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ABSTRACT

Detecting deepfakes has become increasingly challenging as forgery faces synthe-
sized by AI-generated methods, particularly diffusion models, achieve unprece-
dented quality and resolution. Existing forgery detection approaches relying on
spatial and frequency features demonstrate limited efficacy against high-quality,
entirely synthesized forgeries. In this paper, we propose a novel detection method
grounded in the observation that facial attributes governed by complex physical
laws and multiple parameters are inherently difficult to replicate. Specifically,
we focus on illumination, particularly the specular reflection component in the
Phong illumination model, which poses the greatest replication challenge due to
its parametric complexity and nonlinear formulation. We introduce a fast and
accurate face texture estimation method based on Retinex theory to enable pre-
cise specular reflection separation. Furthermore, drawing from the mathemati-
cal formulation of specular reflection, we posit that forgery evidence manifests
not only in the specular reflection itself but also in its relationship with cor-
responding face texture and direct light. To address this issue, we design the
Specular-Reflection-Inconsistency-Network (SRI-Net), incorporating a two-stage
cross-attention mechanism to capture these correlations and integrate specular re-
flection related features with image features for robust forgery detection. Experi-
mental results demonstrate that our method achieves superior performance on both
traditional deepfake datasets and generative deepfake datasets, particularly those
containing diffusion-generated forgery faces.

1 INTRODUCTION

With the rapid advancement of face manipulation techniques, generating highly realistic forgery face
images and videos has become increasingly effortless (Rombach et al., 2022; Chen et al., 2025), and
the potential abuse of this technology raises significant security concerns. Particularly with the
rise of AI-generation tools such as diffusion models, which enable more sophisticated, realistic,
and higher-resolution entire synthesized forgeries, making the challenge of face forgery detection
becomes even harder (Kawar et al., 2023; Rosberg et al., 2023; Kim et al., 2025).

Current face forgery detection methods primarily identify forgery evidence by analyzing discrimi-
native features extracted from the spatial (Li et al., 2020a; Cao et al., 2022) or frequency (Tan et al.,
2024) domains of face images, as well as leveraging pre-trained features (Cui et al., 2025) from mod-
els such as CLIP (Radford et al., 2021). However, these approaches face significant limitations as
texture inconsistencies in contemporary forgery faces, particularly those entirely synthesized by gen-
erative models, become increasingly subtle. Moreover, forgery evidence from different generation
methods may manifest in distinct frequency bands, while pre-trained features lack domain-specific
knowledge and interpretability. These factors collectively contribute to the declining detection per-
formance of existing methods when confronted with sophisticated synthetic faces.

In this paper, we propose an approach to localize forgery evidence from the perspective of face
generation. Specifically, we posit that despite the remarkable realism achieved by state-of-the-art
forgery techniques, they remain constrained by a fundamental principle: attributes governed by
more estimated parameters and more complex physical laws are inherently more challenging to
replicate accurately. Illumination represents a particularly complex physical phenomenon, as it is
simultaneously governed by 2D local texture statistics, 3D global environmental conditions, and
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Figure 1: The visualization of (a) Spatial-based face forgery detection methods, (b) Frequency-based
face forgery detection methods and (c) Our proposed Specular-Reflection-Inconsistency-Network
(SRI-Net). SRI-Net analyzes that specular reflection is more difficult to replicate based on the math-
ematical form of the general Phong illumination model and contains generalizable forgery evidence.

illumination model constraints, making it a promising avenue for investigation. As illustrated in
Fig. 1 (c), under the Phong illumination model, face illumination comprises ambient light, direct
light, and specular reflection. The mathematical representation of the specular reflection component
involves more parameters and exhibits stronger nonlinearity, making it inherently more difficult to
accurately replicate.

