
1 + 2

σk(C)

)
+

16k
(√
λX +

√
λY

)2

σk(C)

+ inf
h≥0

{
12αρh
λXλYn

+ 24αρ
√
h

λXλYn
+ 24√

n

√
k

λXλY

∑
j>h

λj(C′)
}

+ 12αρ
λXλYn

+ 22β
√
k log(1/δ)(√
λXλY

)
n

+ 10αρ log(1/δ)
λXλYn
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where αρ = E
(x,y)∼ρ,(x′,y′)∼ρ

〈x, x′〉2HX 〈y, y
′〉2HY/(λk(C)− λk+1(C)) and C′ ∈ L(L(HY ,HX )), defined as C′ :=

Ex,y
[(

x ⊗L(HY ,HX ) y
)
⊗L(L(HY ,HX ))

(
x ⊗L(HY ,HX ) y

)]
− CXY ⊗L(L(HY ,HX )) CXY .

A few remarks are in order. First, for simplicity, consider the case when λX = λY = λ. If we only consider
the dependence on λ (which should be set as 1/poly(n)), the operator C′ and n, with probability at least
1− δ, we get the following bound,

〈
UCV∗C −Un,λV∗n,λ,C

〉
L(HY ,HX )

≤ O

(
√
λ+ log(1/δ)

gapk(C)λ2n
+ inf
h≥0

{
h

gapk(C)λ2n
+ 1
λ
√
n

√∑
j>h

λj(C′)

})
(2)

where gapk(C) = λk(C)−λk+1(C) is the eigengap of C at k, which shows up in our generalization bound. We
emphasise that the existence of eigengap at k as well as that the eigenvalues of C are distinct (in Assumption
1) are simplifying assumptions. The analysis goes through even otherwise; however then the dependence on
gap at k is replaced by gap at pth singular value where p > k. Moreover this dependence on gap, in general,
is unavoidable, as evidenced by existing lower bounds in the special case of linear CCA(Gao et al., 2017,
Lemma 20).

Spectrum decay of C′. We see that the convergence rate is crucially controlled by the decay of the spectrum
of C′, i.e. the term 1

λ
√
n

∑
j>h λj(C′). In the worst case, it behaves as O

(
1

λ
√
n

)
; the best is when C′ is of finite

rank, where it behaves as O(1/λn). Furthermore, if the spectrum has an exponential decay, it is O(logn/n).
We emphasize that this term is the result of the local Rademacher complexity analysis which manifests as a
spectrum of convergence rates based on higher-order distributional properties.

Optimizing the Approximation-Estimation error tradeoff. We call the first term on the right hand
side of the inequality (2) as the bias and the second and third term, collectively, as the variance. We have that
bias is in O(

√
λ) but the variance behaves differently depending on the spectrum decay of C′. In the worst

case, the variance is in O(λ−1n−1/2). Optimizing the tradeoff, we get a rate of O(n−1/6) when λ = Θ(n−1/3).
In the best case, the variance decays as O(λ−2n−1), which yields an optimistic rate of O(n−1/5) when
λ = Θ

(
n−5/2).

Kernel CCA. When Hilbert spaces HX and HY are RKHS associated with kernel functions kX and kY
respectively, then Theorem 1 gives statistical rates of convergence of empirical kernel CCA in terms of the
objective. In particular, we have the following corollary.
Corollary 2 (Kernel CCA). Along with the notations and assumptions of Theorem 1, suppose that HX and
HY are reproducing kernel Hilbert spaces associated with kernel functions kX and kY , respectively. Then,
regularized ERM on n data points outputs Un,λV∗n,λ which satisfies the following with probability at least 1− δ,

〈
UCV∗C −Un,λV∗n,λ,C

〉
L(HY ,HX )

≤ O

(
√
λ+ log(1/δ)αρ

λ2n
+ inf
h≥0

{
hαρ
λ2n

+ 1
λ
√
n

√∑
j>h

λj(C′)

})

where αρ = Ex,y,x′,y′
[
kX (x, x′)2kY(y, y′)2] /(λk(C)− λk+1(C)).

Comparison with prior works. Previous work of Fukumizu et al. (2007) and Fan and Lian (2016) study
Kernel CCA, for k = 1, in the sense of convergence of parameters, i.e. distance between the true and the
estimated solution. In particular, let (u1, v1) be the true solution of Eqn. (1) and let(û1, v̂1) be a candidate
solution. The error is then given by ‖CX 1/2(u1 − û1)‖2HX and similarly, ‖CY1/2(v1 − v̂1)‖2HY . We remark
that this is a stronger notion of convergence and implies convergence in objective. However, (as we will
discuss), their implied results are weaker than ours. Importantly, both these works only give asymptotic
results, in sense of convergence in probability; this means that the success probability over the draw of samples
is not quantified, but only limiting to 1 as n→∞. In contrast, our results being non-asymptotic hold for all
sample sizes. Finally, our results hold for general k as opposed to the above works which are limited to k = 1.
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We now discuss both of these works one by one. The goal in Fukumizu et al. (2007) is to establish statistical
consistency of the (regularized) ERM. They show that as n→∞, the error ‖CX 1/2(u1 − û1)‖2HX = oP (1), 1

and similarly for error ‖CY1/2(v1 − v̂1)‖2HY . On the other hand, as remarked earlier, we give high-confidence
upper bounds on error in objective, as a function of sample size n, for any n.

The other related work of Fan and Lian (2016) establishes minimax rates for Kernel CCA in the sense of
convergence in parameters. However, their results hold under a strict assumption on the decay of eigenvalues
of CX and CY . In particular, there require existence of constants C,αX and αY , such that all eigenvalues of
CX and CY are upper and lower bounded as,

(1/C)j−αX ≤ λj(CX ) ≤ Cj−αX (3)
(1/C)j−αY ≤ λj(CY) ≤ Cj−αY

The statistical rate then, in the sense of convergence of parameters, ‖CX 1/2(u1 − û1)‖2HX =
Op(max(n−αX /(αX+1), n−αY/(αY+1))). As remarked before, these asymptotic guarantees do not quantify
the number of samples required in terms of the confidence parameter δ, and are even weaker than convergence
in mean. Moreover, there is a large regime where their additional assumptions do not hold, but our results
still apply. In particular, suppose that eigenvalues decay exponentially, i.e., λj(CX ) = e−j . Since exponential
decays faster than any inverse polynomial, so it goes below the inverse polynomial for large enough j (and we
are in infinite dimensions) - this violates the condition of Fan and Lian (2016). In general, any sub-polynomial
or super-polynomial eigenvalue value behavior of CX or CY violates their condition; but our results are
agnostic to it. Finally, their result doesn’t provide any insights on how the regularization parameter be set to
control and bias and variance, which is important from a practical perspective.

Regularization parameter. Fukumizu et al. (2007) suggest setting the regularization parameter as
ω(n−1/3) to ensure statistical consistency of the ERM. In contrast, when we set λX = λY = λ, our results
showcase an improvement of the same estimator to ω(n−1/2), together with high-confidence guarantees. This
follows because bias is in O(

√
λ) and variance is of the order O(λ−1n−1/2), so both decrease with n when

λ = ω(n−1/2).

Finite dimensional Hilbert spaces. As a special case, our result can be applied to give guarantees for
(unregularized) ERM wherein we assume that the smallest eigenvalues of auto-covariance operators CX and
CY are lower bounded away from 0 by λX and λY , respectively. This subsumes standard CCA problem as
well as kernel CCA where the RKHS corresponding to the kernel map is finite dimensional. We obtain rates
ranging from n−1/2 to n−1 depending on the spectrum decay of C′.
Corollary 3 (Finite dimensional kernel CCA). Along with the notations and assumptions of Corollary 2,
suppose that RKHS HX and HY are finite dimensional with the eigenvalues of CX and CY lower bounded by
λX > 0 and λY > 0 respectively. Then, ERM on n training data outputs UnV∗n which satisfies the following
with probability at least 1− δ,

〈
UCV∗C −Un,λV∗n,λ,C

〉
L(HY ,HX )

≤ O

(
log(1/δ)

gapk(C)λ2n
+ inf
h≥0

{
h

gapk(C)λ2n
+ 1
λ
√
n

√∑
j>h

λj(C′)

})

where gapk(C) = λk(C)− λk+1(C) is the eigengap of C at k.

