
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JACOBIGAD: JACOBI POLYNOMIAL–POWERED HET-
EROGENEOUS GRAPH-LEVEL ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Heterogeneous graph-level anomaly detection is vital for applications such as
fraud detection and drug discovery, yet remains challenging due to mixed features,
complex structures, and severe class imbalance. This paper introduces JacobiGAD,
a unified framework that addresses these challenges through three key innovations.
First, learnable multiscale filters based on Jacobi Polynomials adapt to different
node and edge types, fusing multiple graph views to enhance anomaly signals.
Second, these polynomials enable efficient approximation of targeted functions
and naturally encode diverse geometries. Third, a Ricci Flow-inspired loss am-
plifies gradients for rare anomalies, mitigating class imbalance without distorting
graph embeddings, ensuring stable convergence. Extensive experiments on real-
world benchmarks show JacobiGAD outperforms the best baseline by up to 2.79%
(AUROC), 7.78% (AUPRC), 7.11% (Recall@k), and 5.96% (F1-score) on average.

1 INTRODUCTION

Graph-level anomaly detection (GAD) identifies entire graphs that exhibit structural or attributively
deviations from norm ones, a critical task for applications (Ma et al., 2023; Lin et al., 2024), such
as financial fraud detection, drug toxicity screening, and infrastructure monitoring. These graphs
are often heterogeneous, containing multiple node and edge types, presenting three core challenges:
Mixed feature spaces (Xu et al., 2024). Heterogeneous graphs combine diverse attributes with
varying dimensions, making it hard to design unified filters that capture relevant anomalous patterns
across all types. (2) Structural complexity (Zhang et al., 2022). Multiple edge types and intricate
structures create difficulties in detecting anomalous substructures within graphs, which can easily
mislead the detector. (3) Imbalanced label distribution (Dong et al., 2024). Genuine anomalies are
exceedingly rare, leading to highly skewed training sets that bias models toward normal graphs.
Existing methods for graph classification or GAD struggle to surface anomalous signals in such
imbalanced heterogeneous data, as illustrated in Section 2 and demonstrated in Section 5.

To tackle these challenges, this paper presents JacobiGAD, an end-to-end framework that unifies adap-
tive multi-scale spectral filters with imbalance-sensitive loss for heterogeneous GAD. Specifically, our
learnable Jacobi Polynomial filters adapt to diverse node and edge types across multiple graph views,
enhancing true anomaly signals while suppressing noise. A complementary Ricci Flow-inspired loss
dynamically amplifies gradients for rare anomalies, effectively combating class imbalance. Theoreti-
cally, we prove that these filters enable fast, stable approximation while preserving feature distances,
and that the loss ensures reliable convergence. Empirically, JacobiGAD consistently outperforms
all baselines across AUROC, AUPRC, Recall@k, and F1-score on 15 real-world benchmarks. In
summary, our contributions are threefold:

• We propose JacobiGAD, a novel framework for heterogeneous GAD that integrates adaptive Jacobi
Polynomial filters with a Ricci Flow-inspired loss function.

• We provide theoretical guarantees on filter stability, information preservation, and loss convergence,
ensuring principled and efficient learning.

• We comprehensively validate JacobiGAD on diverse real-world datasets, showcasing its superior
ability to detect rare anomalies that existing methods fail to identify.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Homogeneous Graph Classification. Early successes in graph classification on homogeneous
networks include GCN (Kipf & Welling, 2017), which approximates spectral graph convolutions,
SAGE (Hamilton et al., 2017), which samples neighborhoods, GAT (Velickovic et al., 2018), which
applies attention to neighbor messages, and GIN (Xu et al., 2019), which demonstrated that sum-
aggregation matches the Weisfeiler–Leman test’s expressivity. Recent extensions such as LRGNN
(Wei et al., 2023) stack GNNs for long-range dependencies, GRDL (Wang & Fan, 2024) treats node
embeddings as discrete distributions for direct classification, UQGNN (Wu et al., 2025) introduces
uncertainty-aware objectives for robustness, and UIL (Sui et al., 2025) offers a unified view on
invariant graph learning. While effective on balanced, homogeneous benchmarks, these models
struggle with integrating multiple node/edge types and detecting rare anomalies in complex structures.

