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ABSTRACT

Heterogeneous graph-level anomaly detection is vital for applications such as
fraud detection and drug discovery, yet remains challenging due to mixed features,
complex structures, and severe class imbalance. This paper introduces JacobiGAD,
a unified framework that addresses these challenges through three key innovations.
First, learnable multiscale filters based on Jacobi Polynomials adapt to different
node and edge types, fusing multiple graph views to enhance anomaly signals.
Second, these polynomials enable efficient approximation of targeted functions
and naturally encode diverse geometries. Third, a Ricci Flow-inspired loss am-
plifies gradients for rare anomalies, mitigating class imbalance without distorting
graph embeddings, ensuring stable convergence. Extensive experiments on real-
world benchmarks show JacobiGAD outperforms the best baseline by up to 2.79%
(AUROC), 7.78% (AUPRC), 7.11% (Recall@k), and 5.96% (F1-score) on average.

1 INTRODUCTION

Graph-level anomaly detection (GAD) identifies entire graphs that exhibit structural or attributively
deviations from norm ones, a critical task for applications (Ma et al., 2023} |Lin et al., [2024), such
as financial fraud detection, drug toxicity screening, and infrastructure monitoring. These graphs
are often heterogeneous, containing multiple node and edge types, presenting three core challenges:
Mixed feature spaces (Xu et al., [2024). Heterogeneous graphs combine diverse attributes with
varying dimensions, making it hard to design unified filters that capture relevant anomalous patterns
across all types. (2) Structural complexity (Zhang et al.,[2022). Multiple edge types and intricate
structures create difficulties in detecting anomalous substructures within graphs, which can easily
mislead the detector. (3) Imbalanced label distribution (Dong et al.l|2024)). Genuine anomalies are
exceedingly rare, leading to highly skewed training sets that bias models toward normal graphs.
Existing methods for graph classification or GAD struggle to surface anomalous signals in such
imbalanced heterogeneous data, as illustrated in Section[2]and demonstrated in Section 5]

To tackle these challenges, this paper presents JacobiGAD, an end-to-end framework that unifies adap-
tive multi-scale spectral filters with imbalance-sensitive loss for heterogeneous GAD. Specifically, our
learnable Jacobi Polynomial filters adapt to diverse node and edge types across multiple graph views,
enhancing true anomaly signals while suppressing noise. A complementary Ricci Flow-inspired loss
dynamically amplifies gradients for rare anomalies, effectively combating class imbalance. Theoreti-
cally, we prove that these filters enable fast, stable approximation while preserving feature distances,
and that the loss ensures reliable convergence. Empirically, JacobiGAD consistently outperforms
all baselines across AUROC, AUPRC, Recall@k, and F1-score on 15 real-world benchmarks. In
summary, our contributions are threefold:

* We propose JacobiGAD, a novel framework for heterogeneous GAD that integrates adaptive Jacobi
Polynomial filters with a Ricci Flow-inspired loss function.

* We provide theoretical guarantees on filter stability, information preservation, and loss convergence,
ensuring principled and efficient learning.

* We comprehensively validate JacobiGAD on diverse real-world datasets, showcasing its superior
ability to detect rare anomalies that existing methods fail to identify.
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2 RELATED WORK

Homogeneous Graph Classification. Early successes in graph classification on homogeneous
networks include GCN (Kipf & Welling| 2017), which approximates spectral graph convolutions,
SAGE (Hamilton et al.,2017)), which samples neighborhoods, GAT (Velickovic et al., [2018)), which
applies attention to neighbor messages, and GIN (Xu et al., [2019), which demonstrated that sum-
aggregation matches the Weisfeiler—Leman test’s expressivity. Recent extensions such as LRGNN
(Wei et al.| [2023) stack GNNs for long-range dependencies, GRDL (Wang & Fanl 2024)) treats node
embeddings as discrete distributions for direct classification, UQGNN (Wu et al.l 2025) introduces
uncertainty-aware objectives for robustness, and UIL (Sui et al.l 2025) offers a unified view on
invariant graph learning. While effective on balanced, homogeneous benchmarks, these models
struggle with integrating multiple node/edge types and detecting rare anomalies in complex structures.

Heterogeneous Graph Classification. Methods such as HMGNN (Yu & Gaol [2022) and muxGNN
(Melton & Krishnan| 2023) capture heterogeneity using motifs or multiplex networks, while HeGCL
(Shi et al.} 2024) employs contrastive learning on multiple views. Subsequent approaches, such as
RFAGNN (Wu et al.| [2024)) and SHGLNN (Hayat et al.|[2024), use relational attention or hypergraphs
to model complex interactions. Although these methods perform heterogeneous graph classification,
they rely on fixed filters or heuristic fusion strategies, assume balanced data, and lack principled
mechanisms for anomaly detection.

Graph-level Anomaly Detection. Current anomaly detection literature includes iGAD (Zhang et al.,
2022), which learns anomalous substructures in graphs, GmapAD (Ma et al., [2023)), which maps
graphs into feature spaces based on similarity to representative nodes, RumorMixer (Xu et al.| [2024)),
focusing on the echo chamber effect and platform heterogeneity; RQGNN (Dong et al.| 2024), which
uses the Rayleigh Quotient to uncover sample properties, and UniGAD (Lin et al., 2024), which
tackles multi-level tasks for diverse information. While these methods perform well in GAD, they
struggle to generalize to heterogeneous scenarios due to their inability to adapt filters to diverse
feature domains, fuse multiple graph views, and incorporate theoretically guaranteed loss for handling
imbalanced data in complex structures.

In contrast, JacobiGAD is an innovative end-to-end framework specifically designed for heteroge-
neous GAD. It introduces learnable, multi-scale spectral filters that adaptively fuse signals across
diverse node and edge types, and a Ricci Flow—inspired loss that counteracts class imbalance by
dynamically emphasizing rare anomalies. Unlike homogeneous methods, it natively handles hetero-
geneous complexity; unlike existing heterogeneous classifiers, it uses learned, geometry-aware filters
instead of fixed bases; and unlike all prior approaches, it addresses severe imbalance in a theoretically
grounded manner, enabling the detection of subtle anomalies that are missed by other methods.

3 PRELIMINARIES

Heterogeneous Graph. A heterogeneous graph is defined as G = (V, A, X, Ty, Rg), where the
node set V = ULZ‘E'{V}} comprises |Ty/| distinct types of nodes, each endowed with an attribute

matrix X; € RIV¢/Xdt in X The set of adjacency matrices A = {AT}‘TZ”;‘ with each A, € RIVIXIVI,
encodes the | Rg| relation types by setting (A, );; = 1 if nodes ¢, j € V are linked under relation
r, otherwise (Ar)ij = 0. The schema is completed by 7y, the set of node types, and Rg, the set
of relation types, which together satisfy |7y | + |Rg| > 2. In practice, heterogeneous graphs often
exhibit heterogeneity in attribute dimensions, i.e., dr, # dr, for T; # Tj, T;, T; € Ty .

Task Definition. Given a heterogeneous graph set G = {G) = (V&) A x0Ty, Rp)}N |,
we partition G into two disjoint subsets, anomalous graphs G** and normal graphs G™°, with
G N G"° = (). The GAD task then seeks to assign each G € G to one of these classes, based on
atypical structural or attribute patterns that distinguish anomalous instances. Beyond the difficulties of
complex feature and structure caused by heterogeneity, heterogeneous GAD also exhibits severe class
imbalance, i.e., |G*"| < |G™°|, which compounds the difficulty of reliable anomaly discrimination.
Building on this formulation. Our study proposes a novel spectral GNN based on Jacobi Polynomials
under the guidance of Ricci Flow-inspired loss, specifically designed for heterogeneous GAD to
address the challenges mentioned in Section [I]
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Spectral Graph Neural Network. The key ideas of spectral GNNs are to conduct graph convolutional
operations in the Fourier domain, which can be defined as g x X = g(L)X, where g(-) is the graph
filter, X is the feature matrix of the graph, and L is the normalized Laplacian matrix, which can be
definedas L=1— D 2 AD"z, given the adjacency matrix A, corresponding degree matrix D,
and an identity matrix I. The successful choices of g(-) from prior work (Defferrard et al.,[2016), are
polynomials, inspiring our exploration of the optimal basis of the graph filter in heterogeneous GAD.

Jacobi Polynomials. Jacobi Polynomials { P8 (x)}22_, are a family of orthogonal polynomials on
the interval = € [—1, 1] with weight function w(z) = (1 — 2)*(1 + x)” for parameters a, § > —1:

Py () =1,

%M(x—l),

PP () =00z + 0,7 PR (x) — 0 P,

PP (x) =(a+1)+

where
9(1)_(2k+a+ﬁ—1)(2k+a+6)
ko 2k(k+a+B) ’
9(2)7 (2/€+0&+ﬁ*1)(0¢27ﬂ2)
P2kt a+ B)2k+a+ B -2)
9(3)_(k+a—1)(k+5—1)(2k+a+5)
W=

E(k+a+B)2k+a+6—2)

Jacobi Polynomials provide a general solution for graph signal filtering. In more detail, increasing o
decreases contributions near the upper end of the spectrum, i.e., high-frequency or rapidly varying
components, while increasing 3 down-weights contributions near the lower end, i.e,. low-frequency
or smooth components. In practice, this parametrization yields an efficient, k-hop localized graph
convolution operator whose passband can be finely tuned by selecting o and 3 to match the topology
and signal characteristics of diverse graph domains. Special cases include classical polynomials, such
as Legendre Polynomials (aw = 8 = 0), Chebyshev Polynomials (o = 3 = f%), and Gegenbauer

Polynomials (v = 8 = XA — %, where A > —1).

Ricci Flow. Ricci Flow is a geometric process that deforms a Riemannian metric g(¢) according to:

90) _ Ric(g(t),

where Ric(g(t)) denotes the Ricci curvature tensor and v € R*. Under this evolution, regions of high
curvature flatten out, leading to a more uniform geometry. In graphs, edgewise curvature measures
are defined via optimal transport between local neighborhood distributions. A discrete Ricci Flow
then updates edge weights to equalize the curvature across the graph. This curvature-guided objective
counteracts extreme class imbalance without globally distorting the graph representation, ensuring
that rare but structurally distinctive anomalies receive proportionally larger gradient updates.

4 METHOD

4.1 OVERVIEW

In this section, we present an overview of JacobiGAD in Figure[I] First, we unify heterogeneous
features via Gaussian projection and construct a multi-view topology in Section[#.2] Additionally,
we demonstrate the distance preservation property of our alignment, as shown in Theorem [I] Next,
we propose JPGNN, a spectral filter based on Jacobi Polynomials, which fuses multiple views
while provably preserving feature and structural information in Section 3] Furthermore, we
prove the optimal basis, information preservation, target amplification, multiple spaces, extensive
approximation, and converged approximation properties of JPGNN, as shown in Theorems 2} 3] { 5l
[6] and[7] respectively. Finally, we introduce RFACE, a Ricci Flow-inspired loss, that intrinsically
adapts to imbalanced distributions in Section 4] Morevoer, we verify the weight balance and
convergence guarantee properties of RFACE, as shown in Theorems[§|and [9]
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Figure 1: Overview of JacobiGAD.

4.2 HETEROGENEOUS FEATURE PROJECTION AND MULTI-VIEW TOPOLOGY

The initial processing of heterogeneous data is a critical determinant of model performance. Conven-
tional approaches often fail to adequately address two fundamental challenges: the misalignment of
features across node types and the synergistic integration of multiple relational contexts. Our method
addresses these challenges through a principled framework.

Heterogeneous feature projection. Current methods for handling heterogeneous node features, such
as decomposition (Ren & Dul [2020), concatenation (Gao et al., 2023), and independent learning
(Yang et al., [2023)), each face significant limitations. Decomposition reduces dimensionality at
the cost of information loss. Concatenation increases feature size, leading to overfitting and high
computational cost. Independent learning ignores semantic alignment between views, introducing
noise and raising training expense. All fail to adequately align semantics across node types.

To address the above drawbacks, we propose a theoretically guaranteed approach that can align fea-
tures without severe information loss and requires no parameter tuning. Given a set of heterogeneous
graphs with in total | Ty | types of node features, we first apply zero padding to the end of each type so
that all types have the same dimensionality dyqz, i.e., X; = X; @ 0, where X € RIVi[xdmaz and
0 € RIVelx(dmae—de) ¢ ¢ Ty . Then, we use a shared Gaussian matrix to project them into a lower
latent space with dimension d, i.e., (X}"*)T = P(X])”, where P € R%*max and P; ; ~ N(0, 3).

The result feature matrix X% = X" ¢ X" @ ... ¢ X IPTT\f]‘ . The validity of this approach is

rigorously guaranteed by the following theorem, whose proof is in Appendix [A]

Theorem 1. Given any finite set of vectors with different dimensions, zero-padding at any position
can equivalently preserve their original information. For any zero-padded vector x € R, a data-
independent Gaussian projection f(x) = Px, where P € R*P and P; j ~ N (0, é) can preserve

2d

pairwise Euclidean distance for M pairs up to a factor € with high probability, 1 — 2Me™ 7 .

Theorem|I]shows that high-dimensional vectors can be projected into a lower-dimensional space while
preserving their pairwise distances with high probability. This ensures the semantic relationships
between nodes are maintained isotropically in the latent space, without additional cost during training.

Multi-view topology. Additionally, to address the multifaceted topology of heterogeneous graphs,
we move beyond the naive summation of adjacency matrices, which assumes all relation types are

equally important. Instead, we employ learnable weights for each relation: A = ZliEll wy-A,.. This
allows the model to dynamically discern the hierarchical importance of different relational contexts.
However, prior heuristic weighting schemes often fail to leverage inherent structural patterns. Our
method, detailed in Section[4.3] provides a theoretically grounded approach for optimal multi-view
fusion, ensuring convergence and information preservation to leverage the formulation effectively.
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4.3 JACOBI POLYNOMIAL-BASED GRAPH NEURAL NETWORK

Our spectral GNN takes as input a graph with aligned features and fused topology. Selecting an
appropriate spectral filter basis is critical for heterogeneous GAD, as different bases offer distinct
expressivity. We posit that Jacobi Polynomials are the optimal basis, a claim supported by the
following analysis and theorems. First, we consider homogeneous graph classification, a closely
related case of heterogeneous GAD. The core of our argument rests on a theorem, proved in Appendix
[A] establishing the direct and general optimality of Jacobi Polynomials.