Based on this analysis, we hypothesize that specular reflection contains more generalizable forgery
evidence. In this paper, we introduce the 3D Morphable Model (3DMM) (Blanz & Vetter, 2003)
and computer graphics rendering algorithms to achieve illumination/texture separation and specu-
lar reflection extraction. However, since the widely used Basel Face Model (BFM) based texture
estimation (Paysan et al., 2009) cannot capture fine-grained facial textures, the extracted specular
reflection component inevitably contains erroneous details. To address this limitation, we propose
a faster and more accurate face texture estimation method based on Retinex theory (Land & Mc-
Cann, 1971) to replace the BFM model. Under the constraints of Retinex-based texture, we achieve
more precise extraction of specular reflection. Furthermore, according to the analytical expression of
specular reflection in the Phong illumination model, its estimation depends on both direct light inten-
sity and reflective material properties. Since human faces share similar skin properties, the relative
material characteristics can be approximated through face texture. Consequently, forgery evidence
should manifest not only in the specular reflection component itself but also in its relationships
with direct light and face texture. To exploit these relationships, we design the Specular-Reflection-
Inconsistency-Network (SRI-Net) with a two-stage cross-attention structure to effectively capture
the correlations among these attributes. The network subsequently integrates specular reflection
related features with image features for final real/fake decision.

Our contributions can be summarized as follows:

1) We identify specular reflection as a robust forgery indicator due to its complex multi-parameter
formulation, stronger nonlinearity and inherent difficulty to replicate accurately.

2) We introduce a Retinex-based face texture estimation method that enables faster and more precise
specular reflection extraction.

3) We design SRI-Net with two-stage cross-attention to exploit the relationships among specular
reflection, face texture, and direct light.

4) Extensive experiments demonstrate superior performance on both traditional and generative deep-
fake datasets.

2 RELATED WORK

2.1 GENERAL FACE FORGERY DETECTION

Many previous studies have focused on general face forgery detection. From the perspective of
feature extraction, these approaches can be broadly categorized into spatial-domain and frequency-
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domain approaches. Spatial-domain methods primarily analyze pixel-level forgery evidence and
inconsistencies in forgery images. MesoNet (Afchar et al., 2018) and Face X-ray (Li et al., 2020a)
focused on mesoscopic properties or boundary discrepancies to distinguish manipulated faces. Some
works (Wang et al., 2020; Wang & Deng, 2021; Cao et al., 2022) employed techniques such as adver-
sarial training and reconstruction for enriching training data. Frequency-domain approaches (Masi
et al., 2020; Qian et al., 2020; Jeong et al., 2022; Tan et al., 2024) decomposed images into frequency
components using Fourier or wavelet transforms to detect forgery traces that are less perceptible in
the spatial domain. From the perspective of learning generalized representations, SBI (Shiohara
& Yamasaki, 2022) and SLADD (Chen et al., 2022) explicitly minimized domain gaps to improve
cross-dataset detection. Some works (Sun et al., 2020; Yan et al., 2024a) employed data augmen-
tation and synthesis in latent space to boost model robustness. Some methods (Yan et al., 2023;
Dong et al., 2023) incorporated generalized forgery cues through specialized learning frameworks
for more discriminative detection. Some methods (Cui et al., 2025; Sun et al., 2025) leverage pre-
trained features from models such as CLIP. However, as forgery faces become increasingly realistic
and forgery evidence is distributed unevenly across frequency bands, and with new forgery tech-
niques continuously emerging, the effectiveness of existing detection methods declines.

2.2 ILLUMINATION-BASED DETECTION

Several existing methods (Peng et al., 2016; Zhu et al., 2021) detected forgery evidence by extracting
illumination cues from 3D disentangled faces under the Lambertian assumption, demonstrating no-
table performance. Some works (Hu et al., 2021; Ebihara et al., 2020; Seibold et al., 2018) captured
the local specular reflection on the cornea or nose for face forgery detection and face anti-spoofing.
However, recent studies (Du et al., 2023; Zhan et al., 2024) revealed that diffusion models can effec-
tively interpret geometric patterns and generate realistic shading estimations, thereby diminishing
the reliability of such illumination-based detection approaches.