Heterogeneous Graph Classification. Methods such as HMGNN (Yu & Gao, 2022) and muxGNN
(Melton & Krishnan, 2023) capture heterogeneity using motifs or multiplex networks, while HeGCL
(Shi et al., 2024) employs contrastive learning on multiple views. Subsequent approaches, such as
RFAGNN (Wu et al., 2024) and SHGLNN (Hayat et al., 2024), use relational attention or hypergraphs
to model complex interactions. Although these methods perform heterogeneous graph classification,
they rely on fixed filters or heuristic fusion strategies, assume balanced data, and lack principled
mechanisms for anomaly detection.

Graph-level Anomaly Detection. Current anomaly detection literature includes iGAD (Zhang et al.,
2022), which learns anomalous substructures in graphs, GmapAD (Ma et al., 2023), which maps
graphs into feature spaces based on similarity to representative nodes, RumorMixer (Xu et al., 2024),
focusing on the echo chamber effect and platform heterogeneity; RQGNN (Dong et al., 2024), which
uses the Rayleigh Quotient to uncover sample properties, and UniGAD (Lin et al., 2024), which
tackles multi-level tasks for diverse information. While these methods perform well in GAD, they
struggle to generalize to heterogeneous scenarios due to their inability to adapt filters to diverse
feature domains, fuse multiple graph views, and incorporate theoretically guaranteed loss for handling
imbalanced data in complex structures.

In contrast, JacobiGAD is an innovative end-to-end framework specifically designed for heteroge-
neous GAD. It introduces learnable, multi-scale spectral filters that adaptively fuse signals across
diverse node and edge types, and a Ricci Flow–inspired loss that counteracts class imbalance by
dynamically emphasizing rare anomalies. Unlike homogeneous methods, it natively handles hetero-
geneous complexity; unlike existing heterogeneous classifiers, it uses learned, geometry-aware filters
instead of fixed bases; and unlike all prior approaches, it addresses severe imbalance in a theoretically
grounded manner, enabling the detection of subtle anomalies that are missed by other methods.

3 PRELIMINARIES

Heterogeneous Graph. A heterogeneous graph is defined as G = (V,A,X , TV , RE), where the
node set V =

⋃|TV |
t=1 {Vt} comprises |TV | distinct types of nodes, each endowed with an attribute

matrix Xt ∈ R|Vt|×dt in X . The set of adjacency matricesA = {Ar}|RE |
r=1 with each Ar ∈ R|V|×|V|,

encodes the |RE | relation types by setting (Ar)ij = 1 if nodes i, j ∈ V are linked under relation
r, otherwise (Ar)ij = 0. The schema is completed by TV , the set of node types, and RE , the set
of relation types, which together satisfy |TV |+ |RE | > 2. In practice, heterogeneous graphs often
exhibit heterogeneity in attribute dimensions, i.e., dTi ̸= dTj for Ti ̸= Tj , Ti, Tj ∈ TV .

Task Definition. Given a heterogeneous graph set G = {G(i) = (V(i),A(i),X (i), TV , RE)}Ni=1,
we partition G into two disjoint subsets, anomalous graphs Gan and normal graphs Gno, with
Gan ∩ Gno = ∅. The GAD task then seeks to assign each G(i) ∈ G to one of these classes, based on
atypical structural or attribute patterns that distinguish anomalous instances. Beyond the difficulties of
complex feature and structure caused by heterogeneity, heterogeneous GAD also exhibits severe class
imbalance, i.e., |Gan| ≪ |Gno|, which compounds the difficulty of reliable anomaly discrimination.
Building on this formulation. Our study proposes a novel spectral GNN based on Jacobi Polynomials
under the guidance of Ricci Flow-inspired loss, specifically designed for heterogeneous GAD to
address the challenges mentioned in Section 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Spectral Graph Neural Network. The key ideas of spectral GNNs are to conduct graph convolutional
operations in the Fourier domain, which can be defined as g ⋆X = g(L)X , where g(·) is the graph
filter, X is the feature matrix of the graph, and L is the normalized Laplacian matrix, which can be
defined as L = I −D− 1

2AD− 1
2 , given the adjacency matrix A, corresponding degree matrix D,

and an identity matrix I . The successful choices of g(·) from prior work (Defferrard et al., 2016), are
polynomials, inspiring our exploration of the optimal basis of the graph filter in heterogeneous GAD.