Theorem 2. Consider the optimization process of a spectral GNN in graph classification:
argminek)W,C(y,Pooling(Z:kK:1 Orgr (L) XW)). Assuming that it can reach a global minimum

by tuning learnable parameters 0y, W, then the optimal choice of the basis of the graph filter gy, (-)
can be the Jacobi Polynomials, according to its convergence speed to the minimum area.

Theorem [2] provides the foundational justification for our architecture, demonstrating that Jacobi
Polynomials are optimal for the case of homogeneous graph classification. This inspires their use for
more complex heterogeneous graph-level tasks. As established in Section[d.2] a heterogeneous graph’s
multi-view topology is a linear combination of homogeneous adjacency matrices. Consequently, the
task can be represented as a combination of its homogeneous variants. Therefore, the expressivity of
Jacobi Polynomials for heterogeneous GAD hinges on their ability to filter and fuse this multi-view
information, a capability demonstrated by the following theorems, whose proofs are in Appendix [A]

Theorem 3. Given different views of a graph, the combination of Jacobi Polynomial-based graph
filter can preserve the full information from the original graph due to injectivity.

Theorem 4. Combining information from' V' views using the combination of Jacobi Polynomial-based
graph filter will amplify targeted patterns (the enhancement factor grows as ©(V')) while suppressing

noise (the signal-to-noise ratio grows as ©(v/V)).

Theorem [3] and [4] demonstrate that a Jacobi Polynomial-based filter comprehensively preserves
information while selectively amplifying targeted patterns and reducing noise. This is vital for
heterogeneous GAD, where anomalies are often subtle inconsistencies across relational views. Unlike
filters that may smooth over these faint cues, our Jacobi basis can be tuned to amplify cross-view
discrepancies while dampening common normal signals.

However, a filter constrained to a Euclidean prior is insufficient, as anomalies can exhibit complex
structures such as hierarchical or cyclical patterns (Dong et al.| [2025)). Effective heterogeneous
GAD thus requires a filter capable of leveraging multi-geometric information from Hyperbolic
(for hierarchical data) and Spherical (for cyclical data) spaces. The following theorem, proved in
Appendix [A] establishes that Jacobi Polynomials possess this essential capability.

Theorem 5. After appropriate coordinate transformations, Jacobi Polynomials can serve as eigen-
functions of the Laplace-Beltrami operator in the k-stereographic model (Bachmann et al.| 2020).
The connections for each geometry are as follows:

* Spherical geometry (k > 0): The Laplace-Beltrami operator in stereographic coordinates has
eigenfunctions with radial and angular parts. The angular part is handled by spherical harmonics,
while the radial part satisfies a differential equation solvable by Jacobi Polynomials.

* Hyperbolic geometry (k < 0): The spectrum of the Laplace-Beltrami operator is continuous, and
the radial eigenfunctions are not polynomials but can be expressed as Jacobi Polynomials.

* Euclidean geometry (k = 0): The Laplace-Beltrami operator reduces to the standard Laplacian,
and the radial eigenfunctions are Bessel functions, which arise as a limit of Jacobi Polynomials.

Theorem [5] elevates our model beyond Euclidean-centric approaches. By adjusting its parameters
(c, B), the Jacobi filter performs a soft selection of the optimal geometric domain for the fused graph’s
structure. This enables a single model to detect anomalies manifesting in any of these paradigms, a
critical capability for complex real-world heterogeneous graphs.

In summary, Jacobi Polynomials offer key advantages for our task: performance guarantee, effective
multi-view fusion, and adaptability to complex structural patterns. This naturally raises the question
of whether a Jacobi Polynomial-based GNN can converge efficiently during training. We address this
with the following theorems, which are demonstrated in Appendix [A]
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Theorem 6. Assuming using Jacobi Polynomials as graph filter g(-), and the eigenvalues of the
shifted Laplacian matrix L fall in [—1, 1], then g(L) can approximate any continuous function lying in
the space C[—1, 1] (contains continuous functions on [—1, 1]). Moreover, it can also approximate any

function in the L2 [—1,1] space (contains measurable functions satisfying f_ll |f(z)|?w(z)dz < oo,
where w(x) = (1 — 2)*(1 + x)?, and o, B > —1).

Theorem 7. Jacobi Polynomials satisfy sharp approximation bounds. In particular, if the function
f(x) has r continuous derivatives, then there exists a constant C' depending on r, «, 8 such that
the Jacobi Polynomials g(x) obeys mingeg(g(zy<n ||f(2) = 9(@)lec < S f"(2)[| 12, which
guarantees that a low-degree Jacobi filter will approximate f(x) well.

Theorems [ and [7] guarantee our model’s high expressiveness and computational efficiency. A low-
order polynomial suffices to capture complex patterns, enabling a shallow architecture that avoids the
over-smoothing typical of deep GNNES, a critical advantage for preserving the fine-grained differences
between normal and anomalous graphs in heterogeneous GAD.

Based on Theorems [2H7] Jacobi Polynomials are theoretically justified as an optimal basis for
heterogeneous GAD. We therefore operationalize this framework into a neural network layer, adhering
to the parameter constraints specified in Theorem|[6] We first transform the input adjacency matrix

A = ETZEll w, A, to the normalized Laplacian matrix L = I — D2 AD~%, and rescale the
normalized Laplacian matrix L = /\Lf} — I, where Apay is the largest eigenvalue of L. Then the

k-th layer of the Jacobi Polynomial—bnzxsed Graph Neural Network (JPGNN) can be defined as:

T
k) () gy, _
H® =3 oM P (L) H-DWR),
t=0

where H(®) = ¢(XPreIW (), o is a activation function, and w,, a(¥), 3(*) Ht(k), W (%) are learn-
able parameters. Then, the graph embedding z can be obtained by:

Estack — gr(0) o) H(l) DD H(K),
H— (I(HStaCkW),
z = Pooling(H)

where W is a learnable parameter. This design yields a fully co-adaptive model: the multi-view
fusion, governed by view weights w,., and the spectral processing via JPGNN are jointly optimized to
excel at heterogeneous GAD.

4.4 Riccl FLOW-INSPIRED LOSS FUNCTION

The above design addresses the first two challenges outlined in Section[I} while the final component
of our framework tackles the severe class imbalance in heterogeneous GAD, where normal graphs
significantly outnumber anomalies. A standard Cross-Entropy loss is ill-suited for this scenario, as
it can become dominated by the majority class. To counteract this, we introduce the Ricci Flow
Adjusted Cross-Entropy Loss (RFACE), which dynamically reshapes the learning landscape based on
the model’s output geometry.

For a graph-level classification task with C' classes, given predicted probability of i-th sample
p; = Sigmoid(z;), the Cross-Entropy loss is:

L N.c
Lcg = N Z Z Yic log(pi.c)

i=1 c=1

In highly imbalanced settings (e.g., C' = 2), the standard Cross-Entropy loss, L¢ g, produces much
larger gradients for the frequent class. This biases model updates toward the majority class, often
harming minority class performance. To counteract this, we adapt principles from differential
geometry, mimicking the Ricci Flow, which homogenizes a manifold’s curvature. We apply this
concept to the loss landscape’s curvature per class, defined for a class c as:

Je

o= log(——J°
& Og(maxc/ fc’ + €

)
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Table 1: Average performance with multiple runs (homogeneous graph classification models).

Datasets Metrics GCN SAGE  GAT GIN LRGNN GRDL UQGNN UIL  JacobiGAD
AUROC | 0.6687 0.7178 0.7409 0.6914  0.7578  0.6389  0.5248  0.7334 0.7729
SF-295 AUPRC | 0.0856 0.1600 0.1645 0.0961 0.1962 0.0871 0.0525  0.1598 0.2623
Recall@k | 0.1078 0.2362 0.2099 0.1029 0.2494 0.1342  0.0519  0.1975 0.3210
Fl-score | 0.4870 0.5685 0.5560 0.5255 0.4952 0.4871 0.4871  0.5223 0.6356
AUROC | 0.7034 0.7440 0.7475 0.7194 0.7747 05639  0.4922  0.7604 0.7797
SN12C AUPRC | 0.1032 0.1598 0.1772 0.1122  0.2038 0.0792  0.0486  0.1789 0.2666
Recall@k | 0.1279 0.2430 0.2234 0.1364 0.2515 0.1168  0.0537  0.2702 0.3240
Fl-score | 04905 0.5846 0.5791 0.5242 0.5001 0.4875 0.4875 0.5105 0.6329
AUROC | 0.6654 0.7324 0.6998 0.6848  0.7220 0.5711  0.4611  0.7124 0.7613
UACC257 AUPRC | 0.0726 0.1588 0.1228 0.0903 0.1626  0.0916  0.0378  0.1134 0.1995
Recall@k | 0.0832 0.2404 0.1633 0.1136 0.2312  0.1471  0.0355  0.1562 0.2819
Fl-score | 0.4921 0.5722 0.5214 0.5096 0.4905 0.4895 0.4895 0.4955 0.6246
AUROC | 0.9816 09746 0.9671 0.9730 0.7475 09800 0.9352  0.9698 0.9830
DBLP AUPRC | 09829 0.9758 0.9515 09740 0.6285 0.9761 0.9497 0.9701 0.9842
Recall@k | 0.9418 0.9441 09172 0.9284 0.6197 0.9374 0.8926 0.9172 0.9575
Fl-score | 0.9598 0.9594 0.9346 09445 0.4863 09492 0.9268 0.3959 0.9651
AUROC | 0.6601 0.6771 0.6707 0.6601  0.6643  0.6677 0.6575  0.6487 0.7263
IMDB AUPRC | 0.7007 0.7260 0.7161 0.6948 0.7063  0.6878  0.6982  0.6764 0.7619
Recall@k | 0.7056 0.6982 0.6824 0.6982 0.6772  0.6909  0.6993  0.7003 0.7192
Fl-score | 0.6387 0.6225 0.6045 0.6363 0.6242 0.6258 0.6305 0.6100 0.6585
AUROC | 0.7773 0.8577 0.6735 0.6249  0.8159  0.6935  0.4377  0.5683 0.8728
PDNS AUPRC | 0.4434 0.6110 0.3263 0.2349 0.5188 0.3578 0.1565  0.2224 0.6871
Recall@k | 0.4788 0.5900 0.3444 0.2766 0.5206 0.3299  0.1429  0.2205 0.6283
Fl-score | 0.6743 0.7561 0.4917 0.4526 0.5718 0.4553 0.4526  0.4526 0.7760
AUROC | 09581 0.9811 0.9602 0.9658 0.9805 0.9609  0.8033  0.9593 0.9826
RCDD AUPRC | 0.8619 0.9291 0.8871 0.8823 0.9267 0.8605 0.3491  0.8645 0.9332
Recall@k | 0.8006 0.8695 0.8261 0.8249 0.8743 0.8111 0.4106  0.8081 0.8747
Fl-score | 0.8782 09230 0.8995 0.8981 09280 0.8271 0.4616 0.8694 0.9280
AUROC | 0.9085 0.9437 09216 0.9202 0.9461 0.8773 0.7162  0.9245 0.9543
Transaction AUPRC | 0.3722 0.4811 0.4520 0.3961 0.5063  0.3688  0.0927  0.4376 0.5642
Recall@k | 0.3410 0.5172 0.4462 0.3730 0.5217 0.3730 0.0915  0.4577 0.5835
Fl-score | 0.6502 0.7469 0.7088 0.6552 0.7762 0.6138 0.4105 0.6785 0.7944

where f. is the frequency of class c in training set, and e is for numerical stability. To adjust the
gradients based on Ricci Flow, we further define the Ricci Flow adjustment term for the i-th sample:

Api,c = _W//chpi,CLCEa
where 7 is a hyperparameter, and the RFACE can be defined as:

L N.cC
LrrACE = N Yi,clog(Dic),
1

=1 c=

where p; . = Sigmoid(z; . + Ap; ). The following theorems proves the benefits of utilizing RFACE
as the training objective for heterogeneous GAD, demosntrated in Appendix [A}

Theorem 8. For a rare class c, |Vzi,C[,RFACE| > |Vz1-,C£CE\ with amplifying factor proportional
to y|kc| and the amplification follows (1 + v|k.|)-Lipschitz continuous, preserving the topology of
the latent graph embedding space.

Theorem 9. When the adjusted predictions are perfect, i.e., P; . = Yi.c, Vi, ¢, the adjustment term
vanishes, i.e., Ap; . — 0, and the raw predictions also converge to the true labels, i.e., p; . = Yi.c
for all classes, including rare ones.

In summary, the RFACE is a dynamic system that actively recalibrates the learning focus based on
per-class performance, not a simple weighting scheme. This ensures our JPGNN is optimized for
detecting rare anomalies, making the entire pipeline, from feature projection and topology fusion
to spectral filtering, coherent and optimal for the task. Beyond its theoretical foundation, extensive
experiments in Section [5|confirm the practical superiority of JacobiGAD.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and baselines. We evaluate JacobiGAD on 14 public and 1 private real-world datasets,
divided into 20%/20%/60% for train/validation/test, and compare our JacobiGAD with 18 baselines
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Table 2: Average performance with multiple runs (heterogeneous graph classification models).