Nevertheless, the fundamental principle that attributes requiring more estimated parameters remain
inherently more challenging to replicate remains unchanged. Given that illumination constitutes
a complex physical process, it warrants further exploration. Therefore, we propose extending the
Lambertian assumption to the more physically realistic Phong illumination model and precisely
extract the complete and precise specular reflection component under 3D physical constraints, cap-
turing the potential forgery evidence within it.
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Figure 2: The framework of our proposed face forgery detection method. First, we use 3DDFA to
extract 3D shape and propose a fast and accurate Retinex-based method for texture extraction. Next,
we employ spherical harmonic model to fit ambient and direct light, extracting specular reflection
through a residual based approach under Retinex-based texture constraints. We then propose the
Specular-Reflection-Inconsistency-Network (SRI-Net) with a two-stage cross-attention structure to
capture correlations among specular reflection, texture, and direct light. Finally, SRI-Net combines
these specular reflection related features with image features for final real/fake decision.

3 METHOD

In this section, we first analyze face illumination under the Phong illumination model and demon-
strate that specular reflection is more difficult to replicate and contains more generalizable forgery

3
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evidence. Subsequently, we propose a Retinex theory based face texture extraction method to
achieve faster and more accurate specular reflection extraction. Finally, we present SRI-Net with
a two-stage cross-attention architecture to capture the correlations of specular reflection, texture,
and direct light, enabling more comprehensive forgery evidence extraction. The framework of our
proposed method is illustrated in Fig. 2.

3.1 FACE ILLUMINATION ANALYSIS

From the perspective of face generation, a face image is composed of 3D structure and color infor-
mation:

Isyn = R(S,C), (1)
where R is the renderer, S is the 3D shape, and C represents the color information that combines
texture (i.e., skin albedo) and illumination effects for each vertex on the 3D shape. The 3D shape is
the easiest to replicate, as there is almost no occurrence of incompatible facial topology in existing
forgery faces. While the color information C integrates both texture and illumination, the illumina-
tion component, as a complex physical process, is simultaneously constrained by both 2D local tex-
ture statistics, 3D global environmental conditions, and illumination model constraints. Therefore,
it warrants further exploration to extract potential forgery evidence from the illumination-related
aspects of the color information.

The Phong illumination model is a widely used local illumination model that approximates the inter-
action of light with surfaces by combining ambient light, direct light and specular reflection compo-
nents. Ambient light is uniform and illuminates all surfaces equally, which ensures that objects are
visible even in areas not directly illuminated. Direct light is scattered across a surface based on its
angle to the surface normal. Specular reflection creates shiny highlights, dependent on the surface’s
reflection of the light. Under Phong assumption, the RGB value for each vertex Ci on S is computed
as follows:

Ci = Amb ∗Ti + ⟨ni, l⟩ ·Dir ∗Ti + ⟨ri,v⟩n ·Dir ∗Ti, (2)
where Amb is ambient light, Dir is direct light, T is the texture (i.e., skin albedo), ⟨ri,v⟩n ·
Dir is specular reflection, ⟨, ⟩ denotes the inner product operation, and ∗ denotes the element-wise
multiplication. ni is the vertex normal of the 3D shape, l is the direct light direction, ri is the
reflection direction which can be computed by ri = 2⟨ni, l⟩ni − l, v is the viewer direction, and
n is the specular exponent of surface material. It can be observed that among the three types of
illuminations, the mathematical formulation of specular reflection is more complex, involving six
estimated parameters and a stronger nonlinear representation in exponential form. This makes it
inherently more difficult to replicate.

Due to the fact that the Phong illumination model is a general model with clear physical significance,
this characteristic where specular reflection is more difficult to replicate can be applied across vari-
ous forgery methods, including current generative forgery techniques. Therefore, we posit that the
specular reflection contains more generalizable forgery evidence.

3.2 SPECULAR REFLECTION EXTRACTION

To extract the specular reflection component, two main steps are involved according to Equ. 2: 1)
illumination and texture separation, and 2) illumination components separation.