Linear CCA. We compare our results with that of Gao et al. (2017) for the special case of the linear
CCA. For k=1, Gao et al. (2017) showed that ERM achieves ε sub-optimality with O(1/gap2λ2ε) sample
complexity, where gap = λ1(C) − λ2(C), ignoring log factors. In comparison, our sample complexity is
O(1/gapλ2ε) in the optimistic case and O(1/λ2εmin{gap, ε}) in the worst case; therefore, our optimistic case
is always better than Gao et al. (2017), whereas the general/worst-case rate is better whenever gap = ω(

√
ε).

See Table 1 for a summary of our results and comparison with prior works.
1Op and oP are standard asymptotic notation for rates of convergence in probability - for a pair of random sequences, fn and

gn, we write fn = Op(gn) if fn/|gn| is bounded in probability, and fn = op(gn) if fn/|gn| converges to 0, in probability.
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5 Proof Sketch
In this section, we sketch the main proof ideas underlying our analysis; full details are deferred to Appendix B.
Recall that the optimal solution to the population objective are given by operators UC and VC that correspond
to the first k eigenfunctions of C∗C and CC∗, where C = C−1/2

X CXYC−1/2
Y . For the sake of analysis, we

introduce regularized whitened population cross-covariance operator Cλ = (CX +λX )−1/2CXY(CY +λY)−1/2,
whose top k left and right singular functions are denoted by UC,λ and VC,λ. The empirical counterparts
are denoted by Cn = (CnX )−1/2Cn

XY(CnY)−1/2, Un and Vn, and the regularized empirical counterparts by
Cn,λ = (Cn,λXX )−1/2CnXY(CY)−1/2, Un,λ and Vn,λ. We begin with the following decomposition of the excess
error into approximation error, and estimation error,

E(Un,λ,Vn,λ) =
〈

UCV∗C −Un,λV∗n,λ,C
〉
L(HY ,HX )

=
〈
UCV∗C −UC,λV∗C,λ,C

〉
L(HY ,HX )︸ ︷︷ ︸

Approximation error

+
〈
UC,λV∗C,λ −Un,λV∗n,λ,C

〉
L(HY ,HX )︸ ︷︷ ︸

Estimation error

=
〈
UCV∗C −UC,λV∗C,λ,C

〉
L(HY ,HX )︸ ︷︷ ︸

Approximation error

+
〈
UC,λV∗C,λ −Un,λV∗n,λ,C− Cλ

〉
L(HY ,HX )︸ ︷︷ ︸

Estimation error 2

+
〈
UC,λV∗C,λ −Un,λV∗n,λ,Cλ

〉
L(HY ,HX )︸ ︷︷ ︸

Error 3

We can write the sum of the first two terms, i.e., the approximation error and the estimation error 2 as

〈UCV∗C,C〉L(HY ,HX ) −
〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX )︸ ︷︷ ︸

Error 1

+
〈
Un,λV∗n,λ,Cλ − C

〉
L(HY ,HX )︸ ︷︷ ︸

Error 2

We bound each of the three error terms separately. The bound on Error 1 and Error 2 (see Appendix B)
holds due to the following lemma which bounds the distance between the whitened covariance operator and
its regularized counterpart.
Lemma 4. Let C = C−1/2

X CXYC−1/2
Y and Cλ = (CX + λX IX )−1/2 CXY (CY + λY IY)−1/2 be its regularized

counterpart. Suppose that C is compact, then, there difference is bounded as, ‖C− Cλ‖ ≤ 4(
√
λX +

√
λY).

It remains to bound Error 3; we prove the following result which follows using the local Rademacher complexity
analysis of Bartlett et al. (2002).
Lemma 5 (Error 3). With probability at least 1− δ, the Error 3 is bounded as,

〈
UC,λV∗C,λ −Un,λV∗n,λ,Cλ

〉
L(HY ,HX ) ≤ inf

h≥0

{
12αρh
λXλYn

+ 24αρ
√
h

λXλYn
+ 24√

n

√
k

λXλY

∑
j>h

λj(C′)
}

+ 12αρ
λXλYn

+ 22β
√
k log(1/δ)√
λXλYn

+ 10αρ log(1/δ)
λXλYn

where αρ = Ex,y,x′,y′
[
〈x, x′〉2HX 〈y, y

′〉2HY
]
/(λk(C)− λk+1(C)).

We sketch a proof of the key result in the next section.

5.1 Proof Sketch of Lemma 5

Our main tool is local Rademacher complexity analysis (Bartlett et al., 2002) of the problem, following its
application in Kernel PCA (Blanchard et al., 2007). The exact statement of local Rademacher complexity
result of (Bartlett et al., 2002) is stated as Theorem 10 in Appendix B. We now discuss how we apply it to
our end. We first define the excess risk function class.

F =
{
fU,V : (x, y)→

〈
UC,λV∗C,λ −UV∗,Cx,y

〉
L(HY ,HX )

| U∗CλXX U = Ik,V∗CλYY V = Ik
}
,
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where UC,λ =
(

CλXX
)1/2

UC,λ,VC,λ =
(

CλYY
)1/2

VC,λ and Cx,y = x ⊗L(HY ,HX ) y.

We remark that we cannot directly apply the local Rademacher complexity technique to this class as Theorem
10 requires that the range of functions be contained in [−1, 1]. We therefore look at G = τF , where
τ =

√
λXλY/(2β

√
k) and show that it satisfies this requirement.

Lemma 6. For any f ∈ G = τF the range of f is contained in [−1, 1], where τ =
√
λXλY

2β
√
k

.

We also need to show that this function class G satisfies the “local" assumption of Theorem 10, i.e., the second
moment is at most a multiple of mean.
Lemma 7. For any f ∈ G, E

[
f2] ≤ µE [f ] where µ = 2αρτ/(λXλY), and αρ =

Ex,y,x′,y′
[
〈x, x′〉2HX 〈y, y

′〉2HY
]
/(λk(C)− λk+1(C)).

Next, we bound the Rademacher complexity of the star shaped hull of the function class conditioned on
bounded second moment. We simplify this by considering a bigger class which contains star(G). Formally, we
show that the family

{
g ∈ star(G) |E

[
g2] ≤ r} is contained in

Sr :=τ
{
(x, y)→〈Γ,Cx,y〉L(HY ,HX ) |Γ∈L(HY ,HX ), ‖Γ‖2L(HY ,HX )≤

4k
λXλY

,〈Γ,CΓ〉L(HY ,HX )≤
r

τ2

}
,

where C′ : L(HY ,HX ) → L(HY ,HX ) is a fourth moment operator, defined as C′ :=
Ex,y

[(
x ⊗L(HY ,HX ) y

)
⊗L(L(HY ,HX ))

(
x ⊗L(HY ,HX ) y

)]
. A crucial technical result follows.

Lemma 8. The Rademacher complexity of Sr is bounded as follows,

Rn(Sr)≤
√
r

n
+ 1√

n
inf
h≥0

{
√
rh+ 2τ

√
k

λXλY

∑
j>h

λj(C′)
}

where C′ = C− CXY ⊗L(L(HY ,HX )) CXY .

A final requirement to apply Theorem 10 is that ψ(r) := µRn(Sr) is a sub-root function in r. This simply
follows from the above lemma and the fact that the pointwise infimum of sub-root functions is a sub-root
function. Furthermore, the existence of an upper bound on the fixed point is again guaranteed because it is a
sub-root function. In particular, we show the following.
Lemma 9. The fixed point of ψ(r), denoted as r∗, is bounded as,

r∗≤τ2

(
inf
h≥0

{
ξ2h

n
+ 2ξ2

√
h

n
+ 4ξ√

m

√
k

λXλY

∑
j>h

λj(C′)
}

+ ξ2

n

)

where ξ = 2αρ
λXλY

, and αρ = E
(x,y)∼ρ,(x′,y′)∼ρ

[〈x, x′〉2HX 〈y, y
′〉2HY ]/(λk(C)− λk+1(C)).