Datasets Metrics | HMGNN muxGNN HeGCL RFAGNN SHGLNN JacobiGAD
AUROC 0.4112 0.4348 0.6584 0.6799 0.5088 0.7729
SF-295 AUPRC 0.0421 0.0417 0.1129 0.1090 0.0471 0.2623
Recall@k | 0.0477 0.0230 0.1745 0.1802 0.0198 0.3210
Fl-score 0.4871 0.4871 0.4876 0.4871 0.4871 0.6356
AUROC 0.4309 0.5169 0.6373 0.6958 0.5053 0.7797
SN12C AUPRC 0.0410 0.0784 0.0894 0.1077 0.0458 0.2666
Recall@k | 0.0315 0.1347 0.1287 0.1577 0.0188 0.3240
Fl-score 0.4892 0.5383 0.4874 0.4920 0.4875 0.6329
AUROC 0.5512 0.4207 0.6835 0.7129 0.5022 0.7613
UACC257 AUPRC 0.0698 0.0332 0.1305 0.1297 0.0381 0.1995
Recall@k | 0.1014 0.0142 0.2049 0.1755 0.0132 0.2819
Fl-score 0.4895 0.4895 0.4962 0.4953 0.4895 0.6246
AUROC 0.4849 0.9697 0.9696 0.9814 0.7684 0.9830
DBLP AUPRC 0.3786 0.9697 0.9698 0.9826 0.5949 0.9842
Recall@k | 0.3602 09172 0.9306 0.9530 0.5996 0.9575
Fl-score 0.5079 0.9388 0.9522 0.9595 0.6763 0.9651
AUROC 0.5256 0.6176 0.6512 0.6594 0.5220 0.7263
IMDB AUPRC 0.6063 0.6716 0.7033 0.7119 0.5978 0.7619
Recall@k | 0.5983 0.6572 0.6709 0.6909 0.5889 0.7192
Fl-score 0.3682 0.5171 0.6089 0.6214 0.3682 0.6585
AUROC 0.5563 0.6250 0.7796 0.7359 0.5173 0.8728
PDNS AUPRC 0.2115 0.2528 0.4190 0.3977 0.1912 0.6871
Recall@k | 0.2420 0.2855 0.4583 0.3980 0.2470 0.6283
Fl-score 0.4525 0.5289 0.5432 0.6194 0.4526 0.7760
AUROC 0.7105 0.9523 0.9390 0.9809 0.5819 0.9826
RCDD AUPRC 0.2848 0.8470 0.8031 0.9219 0.1531 0.9332
Recall@k | 0.2911 0.7870 0.7366 0.8645 0.0739 0.8747
Fl-score 0.4625 0.8610 0.8404 0.9182 0.4614 0.9280
AUROC 0.6409 0.8415 0.8853 0.9338 0.5745 0.9543
Transaction AUPRC 0.0773 0.3302 0.3781 0.4331 0.0533 0.5642
Recall@k | 0.0572 0.3021 0.3753 0.4348 0.0984 0.5835
Fl-score 04118 0.6241 0.6447 0.6690 0.3504 0.7944

Table 3: Average performance with multiple runs (GAD models).

Datasets Metrics iGAD GmapAD RumorMixer RQGNN UniGAD JacobiGAD
AUROC | 0.6768  0.6190 0.4092 0.7657 0.5947 0.7729
SE-295 AUPRC | 0.1040  0.0670 0.0414 0.1938 0.0724 0.2623
Recall@k | 0.1531  0.0724 0.0280 0.2683 0.1095 0.3210
Fl-score | 0.5427  0.4095 0.4871 0.6154 0.4971 0.6356
AUROC | 0.7416  0.5957 0.3549 0.7695 0.6281 0.7797
SN12C AUPRC | 0.1581  0.0605 0.0353 0.1973 0.0769 0.2666
Recall@k | 0.2242  0.0733 0.0290 0.2558 0.1151 0.3240
Fl-score | 0.5476  0.3477 0.4875 0.5844 0.4756 0.6329
AUROC | 0.7404  0.5936 0.4997 0.7599 0.5973 0.7613
UACC257 AUPRC | 0.1323  0.0507 0.0411 0.1894 0.0672 0.1995
N Recall@k | 0.2140  0.0527 0.0456 0.2465 0.1176 0.2819
Fl-score | 0.5429  0.3461 0.4895 0.6064 0.5058 0.6246
AUROC | 09791  0.5551 0.5000 0.9804 0.9644 0.9830
DBLP AUPRC | 0.9803  0.4131 0.3835 0.9829 0.9541 0.9842
Recall@k | 0.9396  0.4452 0.3792 0.9463 0.8881 0.9575
Fl-score | 0.9598  0.5479 0.2772 0.9509 0.9122 0.9651
AUROC | 0.6530  0.5079 0.4989 0.6707 0.6528 0.7263
IMDB AUPRC | 0.6971  0.5866 0.5822 0.7254 0.6902 0.7619
Recall@k | 0.6909  0.5794 0.5783 0.6845 0.6982 0.7192
Fl-score | 0.6313  0.5073 0.3681 0.6294 0.6332 0.6585
AUROC | 0.8502  0.5173 0.5928 0.7550 0.7310 0.8728
PDNS AUPRC | 0.6399  0.1810 0.2606 0.4109 0.4293 0.6871
Recall@k | 0.5870  0.1999 0.2732 0.4309 0.4146 0.6283
Fl-score | 0.7308  0.5058 0.4526 0.5420 0.6240 0.7760
AUROC | 09794  0.7895 0.7335 0.9624 0.9561 0.9826
RCDD AUPRC | 09225  0.3065 0.3134 0.8740 0.8636 0.9332
Recall@k | 0.8611  0.3288 0.4513 0.8073 0.7960 0.8747
Fl-score | 0.9190  0.6463 0.4614 0.8874 0.8541 0.9280
AUROC | 09431 0.7384 0.6422 0.9353 0.8862 0.9543
Transaction AUPRC | 04626  0.0873 0.0992 0.4939 0.3505 0.5642
Recall@k | 0.4897  0.0709 0.1030 0.4966 0.3501 0.5835
Fl-score | 0.7152  0.3875 0.4213 0.7422 0.6307 0.7944

in the related area. Details can be found in Appendix [B| Due to the limited space, we present results
of 7 public and 1 private datasets in Section[5] and those of the other 7 public datasets in Appendix [E]

Experimental Settings. We ensure a fair evaluation by standardizing our approach: baseline models
use code from GitHub and their authors’ recommended hyperparameters. Note that, since the most
commonly used three GNNs, GCN, SAGE, and GAT, are designed for node classification tasks, we
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thus implement them with Pytorch_Geometric package and the weighted Cross-Entropy Loss, using
the default hyperparameters. JacobiGAD’s hyperparameters are rigorously tuned via grid search to
maximize validation performance (summed AUROC/AUPRC/Recall @k/F1-score). Configurations
are listed in Appendix

5.2 EXPERIMENTAL RESULTS

We conduct a comprehensive comparison of JacobiGAD against three major groups of competing
methods: 8 widely used homogeneous graph classification models, 5 representative heterogeneous
graph classification approaches, and 5 novel graph-level anomaly detection methods. The results
across 8 datasets are summarized in Tables [T} 2} and 3] We elaborate on our findings in detail next.

To begin with, Table[I]demonstrates that JacobiGAD consistently surpasses classical homogeneous
GNN architectures, including GCN, SAGE, GAT, and GIN. These baselines, although foundational,
remain surprisingly competitive compared with several more advanced techniques. Remarkably,
newer homogeneous GNNs, such as LRGNN, GRDL, UQGNN, and UIL, do not perform as well,
frequently falling behind even the simpler models. Their limited performance on heterogeneous graph
anomaly detection can be attributed to two main issues: they cannot adaptively integrate information
across multiple semantic views well, and they lack mechanisms to properly address the severe class
imbalance inherent in GAD tasks.

We then compare JacobiGAD with contemporary heterogeneous graph classification methods, in-
cluding HMGNN, muxGNN, HeGCL, RFAGNN, and SHGLNN. As shown in Table|2[, JacobiGAD
consistently yields better detection accuracy across all datasets. Although these models are designed
specifically for heterogeneous graphs, their representation learning pipelines often rely on fixed or
suboptimal strategies for combining heterogeneous modalities, limiting their expressiveness. Thus,
Such drawbacks may distort the graph information, especially when running on complex real-world
heterogeneous graphs, leading to sometimes inferior performance, even compared to state-of-the-art
homogeneous models. Moreover, most of them do not explicitly mitigate data imbalance, which is
especially detrimental in anomaly detection scenarios where abnormal samples are extremely scarce.

Finally, we benchmark against the dedicated graph anomaly detection methods iGAD, GmapAD,
RumorMixer, RQGNN, and UniGAD. Their comparative performance, reported in Table 3] indicates
that JacobiGAD achieves substantially stronger detection capability. These GAD models are tailored
for specific anomaly settings, primarily in homogeneous graphs, and therefore struggle with our
target task. Their architectures generally lack the capacity to jointly capture multi-view semantic
signals and the high-order structural irregularities that characterize anomalies in heterogeneous graphs.
Consequently, even though they are specialized for anomaly detection, their design inherently limits
their applicability in the heterogeneous graph setting considered in this work.

5.3 ABLATION STUDY

We further examine the influence of key components in JacboGAD, i.e., Lrr acE, tunable Jacobi
Polynomial parameters v, /3, and learnable view weights w,.. As shown in Table[d] the ablation study
demonstrates the critical contribution of each proposed component to the overall performance of
the JacobiGAD. Using L¢ g to replace Lrr ac g results in significant and consistent performance
degradation across all datasets, underscoring its vital role in effectively tackling imbalanced issues
in heterogeneous GAD tasks. The learnable parameters («, /3) of Jacobi Polynomials also prove
essential, as the fix of them leads to a clear decline in performance, which shows that, without a
flexible enough graph filter, the model can not handle the complex information within heterogeneous
graphs. Similarly, the learnable relation weight w, contributes positively, with its fixing causing
noticeable dips, demonstrating the importance of adaptive weights for different relations in the
heterogeneous graphs. To sum up, the full model consistently outperforms all ablated variants,
confirming that all three components work in concert to achieve state-of-the-art anomaly detection
performance across diverse heterogeneous graph datasets.

5.4 HYPERPARAMETER ANALYSIS

Figure |2| reports the AUROC, AUPRC, Recall@k, and F1-score of JacobiGAD on the RCDD
dataset as we vary 1, hqim, K, T, €,y, where 7 is the learning rate, hqjy, is the hidden dimension of
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Table 4: Ablation study for component deactivation.

Datasets  Metrics |JacobiGAD w/o Lrracr Ww/o learnable (o, 3) w/o learnable w,
AUROC 0.7729 0.7591 0.7727 0.7574
SF-295 AUPRC 0.2623 0.1953 0.2172 0.1940
B Recall@k | 0.3210 0.2815 0.2905 0.2667
F1-score 0.6356 0.5984 0.6161 0.5931
AUROC 0.7797 0.7463 0.7505 0.7651
SN12C AUPRC 0.2666 0.2345 0.2119 0.2240
Recall@k | 0.3240 0.3035 0.2933 0.2856
F1-score 0.6329 0.6129 0.5733 0.5942
AUROC 0.7613 0.7282 0.7365 0.7499
AUPRC 0.1995 0.1617 0.1713 0.1709
UACC25T Recall@k| 02819 0.2241 0.2475 0.2535
Fl-score 0.6246 0.5634 0.5829 0.5647
AUROC 0.9830 0.9820 0.9745 0.9694
DBLP AUPRC 0.9842 0.9831 0.9762 0.9683
Recall@k | 0.9575 0.9530 0.9441 0.9418
Fl-score 0.9651 0.9641 0.9576 0.9605
AUROC 0.7263 0.6962 0.7116 0.7025
IMDB AUPRC 0.7619 0.7313 0.7514 0.7486
Recall@k | 0.7192 0.7045 0.7108 0.7014
Fl-score 0.6585 0.6439 0.6325 0.6414
AUROC 0.8728 0.8691 0.8728 0.8689
PDNS AUPRC 0.6871 0.6749 0.6812 0.6718
Recall@k | 0.6283 0.6149 0.6239 0.6195
Fl-score 0.7760 0.7695 0.7685 0.7583
AUROC 0.9826 0.9808 0.9814 0.9814
RCDD AUPRC 0.9332 0.9325 0.9318 0.9293
Recall@k | 0.8747 0.8749 0.8739 0.8675
Fl1-score 0.9280 0.9274 0.9264 0.9237
— AUROC —— AUPRC Recallok —— Fl-score
09751 _—— | 09751 0.975 -
0.950 0.950 - 0.950
0-9231 —0/4 0.925 { == 0.925 1
0.900 0.900 - 0.900 -
0.875
0.875 - 0.875
0.0001 0.0005 0.001 0.005 64 128 256 1 2 3 4
n hgim K
0.975 0.975 0.975
0.950 0.950 0.950
0025 | ———————— | o5 —m—m——————— | 0.925| —————
0.900 0.900 - 0.900
0.875 0.875 - 0.875 -
2 3 4 5 1e-8  1le7  1le-6  le-5 0.1 0.2 0.3 0.4
T € 1%

Figure 2: The change of performance on RCDD when varying different hyperparameters.

JacobiGAD, K, T are the width and depth of JacobiGAD respectively, ¢ is the small value to keep .
in RFACE valid, and + is the adjusted hyperparameter in RFACE. As shown in Figure 2] JacobiGAD
remains stable when varying the hyperparameters, demonstrating its stability.

6 CONCLUSION

This paper proposed JacobiGAD, a novel framework for heterogeneous GAD. Our approach integrates
a theoretically grounded random projection for feature alignment, a Jacobi Polynomial-based spectral
GNN for superior multi-view fusion and cross-geometric representation learning, and a Ricci Flow-
inspired loss that dynamically counteracts class imbalance. Supported by strong theoretical guarantees
and extensive experimental validation, JacobiGAD establishes a new state-of-the-art, providing a
powerful and principled methodology for GAD on complex heterogeneous graphs.

10
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A  PROOF

Proof of Theorem 1. Suppose we have N vectors vy, vs, - - - ,vN, Where v; € R% . We first prove
the equivalence of different zero-padding methods, namely end padding, front padding, and scatter
padding. Let D = max; d;, then we have:

* End padding: g(v;) = (vi1, vi2, -+ ,044;,0,0,c...,0),

* Front padding: g(v;) = (0,0,¢...,0,v;1,Vi2, "+ , Vid,)s

¢ Scatter padding: Randomly generate a subset I; of {1,2,--- , D}, where |I;| = d;, then
(aw); = {

Vi, j = the k-th element of [;,

0,j &I
All of these g(-) are linear isometries, i.e., ||g(uw) — g(v)|| = ||u — v||, which means the zero padding
ways are equivalent for preserving distance. O

Denote x; = g(v;) € R and draw P € R%*P with P;; ~ N(0, 1), then we have:
f:RP 5 RY f(x) = Px

Consider the random variable
d

X =[|f@)3 =) (Pru)?,

k=1

where u = x; — x;, and Py , is the k-th row of P, we have each inner product (P, ., u) is Gaussian
with mean 0 and variance

Var((Py ., u)) = XD:Var(Pk,l)ulQ - ;XD:U; _ ||’lfi||§
=1 =1
Hence we have:
Y= |d|3<P’“*’“>“’N<0’”’
X =3 (P - My
k=1 o d &~ ¥

Therefore, Z = 3"¢_, Y2 is x2 with d degrees of freedom, and X = %Z :

A standard inequality (Zhang & Zhoul 2020) for tail bound of y? random variable demonstrates:

2
Pr(|X — w2 > eul|f <2 F VO<e<1
Then for any u, we can have:

2d

Pr{(1 - ull3 < ||[Pu< (1 +eull3[] 21— 277
We care about M pairs of vectors, then by the union bound, the probability that all M pairs of
O

Proof of Theorem 2. The optimization process of a spectral GNN in graph classification can be
defined as:

2d

distances are preserved is at least 1 — 2Me™ "7 .