Illumination and texture separation

Existing methods typically perform illumination and texture separation using an analysis-by-
synthesis approach within the 3D Morphable Model (3DMM) (Blanz & Vetter, 2003). The illu-
mination and texture are parameterized through the spherical harmonic model (Zhang & Samaras,
2006) and the PCA texture model of Basel Face Model (BFM) (Paysan et al., 2009), with iterative
optimization of the coefficients to obtain the illumination and texture components. In spherical har-
monic model, face color under arbitrary illumination can be represented by the linear combination:

I(S) = (Hγ) ·T, (3)

where H = [h1,h2, ...,hn] denotes a set of harmonic reflectance functions forming orthonormal
bases to model illumination-induced brightness variations, while γ = [γ1, γ2, ..., γn] represents the
n-dimensional reflectance parameters requiring estimation. Notably, h1 is isotropic and h1 · γ1
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can represent ambient light , whereas the directional components [h2 · γ2, ...,h9 · γ9] can represent
direct light. Basis with n>9 can be used to fit illumination with more detailed illumination, but the
computational cost also increases significantly.

In PCA texture model of BFM, the texture is parameterized in the following form:

T = Tbfm +Bβ, (4)

where Tbfm is the mean face texture of BFM, B is the 199 dimensional principle axes, β is the
corresponding texture parameter. Based on the above equations, the parameters can be optimized
through iterative methods by:

Argminγ,β∥I− Isyn(S, γ, β)∥. (5)

where I is the original face image. The estimated Hγ and Tbfm +Bβ can represent the separated
illumination and texture.

However, the PCA bases B are obtained by eigendecomposition of the covariance matrix of 200
3D face scans in BFM, capturing dominant shape variations but failing to reconstruct identity fine-
grained texture details due to dimensionality reduction and linear modeling constraints. Therefore,
in real-world scenario, the face texture should be formulated as follows:

T = Tbfm +Bβ +Tid, (6)

where Tid is the identity texture details of corresponding face image. This indicates that the result
derived from Equ. 5 contains a residual term Tid when compared to the real texture T. Further-
more, inaccurate estimation of the texture will further lead to inaccurate estimation of the illumi-
nation. Particularly, due to the more complex and fine-grained nature of the specular reflection, it
is more significantly affected when constrained by an inaccurate texture. Therefore, it is necessary
to propose a new texture estimation method with a smaller residual to the real texture. To address
this issue, we propose a Retinex theory (Land & McCann, 1971) based texture extraction method
for faster and more accurate estimation of specular reflection. Retinex theory is grounded in the
physical model of image formation, which assumes that an observed image I(x, y) is the product
of illumination L(x, y) and albedo R(x, y), expressed as I(x, y) = L(x, y) · R(x, y). To sepa-
rate these components, Retinex employs a logarithmic transformation, converting the multiplicative
relationship into an additive one:

log I(x, y) = logL(x, y) + logR(x, y), (7)

where the illumination L(x, y) is typically estimated using low-pass filtering (e.g., Gaussian filter-
ing) of the input image. This choice is theoretically justified by the assumption that illumination
varies spatially smoothly, while albedo contains high-frequency details such as identity texture. By
applying a Gaussian filter Gσ , the illumination is approximated as Gσ(I(x, y)), and the albedo can
be obtained by:

logR(x, y) = log I(x, y)− log[Gσ(I(x, y))], (8)

where logarithmic form logR(x, y) is preferred over linear form R(x, y) to represent the texture
in Retinex theory. This is because it avoids nonlinear exponential transformations that could rein-
troduce illumination artifacts or cause numerical instability. The log-domain processing maintains
illumination invariance while better preserving fine surface details, making it more suitable for com-
putational analysis of intrinsic surface properties under varying illumination conditions. Thus, the
texture Tre of face image obtained by Retinex can be represented by the following formula:

Tre = logR. (9)

Furthermore, to simultaneously address both global and local illumination variations, we employ
Multi-Scale Retinex (MSR) to enhance robustness under complex illumination conditions. Specifi-
cally, large-scale Gaussian kernels are utilized to capture broad illumination gradients, while small-
scale kernels supplement local illumination details, thereby enabling stable texture extraction across
diverse illumination scenarios. The formula is presented as follows:

Tmsr =
1

N

N∑
i=1

(log I − log [Gσi
(I)]) , (10)
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where Gσi
denotes Gaussian kernels with varying scales σi, and N represents the number of scales.