To finish the proof, we set U = (CλXX )−1/2Un,λ and V = (CλYY )−1/2Vn,λ, where Un,λ and Vn,λ are the
solutions to the regularized ERM problem. Note that En[fU,V] ≤ 0 where En is expectation with respect to
the empirical measure. Applying Theorem 10, stated in Appendix B, and letting K → 1 yields Theorem 1.

6 Conclusion

In this work, we established finite sample generalization bounds on regularized ERM for functional and kernel
CCA. The focus here was on understanding the statistical complexity of regularized ERM for kernel CCA.
A promising future direction is to study the problem from an algorithmic and computational perspective,
in particular when using approximate feature maps based on random Fourier features (Rahimi and Recht,
2007), Nyström’s method (Drineas and Mahoney, 2005) or with randomized sketching (Yang et al., 2015).
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Supplementary Material

A Preliminaries

A.1 Random variables in Hilbert spaces

We start with briefly discussing probability theory in Hilbert spaces. Let (HX ,FX , ρX ) and (HX ,FX , ρX ) be
measurable Hilbert spaces. A random variable x in HX is well-defined if and only if every continuous form
〈f, x〉HX is measurable for all f ∈ HX . Its expectation is µX ∈ HX if 〈µX , f〉HX = EρX

[
〈x, f〉HX

]
∀ f ∈ HX .

The existence and uniqueness of µX is guaranteed if ‖x‖HX <∞. We similarly consider the space (HY ,FY , ρY)
with random variable y. Throughout the paper, we assume that the random variable x has mean 0X ∈ HX ,
formally defined as Ex

[
〈x, f〉HX

]
= 〈0X , f〉HX = 0 ∀ f ∈ HX , to simplify the presentation. Similarly, the

mean of y is assumed to be 0Y .
Definition 1 (Auto-covariance operator). Let x be a random variable in a Hilbert space HX such that
‖x‖HX < ∞, with distribution ρX Then, the auto-covariance operator of x, denoted as CX : HX → HX is
defined as, ∀ f, g ∈ HX ,

〈f,CX g〉 =
∫
X
〈f, x〉HX 〈g, x〉HX dρX (x).

Equivalently, CX := EρX
[
x ⊗L(HX ) x

]
. Furthermore, CX is self-adjoint, positive and trace class.

We similarly use CY to denote the auto-covariance operator of random variable y in HY .

Let HX × HY be the product space of HX and HY , and let FX × FY be the σ-field generated by the
product of elements of FX and FY . Let ρ be the joint probability measure on (HX × HY ,FX × FY)
with its marginal/projection on (HX ,FX ) and (HY ,FY) being ρX and ρY respectively. We now define a
cross-covariance operator (Baker, 1973).
Definition 2 (Cross-covariance operator). Let (x, y) be paired random variables in HX ×HY distributed as
ρ, such that ‖x‖HX <∞ and ‖y‖HY <∞. The cross-covariance operator CXY : HY → HX is defined as

〈f,CXYg〉HY = Eρ
[
〈f, x〉HX 〈g, y〉HY

]
.

Equivalently, CXY := Eρ
[
x ⊗L(HY ,HX ) y

]
. The adjoint of CXY , denoted as C∗XY = CYX , which is defined

similarly.

The existence and uniqueness of bounded auto-covariance and cross-covariance operators is guaranteed by
Riesz’s representation theorem (Reed and Simon, 1972).

A.2 Reproducing Kernel Hilbert Spaces

Let X ⊆ RdX and Y ⊆ RdY be finite dimensional data domains corresponding to the two views. Let ρ be
the joint distribution over X × Y and ρX and ρY denote the marginals. We start with a definition of a
reproducing kernel. Our discussion is in the context of kX but it analogously holds for kY as well.
Definition 3 (Reproducing kernel (Sejdinovic and Gretton, 2012)). Let HX be a Hilbert space of real valued
functions over X . A function kX : X × X → R is called a reproducing kernel of HX , if the following hold,

• ∀ x ∈ X , kX (x, ·) ∈ HX
• ∀ x ∈ X , ∀ f ∈ HX , 〈f, kX (x, ·)〉HX = f(x) (Reproducing property)

The function kX (x, ·) is the representer of the evaluation functional at x. The inner product between two
elements can therefore be expressed as 〈kX (x, ·), kX (x′, ·)〉HX = kX (x, x′). Moreover, reproducing kernels are
always positive definite.
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A Reproducing Kernel Hilbert Space, conventionally abbreviated as RKHS, is defined as the completion
of the linear span of {kX (x, ·), x ∈ X} with respect to the inner product 〈kX (x, ·), kX (x′, ·)〉HX = kX (x, x′).
The existence and uniqueness of a reproducing kernel for an RKHS is guaranteed by Riesz-representation
theorem. We point the interested reader to Sejdinovic and Gretton (2012) for more discussion on RKHS.

We now briefly discuss auto-covariance and cross-covariance operators in the context of RKHS. As be-
fore, we assume that supx ‖kX (x, ·)‖HX < ∞ and supy ‖kY(y, ·)‖HY < ∞. The auto covariance operator
over HX , CX : HX → HX is defined as, 〈f1,CX f2〉HX = EρX [f1(x) f2(x)] ∀f1, f2 ∈ HX or equiva-
lently, CX := EρX

[
kX (x, ·)⊗L(HX ) kX (x, ·)

]
. Similarly, CY : HY → HY is defined as, 〈g1,CYg2〉HX =

EρY [g1(y) g2(y)] ∀g1, g2 ∈ HX or equivalently, CY := EρY
[
kY(y, ·)⊗L(HY) kY(y, ·)

]
Furthermore, the

cross-covariance operator CXY : HY → HX is defined as, 〈f,CXYg〉HX = Eρ [f(x) g(y)] or equivalently,
CXY := Eρ

[
kX (x, ·)⊗L(HY ,HX ) kY(y, ·)

]
. These are easy to see from definitions 1 and 2 and applying

reproducing property from definition 3.

Kernel CCA notation. In the context of kernel CCA, we setup the following notation. Let X ⊆ RdX and
Y ⊆ RdY be finite dimensional data domains corresponding to the two views. Let ρ be the joint distribution
over X × Y and ρX and ρY denote the marginals. Let {(xi, yi)}i=1 to n be n data points drawn from ρ. Let
kX and kY be two kernel functions and HX and HY be the RKHS associated with (X , kX ) and (Y, kY)
respectively.

A.3 Local Rademacher Complexity Technique

Rademacher complexity is a data-dependent notion of complexity which captures the richness of a class of
real valued functions with respect to the data distribution. It is a fundamental concept in statistical learning
theory and empirical process theory, and enables uniform convergence guarantees for the learning problem.
We define it formally below.
Definition 4 (Rademacher Complexity). Let F be a set of functions over X and let ρX be a probability
distribution over X . For a positive integer n, let x1, x2, . . . , xn be i.i.d. samples drawn from ρX and let
σ1, σ2, . . . , σn be i.id. samples drawn from Rademacher distribution. The Rademacher complexity of F ,
denoted by Rn(F), is defined as,

Rn(F) = Eσ,x

[
sup
f∈F

1
n

n∑
i=1

σif(xi)
]
.

Local Rademacher complexity technique is a concentration of measure tool, introduced in Bartlett et al.
(2002), which aims to provide a finer analysis of the problem. It is motivated from the claim that the
hypothesis selected by a learning algorithm usually has a low empirical error, and hence looking at the
Rademacher complexity of the whole class is wasteful. Bartlett et al. (2002) use the variance of the empirical
process to constrain the hypothesis class. In particular, if the variance is upper bounded by a constant
multiple of the mean, then the empirical process is well-behaved and admits faster rates. This is formalized
in Theorem 10 (in Section B) which is restated from Bartlett et al. (2002).