K
argming, 1 L(y, Pooling(z Orgx (L) XW))
k=1
For simplicity, let £ be the MSE loss function, and the pooling function be the mean pooling function.
Then we can reformulate the process for i-th sample with n; nodes as:

K
. 1
argmlnek’wi(pT E Orgr (L)XW —y)?,
k=1

13
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where p?" € R1*" represents the mean pooling function vector with each entry as —-. Then, over a
dataset of N graphs, we define the targeted process after reordering as:

N K
. 1 i i
argming, v o+ Z(Z Gkal(c) — )2,

i=1 k=1
where a,(ci) = (pN)Tgp (L XOW,

According to previous work (Wang & Zhang| [2022)), the learned filter function is nearly identical
across different bases since they share the same expressive power and can all reach the global
minimum. Therefore, the optimization of W is largely independent of the basis selection near the
global minimum. In contrast, the optimization of 6y, is significantly influenced by the choice of basis.
To emphasize the impact of basis selection, we will focus exclusively on the optimization of 6.

To analyze the convergence speed near the global minimum, we then derive the Hessian matrix H of
the process with respect to 0y:
(1 i
Hj. = Z

Diagonalize each Laplacian matrix L(Y) = U )A(l) (UT, we can get:
ng . . .
o)) =3 g N)o wy,

=1
where A" is the I-th eigenvalue of L), ¢\ = [(U)T XOW];, and ¢") = pOu ",

Since the Laplacian matrix is the normalized Laplacian matrix, the eigenvalue distribution of all

graphs converges to a density p(\) on [0, 2]. Assume the random coefficients (;Sl(i), l(i) decorrelate

between different /, and E[(¢w)2|)\] depends only on A. We have:

2
NZ af ) 22 ; 95 (M) gr(Nw(N)dA,

where w()\) = p(\)E[(¢1)?|\]. In other words, we have:
H [<gj7gk>w]gf',(k::07

where (g;, gk)w fo g; (A Jw(A\)dA. Reaching the global minimum means H is a diagonal
matrix ({g;, gk)w = 0, where J ;é k), which is equivalent to that g(-) is an orthonormal basis
in the polynomial space. Therefore, we choose a general form of orthogonal polynomials with
flexible enough weight functions to adapt to different graph signal density functions, i.e., Jacobi
Polynomials. O

Proof of Theorem 3. We first prove the injectivity of the combination of the Jacobi Polynomial-based
graph filter to show that it can preserve the full information from the original graph.
Suppose we have a combination of Jacobi Polynomial-based graph filter, that is, 7 (x) =

Zq‘;l Py(,a’”ﬁ“) (L )&, where @ is a graph signal, P(a”’ﬁ“) is the Jacobi Polynomial-based graph
filter for the v-th view, and L, is the Laplacian matrix for v-th view. Define the kernel characterization

for T
v
ker(T) = {x € RV| Y Plew?)(L, )@ = 0}
v=1
To prove the injectivity is equal to prove ker(7) = {0} under V heterogeneous views.

Assume the different views of a heterogeneous graph satisfy the following condition:

* Spectral Disjointness: Vi # j, Eigen(L;) N Eigen(L,) =, i.e., there are no shared eigenvalues
between Laplacian matrices of different views.

» Full Spectral Coverage: UY_, Eigen(L,) = R>, i.e., eigenvalues of Laplacian matrix cover the
entire spectrum.

14
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* No Common Eigenvectors: Ax # 0, L,x = \,x, Vv, i.e., different Laplacian matrices have
distinct eigenspaces.

By tuning «,, 3, of each Péa’“ﬁ ”), we can easily obtain root avoidance of the Jacobi Polynomial-
based graph filter:
PlevBo)(\) £ 0,V € Eigen(L,),

as P{"7) (x) have n real roots in [—1, 1], and the spectra L, can be rescale to [—1, 1].
By root avoidance and spectral disjointness, we have:

PlevBo)(X) £ 0 = [P P (2)] > 6, >0,

where §, is a small value larger than 0, which shows the strict positivity of \Pﬁa”’ﬂ ») N

Then for « # 0, we expand the eigenbasis of each L,:

N
T = § Cy, iUy i,
=1

where ¢, ; = 'u,fiw, U, ; is the i-th eigenvector of L., and for a # b, ugcuhd =0,Vb,d.

Therefore, we can define the v-th filtered component as:

N
2, = PT(IO‘“"&’)(LU)w — ZP,(La"’ﬁ")(/\v,i)cu,iuv,i
i=1

Thus, we can compute:

|4 14

14
IT@IE= Q20 2z =Y llzll3 + D (=i 2)),

i=0  j=0 i#]
where (z;, z;) = z1'z; = 0,Vi # j, due to orthogonality.
By spectral coverage, Jv and ¢ such that:
|cv.i| > 0, A, ; € Eigen(Ly,),
for which view v and ¢ we have:
[120]13 = [P (Xo,i) Plevl® > 63levl® > 0

Thus, we have:

IT(@)II3 > 0= T(z) #0,
which means strict positivity. Then we have ker(7) = {0}, i.e., injectivity, as desired. O

Proof of Theorem 4. We define the fused feature extractor on the target component as:
V * *
Fl@) =Y TsP{™ (L),
v=1

where Ils is the projection onto the target feature subspace, and PT(LO‘”’B “) is the optimized Jacobi

Polynomial filter for view v. Then the enhancement factor is:

YF)=__min ||F(2)],

z€S ||=]I3=1
which represents the worst-case amplification of target features by the fused extractor.
Assume that:

* The target subspace S is spannded by common eigenvectors of all graph Laplacians L,,, which
means for each z € S, i such that L,z = A, ;2, Vv, where )\, ; is the i-th eigenvalue of L,,.

15
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* For each view v, the Jacobi Polynomial filter is designed such that for all eigenvalues A, ; associated
with S, we have Vz € S, P\*)(L,)z = cyz, where ¢, = P (X\,;) > 0.
¢ There exists a constant ¢, > 0 such that ¢, > cpin, Vv.

Thus, for any z € S with ||z||3 = 1, we have:
s P ) (Ly)z = Ts(coz) = co,
since [Isz = z(z € S).

Then we can have:
1%

F(z) = chz = (Z )z,

v=1 v=1

14 \4 \4
IFEIE =1 ezl =1 ezl =) e

Give that ¢, > ¢y > 0, Vo, we have:

Y(F)= min |[F(2)][3 > Vemin,
z€S,||z||2=1

which means y(F) = ©(V). O

Next, we show its robustness to noise. Consider a signal « with target component ;4,ge; € S and
noise e ~ N'(0, 02T uncorrelated across views. Then we have:

V(F) = F(@rarget) + F(e)
From the above proof, we have the following for the target term:
| F (ztarget)] |% > Y(F)l|Ttarget| |% > Vemin|[@target| |§

For the noise term, we have:

whose norm is:

Vv
E[l|lF(e)||2] = B[l Y Ts P (Ly)el 2]
v=1

1%

a8,
S E[ILs PP (L el [3]
v=1

o?|[Ts PP (L)%,

M=

<
1

<
Il

since the noise is uncorrelated across views.
Assume HHSP,(La:”ﬁ’*’)(Lv)H% < M for some constant M, we have:
E[||F(e)|3] < Vo> M

By Jensen’s inequality, we have:

E[|F(e)ll3] < \/EllF(e)|5] < ovVVM

Thus, the signal-to-noise ratio is:

||]:(33target)|‘§ > chinHwtargetH% _ \/VCminHwtargetH% _ @(\/V)

B[l 7] —  ovVM ovVM
O

Proof of Theorem 5. The k-stereographic model provides a unified framework for Euclidean,
Hyperbolic, and Spherical geometries through a common metric, parameterized by the curvature «:

2 dr? + r2d0?

ds2 = & TT B0
3 (1+kr2)2”’
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where s is the square of an infinitesimally small distance between two points in a space, r is the radial
coordinate in stereographic projection, and df2? is the metric on the unit sphere.

Jacobi Polynomials Pfla'ﬂ ) (x) are orthogonal polynomials on [—1,1] with respect to the weight
(1—2)%(1+x)P. They arise as eigenfunctions of the Laplace-Beltrami operator in the x-sterographic
model for specific values of s and after appropriate coordinate transformations. Below, we derive the
connections for each geometry.

For k > 0, the space is sperical with raidus R = ﬁ The Laplace-Beltrami operator A in

stereographic coordinates has eigenfunctions that can be separated into radial and angular parts. The
Laplace-Beltrami operator for a radial function f(r) in n dimensions is:

(L+wr®)"d g 2v2-n 4f
Af:/ﬁwi_l%[r (1+ %) %]a

whose eigenvalue equation is Af + Af = 0.
To solve the equation, we introduce u = Kkr2 > 0:

df af d d

o Sru— = =9 ku—

dr " dr i
Then the equation can be represented as:

I+w)™ d n o_p df A
w T du u® (14 ) du] + 4/{2f

. _ 2 _ . .
Change variable to z = %=1 = 2, ﬁ, sox € [—1,1]. Then u = 1*£ and the derivatives become:

w1
d ded 2 d & 4 & 8 d

du dude  (—apdrdd (I-2)pde?  (—aPdr

Then the equation can be simplifies to the Jacobi differential equation:

(1—302)d2—f+[ﬁ—a—(a—i—ﬁ—l—?)ax]ﬁ—&-k(k—i—a—&-ﬁ—l-l)f—o
dz? dx -
where o = 8 = "T_Q and k is the quantum number related to the eigenvalue A = k(k +n — 1)k.

The solutions are Jacobi Polynomials:

(ne2 n=2y gr? —1
P 2 2
1) o< P ()
O
For x < 0, the sapce is hyperbolic with curvature radius R = ——. The spectrum of the Laplace-

Vsl

Beltrami operator is continuous, and the radial eigenfunctions are not polynomials but can be
expressed as Jacobi functions (analytical continuations of Jacobi Polynomials).

Set k = —|kl, 80 1 + kr? = 1 — |k|r?. The eigenvalue equation is similar to the spherical case:
A+rr®)"d ., 4 i
FHM=0Af =k [ (L mr?)

Then we use u = |x|r? to get:

I+w)™ d, » o_p df A
——(uz(1 "—l+-—f=0
ui  du [w* (1 +u) du] * 4k2
Change variable to z = Z—;} = 12}:2;1, so x € [—00,0], then the equation becomes a confluent

n—2.

hypergeometric equation, which is solved by Jacobi functions with parameters o = 3 = *5

(a5 22 Jslr? — 1
P 2 ; 2
F(r) o —3+io |k|r2 +1

)’
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where 0 = 4/ ﬁ - %, YA > (”%W, and i is the imaginary unit. O

For k = 0, the space is Euclidean space. The Laplace-Beltrami operator reduces to the standard
Laplacian, and the radial eigenfunctions are Bessel functions, which arise as a limit of Jacobi
Polynomials as k — 0.
When x — 0, the metric is ds? = dr? + r2dQ?, and the radial eigenvalue equation is:
1 d n—1 df
rn—Ldr (r dr
This is the spherical Bessel equation, whose solutions are Bessel functions:

fr) ocr= "5

where J stands for J,,(z) = Y7 %(%)2”*", and I'(-) is the gamma function.

)+ Af=0

For fixed r and k, as k — 0, the Jacobi Polynomial limit is:

n-2 n-2 2_1 n—
lim P (B ) oo e (VE(R 0 — D),

K—0 kr2 +1

O

Proof of Theorem 6. First, we introduce the following theorem:

Theorem 10 (Weierstrass approximation theorem). Suppose f(x) is a continuous real-valued function
defined on the real interval [a,b]. For every € > 0, there exist a polynomial p such that for all x in
[a, b], we have || f(z) — p(z)]|o < €

Then, given a f(z) € C([—1,1]) and € > 0, by theorem |10} we can pick a genuine polynomial
p(x) = S5 wia' so that || (z) = p(a)] < e.

And by definition, each Jacobi Polynomial P,(la‘ﬂ ) (z) is a genuine polynomial of degree n, so:

Span(P{*®, P{*™ ...} = {all real polynomials in z'},

which means every polynonmial p(x) of degree < NN can be written uniquely in the Jacobi basis:
N
p(z) =Y ;P (w)
i=1

Hence the finite Jacobi Polynomial sum Sy (z) = Zf\il ciPi(a’B ) (z) satisfies:

£ (@) = Sn(@)loc = [If(2) = p(2)[|oc <€

Thus, any continuous f on [—1, 1] can be uniformly approximated by finite linear combinations of
Jacobi polynomials. O

Then we consider the weighted space L2 [—1, 1], where the weight function is the same as Jacobi
Polynomials:

w(z) = (1-2)*(1+2)°,
with o, § > —1.

Let 1 be the measure defined by dp = w(x)dz. Since a, 8 > —1, the integral satisfies:

/1 w(z)dr < oo,

-1
which means p is a finite Borel measure on [—1, 1].

Denote any function ¢ € L2 [—1, 1], we then prove that Jacobi Polynomials can approximate it in the
L2 norm.

Since p is a finite Borel measure on the compact interval [—1, 1], the continuous functions on [—1, 1]
area dense in L2 [—1, 1], which is proved in (). Thus, for any > 0, there exists a continuous function
t on [—1, 1] such that:

4]

lat@) =tz < 5
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Then, following the previous proof, we have:

[[t(z) — p(2)l| = S t(z) — p(2)| <

where p(z) is finite linear combinations of Jacobi polynomials.