This multi-scale integration ensures comprehensive illumination normalization while preserving
fine-grained texture information. Thus, the illumination and texture separation process can be trans-
formed from Equ. 5 into the following formula:

Argminγ∥I− Isyn(S, γ,Tmsr)∥. (11)

Notably, substituting T = T + Bβ with T = Tmsr not only makes the texture estimation more
accurate but also eliminates the necessity to estimate the β parameter. This approach circumvents
the additional computational burden associated with the iterative optimization of both β and γ pa-
rameters required for the simultaneous optimization of illumination and texture. As a result, the
processing time for single-image illumination and texture separation is reduced from 0.78s to 0.29s,
significantly improving efficiency and enabling rapid large-scale data processing.

Illumination components separation

Based on Equ. 11, the spherical harmonic coefficients can be estimated. An intuitive approach is to
utilize h1 ·γ1 as the ambient light, [h2 ·γ2, ...,h9 ·γ9] as direct light, and higher order basis along with
their coefficients to represent the specular reflection. However, this approach faces similar issues to
the PCA model of BFM, namely that the specular reflection fitted using spherical harmonic bases
still exhibits residuals when compared to the real specular reflection. Additionally, the estimation of
higher order spherical harmonic coefficients introduces significant computation cost.

To address this issue, we propose separating the specular reflection through a residual based ap-
proach. We utilize the first nine basis functions of the spherical harmonic model to capture coarse
illumination variations, which effectively fit the ambient light and direct light while being insensitive
to fine-grained specular reflection. Therefore, the separation of specular reflection can be achieved
in the following form:

SPR = (I− (Hγ)(1−9) ·Tmsr)/Tmsr, (12)

where SPR is specular reflection. (Hγ)(1−9) represents the first nine spherical harmonic bases
along with the coefficients estimated according to Equ. 11.
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Figure 3: The visualization of (a) Specular reflection estimation process under different types of
texture constraints and (b) Comparison of specular reflection detailed difference.

Fig. 3 (a) presents visualization of using (1) the mean texture Tbfm and (2) the fitted texture Tbfm+
Bβ from BFM and (3) the Retinex-based texture Tmsr as texture T, along with their corresponding
obtained specular reflection, where the 3D shape is obtained by 3DDFA (Guo et al., 2020) in real-
time. The results show that our proposed Tmsr achieves more accurate texture estimation compared
to Tbfm and Tbfm +Bβ, thereby enabling fine-grained removal of identity texture from specular
reflection. Fig. 3 (b) presents a comparison of detailed differences in specular reflection. The red
bounding boxes demonstrate that specular reflection with Tmsr as constraint achieves more accurate
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removal of identity texture (e.g., in ocular and labial regions), while the green bounding boxes
confirm that the extracted specular reflection better aligns with physical realism.

3.3 SRI-NET

We propose a Specular-Reflection-Inconsistency-Network (SRI-Net) with Xception (Chollet, 2017)
as backbone, with its architecture illustrated in Fig. 2. As shown in Equ. 2, the specular reflection
intensity is determined by the light direction, 3D shape vertex normal, viewer direction, specular
exponent of surface material, direct light intensity, and face texture. Therefore, forgery evidence
should manifest not only in the specular reflection itself but also in its correlations with the afore-
mentioned attributes. Given that human faces are all made of skin, the relative material properties
can be approximated through face texture.

To capture these correlations, we first flatten the specular reflection, texture, and direct light com-
ponents into UV space to normalize their directions. Subsequently, we employ a two-stage cross-
attention mechanism with residual connections to extract their correlations. The first stage captures
the relationship between texture and direct light. Let ftex and fdl denote the flattened feature maps
of texture and direct light after the entry flow. The aggregated feature is computed as:

ftd = Softmax
(
ftexf

T
dl√

d

)
fdl + ftex + fdl, (13)

where d is the feature dimension, and ftd encodes both features and their correlations. The second
stage captures the correlations between specular reflection and the texture-direct light features. Let
f ′
td be the processed ftd through the middle flow, and fspr be the specular reflection features after

passing through both entry and middle flows:

fstd = Softmax

(
f ′
tdf

T
spr√
d

)
fspr + fspr, (14)

where fstd aggregates the specular reflection features along with the correlations among specular
reflection, texture, and direct light.