Jacobi Polynomials. Jacobi Polynomials {Pα,β
n (x)}∞n=0 are a family of orthogonal polynomials on

the interval x ∈ [−1, 1] with weight function w(x) = (1− x)α(1 + x)β for parameters α, β > −1:

Pα,β
0 (x) =1,

Pα,β
1 (x) =(α+ 1) +

α+ β + 2

2
(x− 1),

Pα,β
k (x) =(θ

(1)
k x+ θ

(2)
k)Pα,β

k−1(x)− θ
(3)
k Pα,β

k−2,

where

θ
(1)
k =

(2k + α+ β − 1)(2k + α+ β)

2k(k + α+ β)
,

θ
(2)
k =

(2k + α+ β − 1)(α2 − β2)

2k(k + α+ β)(2k + α+ β − 2)
,

θ
(3)
k =

(k + α− 1)(k + β − 1)(2k + α+ β)

k(k + α+ β)(2k + α+ β − 2)

Jacobi Polynomials provide a general solution for graph signal filtering. In more detail, increasing α
decreases contributions near the upper end of the spectrum, i.e., high-frequency or rapidly varying
components, while increasing β down-weights contributions near the lower end, i.e,. low-frequency
or smooth components. In practice, this parametrization yields an efficient, k-hop localized graph
convolution operator whose passband can be finely tuned by selecting α and β to match the topology
and signal characteristics of diverse graph domains. Special cases include classical polynomials, such
as Legendre Polynomials (α = β = 0), Chebyshev Polynomials (α = β = − 1

2), and Gegenbauer
Polynomials (α = β = λ− 1

2 , where λ > − 1
2).

Ricci Flow. Ricci Flow is a geometric process that deforms a Riemannian metric g(t) according to:

∂g(t)

∂t
= −γRic(g(t)),

where Ric(g(t)) denotes the Ricci curvature tensor and γ ∈ R+. Under this evolution, regions of high
curvature flatten out, leading to a more uniform geometry. In graphs, edgewise curvature measures
are defined via optimal transport between local neighborhood distributions. A discrete Ricci Flow
then updates edge weights to equalize the curvature across the graph. This curvature-guided objective
counteracts extreme class imbalance without globally distorting the graph representation, ensuring
that rare but structurally distinctive anomalies receive proportionally larger gradient updates.

4 METHOD

4.1 OVERVIEW

In this section, we present an overview of JacobiGAD in Figure 1. First, we unify heterogeneous
features via Gaussian projection and construct a multi-view topology in Section 4.2. Additionally,
we demonstrate the distance preservation property of our alignment, as shown in Theorem 1. Next,
we propose JPGNN, a spectral filter based on Jacobi Polynomials, which fuses multiple views
while provably preserving feature and structural information in Section 4.3. Furthermore, we
prove the optimal basis, information preservation, target amplification, multiple spaces, extensive
approximation, and converged approximation properties of JPGNN, as shown in Theorems 2, 3, 4, 5,
6, and 7, respectively. Finally, we introduce RFACE, a Ricci Flow-inspired loss, that intrinsically
adapts to imbalanced distributions in Section 4.4. Morevoer, we verify the weight balance and
convergence guarantee properties of RFACE, as shown in Theorems 8 and 9.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Alignment JPGNN RFACE

Heterogeneous

Graphs

Aligned

Graphs

Optimal

Basis

Information

Preservation

Target

Amplification

Multiple

Spaces

Extensive

Approximation

Converged

Approximation

Distance

Preservation

Weight

Balance

Convergence

Guarantee

Figure 1: Overview of JacobiGAD.

4.2 HETEROGENEOUS FEATURE PROJECTION AND MULTI-VIEW TOPOLOGY

The initial processing of heterogeneous data is a critical determinant of model performance. Conven-
tional approaches often fail to adequately address two fundamental challenges: the misalignment of
features across node types and the synergistic integration of multiple relational contexts. Our method
addresses these challenges through a principled framework.