Local Rademacher complexity technique, therefore, essentially looks at the Rademacher complexity of a
smaller subset of functions from the original hypothesis class. Formally, we have Rn(F , r) = Rn({f ∈
star(F) |E

[
f2] ≤ r}) where star(F) = {αf | f ∈ F , α ∈ [0, 1]} is the star-hull of F . This technique has been

used to derive sharper generalization bounds for various kernel learning problems (Blanchard et al., 2007;
Ullah et al., 2018; Cortes et al., 2013; Gilbert et al., 2018). Informally, the rate obtained is usually controlled
by the tail decay of the spectrum of a higher order moment. We discuss this in more detail in subsequent
sections.

B Proof of the main theorem

We first restate the local Rademacher complexity result from Bartlett et al. (2002), which is a key tool in our
analysis.

14
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Theorem 10. (Bartlett et al., 2002) Let X be a measurable space and let P be a probability distribution
on X . Let x1, x2 . . . xn be i.i.d. samples drawn from P, let Pn denote its empirical measure, and let
Pf := Ex∼P [f(x)] and Pnf := 1

n

∑n
i=1 f(xi) for a measurable function f . Let F be a class of functions on

X ranging from [−1, 1] and assume that there exists some constant B such that for every f ∈ F ,P2f ≤ BPf .
Let ψ be a sub-root function and let r∗ be the fixed point of ψ. Suppose that ψ satisfies

ψ(r) ≥ BRn{f ∈ star(F)|Pf2 ≤ r}

where star(F) = {λf | f ∈ F , λ ∈ [0, 1]} is the star shaped hull of F and Rn(F) =
Eσ,x

[
supf∈F 1

n

∑n
i=1 σif(xi)

]
is the Rademacher complexity of F given n data points from P, then for

every K > 0 and δ > 0, with probability at least 1− e−δ

∀ f ∈ F ,Pf ≤ K

K − 1Pnf + 6K
B
r∗ + δ(11 + 5BK)

n
(4)

Also, with probability at least 1− e−δ

∀f ∈ F ,Pnf ≤
K

K + 1Pf + 6K
B
r∗ + δ(11 + 5BK)

n
(5)

Furthermore, if ψ̂n is a data-dependent sub-root function with fixed point r̂∗ such that

ψ∗(r) > 2(10 ∨B)Eσ
[
Rn{f ∈ star(F) | Pnf2 ≤ 2r}

]
+ 2(10 ∨B + 11)δ

n

then with probability at least 1− 2eδ, it holds that r̂∗ ≥ r∗; as a consequence, Equations (4) and (5) hold with
r∗ replaced by r̂∗

We now start the proof of Theorem 1. As discussed in the proof sketch in Section 5, we decompose the error
into three terms, and bound each of them one by one.

E(Un,λ,Vn,λ) = 〈UCV∗C,C〉L(HY ,HX ) −
〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX )︸ ︷︷ ︸

Error 1

+
〈
Un,λV∗n,λ,Cλ − C

〉
L(HY ,HX )︸ ︷︷ ︸

Error 2

+
〈
UC,λV∗C,λ −Un,λV∗n,λ,Cλ

〉
L(HY ,HX )︸ ︷︷ ︸

Error 3

The three error terms are bound in Lemmas 11, 14, and 15 respectively. Combining them gives the guarantee
stated in Theorem 1. In the following subsections, we give the proofs of the afore-mentioned lemmas.

B.1 Bounding the Error 1

Lemma 11 (Error 1). Error 1 is bounded as,

〈UCV∗C,C〉L(HY ,HX )−
〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX )≤

8k
σk(C)

((√
λX+

√
λY

)
+2
(√

λX+
√
λY

)2
)

Proof. Note that UC and VC are operators corresponding to the first k left and right singular functions of C.
Therefore 〈UCV∗C,C〉L(HY ,HX ) −

〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX )

is difference of the sum of first k singular values

of C and Cλ. That is, 〈UCV∗C,C〉L(HY ,HX ) =
∑k
i=1 σi(C) and

〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX )

=
∑k
i=1 σi(Cλ). We

15



Published in Transactions on Machine Learning Research (03/2023)

therefore have,

〈UCV∗C,C〉L(HY ,HX ) −
〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX ) =

k∑
i=1

(σi(C)− σi(Cλ))

=
k∑
i=1

(√
λi(CC∗)−

√
λi(CλC∗λ)

)

=
k∑
i=1

(λi(CC∗)− λi(CλC∗λ))√
λi(CC∗) +

√
λi(CλC∗λ)

≤
k∑
i=1

(λi(CC∗)− λi(CλC∗λ))√
λi(CC∗)

where the first inequality follows because λ(CλC∗λ) ≥ 0. We now apply perturbation bounds, in particular
Weyl’s inequality to bound the difference of eigenvalues of operators using the norm of their difference. We
therefore get

〈UCV∗C,C〉L(HY ,HX ) −
〈
UC,λV∗C,λ,Cλ

〉
L(HY ,HX )

≤
k∑
i=1

1
σi(C) ‖CC∗ − CλC∗λ‖

=
k∑
i=1

1
σi(C) ‖CC∗ − CC∗λ + CC∗λ − CλC∗λ‖

≤ k

σk(C) (‖C‖+ ‖Cλ‖) ‖C− Cλ‖

≤ k

σk(C) (2 ‖C‖+ ‖C− Cλ‖) ‖C− Cλ‖

≤ k

σk(C)

(
2 ‖C− Cλ‖+ ‖C− Cλ‖2

)

where in the second inequality we used the fact that singular values are ordered, in the last inquality that
‖C‖ ≤ 1 and triangle inequality in others. We now appeal to Lemma 12 that bounds ‖C− Cλ‖ which
completes the proof.

Lemma 12. Given C = CX−1/2CXYCY−1/2 and its regularized counterpart Cλ =
(CX + λX IX )−1/2 CXY (CY + λY IY)−1/2. Assuming C is compact, there difference is bounded as,

‖C− Cλ‖ ≤ 2(
√
λX +

√
λY)
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Proof. The proof follows the proof of Lemma 7 in Fukumizu et al. (2007).

‖Cλ − C‖

=
∥∥∥(CX + λX IX )−1/2CXY(CY + λY IY)−1/2 − (CX−1/2CXYCY−1/2

∥∥∥
≤

∥∥∥(CX + λX IX )−1/2CXY(CY + λY IY)−1/2 − CX−1/2CXY(CY + λY IY)−1/2
∥∥∥

+
∥∥∥(CX )−1/2CXY(CY + λY IY)−1/2 − CX−1/2CXYCY−1/2

∥∥∥
=

∥∥∥((CX + λX IX )−1/2 − CX−1/2)CXY(CY + λY IY)−1/2)
∥∥∥

+
∥∥∥CX−1/2CXY((CY + λY IY)−1/2 − CY−1/2)

∥∥∥
=

∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )CX−1/2CXY(CY + λY IY)−1/2)
∥∥∥

+
∥∥∥C(CY1/2(CY + λY IY)−1/2 − IY)

∥∥∥
=

∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )CCY1/2 (CY + λY IY)−1/2
∥∥∥

+
∥∥∥C(CY1/2(CY + λY IY)−1/2 − IY)

∥∥∥
≤

∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )C
∥∥∥+

∥∥∥C(CY1/2(CY + λY IY)−1/2 − IY)
∥∥∥

where the last inequality follows since
∥∥∥CY1/2(CY + λY IY)−1/2

∥∥∥
L(HY)

≤ 1 for positive λY . We will now
bound the two terms separately. Suppose for the first term, the operator norm is realized for w ∈ HY ,
‖w‖ = 1 and v = Cw. Fukumizu et al. (2007) remarks that the range of C is contained in the closure of the
range of CX . That is, v ∈ {Cw̃ : w̃ ∈ HY , ‖w̃‖ ≤ 1} ∩ Closure(Range(CX )). Since CX is continuous, we have
that for any ε > 0, there exists ṽ ∈ {Cw̃ : w̃ ∈ HY , ‖w̃‖ ≤ 1} ∩Range(CX ) such that ‖v − ṽ‖HX ≤ ε. Further,
there exists w̃ ∈ HY , ũ ∈ HX such that ṽ = Cw̃ = CX ũ. Plugging this in the first term, we get,∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )v

∥∥∥
HX

=
∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )(ṽ + v − ṽ)