For any € > 0, we can choose ¢, such that:

62/1 w(z)dz < (%)2

-1
Thus, we have:

1

2, = / [t(x) = p(a)Pw(z)de < & / w<fc>dw<<g>2’

w _1 1

[t(x) — p(x)]

)
L2 <§

w

which means |[t(z) — p(z)]

By triangle inequality, we can derive:

)
lla(z) = p(@)llzz, < llg(@) = t@)llzz, +[[t(2) = p(@)ll2z, <5 +5 =6,
which concludes that Jacobi Polynomials can approximate any function ¢ € L2 [—1,1]. O

Proof of Theorem 7. Let En(f(z)) = mingegg)<n [[f(2) — 9(2)||oc. Where f(z) €
CTY([~1,1]), f™)(z) € L(w'®P) (x)), r is the derivative order, and w(*?) () = (1—x)*(1+x)".

We then construct a positive kernel:
N
K (x,t) = > aniu PP (@) PP (1),
k=0

where ay i, > 0 chosen so that for each fixed x € [—1,1]:
. oot (L (r) (a,8) _
Normalization: [~ Ky’ (x, t)w'®?) (t)dt =1,
* Moment vanishing up to order r — 1: fil(t—x)mKJ(\;)(a:, Hw @A ()dt =0,m =1,2,--- ,r—1,

* High-order moment bound: f_ll [t — x|TK](\;) (z, tyw(@P)(t)dt < <=, where C depends on 7, at, 3

The existence of such a kernel is standard, i.e., the classical Jackson kernel in orthogonal-polynomial
theory (Rudin, [1987).

Then define the Jackson operator Jy by:
1
(D)@ = [ FOK @ w0,
-1

where Jy f(x) is a polynomial of degree < NN, because K ](\7]") (z,-) is a sum of Jacobi Polynomials up
to degree N. Consequently:

En(f(x)) < |If(2) = (In (@)oo
Next, we use repeated integration of the Taylor formula. For each ¢ € [—1, 1], there holds:

A C)

= Re)

ft) = f@) + f1@)(t —2)+-- +
where the remainder can be written in integral form:

R,(z,t) = ! )!/O (1—u)" L (@4 ut — 2))(t — z)"du

(]
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By the moment-vanishing property of K ](\:) (z,t), when we subtract out the Taylor part, all terms up
to (t — )"~ integrate to 0. Thus:

1

flz) = (Inf)(z) = / [f(t) — Taylor at 2] K\ (z, £)w(*#) (t)dt

-1

1
= / Ry (2, ) K (2, t)w P (t)dt

-1
Insert the integral form of R, (x,t):
1 1 1
@)= UnHE) = o= / 1 / (=) O (@ tult—2))(t—2)" K (2, 0w (t)dudt

Taking absolute values and using Fubini’s theorem:

1 ! r—1 ! r r () Q,
()= (In (@) < m/_l(l—m /0 [ (@tu(t—a)) [ [t—a]" KN (2, )™ () dtdu

Then, change variables in the inner integral i.e., for each fixed u, the mapt — s = + u(t — x) is
linear of Jacobian dt = %=, Moreover w (@B)(t)dt < Cw(*P)(s)ds, since w is smooth and u € [0, 1].
One shows:

|t _ m|rKJ(\;')(I7t)w(a,5)( )dt < ]\C]; (e, 5)( )d ,

by the high-order moment bound. Hence, we have:

1)~ w0 < e [ @2 O s

r— ldu

where fol (1—w) converges to a constant depending only on r. We conclude:

1) — D)@ < 150) ~ P < e [ O ),

which completes the proof:

w

Bn(7(@) <11 (@)~ (Un )@l < - / Ok (0t = O @y,

where Jy f is a polynomial of degree < N and C depends only on r, c, 3. O
Proof of Theorem 8. For simplicity, we assume the total class number C'is 2.
We first calculate the gradient flow of Lrprac g using the chain rule:
V. LrrAcE = (Diec — Yie)[l — VEePic(1 — Pic)]

Since k. < 0:

Vel pie(1 = Pie) > 0= [1+y|kc|pic(l = pic)] > 1
We then calculate the gradient flow of Lo g using the chain rule:

V. Lee=Pic—1
We focus on the case when y; . = 1, p; . = 0 (probability of anomalous class is low):
Pic — Yiel = |Pic — 1
Then we can have:
|V . Lrrace| = [1+7|kc|pic(l = pic)l|Pic — 1| > V2, Loe| = |Pic — 1],

with an amplifying factor [1 + y|k.|pi,c(1 — p;.c)] proportional to y|k.|. O

Next, we prove the adjustment Ap; . is (1 + 7|r.|)-Lipschitz continuous, so the topology of the
latent graph embedding space is preserved.
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Define g(z;..) = Ap;c = —Yke(Pie — Yi,c), then for two different graphs embedding 21, z2, we
have:

l9(21) — g(22)| = | = VKe(P1 — P2)| = V|Kc||P1 — P2
Since Sigmoid is 1-Lipschitz, we have:

9(21) — g(22)| < 7[kell21 — 22,

which means g(-) is 7|k.|-Lipschitz.
Then the adjusted logit 21 = z1 + g(z1), 22 = 22 + g(z2) satisfies:

21 — 22| < |21 — 22| + [g(21) — g(22)| < (1 + 7lke])|z1 — 22,
which means the amplification follows (1 + v|k.|)-Lipschitz. O
Proof of Theorem 9. When p; . = y; ., there are two cases, i.e., y; . = Oand y; . = 1.
For y; . = 0, we have:

Pic = 0= Sigmoid(z; .+ Ap; ) =0= 2, .+ Ap; . =& —00

In this situation, since z; . + Ap; ¢ = 2 c — YKeDi, e, and —yK:P; ¢ is bounded, 2z; .+ Ap; . — —00
requires z; . — —o0, which implies p; . = Sigmoid(z; ) = 0 = y; ..

For y; . = 1, we have:
Pic = 1= Sigmoid(2z; . + Ap; ) =1= z; .+ Ap;c = ©

In this situation, since 2z; . + Ap; . = 2zic — Vhe(Pie — 1), and —yk(p; — 1) is bounded,
Zic+ Ap; . — oo requires z; . — oo, which implies p; . = Sigmoid(z; ) = 1 = yi .

O

B DATASETS AND BASELINES

Datasets. MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, and
UACC257 are 10 small-molecule biological activity datasets from TUDataset (Motris et al., 2020),
each corresponding to a different cancer cell line screen. Compounds are represented as heterogeneous
graphs where nodes are atom types and edges are the bonds between them. Remarkablely, we utilize
the original data in the TUDataset datasets, where the number of node and edge types are large, as
the real chemical compounds are extremely complex. The large number of node and edge types in
the public datasets posts additional challenges for the heterogeneous graph-level anomaly detection.
Each compound is labeled as active or inactive against its respective cancer type; we treat inactive
compounds as normal and active ones as anomalies. Node features are one-hot encodings of the atom
labels.

The above public datasets are originally graph classification datasets, whereas the datasets below are
node classification datasets. Therefore, we need to transform them into graph classification datasets.
The transformation is the same:

* We follow the original anomalous ratio to sample n,, normal nodes and n, anomalous nodes from
a heterogeneous graph, where nﬂ’fgna is the anomalous ratio of the original dataset, to simulate the
imbalanced nature of graph-level anomaly detection tasks.

* Use original Breadth-First Search algorithm to obtain the subgraph around n,, normal nodes and
n, anomalous nodes. For small-scale graphs, such as DBLP and IMDB, we set small n,, and
ng and 3 as the sampling layer number to limit the overlap between graphs, while keep enough
information in each graph. For large-scale graphs, such as PDNS and RCDD, we set large n,,
and n, and 2 as the sampling layer number to provide diverse enough samples while reduce the
running cost for several baselines for fair comparison, because some of them might cost high
computational resources, as reported in Appendix [C}

 Use the center node label as the subgraph label.

DBLP and IMDB are public datasets processed by pytorch_geometric (Fey & Lenssen, |2019). The
DBLP dataset is a subset of the computer science bibliography, comprising four node types: authors,
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Table 5: Datasets used in the experiments, where n,,, n, are the normal and anomalous number of
graphs respectively, r = .-« is the anomalous rate of the dataset, n, m are the average number
of nodes and edges in graphs respectively, Ty, Rg are the types of nodes and edges in graphs

respectively, and d is the dimension of nodes after projection.

Source Type Dataset Nn Na r n m Ty Rg d
MCEF-7 25476 2294 0.0826 26.40 28.53 46 129 46
MOLT-4 36625 3140 0.0790 26.10 28.14 64 176 64
PC-3 25941 1568 0.0570 26.36 28.49 45 133 45
SW-620 38122 2410 0.0595 26.06 28.09 65 184 65
NCI-H23 38296 2057 0.0510 26.07 28.10 65 182 65

Bioinfo | 5UCAR-S 38437 2079 00513 26.08 28.11 65 184 65

Public P388 39174 2298 0.0554 22.11 23.56 72 271 72
SF-295 38246 2025 0.0503 26.06 28.09 65 184 65

SNI2C 38049 1955 0.0489 26.08 28.11 65 184 65

UACC257 38345 1643 0.0411 26.09 28.13 64 176 64

Citation DBLP 1197 745 03836 162.08 9629 4 6 50

Social IMDB 1584 1135 0.4174 8535 5952 3 4 64
Cybersecurity | PDNS 41337 8663 0.1733 48.80 72.13 2 3 32

' Finance RCDD 50000 8364 0.1433 1743 920 7 8 256
Private Transaction 20000 437 0.0214 14.87 20.12 6 11 325

papers, terms, and conferences. Authors are categorized by research area (database, data mining,
artificial intelligence, information retrieval) and are represented by a bag-of-words feature vector
derived from their paper keywords. For our task, authors from the database area are designated as
normal nodes, while those from data mining are treated as anomalous. The IMDB dataset is a subset
of the Internet Movie Database, containing movies, actors, and directors as node types. Movies
are classified by genre (action, comedy, drama) and are represented by bag-of-words features from
their plot keywords. In this context, action movies are the normal class, and comedy movies are the
anomalous class.

PDNS and RCDD are public datasets collected from Kaggle [ﬂ The PDNS dataset is a cybersecurity
graph constructed from a seed set of malicious domains. Its infrastructure data is extracted from a
global passive DNS repository. The graph contains two entity types (domains and IPs) connected
by four relations (e.g., "domain resolves to IP"). Each domain node has a 10-dimensional feature
vector derived from its domain name and a binary label identifying it as malicious. We directly use
these original labels to define normal and anomalous nodes. The RCDD is a large-scale e-commerce
network from Alibaba, built for real-world risk detection. It contains 7 node types (e.g., buyer, seller)
and 7 edge types (e.g., buy, sell), though specific names are anonymized for confidentiality. In this
network, risk nodes often disguise themselves by forging relationships. Each node is described by
a 256-dimensional feature vector, and item nodes are labeled as either risk commodities or normal.
These original labels are used to designate the normal and anomalous classes.

The final dataset is a proprietary financial heterogeneous graph provided by a prominent company. Its
objective is to identify sub-networks, or communities, associated with suspicious or non-compliant
activity. The graph schema is complex, comprising 6 node types (e.g., representing real users and
entities) and 11 edge types that define the intricate relationships between them. The task is naturally
a GAD problem: each entire graph is labeled as either containing a risky community or being normal.
We directly adopt these original labels to train our model to distinguish between anomalous and
normal graphs.

Baselines. The first group is homogeneous graph classification models:

* GCN (Kipf & Wellingl 2017): A foundational graph convolutional network that performs neigh-
borhood aggregation through a spectral graph convolution-inspired operation.

* SAGE (Hamilton et al.,2017): A scalable inductive framework that generates node embeddings
by sampling and aggregating features from a node’s local neighborhood.

'https://www.kaggle.com/
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* GAT (Velickovic et al.,|2018): Employs an attention mechanism to compute hidden representations
by assigning different weights to each neighbor node.

* GIN (Xu et al., 2019): A theoretically powerful model designed to be as expressive as the
Weisfeiler-Lehman graph isomorphism test.

* LRGNN (Wei et al.l 2023): Addresses the limitation of shallow receptive fields by stacking
multiple GNNs to capture long-range dependencies between distant nodes.

* GRDL (Wang & Fan, 2024)): Treats node embeddings as discrete distributions within a latent
space, enabling graph-level classification without a global readout function.

* UQGNN (Wu et al.| 2025): A model that integrates uncertainty quantification into the graph
representation learning process, producing confidence estimates alongside predictions.

* UIL (Sui et al.L|2025): Provides a unified framework for invariant graph learning by enforcing both
structural and semantic invariance, leading to the identification of more robust and stable node
representations.

The second group is heterogeneous graph classification models:

* HMGNN (Yu & Gaol |[2022): Models complex heterogeneous structures by constructing heteroge-
neous motif graphs to capture rich semantic information from multiple node and edge types.

* muxGNN (Melton & Krishnan, |2023): Represents graphs as multiplex networks, using separate
graphs for each relation type and a coupling graph to connect node representations across these
relations.

* HeGCL (Shietal.,2024): A contrastive learning framework that learns node and graph embeddings
by contrasting a meta-path view with a global network topology view.

* RFAGNN (Wu et al., |2024): Handles both heterophily and heterogeneity within a unified model
using a relation-based frequency adaptive graph filter.

* SHGLNN (Hayat et al.,2024): Leverages hypergraphs constructed from heterogeneous graphs to
model complex higher-order (intra- and inter-graph) contextual relationships.

The third group is graph-level anomaly detection models:

* iGAD (Zhang et al., 2022): Anomaly detection is performed by comparing input graphs against a
set of prototypical neural substructure patterns.

¢ GmapAD (Ma et al.,[2023)): Maps entire graphs into a well-structured latent space where normal
and anomalous graphs are more easily separable.

* RumorMixer (Xu et al.}2024): A specialized model for rumor detection that captures the echo
chamber effect and platform heterogeneity inherent in social networks.

* RQGNN (Dong et al., |2024)): Leverages the Rayleigh Quotient to combine spectral and spatial
information for anomaly detection.

e UniGAD (Lin et al.|2024)): A unified framework that integrates node-level, subgraph-level, and
graph-level information for comprehensive graph anomaly detection.