Heterogeneous feature projection. Current methods for handling heterogeneous node features, such
as decomposition (Ren & Du, 2020), concatenation (Gao et al., 2023), and independent learning
(Yang et al., 2023), each face significant limitations. Decomposition reduces dimensionality at
the cost of information loss. Concatenation increases feature size, leading to overfitting and high
computational cost. Independent learning ignores semantic alignment between views, introducing
noise and raising training expense. All fail to adequately align semantics across node types.

To address the above drawbacks, we propose a theoretically guaranteed approach that can align fea-
tures without severe information loss and requires no parameter tuning. Given a set of heterogeneous
graphs with in total |TV | types of node features, we first apply zero padding to the end of each type so
that all types have the same dimensionality dmax, i.e., X ′

t = Xt ⊕ 0, where X ′
t ∈ R|Vt|×dmax and

0 ∈ R|Vt|×(dmax−dt), ∀t ∈ TV . Then, we use a shared Gaussian matrix to project them into a lower
latent space with dimension d, i.e., (Xproj

t)T = P (X ′
t)

T , where P ∈ Rd×dmax and Pi,j ∼ N (0, 1d).
The result feature matrix Xproj = Xproj

1 ⊕Xproj
2 ⊕ · · · ⊕Xproj

|TV | . The validity of this approach is
rigorously guaranteed by the following theorem, whose proof is in Appendix A.

Theorem 1. Given any finite set of vectors with different dimensions, zero-padding at any position
can equivalently preserve their original information. For any zero-padded vector x ∈ RD, a data-
independent Gaussian projection f(x) = Px, where P ∈ Rd×D and Pi,j ∼ N (0, 1d), can preserve

pairwise Euclidean distance for M pairs up to a factor ϵ with high probability, 1− 2Me−
ϵ2d
4 .

Theorem 1 shows that high-dimensional vectors can be projected into a lower-dimensional space while
preserving their pairwise distances with high probability. This ensures the semantic relationships
between nodes are maintained isotropically in the latent space, without additional cost during training.

Multi-view topology. Additionally, to address the multifaceted topology of heterogeneous graphs,
we move beyond the naive summation of adjacency matrices, which assumes all relation types are
equally important. Instead, we employ learnable weights for each relation: Ã =

∑|RE |
r=1 ωrAr. This

allows the model to dynamically discern the hierarchical importance of different relational contexts.
However, prior heuristic weighting schemes often fail to leverage inherent structural patterns. Our
method, detailed in Section 4.3, provides a theoretically grounded approach for optimal multi-view
fusion, ensuring convergence and information preservation to leverage the formulation effectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 JACOBI POLYNOMIAL-BASED GRAPH NEURAL NETWORK

Our spectral GNN takes as input a graph with aligned features and fused topology. Selecting an
appropriate spectral filter basis is critical for heterogeneous GAD, as different bases offer distinct
expressivity. We posit that Jacobi Polynomials are the optimal basis, a claim supported by the
following analysis and theorems. First, we consider homogeneous graph classification, a closely
related case of heterogeneous GAD. The core of our argument rests on a theorem, proved in Appendix
A, establishing the direct and general optimality of Jacobi Polynomials.
Theorem 2. Consider the optimization process of a spectral GNN in graph classification:
argminθk,WL(y,Pooling(

∑K
k=1 θkgk(L)XW)). Assuming that it can reach a global minimum

by tuning learnable parameters θk,W , then the optimal choice of the basis of the graph filter gk(·)
can be the Jacobi Polynomials, according to its convergence speed to the minimum area.

Theorem 2 provides the foundational justification for our architecture, demonstrating that Jacobi
Polynomials are optimal for the case of homogeneous graph classification. This inspires their use for
more complex heterogeneous graph-level tasks. As established in Section 4.2, a heterogeneous graph’s
multi-view topology is a linear combination of homogeneous adjacency matrices. Consequently, the
task can be represented as a combination of its homogeneous variants. Therefore, the expressivity of
Jacobi Polynomials for heterogeneous GAD hinges on their ability to filter and fuse this multi-view
information, a capability demonstrated by the following theorems, whose proofs are in Appendix A.
Theorem 3. Given different views of a graph, the combination of Jacobi Polynomial-based graph
filter can preserve the full information from the original graph due to injectivity.
Theorem 4. Combining information from V views using the combination of Jacobi Polynomial-based
graph filter will amplify targeted patterns (the enhancement factor grows as Θ(V)) while suppressing
noise (the signal-to-noise ratio grows as Θ(

√
V)).