∥∥∥
HX

≤
∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )CX ũ

∥∥∥
HX

+
∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )(v − ṽ)

∥∥∥
HX

≤
∥∥∥(CX + λX IX )−1/2CX 1/2((CX 1/2 − (CX + λX IX )1/2)CX 1/2ũ

∥∥∥
HX

+
∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )

∥∥∥ ‖v − ṽ‖HX
≤
∥∥∥(CX + λX IX )−1/2CX 1/2

∥∥∥∥∥∥CX 1/2ũ
∥∥∥
HX

∥∥∥CX 1/2 − (CX + λX IX )1/2
∥∥∥+ ε

≤ 2
∥∥∥CX 1/2ũ

∥∥∥ · ∥∥∥CX 1/2 − (CX + λX IX )1/2
∥∥∥

where in the first inequality, we used the triangle inequality, where the second equality follows because
(CX + λX IX )−1/2 CX 1/2 (CX + λX IX )1/2 CX 1/2 = CX since these operators are commutative i.e. have the
same eigenspaces. In the second to last inequality, we use that

∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )
∥∥∥ ≤ 1 which fol-

lows because
∥∥∥((CX + λX IX )−1/2CX 1/2 − IX )

∥∥∥ = maxi
∣∣∣∣ √λi(CX )√

λi(CX )+λX
− 1
∣∣∣∣ = maxi

∣∣∣∣√λi(CX )−
√
λi(CX )+λX√

λi(CX )+λX

∣∣∣∣ ≤
1 as CX is trace-class so its eigenvalues go to 0. Finally, the last step follows from

∥∥∥CX 1/2(CX + λX IX )−1/2
∥∥∥ ≤

1 for positive λX and by choosing ε =
∥∥∥(CX + λX IX )−1/2CX 1/2

∥∥∥ ∥∥∥CX 1/2ũ
∥∥∥
HX

∥∥∥CX 1/2 − (CX + λX IX )1/2
∥∥∥.

We will now argue that
∥∥∥CX 1/2ũ

∥∥∥ ≤ 1. This follows by our assumption 1 that the operator CX−1CXYCY−1/2
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is Hilbert-Schmidt. With some abuse of notation, we have that
∥∥∥CX 1/2ũ

∥∥∥ =
∥∥∥CX−1/2ṽ

∥∥∥ =
∥∥∥CX−1/2Cw̃

∥∥∥ =∥∥∥CX−1CXYCY−1/2w̃
∥∥∥ ≤ ∥∥∥CX−1CXYCY−1/2

∥∥∥ ‖w̃‖ ≤ 1 where the first term is bounded by 1 by assumption,
and the second because ‖w̃‖ ≤ 1. Similarly, using the same argument for the other term, we get,∥∥∥C(CY1/2(CY + λY IY)−1/2 − IY)

∥∥∥ ≤ 2
∥∥∥CY1/2ũ

∥∥∥∥∥∥CY1/2 − (CY + λY IY)1/2)
∥∥∥

≤ 2
∥∥∥CY1/2 − (CY + λY IY)1/2)

∥∥∥
Finally using Lemma 13, we get the bound 2(

√
λX +

√
λY).

Lemma 13. For self-adjoint trace-class operator CX and positive λX∥∥∥CX 1/2 − (CX + λX IX )1/2
∥∥∥ ≤√λX

Proof. Since these operators are commutative,∥∥∥CX 1/2 − (CX + λX IX )1/2
∥∥∥ = max

i
|
√
λi(CX )−

√
λi(CX + λX IX )| ≤

√
λX

since the operator being trace class implies that the eigenvalues go to 0.

B.2 Bounding the Error 2

Lemma 14 (Error 2). Error 2 is bounded as〈
Un,λV∗n,λ,C− Cλ

〉
≤ k ‖Cλ − C‖ ≤ 4k

(√
λX +

√
λY

)
Proof. The first inequality simply follows from Holder’s inequality with conjugates Schatten 1 and ∞ norms,
and the second using Lemma 12.

B.3 Bounding the Error 3

Lemma 15 (Error 3). With probability at least 1− δ, Error 3 is bounded as,

〈
UC,λV∗C,λ −Un,λV∗n,λ,Cλ

〉
L(HY ,HX ) ≤ inf

h≥0

{
12αρh
λXλYn

+ 24αρ
√
h

λXλYn
+ 24√

n

√
k

λXλY

∑
j>h

λj(C′)
}

+ 12αρ
λXλYn

+ 22β
√
k log(1/δ)√
λXλYn

+ 10αρ log(1/δ)
λXλYn

Proof. The proof follows the application of local Rademacher complexity analysis technique for Kernel PCA
Blanchard et al. (2007), with modifications arising from differences in the problems. We start with the
function class

F ={fU,V : (x, y)→
〈

UC,λV∗C,λ −UV∗,Cx,y
〉
L(HY ,HX )

| U∗CλXX U = Ik,V∗CλYY V = Ik}

where UC,λ =
(

CλXX
)1/2

UC, VC,λ =
(

CλYY
)1/2

VC and Cx,y = x⊗L(HY ,HX ) y

We look at the function class G = τF , where τ =
√
λXλY

2β
√
k

. From Lemma 17, we get that for f ∈ G the
range of f is contained in [−1, 1]. We then show in Lemma 22 that E

[
f2] ≤ µE [f ] where µ = 2αρτ

λXλY
and

αρ =
Ex,y,x′,y′

[
〈x,x′〉2HX 〈y,y

′〉2HY
]

λk(C)−λk+1(C) for f ∈ G.
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From Lemma 16, we have that , ‖UV∗‖2L(HY ,HX ) ≤
k

λXλY
. Similarly, we also have

∥∥UC,λVC,λ
∥∥2
L(HY ,HX ) ≤

k
λXλY

. Therefore, we have ∥∥∥UCV∗C −UV∗
∥∥∥2

L(HY ,HX )

≤ 2
(∥∥∥UCV∗C

∥∥∥2

L(HY ,HX )
+ ‖UV∗‖2L(HY ,HX )

)
≤ 4k
λXλY

Therefore, we can write,

F ⊆
{

(x, y)→ 〈Γ,Cx,y〉L(HY ,HX ) | Γ ∈ L(HY ,HX ), ‖Γ‖2L(HY ,HX ) ≤
4k

λXλY

}
=: H

We will now concern ourselves with the set H. We have

E
[
f2] = E

[
〈Γ,Cxy〉2L(HY ,HX )

]
= Ex,y

[〈
Γ,Cx,y ⊗L(HY ,HX ) Cx,yΓ

〉
L(HY ,HX )

]
= 〈Γ,CΓ〉L(HY ,HX )

where C ∈ L(L(HY ,HX )) is defined as C := Ex,y
[
Cx,y ⊗L(HY ,HX ) Cx,y

]
. Since the set F is contained in H,

which is a convex set and contains origin, star(Fk) is also contained in H.

star(F) ⊆
{

(x, y)→ 〈Γ,Cx,y〉L(HY ,HX ) | Γ ∈ L(HY ,HX ), ‖Γ‖2L(HY ,HX ) ≤
4k

λXλY

}
Moreover, {

g ∈ star(G) |E
[
g2] ≤ r} = τ

{
g ∈ star(F)|E

[
g2] ≤ τ−2r

}
⊂ τ{(x, y)→ 〈Γ,Cx,y〉L(HY ,HX ) | Γ ∈ L(HY ,HX ),

‖Γ‖2L(HY ,HX ) ≤
4k

λXλY
, 〈Γ,CΓ〉L(HY ,HX ) ≤ τ

−2r}

=: Sr

We now want to bound the Rademacher Complexity of Sr which is Rn(Sr) =
Ex,yEσ

[ 1
n supf∈Sr

∑n
i=1 σif(xi, yi)

]
.