Meanwhile, since the original image retains the initial forgery evidence, we introduce an image
branch to extract subtle information that may be distorted during specular reflection extraction, serv-
ing as a complementary component. Finally, we fuse the specular reflection related features with the
image features to form the feature vector for final real/fake decision.

4 EXPERIMENTS

In this section, we provide a comprehensive evaluation of SRI-Net, covering various aspects such as
datasets, detection performance comparisons, and ablation studies to demonstrate the effectiveness
of SRI-Net.

4.1 DATASETS

Traditional datasets. We employ the FaceForensics++ (FF++) (Rossler et al., 2019), CelebDF v1,
CelebDF v2 (Li et al., 2020b), and DeepfakeDetection (DFD) (Google AI, 2019) datasets for eval-
uation. FF++ is a widely used benchmark dataset designed for evaluating face manipulation detec-
tion methods. It contains 1,000 original video sequences, each altered using four state-of-the-art
face manipulation techniques: DeepFakes, Face2Face, FaceSwa, and NeuralTextures. To simulate
real-world conditions, we utilize the FF++ c23 (light compression) version as the training set in
subsequent experiments.

Generative datasets. We employ Diffusion Facial Forgery (DiFF) (Cheng et al., 2024a) and
DF40 (Yan et al., 2024b) datasets for evaluation. DiFF dataset contains over 500,000 images synthe-
sized using various generation methods (e.g., Stable Diffusion XL (SDXL), Low-Rank Adaptation
(LoRA)) across four categories: Text-to-Image (T2I), Image-to-Image (I2I), Face Swapping (FS)
and Face Editing (FE). Additionally, DF40 dataset contains forged data generated within the FF++
and CelebDF domains to ensure method diversity while maintaining consistent data distribution.
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Evaluation Metrics. We utilize the Frame-Level Area Under Curve (AUC) metric on generative
deepfake datasets, and utilize both frame-level and video-level AUC on traditional deepfake datasets.

4.2 COMPARISON ON TRADITIONAL DATASETS

Table 1: Frame-level AUC (%) performance comparison on traditional Datasets.

Method Venue Traditional Datasets
CDF-v1 CDF-v2 DFD Avg

FWA (Li & Lyu, 2018) CVPRW’18 79.0 66.8 74.0 73.3
CapsuleNet (Nguyen et al., 2019) ICASSP’19 79.1 74.7 68.4 74.1
CNN-Aug (Haliassos et al., 2022) CVPR’20 74.2 70.3 64.6 69.7
Face X-ray (Li et al., 2020a) CVPR’20 70.9 67.9 76.6 71.8
FFD (Dang et al., 2020) CVPR’20 78.4 74.4 80.2 77.7
F3Net (Qian et al., 2020) ECCV’20 77.7 79.8 70.2 75.9
SPSL (Liu et al., 2021) CVPR’20 81.5 76.5 81.2 79.7
SRM (Luo et al., 2021) CVPR’21 79.3 75.5 81.2 78.7
CORE (Ni et al., 2022) CVPRW’22 78.0 74.3 80.2 77.5
RECCE (Cao et al., 2022) CVPR’22 76.8 73.2 81.2 77.1
SBI (Shao et al., 2022) CVPR’22 - 81.3 77.4 -
UCF (Yan et al., 2023) ICCV’23 77.9 75.3 80.7 78.0
ED (Ba et al., 2024) AAAI’24 81.8 86.4 - -
ProDet (Cheng et al., 2024b) NIPS’24 90.9 84.2 84.8 86.6
LSDA (Yan et al., 2024a) CVPR’24 86.7 83.0 88.0 85.9
Fada (Cui et al., 2025) CVPR’25 - 83.7 - -
FIA-USA (Ma et al., 2025) ARXIV’25 90.1 86.7 82.1 86.3
SRI-Net (Ours) - 91.3 87.5 89.3 89.4

Table 2: Video-level AUC(%) performance
comparison on traditional Datasets.