Theorem 3 and 4 demonstrate that a Jacobi Polynomial-based filter comprehensively preserves
information while selectively amplifying targeted patterns and reducing noise. This is vital for
heterogeneous GAD, where anomalies are often subtle inconsistencies across relational views. Unlike
filters that may smooth over these faint cues, our Jacobi basis can be tuned to amplify cross-view
discrepancies while dampening common normal signals.

However, a filter constrained to a Euclidean prior is insufficient, as anomalies can exhibit complex
structures such as hierarchical or cyclical patterns (Dong et al., 2025). Effective heterogeneous
GAD thus requires a filter capable of leveraging multi-geometric information from Hyperbolic
(for hierarchical data) and Spherical (for cyclical data) spaces. The following theorem, proved in
Appendix A, establishes that Jacobi Polynomials possess this essential capability.
Theorem 5. After appropriate coordinate transformations, Jacobi Polynomials can serve as eigen-
functions of the Laplace-Beltrami operator in the κ-stereographic model (Bachmann et al., 2020).
The connections for each geometry are as follows:

• Spherical geometry (κ > 0): The Laplace-Beltrami operator in stereographic coordinates has
eigenfunctions with radial and angular parts. The angular part is handled by spherical harmonics,
while the radial part satisfies a differential equation solvable by Jacobi Polynomials.

• Hyperbolic geometry (κ < 0): The spectrum of the Laplace-Beltrami operator is continuous, and
the radial eigenfunctions are not polynomials but can be expressed as Jacobi Polynomials.

• Euclidean geometry (κ = 0): The Laplace-Beltrami operator reduces to the standard Laplacian,
and the radial eigenfunctions are Bessel functions, which arise as a limit of Jacobi Polynomials.

Theorem 5 elevates our model beyond Euclidean-centric approaches. By adjusting its parameters
(α, β), the Jacobi filter performs a soft selection of the optimal geometric domain for the fused graph’s
structure. This enables a single model to detect anomalies manifesting in any of these paradigms, a
critical capability for complex real-world heterogeneous graphs.

In summary, Jacobi Polynomials offer key advantages for our task: performance guarantee, effective
multi-view fusion, and adaptability to complex structural patterns. This naturally raises the question
of whether a Jacobi Polynomial-based GNN can converge efficiently during training. We address this
with the following theorems, which are demonstrated in Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 6. Assuming using Jacobi Polynomials as graph filter g(·), and the eigenvalues of the
shifted Laplacian matrix L fall in [−1, 1], then g(L) can approximate any continuous function lying in
the space C[−1, 1] (contains continuous functions on [−1, 1]). Moreover, it can also approximate any
function in the L2

w[−1, 1] space (contains measurable functions satisfying
∫ 1

−1
|f(x)|2w(x)dx <∞,

where w(x) = (1− x)α(1 + x)β , and α, β > −1).
Theorem 7. Jacobi Polynomials satisfy sharp approximation bounds. In particular, if the function
f(x) has r continuous derivatives, then there exists a constant C depending on r, α, β such that
the Jacobi Polynomials g(x) obeys mindeg(g(x))≤N ||f(x) − g(x)||∞ ≤ C

N ||f
(r)(x)||L1

w
, which

guarantees that a low-degree Jacobi filter will approximate f(x) well.

Theorems 6 and 7 guarantee our model’s high expressiveness and computational efficiency. A low-
order polynomial suffices to capture complex patterns, enabling a shallow architecture that avoids the
over-smoothing typical of deep GNNs, a critical advantage for preserving the fine-grained differences
between normal and anomalous graphs in heterogeneous GAD.