From Lemma 18, we get that the Rademacher complexity of Sr is bounded as follows,

Rn(Sr) ≤
√
r

n
+ 1√

n
inf
h≥0

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)

 =: ψ(r)
µ

Note that this is a sub-root function in r, as the infimum for sub-root functions is sub-root. We now need to
upper bound the fixed point of ψ(r). Define ξ := µ

τ = 2αρ
λXλY

. We want,

r∗ = ψ(r∗) = ξτ√
n

√r∗ (√h+ 1
)

+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


From Lemma 21, we have that fixed point r∗ is bounded as

r∗ ≤ τ2

 inf
h≥0

ξ2h

n
+ 2ξ2

√
h

n
+ 4ξ√

n

√
k

λXλY

∑
j>h

λj(C′)

+ ξ2

n


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Let

κ(ξ, n) = inf
h≥0

ξ2h

n
+ 2ξ2

√
h

n
+ 4ξ√

n

√
k

λXλY

∑
j>h

λj(C′)


Having shown that it satisfies all the conditions of Theorem 10, we now apply the theorem. We get that for
any K > 1, with probability at least 1− δ, ∀ U ∈ L(HX ,Rk),V ∈ L(HY ,Rk) in the feasible set, we have,

E [τfU,V] ≤ KEnfU,V

K − 1 + 6Kr∗

τξ
+ (11 + 5τξK) log δ

n

≤ KEnfU,V

K − 1 + 6Kκ(ξ, k, n)τ
ξ

+ 6Kξτ
n

+ 11 log δ
n

+ 5ξK log δτ
n

Therefore,

E [fU,V] ≤ KEnfU,V

K − 1 + 6Kκ(ξ, n)
ξ

+ 6Kξ
n

+ 11 log δ
τn

+ 5ξK log δ
n

We set U = CX−1/2Un and V = CY−1/2Vn, therefore we get EnfU,V ≤ 0. where En is the expectation with
respect to the empirical measure. Letting K → 1, we get, with probability at least 1− δ,〈

UC,λV∗C,λ −Un,λV∗n,λ,Cλ
〉
L(HY ,HX )

≤ 6κ(ξ, n)
ξ

+ 6ξ
n

+ 11 log δ
τn

+ 5ξ log δ
n

Note that ξ = 2αρ
λXλY

, where αρ =
Ex,y,x′,y′

[
〈x,x′〉2HX 〈y,y

′〉2HY
]

(λk(C)−λk+1(C)) , and τ =
√
λXλY

2β
√
k

. We now substitute these to
obtain the final bound. We have,

κ(ξ, k, n)
ξ

= 1
ξ

inf
h≥0

ξ2h

n
+ 2ξ2

√
h

n
+ 4ξ√

n

√
k

λXλY

∑
j>h

λj(C′)


= inf
h≥0

ξhn + 2ξ
√
h

n
+ 4√

n

√
k

λXλY

∑
j>h

λj(C′)


= inf
h≥0

 2αρh
λXλYm

+ 4αρ
√
h

λXλYn
+ 4√

n

√
k

λXλY

∑
j>h

λj(C′)


Therefore, we get,〈

UC,λV∗C,λ −Un,λV∗n,λ,Cλ
〉
L(HY ,HX )

≤ inf
h≥0

 12αρh
λXλYn

+ 24αρ
√
h

λXλYn
+ 24√

n

√
k

λXλY

∑
j>h

λj(C′)

+ 12αρ
λXλYn

+ 22β
√
k log δ√

λXλYn
+ 10αρ log δ

λXλYn

Lemma 16. If U and V satisfies U∗CλXX U = Ik and V∗CλYY V = Ik, where CλXX = CX + λX IX and
CλYY = CY + λY IY , then,

‖UV∗‖2L(HY ,HX ) ≤
k

λXλY
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Proof. We have,

k =
∥∥∥U∗CλXX U

∥∥∥2

L(L(HX ,Rk))

≥ λ2
X ‖U∗U‖

2
L(L(HX ,Rk))

Therefore, we get ‖U∗U‖L(L(HX ,Rk)) ≤
√
k

λX
. Similarly, we can show that ‖V∗V‖L(L(HY ,Rk)) ≤

√
k

λY
.

‖UV∗‖2L(HY ,HX ) = 〈UV∗,UV∗〉L(HY ,HX )

= 〈U∗U,V∗V〉L(Rk)

≤ ‖U∗U‖L(Rk) ‖V
∗V‖L(Rk)

≤ k

λXλY

where we use the definition of adjoints in the second step and Cauchy-Schwartz inequality in the third
step.

Lemma 17. For any f ∈ G = τF the range of f is contained in [−1, 1], where τ =
√
λXλY

2β
√
k

Proof. From Lemma 16, we get that ‖UV∗‖2L(HY ,HX ) ≤
k

λXλY
. Similarly, we also get

∥∥∥UC,λV∗C,λ
∥∥∥2

L(HY ,HX )
≤

k
λXλY

.

We now note that,〈
UC,λV∗C,,λ −UV∗,Cx,y

〉2

L(HY ,HX )
≤
∥∥∥UC,λV∗C,λ −UV

∥∥∥2

L(HY ,HX )
‖Cx,y‖2L(HY ,HX )

≤ 2β2
(∥∥∥UC,λV∗C,λ

∥∥∥2

L(HY ,HX )
+ ‖UV∗‖2L(HY ,HX )

)
≤ 4β2k

λXλY

where in the first step we applied Cauchy-Schwartz inequality and in the second step, we used
that ‖Cx,y‖L(HY ,HX ) =

∥∥x⊗L(HY ,HX ) y
∥∥
L(HY ,HX ) ≤ ‖x‖HX ‖y‖HY ≤ β2. Therefore, we have,〈

UC,λV∗C,λ −UV∗,Cx,y
〉
≤ 2β

√
k√

λXλY
.

Therefore, since any f̄ ∈ F range of f̄ ≤ τ−1, we have for f = τf ∈ τF = G its range ≤ 1. The lower bound
holds because UC and VC correspond to the optimal solution, therefore for any function f̄ ∈ F , f̄ ≥ 0. So,
any f ∈ τF = G, f ≥ 0 ≥ −1.

Lemma 18. The Rademacher complexity of Sr, defined as,

Sr = τ{(x, y)→ 〈Γ,Cx,y〉L(HY ,HX ) | Γ ∈ L(HY ,HX ), ‖Γ‖2L(HY ,HX ) ≤
4k

λXλY
, 〈Γ,CΓ〉L(HY ,HX ) ≤ τ

−2r}

is bounded as follows,

Rn(Sr) ≤
√
r

n
+ 1√

n
inf
h≥0

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


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Proof. Note that we can write 〈Γ,Cx,y〉L(HY ,HX ) = 〈Γ,Cx,y − CXY〉L(HY ,HX ) + 〈Γ,CXY〉L(HY ,HX ). Equiva-
lently, we can decompose the function class Sr into two classes Pr and Qr, defined as,

Pr = τ
{

(x, y)→ 〈Γ,CXY〉L(HY ,HX ) | 〈Γ,CΓ〉L(HY ,HX ) ≤ τ
−2r
}

and

Qr =τ
{

(x, y)→ 〈Γ,Cx,y − CXY〉L(HY ,HX ) | ‖Γ‖
2
L(HY ,HX ) ≤

4k
λXλY

,〈
Γ, (C− CXY ⊗L(L(HY ,HX )) CXY)Γ

〉
L(HY ,HX ) ≤ τ

−2r
}

By a simple application of triangle inequality, we have,

Rn(Sr) ≤ Rn(Pr) + Rn(Qr)

We bound the Rademacher complexities of the sets in Lemma 19 and 20 respectively. From them, we get,

Rn(Pr) ≤
√
r

n

and

Rn(Qr) ≤
1√
n

inf
h≥0

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


Combining these, we have,

Rn(Sr) ≤
√
r

n
+ 1√

n
inf
h≥0

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)



Lemma 19. The Rademacher complexity of the set Pr, defined as,

Pr = τ
{

(x, y)→ 〈Γ,CXY〉L(HY ,HX ) | 〈Γ,CΓ〉L(HY ,HX ) ≤ τ
−2r
}

is bounded as,

Rn(Pr) ≤
√
r

n

Proof. Since Pr contains only constant functions, we can easily bound its Rademacher complexity. In
particular, for a set of scalars Z ⊂ R, we have

E

[
sup
z∈Z

(
z

n∑
i=1

σi

)]
=
(

supZ − inf Z
2

)
E

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]

≤
(

supZ − inf Z
2

) n∑
i=1

E [|σi|]

= (supZ − inf Z)
√
n

2
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where the second step follows from Jensen’s inequality, and last step from the fact that E [|σ|] = 1 for a
Rademacher random variable σ. Let f̄ ∈ Rm where each co-ordinate is the value of the constant function.
Therefore, we have

Rn(Pr) = 1
n
Eσ

[
sup
f∈Pr

m∑
i=1

σif̄

]

≤ 1
n
· 2
√
n

2 · sup
{
〈Γ,CXY〉L(HY ,HX ) | 〈Γ,CΓ〉L(HY ,HX ) ≤ τ

−2r
}

≤
√
r

n

This follows because

〈Γ,CΓ〉L(HY ,HX ) = E
[
〈Cx,y,Γ〉2L(HY ,HX )

]
≥
(
E
[
〈Cx,y,Γ〉L(HY ,HX )

])2

from Jensen’s inequality.