Method Traditional Datasets
CDF-v2 DFD

Xception 81.6 89.6
EffiNet-B4 80.8 86.2
RECCE 82.3 89.1
F3-Net 78.9 84.4
SBI 90.6 88.2
UCF 83.7 86.7
FIA-USA 94.1 -
SRI-Net (Ours) 95.5 93.1

Tab. 1 and Tab. 2 present the frame-level and video-
level AUC comparisons on traditional datasets, where
video-level scores are computed by averaging the
frame-level scores across all frames. SRI-Net achieves
state-of-the-art performance under both evaluation
protocols. Specifically, it attains the highest AUC
scores across all three datasets at the frame level,
demonstrating its effectiveness in capturing subtle
forgery evidence through explicit modeling of corre-
lations among specular reflection, texture, and direct
light. At the video level, SRI-Net maintains its supe-
rior performance despite relying solely on frame-wise
score aggregation without exploiting temporal depen-
dencies.

Table 3: Frame-level AUC (%) performance comparison on DF40 Dataset.

Method Venue DF40 Dataset
uniface e4s facedancer fsgan inswap simswap Avg

RECCE CVPR’22 84.2 65.2 78.3 88.4 79.5 73.0 78.1
SBI CVPR’22 64.4 69.0 44.7 87.9 63.3 56.8 64.4
CORE CVPRW’22 81.7 63.4 71.7 91.1 79.4 69.3 76.1
IID CVPR’23 79.5 71.0 79.0 86.4 74.4 64.0 75.7
UCF ICCV’23 78.7 69.2 80.0 88.1 76.8 64.9 76.3
LSDA CVPR’24 85.4 68.4 75.9 83.2 81.0 72.7 77.8
CDFA ECCV’24 76.5 67.4 75.4 84.8 72.0 76.1 75.4
ProgressiveDet NIPS’24 84.5 71.0 73.6 86.5 78.8 77.8 78.7
FIA-USA ARXIV’25 91.8 87.5 83.0 86.3 87.4 91.0 87.8
SRI-Net (Ours) - 92.0 89.4 95.3 94.2 91.1 83.3 90.9

4.3 COMPARISON ON GENERATIVE DATASETS

Tab. 3 and Tab. 4 present frame-level AUC comparisons on the DF40 and DiFF datasets. For the six
representative faceswap subsets in DF40 dataset, SRI-Net achieves a substantial improvement in av-
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erage AUC from 87.8% to 90.9%. Similarly, on DiFF dataset, our method consistently outperforms
existing approaches across all four subsets.

Table 4: Frame-level AUC (%) performance compari-
son on DiFF Dataset.

Method DiFF Dataset
T2I I2I FS FE Avg

Xception 62.4 56.8 86.0 58.6 66.0
EffiNet-B4 74.1 57.3 82.1 57.2 67.6
F3-Net 66.9 67.7 81.0 60.6 69.1
SBI 80.2 80.4 85.1 68.8 78.6
FIA-USA 86.1 85.0 89.4 72.7 83.3
SRI-Net (Ours) 88.7 85.5 92.2 80.8 86.8

Notably, while conventional methods of-
ten experience performance degradation
on generative datasets due to the reduced
texture inconsistencies, SRI-Net maintains
robust detection performance. This re-
silience can be attributed to the fact that
specular reflection is inherently difficult
to replicate accurately, and modeling their
correlations with multiple facial attributes
based on well established physical prin-
ciples. This physics grounded approach
enables SRI-Net to capture generalizable
forgery evidence that remains present even
in high quality synthetic forgery faces.

4.4 ABLATION STUDIES

In this section, we conduct ablation studies to analyze the SRI-Net, the experimental results are
presented in Tab. 5.

Table 5: Ablation study results on AUC (%) of SRI-Net.