Based on Theorems 2–7, Jacobi Polynomials are theoretically justified as an optimal basis for
heterogeneous GAD. We therefore operationalize this framework into a neural network layer, adhering
to the parameter constraints specified in Theorem 6. We first transform the input adjacency matrix
Ã =

∑|RE |
r=1 ωrAr to the normalized Laplacian matrix L̃ = I − D− 1

2 ÃD− 1
2 , and rescale the

normalized Laplacian matrix L̂ = 2
λmax

L̃− I , where λmax is the largest eigenvalue of L̃. Then the
k-th layer of the Jacobi Polynomial-based Graph Neural Network (JPGNN) can be defined as:

H(k) = σ((

T∑
t=0

θ
(k)
t P

(α(k),β(k))
t (L̂))H(k−1)W (k)),

where H(0) = σ(XprojW (0)), σ is a activation function, and ωr, α
(k), β(k), θ

(k)
t ,W (k) are learn-

able parameters. Then, the graph embedding z can be obtained by:

Hstack = H(0) ⊕H(1) ⊕ · · · ⊕H(K),

H = σ(HstackW),

z = Pooling(H)

where W is a learnable parameter. This design yields a fully co-adaptive model: the multi-view
fusion, governed by view weights ωr, and the spectral processing via JPGNN are jointly optimized to
excel at heterogeneous GAD.

4.4 RICCI FLOW-INSPIRED LOSS FUNCTION

The above design addresses the first two challenges outlined in Section 1, while the final component
of our framework tackles the severe class imbalance in heterogeneous GAD, where normal graphs
significantly outnumber anomalies. A standard Cross-Entropy loss is ill-suited for this scenario, as
it can become dominated by the majority class. To counteract this, we introduce the Ricci Flow
Adjusted Cross-Entropy Loss (RFACE), which dynamically reshapes the learning landscape based on
the model’s output geometry.

For a graph-level classification task with C classes, given predicted probability of i-th sample
pi = Sigmoid(zi), the Cross-Entropy loss is:

LCE = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c)

In highly imbalanced settings (e.g., C = 2), the standard Cross-Entropy loss, LCE , produces much
larger gradients for the frequent class. This biases model updates toward the majority class, often
harming minority class performance. To counteract this, we adapt principles from differential
geometry, mimicking the Ricci Flow, which homogenizes a manifold’s curvature. We apply this
concept to the loss landscape’s curvature per class, defined for a class c as:

κc = log(
fc

maxc′ fc′ + ϵ
),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Average performance with multiple runs (homogeneous graph classification models).
Datasets Metrics GCN SAGE GAT GIN LRGNN GRDL UQGNN UIL JacobiGAD

SF-295

AUROC 0.6687 0.7178 0.7409 0.6914 0.7578 0.6389 0.5248 0.7334 0.7729
AUPRC 0.0856 0.1600 0.1645 0.0961 0.1962 0.0871 0.0525 0.1598 0.2623

Recall@k 0.1078 0.2362 0.2099 0.1029 0.2494 0.1342 0.0519 0.1975 0.3210
F1-score 0.4870 0.5685 0.5560 0.5255 0.4952 0.4871 0.4871 0.5223 0.6356

SN12C

AUROC 0.7034 0.7440 0.7475 0.7194 0.7747 0.5639 0.4922 0.7604 0.7797
AUPRC 0.1032 0.1598 0.1772 0.1122 0.2038 0.0792 0.0486 0.1789 0.2666

Recall@k 0.1279 0.2430 0.2234 0.1364 0.2515 0.1168 0.0537 0.2702 0.3240
F1-score 0.4905 0.5846 0.5791 0.5242 0.5001 0.4875 0.4875 0.5105 0.6329

UACC257

AUROC 0.6654 0.7324 0.6998 0.6848 0.7220 0.5711 0.4611 0.7124 0.7613
AUPRC 0.0726 0.1588 0.1228 0.0903 0.1626 0.0916 0.0378 0.1134 0.1995

Recall@k 0.0832 0.2404 0.1633 0.1136 0.2312 0.1471 0.0355 0.1562 0.2819
F1-score 0.4921 0.5722 0.5214 0.5096 0.4905 0.4895 0.4895 0.4955 0.6246