C ALGORITHM AND COMPLEXITY

We first analyze the Preprocess function. As shown in Algorithm [T} in lines 1-6, we have in total
of O(N), where N is the number of graphs in the dataset, as we need to find the dax of all the
graphs. Then, in lines 7-11, we need to do the projection for each graph in the dataset. Each will cost
O(Vddaz ), where V' is the number of nodes in graph G. Hence, the total cost will be O(Nnddyax),
where n is the average number of nodes in each graph of G. Therefore, the total time complexity of
Preprocess is O(Nnddyax)-

Then, we analyze the time complexity of JPGNN for each graph G. As presented in Algorithm[2] in
lines 1-8, the dominant cost is the summation of weighted adjacency matrices. In practice, we don’t
need the summation, as we can multiply the coefficients by the edge weights. Thus, the total cost is
O(FE), where FE is the number of edges in the graph. Then, for lines 9-16, the dominant cost should
be line 12, which has a cost of O(K TVEd?”- 4)> Where dp;q is the hidden dimension of the layer of
the GNN. Therefore, the total time complexity of JPGNN is O(KTV Ed;, ;). Next, we analyze the
time complexity of RFACE in Algorithm[3] In lines 1-6, we only need to use basic operations with
O(1) time complexity. Therefore, the total time complexity of RFACE is O(1).
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Algorithm 1: Preprocess
Input: G, d
Output: G’
1§ G
2 dmax — 0;
3 for Gin G do
4 for X, in G.X do
5 L dmax — maX(dmaX7 dt);

6 P+ P, ; ~N(0,%), P € RVXmax;

7 for G in G’ do

s | G.XProJ + Null;

9 for X; in G.X do

10 XP — X; ®0,0 € RIVilX(dmax—de),
L G.XProd + G.XProi @ PXProi;

12 Return G';

Algorithm 2: JPGNN

Input: A, XP™ K, T

Output: z
1 A<+ 0
2 for A, in Ado
3 | A Atw A
+L—I-D :AD 3,
5 Amax < max(Eigen(L));
s L 2 L-T;
7 HO) « g(XProiw (),
8 H stack — H(O);
9 forkin{l,--- K} do
10 H® «+ 0:
u fortin{0,---,T} do

aB) k)Y o N

p || H® « HE 4 g® pe 8 (oD e,

13 H® « o(HW®),

14 H stack . frstack ey H(k);
s H < o(H*FW);

z < Pooling(H);

17 Return z;

—
a

Finally, in Algorithm[] to clearly show the time complexity of each epoch of the training procedure,
we combine the above time complexities. As shown in lines 7-10, we need to call JPGNN and
RFACE |G| times, so the time complexity of each epoch of the training procedure of JacobiGAD is
O(NKTnmds,,;), where m is the average number of edges in each graph of G.

Compared to homogeneous graph-level classification, such as GRDL models. Its time complexity for
each sample in each training epoch is C; + O(K (n? + mn 4+ m?)), as reported in their paper, where
(1 is the time complexity of the used GNN, K is the number of classes, and n, m are the number of
nodes and edges in each graph. Thus, we can easily conclude O(JacobiGAD) < O(GRDL).

Compared to heterogeneous graph-level classification models, such as HeGCL. Its time complexity
for each sample in each training epoch is Q|N|? + |&| + |E®| + |®||\], as reported in their paper,
where ( is the number of heads of attention layer, |\, |€] are the number of nodes and edges in
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Algorithm 3: RFACE
Input: k,y,z,7,C
Output: Lrrace
p < Sigmoid(z);
Apc = —7Kc(Pe — Yo );
P < Sigmoid(z + Ap);
Lrrace < 0;
forcin{1,---,C} do
| Lrrace < Lrrace +Yclog(Pe);
7 Return Lrpack;

A UM B W N e

Algorithm 4: JacobiGAD
Input: ga f7 Ka Ta s Ca € d) E

1 G' + Preprocess(G, d);

2 Lrrace + 0;

3 k<0

a forcin{l,---,C}do

o | et

max(f) e
for epochin1,--- ,E do
for G in G’ do
L z + JPGNN(G.A, G.XP" | K, T);
LrracE < LRrPACE + RFACE(K',, Gy, z,v,0C)

e o 9 &

1 )
10 Lrrace < —giLRrRFACE;

each graph, |®| is the number of meta-path, and |£®| is the number of meta-path-based edges. Thus,
we can easily conclude O(JacobiGAD) < O(HeGCL).

Compared to GAD models, such as RQGNN. Its time complexity for each sample in each training
epoch is O(K qnmdf’”. 4)» where K, g are the width and depth of the GNN, n, m are the number of
nodes and edges in each graph, and dj;4 is the hidden dimension of the layer of the GNN. Thus, we
can easily conclude O(JacobiGAD) < O(RQGNN).

To sum up, we compare the theoretical time complexity of JacobiGAD with representative previous
works in different categories, and conclude that our JacobiGAD has practical cost for real deployment,
as its time complexity is less than or equal to the previous works.

Additionally, we further report the runtime and memory cost of JacobiGAD and compare them with
all baselines across 3 datasets. The results in Table [6] show that JacobiGAD achieves competitive
computational efficiency while maintaining state-of-the-art detection performance.

Empirically, JacobiGAD’s training time is faster than most included baselines, and its total GPU
memory usage stays within a comparable range. This indicates that the model scales well with both
graph size and dataset difficulty. Notably, JacobiGAD maintains SOTA performance while requiring
no additional memory-heavy modules. As a result, JacobiGAD provides a favorable trade-off between
efficiency and accuracy: it preserves strong anomaly detection capability without incurring substantial
computational cost.

These observations confirm that the proposed method is not only effective but also practical for
real-world heterogeneous graph-level anomaly detection scenarios where time and memory resources
are often constrained.

D EXPERIMENTAL SETTINGS

The hyperparameters used for training JacobiGAD are provided in Table [7} The model
was tuned through an extensive grid search over the following values: learning rate n €
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Table 6: Average wall-clock time (s) and total memory cost (MB).

Cost Datasets MCEF-7 IMDB RCDD

Type Baselines | Memory Time |[Memory Time | Memory  Time
GCN 800.88  82.09 | 643.80 12.06 | 1165.37 214.11
SAGE 707.21  83.63 | 53950 12.16 | 1065.95 219.77
GAT 842.66 101.17 | 645.05 18.88 | 1167.25 242.17
GIN 693.98  484.71 | 49553 6597 | 1027.38 1383.77

Homogeneous Graph Classification | | oo | 84538 1013.79| 823.08 35749 | 134403 150559

GRDL 812.52 73436 | 614.29 234.39 | 1301.55 1937.96
UQGNN 1199.74  229.02 | 944.09 319.57 | 1335.56  267.89
UIL 1177.79 33246 | 918.78 60.83 | 1253.44 741.10
HMGNN | 2098.57 342.67 | 913.00 121.24 | 2629.50  492.56
muxGNN | 5450.38 91.28 | 1325.74 27.08 |12548.35 405.09
Heterogeneous Graph Classification | HeGCL 17812.20 1933.91| 1031.01 52.65 | 5156.08 762.66
RFAGNN | 1240.74 25583 | 898.17 43.41 | 1743.74 523.85
SHGLNN | 653.80 571.93 | 799.83 105.06 | 1007.95 2123.87
iGAD 799.52  289.79 | 821.83 144.45 | 1247.28 801.91
GmapAD | 1335.84 1885.73|1077.30 85.76 | 2073.54 33755.93
Graph-level Anomaly Detection | RumorMixer | 739.81 6253.59 | 667.43 1401.91| 1192.67 12094.97
RQGNN 1177.37 2151.12| 1062.88 24891 | 1682.53 8817.05
UniGAD 964.59  162.33 | 1077.91 110.22 | 1420.30 2013.64
Ours JacobiGAD | 1265.71 136.22 | 803.02 26.67 | 1250.07 170.07

Table 7: Hyperparameters for different datasets, where 7 is learning rate, hqiy, is hidden dimension
of JPGNN layers, and K, T are the width and depth of the JPGNN.

Dataset n ham K T
MCE-7 0.005 128
MOLT-4 |0.0001 256 4
PC-3 0.001 128 2
SW-620 | 0.005 64 4
NCI-H23 | 0.001 256 3
OVCAR-8 |0.0005 256 4
P388 0.0001 128 4
SF-295 0.001 256 3
3
4
2
2
3
1
1

98]

SN12C 0.001 256
UACC257 | 0.0005 64
DBLP 0.0001 256
IMDB 0.005 128
PDNS 0.001 128
RCDD 0.005 128
Transaction | 0.001 64

AL LOULOUNPEAE DSBS OORA OV OVW

{0.005,0.001,0.0005,0.0001}, hidden dimension size hqi, € {64,128,256}, K € {1,2,3,4},
and T € {2,3,4,5}. The optimal hyperparameter set was chosen based on the best composite
performance, considering AUROC, AUPRC, Recall@k, and F1-score, on the validation set, and we
report the test results for this configuration. Note that for hyperparameters in RFACE, i.e., € and y, we
set them as default values 1e — 8 and 0.3 respectively, as they reach a relatively better performance.
All trials were executed on an NVIDIA Quadro RTX 8000 to maintain a consistent experimental
environment.

E ADDITIONAL EXPERIMENTAL RESULTS

To further demonstrate the robustness and generality of our method, we conduct additional experi-
ments on 7 public graph benchmarks: MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, and
P388. Evaluating on this expanded set enables a more rigorous assessment of our model’s ability to
generalize across different graph distributions.

Across all datasets, our method consistently outperforms representative homogeneous graph clas-
sification baselines, shown in Table [8| heterogeneous graph classification approaches, shown in
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Table 8: Average performance with multiple runs (homogeneous graph classification models).

Datasets Metrics GCN SAGE  GAT GIN  LRGNN GRDL UQGNN UIL  JacobiGAD
AUROC | 0.6720 0.7264 0.6971 0.7110  0.7070  0.5349  0.5238  0.7162 0.7679
MCE-7 AUPRC | 0.1460 0.2318 0.1983 0.1730 0.2434 0.1115 0.0878  0.2367 0.3403
Recall@k | 0.1808 0.2818 0.2585 0.2150 0.2825 0.1590 0.0792  0.2716 0.3769
Fl-score | 0.4783 0.5949 0.5832 0.4872 0.5458 0.4785 0.4785 0.5503 0.6597
AUROC | 0.6628 0.7155 0.7076 0.6880 0.7334  0.5257 0.5856  0.6867 0.7381
MOLT-A4 AUPRC | 0.1367 0.2051 0.2288 0.1611  0.2353  0.1208  0.1016  0.1735 0.3097
Recall@k | 0.1624 02649 0.2797 0.2033 0.2962 0.1948  0.1200 0.2171 0.3519
Fl-score | 04803 0.5903 0.6100 0.4954 0.4906 0.4794 04794 0.4794 0.6507
AUROC | 0.6717 0.7157 0.7391 0.7109 0.7389  0.5106  0.5395  0.7352 0.7677
PC-3 AUPRC | 0.1017 0.1869 0.1973 0.1321  0.2289  0.0797  0.0693  0.2008 0.3064
) Recall@k | 0.1318 0.2359 0.2657 0.1679 0.3050 0.1360  0.0903  0.2370 0.3603
Fl-score | 0.4941 0.5882 0.6064 0.4853 0.5120 0.4853 0.4853  0.5229 0.6394
AUROC | 0.7000 0.7619 0.7187 0.7270  0.7660  0.5601  0.5525  0.7202 0.7728
SW-620 AUPRC | 0.1342 0.2137 0.1737 0.1371  0.2281 0.0996  0.0654  0.1484 0.2697
Recall@k | 0.1715 0.2697 0.2172 0.1853  0.2918 0.1362  0.0539  0.1777 0.3347
Fl-score | 0.4990 0.5880 0.5695 0.5509 0.4896 0.4847 0.4847  0.4888 0.6461
AUROC | 0.6950 0.7416 0.7703 0.7284  0.7812  0.5150  0.5254  0.7656 0.7900
NCL-H23 AUPRC | 0.1064 0.1976 0.1904 0.1299 0.2056 0.0945 0.0546  0.1916 0.2927
Recall@k | 0.1296 0.2623 0.2502 0.1595 0.2632  0.1441  0.0583  0.2421 0.3417
Fl-score | 0.4939 0.5667 0.5979 0.5452 0.5566 0.4869 0.4869 0.5056 0.6546
AUROC | 0.6791 0.7464 0.7296 0.6917  0.7467 0.5213  0.5148  0.7152 0.7762
OVCAR-8 AUPRC | 0.0947 0.1797 0.1840 0.1100 0.2066 0.0834  0.0530  0.1429 0.2888
Recall@k | 0.1162 0.2452 0.2652 0.1346  0.2388  0.1474  0.0585  0.1867 0.3438
Fl-score | 0.4882 0.5728 0.5886 0.5598 0.4893 0.4868 0.4868 0.4876 0.6461
AUROC | 0.6444 0.7424 0.7269 0.7391 0.7148  0.6196  0.5169  0.7375 0.7896
P388 AUPRC | 0.0911 0.2151 0.2413 0.2131  0.1508 0.2493  0.0615  0.2175 0.3929
Recall@k | 0.1255 0.3067 0.3336 0.3009 0.2045 0.2843  0.0718  0.2980 0.4431
Fl-score | 04912 0.4942 04990 0.6053 04858 0.4858 0.4858  0.5608 0.7061

Table 9: Average performance with multiple runs (heterogeneous graph classification models).