Lemma 20. The Rademacher complexity of the set Qr, defined as

Qr =τ
{

(x, y)→ 〈Γ,Cx,y − CXY〉L(HY ,HX ) | ‖Γ‖
2
L(HY ,HX ) ≤

4k
λXλY

,〈
Γ, (C− CXY ⊗L(L(HY ,HX )) CXY)Γ

〉
L(HY ,HX ) ≤ τ

−2r
}

is bounded as,

Rn(Qr) ≤
1√
n

inf
h≥0

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


Proof. Let φi’s be eigenfunctions of C′ = C− CXY ⊗L(L(HY ,HX )) CXY which form an orthonormal basis. For
h ≤ rank(C′), we have

n∑
i=1

σi 〈Γ,Cxi,yi − CXY〉L(HY ,HX ) =
∑
j≥1
〈Γ, φj〉L(HY ,HX )

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉
L(HY ,HX )

=
h∑
j=1
〈Γ, φj〉L(HY ,HX )

√
λj(C′)

〈
φj ,

n∑
i=1

σi(Cxi,yi − C)
〉
L(HY ,HX )

· 1√
λj(C′)

+
∑
j>h

〈Γ, φj〉L(HY ,HX )

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉
L(HY ,HX )

≤

 h∑
j=1
〈Γ, φj〉2L(HY ,HX ) λj(C

′)

1/2 h∑
j=1

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1
λj(C′)

1/2

+

∑
j>h

〈Γ, φj〉2L(HY ,HX )

1/2∑
j>h

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1/2

≤
√
r

τ

 h∑
j=1

1
λj(C′)

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1/2

+
(

4k
λXλY

)1/2
∑
j>h

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1/2
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where in the third step, we used Cauchy Schwartz inequality. In the fourth step, we use that

‖Γ‖2L(HY ,HX ) =
∑
i

〈Γ, φi〉2L(HY ,HX ) ≤
4k

λXλY

and

〈Γ,C′Γ〉L(HY ,HX ) =
〈

Γ,
(∑

i

λi(C′)φi ⊗L(HY ,HX ) φi

)
Γ
〉
L(HY ,HX )

=
∑
i

λi(C′)
〈
Γ,
(
φi ⊗L(HY ,HX ) φi

)
Γ
〉
L(HY ,HX )

=
∑
i

λi(C′)
〈

Γ,
(
〈Γ, φi〉L(HY ,HX ) φi

)〉
L(HY ,HX )

=
∑
i

λi(C′) 〈Γ, φi〉2L(HY ,HX ) ≤ τ
−2r

where the third equality follows from the definition of the outer product.
We now look at,

Ex,y,σ

〈 n∑
j=1

σj
(
Cxj ,yj − CXY

)
, φi

〉2

L(HY ,HX )

 = Exj ,yj ,σ

 n∑
j=1

σ2
j

〈
Cxj ,yj − CXY , φi

〉2
L(HY ,HX )


= Ex,y

 n∑
j=1

〈
Cxj ,yj − CXY , φi

〉2
L(HY ,HX )


= Ex,y

〈φi,
 n∑
j=1

(
Cxj ,yj − CXY

)
⊗L(HY ,HX )

(
Cxj ,yj − CXY

)φi

〉
L(HY ,HX )


=
〈
φi,Ex,y

 n∑
j=1

(
Cxj ,yj − C

)
⊗L(HY ,HX )

(
Cxj ,yj − C

)φi〉
L(HY ,HX )

= n 〈φi,C′φi〉L(HY ,HX )

= nλi(C′)

where in the first step, we use Pythagoras theorem by observing that φi’s form an orthonormal basis; and in
the second step, we use that fact that for a Rademacher variable σ, E

[
σ2] = 1. In the fourth step, we use

that C′ = Ex,y
[

1
n

∑n
j=1

(
Cxj ,yj − CXY

)
⊗L(HY ,HX )

(
Cxj ,yj − CXY

)]
, and in the fifth step, we use the fact

that φi is an eigenfunction of C′.

Let Gr denote the feasible set of Γ defined as

Gr :=
{

Γ ∈ L(HY ,HX ) | ‖Γ‖2L(HY ,HX ) ≤
4k

λXλY
, 〈Γ,CΓ〉L(HY ,HX ) ≤ τ

−2r

}
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We have,

Rm(Qr) = τ

n
Ex,y,σ

[
sup
f∈Qr

n∑
i=1

σif(xi, yi)
]

= τ

n
Ex,y,σ

[
sup
Γ∈Gr

n∑
i=1

σi 〈Γ,Cxi,yi − CXY〉L(HY ,HX )

]

≤ τ

n
E

x,y,σ

[
sup
Γ∈Gr

 r

τ2

h∑
j=1

1
λi(C′)

1/2 h∑
j=1

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1/2

+
(

4k
λXλY

)1/2
∑
j>h

〈
φj ,

n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1/2 ]

≤ τ

n

√r
τ

 h∑
j=1

1
λj(C′)

Ex,y,σ

〈φj , n∑
i=1

σi(Cxi,yi − CXY)
〉2

L(HY ,HX )

1/2


+
(

4k
λXλY

)1/2
∑
j>h

Ex,y,σ

〈φj , n∑
i=1

σi(Cxi,yi − C)
〉2

L(HY ,HX )

1/2

≤ 1√
n

√r h∑
j=1

λj(C′)
λj(C′)

+
√∑
j>h

λj(C′)
2
√
k√

λXλY


= 1√

n

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


Since the above holds for all h ≤ rank(C′) and can be trivially extended to h ≥ rank(C′) as λj(C′) = 0 for
j > rank(C′), it therefore holds for the infimum over h. We therefore have,

Rn(Qr) ≤
1√
n

inf
h≥0

√rh+ 2τ
√

k

λXλY

∑
j>h

λj(C′)



Lemma 21. The fixed point of ψ(r), i.e.

r∗ = ψ(r∗) = ξτ√
n

√r∗ (√h+ 1
)

+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


is bounded as,

r∗ ≤ τ2

 inf
h≥0

ξ2h

n
+ 2ξ2

√
h

n
+ 4ξ√

m

√
k

λXλY

∑
j>h

λj(C′)

+ ξ2

n


Proof. We have,

r∗ = ψ(r∗) = ξτ√
n

√r∗ (√h+ 1
)

+ 2τ
√

k

λXλY

∑
j>h

λj(C′)


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Consider the quadratic equation x− a
√
x− b ≤ 0, we have,

x ≤

(
a+
√
a2 + 4b
2

)2

≤
2a2 + 4b+ 2

√
a2(a2 + 4b)

4
≤ a2 + 2b

where in the last step, we use that geometric mean ≤ arithmetic mean. Plugging it here, we get

r∗ ≤ ξ2τ2

n

(
h+ 1 + 2

√
h
)

+ 4ξτ2
√
n

√
k

λXλY

∑
j>h

λj(C′)

Taking infimum over h,we get,

r∗ ≤ τ2

 inf
h≥0

ξ2h

n
+ 2ξ2

√
h

n
+ 4ξ√

n

√
k

λXλY

∑
j>h

λj(C′)

+ ξ2

n



Lemma 22. For any f ∈ G, E
[
f2] ≤ µE [f ] where µ = 2αρτ

λXλY
and αρ =

Ex,y,x′,y′

[
〈x,x′〉2HX 〈y,y

′〉2HY
]

(λk(C)−λk+1(C)) .