Method Settings Datasets
Celeb v2 DF40 DiFF

(1) Img 72.1 74.2 66.0
(2) SPR 75.7 78.8 73.9
(3) Img + SPR 84.5 87.2 83.9
(4) Img + SPR + Tex/Dir 87.5 90.9 86.8
(5) T = Tbfm 83.3 85.4 79.9
(6) T = Tbfm +Bβ 84.1 88.2 82.5
(7) T = Tmsr 87.5 90.9 86.8
(8) w/o shape norm 82.1 83.7 81.0
(9) w/ shape norm 87.5 90.9 86.8

Effectiveness of each branch. Rows
1-4 in Tab. 5 evaluate individual
branch contributions. The combina-
tion of image (Img) and specular re-
flection (SPR) branches achieves su-
perior performance, as the original
image preserves undistorted forgery
evidence while the SPR branch iso-
lates difficult to replicate specular re-
flection that contains generalizable
forgery evidence. Adding the tex-
ture/direct light (Tex/Dir) branch fur-
ther improves results by leveraging
the Phong illumination model’s phys-
ical principles.

Effectiveness of Retinex-based Texture Extraction. Rows 5-7 compare three texture extraction
methods (Fig. 3). The Retinex-based Tmsr achieves optimal performance by capturing fine-grained
facial textures, enabling more precise separation of illumination components.

Effectiveness of shape norm. Rows 8-9 demonstrate that shape normalization improves perfor-
mance by standardizing illumination directions, surface normals, and viewing directions, thereby
enhancing the correlation capture between specular reflection, texture, and direct light components
under the Phong illumination model.

5 CONCLUSION

In this paper, we build upon the principle that face attributes requiring more estimated parameters
and more complex physical constraints are inherently harder to replicate accurately, and demon-
strate that the specular reflection component in the Phong illumination model contains generalizable
forgery evidence. To enable accurate illumination separation, we develop a faster and more accurate
Retinex-based texture extraction method that facilitates precise specular reflection estimation. We
then propose SRI-Net to capture the correlations between specular reflection, face texture, and di-
rect light components, thereby enabling the extraction of more complete forgery evidence. Overall,
we propose a novel approach for detecting forgery evidence under physically realistic constraints,
demonstrating superior performance on both traditional deepfake datasets and more challenging
generative deepfake datasets.
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A APPENDIX

A.1 THE USE OF LLM

We used Large Language Models (LLMs) to assist with writing polishing and writing refinement
during the preparation of this manuscript. The LLMs were employed solely for improving gram-
mar, sentence structure, and overall readability. All research ideas, data analysis, conclusions, and
substantive content remain entirely the original work of us. We take full responsibility for the accu-
racy and integrity of all content presented in this paper.

A.2 IMPLEMENT DETAILS

For training specifications, we employ Xception as the backbone, optimized with the Adam opti-
mizer at an initial learning rate of 1e-3 for 80 epochs. During training on the FF++ dataset, we
uniformly sample 32 frames per video sequence, and the input size is 256x256. Data augmentation
strategies include HorizontalFlip, RandomCutout and AddGaussianNoise. The multiscale Retinex-
based texture extraction method utilizes σ values of [15, 80, 120] for face texture extraction.

A.3 EXAMPLES OF SPECULAR REFLECTION EXTRACTION

In this section, we present additional samples of specular reflection extraction in Fig. 4. We utilize
3DDFA for 3D shape extraction and propose a fast and accurate Retinex-based method for tex-
ture extraction. Subsequently, we employ spherical harmonic model to fit ambient light and direct
light, extracting specular reflection through a residual-based approach under Retinex-based texture
constraints.

Real samples Fake samples

Image

3D shape

Retinex-based
Texture

Ambient light

Direct light

Specular 
reflection

Figure 4: The visualization of Specular Reflection Extraction. The face image can be decomposed
into 3D shape, Retinex-based texture, ambient light, direct light, and specular reflection under Phong
illumination model constraints. The samples on the left are real samples, while the samples on the
right are fake samples.

A.4 LIMITATION ANALYSIS AND FUTURE WORK

Fig. 5 presents cases of misclassification. It can be observed that these cases are characterized by
extreme facial poses or significant self-occlusion on the surface, resulting in inaccurate 3D shape
fitting and consequently imprecise specular reflection extraction. To address this issue, future work
could consider implementing secondary correction of the 3D shape, such as aligning the 3D shape
with 2D facial landmarks.
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Image

Retinex-based
Texture

Direct light

Specular 
reflection

Figure 5: The visualization of misclassified cases. These cases are characterized by extreme facial
poses or severe self-occlusion of the facial surface.
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