Datasets Metrics | HMGNN muxGNN HeGCL RFAGNN SHGLNN JacobiGAD
AUROC 0.3652 0.5570 0.6733 0.6990 0.5079 0.7679
MCE-7 AUPRC 0.0646 0.1402 0.1735 0.1829 0.0774 0.3403
Recall@k | 0.0792 0.2070 0.2367 0.2186 0.0378 0.3769
Fl-score 0.4965 0.4848 0.4817 0.5022 0.4785 0.6597
AUROC 0.5068 0.5009 0.6675 0.6540 0.4980 0.7381
MOLT-4 AUPRC 0.1038 0.0809 0.1462 0.1472 0.0737 0.3097
Recall@k | 0.1242 0.0801 0.1874 0.1773 0.0483 0.3519
Fl-score 0.5084 0.5003 0.4794 0.4849 0.4794 0.6507
AUROC 0.5359 0.4511 0.6913 0.6923 0.5201 0.7677
PC3 AUPRC 0.0903 0.0516 0.1372 0.1157 0.0547 0.3064
N Recall@k | 0.1010 0.0308 0.1690 0.1456 0.0202 0.3603
Fl-score 0.4869 0.4909 0.4852 0.4877 0.4853 0.6394
AUROC 0.5392 0.4823 0.6610 0.6633 0.5012 0.7728
SW-620 AUPRC 0.0678 0.0629 0.1419 0.1114 0.0555 0.2697
Recall@k | 0.0816 0.0781 0.1978 0.1660 0.0207 0.3347
Fl-score 0.4854 0.4860 0.4853 0.4846 0.4847 0.6461
AUROC 0.3299 0.5302 0.7090 0.6834 0.5212 0.7900
NCLH23 AUPRC 0.0357 0.0615 0.1621 0.1024 0.0490 0.2927
Recall@k | 0.0300 0.0858 0.2340 0.1482 0.0178 0.3417
Fl-score 0.4867 0.5160 0.4891 0.4869 0.4869 0.6546
AUROC 0.4711 0.4449 0.6673 0.6691 0.5154 0.7762
OVCAR-3 AUPRC 0.0634 0.0457 0.1188 0.0950 0.0489 0.2888
Recall@k | 0.0817 0.0481 0.1707 0.1282 0.0224 0.3438
Fl-score 0.4867 0.4872 0.4883 0.4960 0.4868 0.6461
AUROC 0.5734 0.4296 0.5765 0.7270 0.6333 0.7896
P388 AUPRC 0.0925 0.0632 0.0749 0.1745 0.0774 0.3929
Recall@k | 0.1313 0.1066 0.0964 0.2379 0.0718 0.4431
Fl-score 0.4858 0.5284 0.4878 0.5663 0.4858 0.7061

Table 9] and graph-level anomaly detection methods, shown in Table[I0] These results reinforce the
effectiveness and broad applicability of our approach and confirm that the improvements are not
confined to a narrow set of benchmarks but hold across a diverse collection of graph domains.

F ABLATION STUDY

In this section, we will further analyze the influence of different components in JacobiGAD. To be
specific, we will investigate different components in three dimensions, that is, component deactivation
(additional experiments), input replacement, and polynomial degradation.
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Table 10: Average performance with multiple runs (GAD models).

Datasets Metrics iGAD GmapAD RumorMixer RQGNN UniGAD JacobiGAD
AUROC | 0.7140  0.5889 0.3951 0.7332 0.5987 0.7679
MCE-7 AUPRC | 0.1913  0.1001 0.0663 0.2585 0.1133 0.3403
Recall@k | 0.2629  0.1147 0.0621 0.3065 0.1467 0.3769
Fl-score | 0.5637  0.4046 0.4785 0.5768 0.5091 0.6597
AUROC | 0.7111  0.6108 0.4985 0.7082 0.5880 0.7381
MOLT-4 AUPRC | 02025  0.1018 0.0789 0.2248 0.1067 0.3097
Recall@k | 0.2749  0.1056 0.0786 0.2845 0.1433 0.3519
Fl-score | 0.5766  0.4351 0.4794 0.6072 0.4915 0.6507
AUROC | 0.7040  0.5707 0.3878 0.7260 0.6308 0.7677
PC3 AUPRC | 0.1254  0.0665 0.0448 0.2143 0.0958 0.3064
N Recall@k | 0.1807  0.0755 0.0287 0.2880 0.1403 0.3603
Fl-score | 0.5117  0.3826 0.4853 0.6207 0.5091 0.6394
AUROC | 0.7280  0.6058 0.4230 0.7687 0.6195 0.7728
SW-620 AUPRC | 0.1699  0.0760 0.0498 0.2105 0.0972 0.2697
Recall@k | 0.2254  0.0761 0.0346 0.2621 0.1480 0.3347
Fl-score | 0.5606  0.4092 0.4847 0.5883 0.5000 0.6461
AUROC | 0.7531  0.5556 0.4007 0.7817 0.6276 0.7900
NCLH23 AUPRC | 0.1616  0.0572 0.0408 0.2618 0.0877 0.2927
Recall@k | 0.2316  0.0615 0.0324 0.3142 0.1377 0.3417
Fl-score | 0.5577  0.2746 0.4869 0.6258 0.5087 0.6546
AUROC | 0.7205  0.6147 0.4042 0.7381 0.5975 0.7762
OVCAR-8 AUPRC | 0.1449  0.0673 0.0414 0.1973 0.0734 0.2888
Recall@k | 0.2228  0.0793 0.0248 0.2596 0.0954 0.3438
Fl-score | 0.5538  0.3971 0.4868 0.5903 0.4542 0.6461
AUROC | 0.6776  0.5620 0.4369 0.7625 0.6065 0.7896
P388 AUPRC | 0.1989  0.0643 0.0504 0.2572 0.0763 0.3929
Recall@k | 0.2828  0.0790 0.0464 0.3256 0.0892 0.4431
Fl-score | 0.5622  0.4655 0.4858 0.5559 0.4862 0.7061

Table 11: Ablation study for component deactivation.

Datasets  Metrics [JacobiGAD w/o Lrracre w/o learnable («, 8) w/o learnable w;,
AUROC 0.7679 0.7400 0.7358 0.7181
MCE-7 AUPRC 0.3403 0.2794 0.2763 0.2517
Recall@k | 0.3769 0.3232 0.3275 0.2992
Fl-score | 0.6597 0.5945 0.5982 0.6124
AUROC 0.7381 0.7216 0.7280 0.7186
MOLT-4 AUPRC 0.3097 0.2927 0.2593 0.2807
Recall@k| 0.3519 0.3455 0.3174 0.3349
Fl-score | 0.6507 0.6375 0.6302 0.6400
AUROC 0.7677 0.7526 0.7308 0.7584
PC3 AUPRC 0.3064 0.2589 0.2578 0.2780
Recall@k| 0.3603 0.2986 0.3209 0.3390
Fl-score | 0.6394 0.6087 0.6172 0.6378
AUROC 0.7728 0.7457 0.7480 0.7553
SW-620 AUPRC 0.2697 0.2434 0.2467 0.2568
Recall@k | 0.3347 0.3071 0.3119 0.3098
Fl-score | 0.6461 0.6031 0.6210 0.6236
AUROC 0.7900 0.7684 0.7895 0.7735
NCLH23 AUPRC 0.2927 0.2444 0.2647 0.2899
Recall@k | 0.3417 0.3158 0.3142 0.3409
Fl-score | 0.6546 0.5967 0.6395 0.6265
AUROC 0.7762 0.7521 0.7636 0.7578
AUPRC 0.2888 0.2189 0.2532 0.2371
OVCAR-8 Recall@k | 0.3438 0.2716 0.3117 0.2925
Fl-score | 0.6461 0.6003 0.6130 0.6022
AUROC 0.7896 0.7332 0.7699 0.7733
P388 AUPRC 0.3929 0.3262 0.3693 0.3729
- Recall@k | 0.4431 0.3836 0.4032 0.4119
Fl-score | 0.7061 0.6762 0.6354 0.6698

F.1 ADDITIONAL COMPONENT DEACTIVATION

To further validate the contribution of each component in our framework, we conduct an extended
ablation study on 7 other benchmark datasets: MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8,
and P388.

In this expanded evaluation of Table[I1] we follow the same setting shown in Section[5.3] Across
all datasets, the full model consistently achieves the highest detection scores, while removing any
major component leads to clear and reproducible degradation. These results collectively demonstrate
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Table 12: Ablation study for input replacement.

Datasets  Metrics |JacobiGAD SVD Concat MLP
AUROC | 07679 0.7258 0.7235 0.7393

MCF7 AUPRC | 03403 02549 02459 0.3060
Recall@k| 03769 02905 03028 0.3508

Fl-score | 06597  0.5935 0.5972 0.6419

AUROC | 07381 0.7257 0.7223 0.7106

MoLL4 AUPRC [ 03097 02607 0.2745 02412
Recall@k| 03519 03137 03471 0.3052

Fl-score | 06507  0.6292 0.6377 0.6163

AUROC | 0.7677 0.7635 0.7378 0.7397

ey AUPRC | 03064 02669 02450 02537
Recall@k| 03603  0.3220 0.2880 0.3092

Floscore | 06394  0.5849 0.6113 0.6256

AUROC | 07728 0.7576 0.7322 0.7365

w0 AUPRC | 02697 02508 0.2233 02319
Recall@k| 03347 03133 0.2863 0.2953

Fl-score | 0.6461  0.6209 0.6162 0.6195

AUROC | 07900 0.7718 0.7319 0.7474

NCLHzs AUPRC | 02927 02556 02317 02394
Recall@k| 03417 03320 0.2858 0.2947

Fl-score | 0.6546  0.6304 0.6046 0.6129

AUROC | 07762 0.7567 0.7444 0.7729

AUPRC | 02888 02333 02319 0.2462
OVCAR-8 pecall@k| 03438  0.2877 0.2965 0.2901
Fl-score | 0.6461  0.5892 0.5923 0.5889

AUROC | 0.7896 07779 0.7862 0.7439

p3gg  AUPRC | 03020 03501 03702 03376
Recall@k| 04431 04054 04271 04054

Fl-score | 07061  0.6592 0.6938 0.6760

AUROC | 07729 07554 0.7563 0.7421

Spaos AUPRC | 02623 02179 0.1935 0.1820
Recall@k| 03210  0.3004 02733 0.2502

Fl-score | 0.6356  0.6124 0.6103 0.5859

AUROC | 07797 0.7682 0.7523 0.7568

sNppe  AUPRC | 02666 02457 02671 02430
Recall@k| 03240 03078 03291 0.3018

Fl-score | 0.6329  0.6329 0.6380 0.6221

AUROC | 0.7613 0.7692 0.7440 0.7503

AUPRC | 0.1995 02218 0.1660 0.1988
UACC25T pecall@k| 02819 0.2901 0.2475 0.2677
Floscore | 0.6246  0.6214 0.5775 0.5930

AUROC | 0.9830 0.9679 0.9780 0.9803

peLp AUPRC | 09842 09665 0.9796 0.9822
Recall@k| 09575  0.9374 0.9441 0.9508

Fl-score | 09651  0.9294 09576 0.9623

AUROC | 07263 0.6665 0.6961 0.6903

MDpE  AUPRC | 07619 07282 0.7318 0.7215
Recall@k| 07192  0.6824 0.7035 0.6951

Floscore | 0.6585  0.6046 0.6445 0.6402

AUROC | 0.8728 0.8697 0.8673 0.8707

poNs  AUPRC | 06871 06650 0.6801 0.6865
Recall@k| 0.6283  0.6206 0.6204 0.6247

Floscore | 07760 0.7526 0.7708 0.7676

AUROC | 0.9826 09777 0.9829 09806

repp  AUPRC | 09332 09174 09322 09288
Recall@k| 08747  0.8550 0.8775 0.8623

Floscore | 09280  0.9161 0.9284 0.9194

that each component contributes meaningfully to the final performance and that their combination is

essential for achieving the strong detection capability of our method.

F.2 INPUT REPLACEMENT

Next, we investigate the influence of different ways of input for JacobiGAD, i.e., SVD, Concat, and

MLP.

As shown in Table[T2] this ablation study evaluates the efficacy of the proposed input function in
JacobiGAD for unifying features from different views in a heterogeneous graph by comparing it
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against three common alternative methods: SVD (which may lose critical information), Concat
(which creates a high-dimensional feature space), and MLP (which causes higher computational cost
and may easily overfit). The results consistently demonstrate that JacobiGAD’s specialized integration
method, Gaussian projection, significantly outperforms all three alternatives across the vast majority
of datasets and metrics. Although there are rare, minor exceptions where an alternative method
performs comparably on some datasets, the overall trend is unequivocal: the custom-designed input
function in JacobiGAD is uniquely capable of effectively synthesizing heterogeneous information,
which is a critical factor in the model’s superior anomaly detection performance.

F.3 POLYNOMIAL DEGRADATION

Finally, we analyze the influence of different polynomials for JacobiGAD, i.e., Gegenbauer (o =
B=X— %), Chebyshev (« = 8 = —%), and Legendre (o« = 8 = 0).

As shown in Table[I3] the ablation study demonstrates that the choice of polynomial basis for the
graph filter is critical, with the proposed Jacobi polynomials consistently outperforming Gegenbauer,
Chebyshev, and Legendre polynomials across all datasets and metrics. The key drawback of these
alternative polynomials is their inherent rigidity. Unlike the parameter-rich Jacobi basis, which
can be adaptively tuned to fit the complex spectral characteristics of heterogeneous graphs, the
fixed spectral response of Chebyshev and Legendre polynomials and the limited single-parameter
flexibility of Gegenbauer polynomials render them less capable of capturing the nuanced patterns
necessary for effective anomaly detection. This lack of adaptability manifests clearly in the significant
performance gaps, indicating that the alternative filters struggle to generate the highly discriminative
representations needed to reliably separate anomalies from normal nodes in complex graph data.

G LEARNED PARAMETERS

In this section, we will present the learned parameters of one run of our experiment to show the
influence of different parameters on all datasets.

The blank slot of Table[T4]is due to the best K for different datasets not being the same. As shown in
Table the results further demonstrate the importance of learnable («, 3) as the best performance
of different datasets requires distinct combinations of («, 3), instead of fixed parameters.

In Table 5] we present the statistical information of w,, due to the large number of different relations
in heterogeneous datasets. We use the row Range as the start and the end of the range. For example,
for the first range of MCF-7, it is formed by [—1.4456, —1.0144). And the corresponding frequency
is reported in the row Frequency. In this case, the frequency of [—1.4456, —1.0144) is 1. Other
cases can be deduced by analogy. We can be informed by Table[T5]that the learnable w, is of vital
importance for heterogeneous GAD, as the best w,. for different datasets can distribute evenly, focus
on the center part, or lie mainly on the extreme spots.

H COMPARISON WITH FOCAL LOSS

We further compare our proposed RFACE with Focal loss, a classical loss for imbalanced data, to
demonstrate the effectiveness of our proposed methods.