Proof. Given U,V, define U :=
(

CλXX
)1/2

U, V̄ :=
(

CλYY
)1/2

V. We remind that UC,λ =
(

CλXX
)1/2

UC,λ and

VC,λ =
(

CλXX
)1/2

VC,λ, so we get U∗C,λUC,λ = I and V∗C,λVC,λ = I. Define the projection PC,λ := UC,λV∗C,λ =∑k
i=1 u

Cλ
i ⊗L(HY ,HX ) v

Cλ
i and P := UV∗ =

∑k
i=1 ui ⊗L(HY ,HX ) vi using their singular value decomposition

respectively. Let f̄ ∈ G. We first look at E
[
f̄2].

E
[
f̄2] = E

[〈
UC,λV∗C,λ −UV∗,Cx,y

〉2

L(HY ,HX )

]
= 〈UC,λV∗C,λ −UV∗,E

[
(Cx,y ⊗L(HY ,HX ) Cx,y)

]
(UC,λV∗C,λ −UV∗)〉L(HY ,HX )

= 〈UC,λV∗C,λ −UV∗,C(UC,λV∗C,λ −UV∗)〉L(HY ,HX )

= ‖C‖L(L(HY ,HX ))

∥∥∥UC,λV∗C,λ −UV∗
∥∥∥2

L(HY ,HX )

= ‖C‖L(L(HY ,HX ))

∥∥∥∥(CλXX
)−1/2 (

UC,λV∗C,λ −UV∗
)

CλYY
−1/2

∥∥∥∥2

L(HY ,HX )

= ‖C‖L(L(HY ,HX ))

∥∥∥∥(CλXX
)−1/2

(PC,λ − P)
(

CλYY
)−1/2

∥∥∥∥2

L(HY ,HX )

≤ 1
λXλY

‖C‖L(L(HY ,HX )) ‖PC,λ − P‖2L(HY ,HX )

= 2
λXλY

‖C‖L(L(HY ,HX ))

(
k − 〈PC,λ,P〉L(HY ,HX )

)
= 2
λXλY

‖C‖L(L(HY ,HX ))

k − k∑
i,j=1

〈
uCλ
i , uj

〉
HX

〈
vCλ
i , vj

〉
HY


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where in the seventh inequality we just expanded ‖PC,λ − P‖2L(HY ,HX ). Now, note that

‖C‖2L(L(HY ,HX )) = 〈C,C〉L(L(HY ,HX ))

= Ex,y,x′,y′
[〈

Cx,y ⊗L(HY ,HX ) Cx,y,Cx′,y′ ⊗L(HY ,HX ) Cx′,y′
〉
L(L(HY ,HX ))

]
= Ex,y,x′,y′

[
〈Cx,y,Cx′,y′〉2L(HY ,HX )

]
= Ex,y,x′,y′

[
〈x ⊗ y, x′ ⊗ y′〉2L(HY ,HX )

]
= Ex,y,x′,y′

[
〈x, x′〉2HX 〈y, y

′〉2HY
]

=: αρ

Let us now look at E
[
f̄
]
.

E
[
f̄
]

= E
[〈

UC,λV∗C,λ −UV∗,Cx,y

〉
L(HY ,HX )

]
=
〈

UC,λV∗C,λ −UV∗,CXY
〉
L(HY ,HX )

=
〈

PC,λ − P,
(

CλXX
)−1/2

CXY
(

CλYY
)−1/2

〉
L(HY ,HX )

= 〈PC,λ − P,Cλ〉L(HY ,HX )

=
k∑
i=1

(
σi(Cλ)− 〈ui,Cλvi〉HX

)

Let ui =
∑k
j=1

〈
ui, u

Cλ
j

〉
HX

uCλ
j +ri, where ri is orthogonal to uCλ

j , j ∈ [k] and vi =
∑k
j=1

〈
vi, v

Cλ
j

〉
HY

vCλ
j +

si, where si is orthogonal to vCλ
j , j ∈ [k]. Then

〈ui,Cλvi〉HX =
〈

k∑
j=1

〈
ui, u

Cλ
j

〉
HX

uCλ
j + ri,Cλ(

k∑
j=1

〈
vi, v

Cλ
j

〉
HY

vCλ
j + si)

〉

=
〈

k∑
j=1

〈
ui, u

Cλ
j

〉
HX

uCλ
j + ri,

k∑
j=1

λj(Cλ)
〈
vi, v

Cλ
j

〉
HY

uCλ
j + Cλsi

〉

=
k∑
j=1

λj(Cλ)
〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY

+ 〈ri,Cλsi〉HX
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The cross terms are zero because Cλsi’s will be a linear combination of ui, i > k and so orthogonal to
uj , j ∈ [k]. Note that

〈ri,Cλsi〉HX ≤ λk+1(Cλ) ‖ri‖HX ‖si‖HY

= λk+1(Cλ)

∥∥∥∥∥∥ui −
k∑
j=1

〈
ui, u

Cλ
j

〉
uCλ
j

∥∥∥∥∥∥
HX

·

∥∥∥∥∥∥vi −
k∑
j=1

〈
vi, v

Cλ
j

〉
vCλ
j

∥∥∥∥∥∥
HY

= λk+1(Cλ)

√√√√1−
k∑
j=1

〈
ui, u

Cλ
j

〉2

HX

√√√√1−
k∑
j=1

〈
vi, v

Cλ
j

〉2

HY

≤ λk+1(Cλ)

1−

∑k
j=1

〈
ui, u

Cλ
j

〉2

HX
+
∑k
j=1

〈
vi, v

Cλ
j

〉2

HY
2


≤ λk+1(Cλ)

1−

√√√√√
 k∑
j=1

〈
ui, u

Cλ
j

〉2

HX

 k∑
j=1

〈
vi, v

Cλ
j

〉2

HY




≤ λk+1(Cλ)

1−
k∑
j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY


where the first step follows because ri and si don’t include components along the first k ui’s and vi respectively.
In the fourth and fifth steps, we use that arithmetic mean ≥ geometric mean, and in the last step, we use
Cauchy-Schwartz inequality. Plugging this in the previous bound, we get,

〈ui,Cλvi〉HX ≤
k∑
j=1

λj(Cλ)
〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY

+ λk+1(Cλ)

1−
k∑
j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY


Moreover,

E
[
f̄
]
≥

k∑
i=1

λi(Cλ)−

 k∑
j=1

λj(Cλ)
〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY

+ λk+1(Cλ)

1−
k∑
j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

C
j

〉
HY


=

k∑
i=1

λi(Cλ)

1−
k∑
j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY

− k∑
i=1

λk+1(Cλ)

1−
k∑
j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY


≥ k (λk(Cλ)− λk+1(Cλ))− (λk(Cλ)− λk+1(Cλ))

k∑
i,j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY

= (λk(Cλ)− λk+1(Cλ))

k − k∑
i,j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY


where in the second last step, we used that λi ≥ λk, i ∈ [k] and

(
1−

∑k
i,j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY

)
≥

‖ri‖HX ‖si‖HY ≥ 0 (see above). Therefore, we get,

E
[
f̄
]
≥ (λk(Cλ)− λk+1(Cλ))

k − k∑
i,j=1

〈
ui, u

Cλ
j

〉
HX

〈
vi, v

Cλ
j

〉
HY


≥ (λk(Cλ)− λk+1(Cλ))λXλY

2αρ
E
[
f̄2]
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Let ξ = 2αρ
λXλY

. For f ∈ G, let f̄ = τ−1f where f̄ ∈ F . Therefore,

E
[
f2] = τ2E

[
f̄2]

≤ ξτ2E
[
f̄
]

= ξτE [f ] = µE [f ]

where µ = 2αρτ
λXλY

.
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