Assume we have logits z = [z1,- -, z¢], where C is the number of classes, sigmoid per class
p = [p1, - ,pc], where p; = Sigmoid(z;), and multi-label target y = [y1,--- ,yc] € {0,1},
then we will investivate the gradients of Cross-Entropy loss, Focal loss, and RFACE to show the key
advantages of RFACE.

For Cross-Entropy loss:

C

Lop=—Y [yilogp; + (1 —yi)log(1 —pi)],
i=1

the gradient vector is:
Velcg=p—Yy
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Datasets ~ Metrics |JacobiGAD Gegenbauer Chebyshev Legendre
AUROC 0.7679 0.7281 0.7146 0.6986

MCE-7 AUPRC 0.3403 0.2787 0.2375 0.2384
Recall@k | 0.3769 0.3217 0.2847 0.2767

F1-score 0.6597 0.6048 0.5889 0.5886

AUROC 0.7381 0.7180 0.7076 0.7202

MOLT-4 AUPRC 0.3097 0.2587 0.2476 0.2475
Recall@k| 0.3519 0.3068 0.3100 0.3132

Fl1-score 0.6507 0.6225 0.6248 0.6224

AUROC 0.7677 0.7226 0.7589 0.7384

PC-3 AUPRC 0.3064 0.2057 0.2494 0.2281
Recall@k| 0.3603 0.2508 0.3092 0.2944

Fl-score | 0.6394 0.5689 0.6061 0.5974

AUROC 0.7728 0.7386 0.7441 0.7381

SW-620 AUPRC 0.2697 0.2392 0.2461 0.2233
Recall@k | 0.3347 0.3105 0.2988 0.2766

Fl-score | 0.6461 0.5995 0.6294 0.5905

AUROC 0.7900 0.7758 0.7891 0.7727

NCI-H23 AUPRC 0.2927 0.2413 0.2556 0.2274
Recall@k | 0.3417 0.3045 0.3296 0.3020

F1-score 0.6546 0.5775 0.5679 0.6101

AUROC 0.7762 0.7703 0.7733 0.7691

AUPRC 0.2888 0.2551 0.2388 0.2367
OVCAR-S pecall@k| 03438 03101 03117 03117
Fl-score | 0.6461 0.6286 0.6048 0.6003

AUROC 0.7896 0.7554 0.7564 0.7656

P388 AUPRC 0.3929 0.3465 0.3424 0.3587
Recall@k | 0.4431 0.3952 0.4054 0.3988

F1-score 0.7061 0.6855 0.6886 0.6790

AUROC 0.7729 0.7670 0.7578 0.7461

SF-295 AUPRC 0.2623 0.2085 0.1939 0.1919
Recall@k| 0.3210 0.2724 0.2634 0.2634

F1-score 0.6356 0.5965 0.5965 0.6020

AUROC 0.7797 0.7459 0.7384 0.7404

SNI12C AUPRC 0.2666 0.2284 0.2308 0.2224
Recall@k| 0.3240 0.3018 0.2864 0.2805

F1-score 0.6329 0.6052 0.6080 0.6138

AUROC 0.7613 0.7484 0.7390 0.6997

AUPRC 0.1995 0.1995 0.1715 0.1587

UACC257 Recall@k | 0.2819 0.2708 0.2525 0.2231
F1-score 0.6246 0.5656 0.5659 0.5827

AUROC 0.9830 0.9778 0.9756 0.9746

DBLP AUPRC 0.9842 0.9802 0.9750 0.9732
Recall@k| 0.9575 0.9508 0.9463 0.9418

F1-score 0.9651 0.9632 0.9557 0.9539

AUROC 0.7263 0.7096 0.7130 0.7060

IMDB AUPRC 0.7619 0.7485 0.7552 0.7444
Recall@k| 0.7192 0.7119 0.7108 0.7098

F1-score 0.6585 0.6527 0.6461 0.6565

AUROC 0.8728 0.8724 0.8721 0.8716

PDNS AUPRC 0.6871 0.6732 0.6844 0.6860
Recall@k | 0.6283 0.6145 0.6270 0.6241

F1-score 0.7760 0.7700 0.7704 0.7702

AUROC 0.9826 0.9809 0.9805 0.9815

RCDD AUPRC 0.9332 0.9283 0.9290 0.9299
Recall@k | 0.8747 0.8741 0.8719 0.8667

F1-score 0.9280 0.9279 0.9229 0.9220

For Focal loss:
C

Table 13: Ablation study for polynomial degradation.

Lrocat = — Y _[yi(1—pi) logpi + (1 — yi)p] log(1 — py),

the gradient vector is:

i=1

vz‘CFocal = SFocal (P - y)a

where spocq1 18 @ scalar vector for each class 7, depending on the ground truth label y;, the predicted
probability with no midification p;, and the power for measuring the difficulty of samples .
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Table 14: Learned («, 3) for Jacobi Polynomials.

Datasets « 5]

MCF-7 [0.1123 1.2406 1.2030 1.7027 1.5336 1.8209
MOLT-4 |1.9611 0.8162 0.2852 1.8448|0.3078 1.0801 0.7354 1.5658
PC-3 0.8800 1.6410 0.0865 0.8657

SW-620 |0.4661 1.608 1.3252 0.0181 |1.9602 0.3216 0.4713 0.5893

NCI-H23 |0.3489 1.5247 1.9206 1.8042 1.0248 1.3645

OVCAR-8 | 1.3458 1.6198 0.6928 1.0384|0.1690 0.0049 0.2966 1.1328
P388 1.0701 0.5101 0.1645 0.2895|1.9218 1.5771 0.1775 0.1930

SF-295 |0.7552 0.326 1.4094 0.3687 0.4355 1.8797
SN12C |0.7820 0.8886 0.9901 0.9222 0.1497 0.3569
UACC257 | 1.7794 1.7520 1.7412 1.9050 | 1.0449 0.2968 1.0761 0.3197
DBLP |1.9142 0.4518 1.7499 0.3554

IMDB | 0.6390 0.5686 0.7820 1.3118

PDNS [0.6258 0.5431 1.9307 0.1602 1.1881 0.7147
RCDD |0.4016 0.8339

Table 15: Learned w, for different relations.

Datasets ~ Metrics
MCE-7 Range |-1.4456 -1.0144 -0.5832 -0.1519 0.2793 0.7105 1.1417 1.5729 2.0042 2.4354 2.8666
Frequency 1 0 1 19 30 27 16 25 7 3
MOLT-4 Range |0.0200 0.2136 0.4071 0.6006 0.7942 0.9877 1.1813 1.3748 1.5684 1.7619 1.9555
Frequency| 19 12 12 25 22 18 19 17 18 14
PC-3 Range |0.0103 0.2200 0.4297 0.6394 0.8490 1.0587 1.2684 1.4781 1.6878 1.8974 2.1071
Frequency| 14 10 19 14 14 10 14 8 30 10
SW-620 Range |-1.1965 -0.6950 -0.1936 0.3078 0.8093 1.3107 1.8121 2.3136 2.8150 3.3164 3.8179
Frequency 2 3 20 44 45 42 24 2 1 1
NCI-H23 Range [-0.0007 0.2072 0.4151 0.6230 0.8309 1.0389 1.2468 1.4547 1.6626 1.8705 2.0784
Frequency| 17 21 14 21 17 18 21 14 24 15
OVCAR-8 Range [-0.0148 0.1907 0.3963 0.6019 0.8074 1.0130 1.2185 1.4241 1.6296 1.8352 2.0407
Frequency| 22 16 21 18 22 15 13 19 17 21
P338 Range |0.0009 0.2002 0.3995 0.5988 0.7981 0.9974 1.1967 1.3960 1.5953 1.7946 1.9939
Frequency| 24 30 26 26 19 28 31 27 26 34
SF.295 Range [-0.1725 0.0563 0.2852 0.5140 0.7429 0.9717 1.2006 1.4294 1.6583 1.8871 2.1160
Frequency| 8 22 24 26 19 22 13 17 22 11
SN12C Range [-0.0906 0.1206 0.3317 0.5428 0.7540 0.9651 1.1762 1.3873 1.5985 1.8096 2.0207
Frequency| 12 17 28 22 20 21 19 18 17 10
UACC257 Range [-0.0503 0.1549 0.3601 0.5653 0.7705 0.9757 1.1809 1.3861 1.5913 1.7965 2.0017
Frequency 8 10 18 19 29 10 16 22 23 21
DBLP Range [-0.0094 0.1563 0.3220 0.4878 0.6535 0.8193 0.9850 1.1507 1.3165 1.4822 1.6480
Frequency 2 0 0 0 1 0 1 1 0 1
IMDB Range [-0.0099 0.1620 0.3339 0.5058 0.6777 0.8496 1.0214 1.1933 1.3652 1.5371 1.7090
Frequency 1 0 0 1 0 0 0 0 0 2
PDNS Range |0.3526 0.4796 0.6065 0.7335 0.8604 0.9874 1.1143 1.2413 1.3682 1.4952 1.6221
Frequency 1 0 0 0 1 0 0 0 0 1
RCDD Range |0.7637 0.8787 0.9938 1.1089 1.2240 1.3390 1.4541 1.5692 1.6842 1.7993 1.9144
Frequency| 3 0 1 1 0 1 0 0 0 2
For RFACE:
C
Lrrace =— Y lyilogp;+ (1 —y;) log(1 — p}),
i=1

p; = Sigmoid(z; + v#; V., LoE),
the gradient vector is:
V:Lrrace = Srrace(p' —y),

where spracE is a scalar vector for each class i, depending on the ground truth label y;, the
predicted probability with logit modification (indicating class frequency by x; and sample difficulty
by V., LcE) pi, the coefficient of modification term -y, and the class-frequency-based curvature ;.

As shown above, the advantage of the proposed RFACE over Focal loss stems from its distinct
mechanism for addressing class imbalance in heterogeneous graph-level anomaly detection. RFACE
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Table 16: Ablation study for Focal Loss.

Datasets  Metrics |JacobiGAD w/ Focal Loss
AUROC | 0.7679 0.7544
AUPRC | 03403 0.2846
MCF-7 pecall@k| 03769 03261
Macro-F1| 0.6597 0.6106
AUROC | 0.7381 0.7273
AUPRC | 03097 02612
MOLT-4 pecai@k| 03519 03429
Macro-F1| 0.6507 0.5796
AUROC | 0.7677 0.7490
pes  AUPRC | 03064 02275
Recall@k | 03603 0.3050
Macro-F1|  0.6394 0.6203
AUROC | 07728 0.7497
AUPRC | 02697 02537
SW-620  pecall@k| 03347 0.3264
Macro-F1 |  0.6461 0.6281
AUROC | 0.7900 07417
AUPRC | 02927 02281
NCIH23  pecal@k| 03417 03028
Macro-F1 0.6546 0.6255
AUROC | 0.7762 0.7310
AUPRC | 0.2888 0.2259
OVCAR-8 pecall@k| 03438 02925
Macro-F1 0.6461 0.5880
AUROC | 0.789 0.7503
pigg  AUPRC | 03929 03136
Recall@k | 0.4431 0.3749
Macro-F1 0.7061 0.6431
AUROC | 0.7729 0.7369
AUPRC | 02623 0.1916
SF-295 Recall@k| 03210 0.2691
Macro-F1| 0.6356 0.5812
AUROC | 0.7797 0.7682
AUPRC | 0.2666 02182
SNI2C  Recall@k| 03240 02975
Macro-F1| 0.6329 0.5929
AUROC | 07613 0.7558
AUPRC | 0.1995 0.1749
UACC2ST pecall@k| 0.2819 02414
Macro-F1|  0.6246 0.5580
AUROC | 0.9830 0.9754
AUPRC | 0.9842 0.9647
DBLP  pecall@k| 0.9575 0.9463
Macro-F1| 09651 0.9550
AUROC | 0.7263 0.6874
AUPRC | 07619 0.7371
IMDB ¢ ecall@k| 07192 0.6940
Macro-F1| 0.6585 0.6291
AUROC | 08728 0.8612
AUPRC | 0.6871 0.6611
PDNS  pecall@k| 0.6283 0.5981
Macro-F1| 0.7760 0.7297
AUROC | 0.9826 0.9797
AUPRC | 09332 0.9306
RCDD  pecali@k | 0.8747 0.8741
Macro-F1| 0.9280 0.9276

applies a class-dependent and difficulty-aware logit transformation. This transformation modifies
the optimization gradient based on both class frequency and sample difficulty. As a result, RFACE
reshapes the decision boundary by explicitly expanding the margins of minority anomaly classes and
gently contracting the margins of dominant normal classes, based on both class and difficulty. This
curvature-inspired adjustment acts like a discrete Ricci flow step, improving the geometric regularity
of the representation space by amplifying deviations. In heterogeneous graph data, where anomalies
arise from subtle irregularities and specialized node—edge interactions, such margin rebalancing is
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crucial: it ensures that minority classes receive sustained and directionally beneficial updates even
when the classifier becomes confident about them, preventing premature gradient vanishing.

In contrast, Focal loss only rescales the Cross-Entropy gradient through a difficulty-based factor
s, which offers no mechanism to correct class-frequency—induced imbalance. Because Focal loss
downweights "easy" samples regardless of their class, it may inadvertently suppress minority-class
gradients once the model becomes moderately confident, leading to possible overfitting to "hard"
samples. Moreover, Focal loss treats all classes identically and cannot incorporate global distributional
information; the optimization trajectory therefore lacks the class-dependent curvature adjustment that
RFACE introduces. This makes Focal loss sensitive to the randomness of minibatch composition,
more prone to instability on small anomalous sets, and often ineffective when many anomalies are
not “hard” samples, where class number information rather than prediction confidence determines
anomaly separability.

Beyond gradient modification, RFACE also provides additional advantages, as proved in Theorems|[g]
(RFACE will amplify information of the minority class) and [9] (RFACE will converge), while Focal
loss is a heuristic-oriented loss without guarantee. These theoretical advantages are also strongly
supported by our empirical results. As shown in Table[I6] RFACE consistently outperforms the Focal
loss variant on all datasets.

Together, these theoretical insights and empirical observations demonstrate that RFACE is signifi-
cantly better suited than Focal loss for heterogeneous graph-level anomaly detection, offering stronger
geometric corrections, more stable optimization, better calibration, and improved exploitation of
graph information.
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