DBLP

AUROC 0.9816 0.9746 0.9671 0.9730 0.7475 0.9800 0.9352 0.9698 0.9830
AUPRC 0.9829 0.9758 0.9515 0.9740 0.6285 0.9761 0.9497 0.9701 0.9842

Recall@k 0.9418 0.9441 0.9172 0.9284 0.6197 0.9374 0.8926 0.9172 0.9575
F1-score 0.9598 0.9594 0.9346 0.9445 0.4863 0.9492 0.9268 0.3959 0.9651

IMDB

AUROC 0.6601 0.6771 0.6707 0.6601 0.6643 0.6677 0.6575 0.6487 0.7263
AUPRC 0.7007 0.7260 0.7161 0.6948 0.7063 0.6878 0.6982 0.6764 0.7619

Recall@k 0.7056 0.6982 0.6824 0.6982 0.6772 0.6909 0.6993 0.7003 0.7192
F1-score 0.6387 0.6225 0.6045 0.6363 0.6242 0.6258 0.6305 0.6100 0.6585

PDNS

AUROC 0.7773 0.8577 0.6735 0.6249 0.8159 0.6935 0.4377 0.5683 0.8728
AUPRC 0.4434 0.6110 0.3263 0.2349 0.5188 0.3578 0.1565 0.2224 0.6871

Recall@k 0.4788 0.5900 0.3444 0.2766 0.5206 0.3299 0.1429 0.2205 0.6283
F1-score 0.6743 0.7561 0.4917 0.4526 0.5718 0.4553 0.4526 0.4526 0.7760

RCDD

AUROC 0.9581 0.9811 0.9602 0.9658 0.9805 0.9609 0.8033 0.9593 0.9826
AUPRC 0.8619 0.9291 0.8871 0.8823 0.9267 0.8605 0.3491 0.8645 0.9332

Recall@k 0.8006 0.8695 0.8261 0.8249 0.8743 0.8111 0.4106 0.8081 0.8747
F1-score 0.8782 0.9230 0.8995 0.8981 0.9280 0.8271 0.4616 0.8694 0.9280

Transaction

AUROC 0.9085 0.9437 0.9216 0.9202 0.9461 0.8773 0.7162 0.9245 0.9543
AUPRC 0.3722 0.4811 0.4520 0.3961 0.5063 0.3688 0.0927 0.4376 0.5642

Recall@k 0.3410 0.5172 0.4462 0.3730 0.5217 0.3730 0.0915 0.4577 0.5835
F1-score 0.6502 0.7469 0.7088 0.6552 0.7762 0.6138 0.4105 0.6785 0.7944

where fc is the frequency of class c in training set, and ϵ is for numerical stability. To adjust the
gradients based on Ricci Flow, we further define the Ricci Flow adjustment term for the i-th sample:

∆pi,c = −γκc∇pi,cLCE ,

where γ is a hyperparameter, and the RFACE can be defined as:

LRFACE = − 1

N

N∑
i=1

C∑
c=1

yi,c log(p̃i,c),

where p̃i,c = Sigmoid(zi,c+∆pi,c). The following theorems proves the benefits of utilizing RFACE
as the training objective for heterogeneous GAD, demosntrated in Appendix A:

Theorem 8. For a rare class c, |∇zi,c
LRFACE | > |∇zi,c

LCE | with amplifying factor proportional
to γ|κc| and the amplification follows (1 + γ|κc|)-Lipschitz continuous, preserving the topology of
the latent graph embedding space.

Theorem 9. When the adjusted predictions are perfect, i.e., p̃i,c = yi,c,∀i, c, the adjustment term
vanishes, i.e., ∆pi,c → 0, and the raw predictions also converge to the true labels, i.e., pi,c → yi,c

for all classes, including rare ones.

In summary, the RFACE is a dynamic system that actively recalibrates the learning focus based on
per-class performance, not a simple weighting scheme. This ensures our JPGNN is optimized for
detecting rare anomalies, making the entire pipeline, from feature projection and topology fusion
to spectral filtering, coherent and optimal for the task. Beyond its theoretical foundation, extensive
experiments in Section 5 confirm the practical superiority of JacobiGAD.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and baselines. We evaluate JacobiGAD on 14 public and 1 private real-world datasets,
divided into 20%/20%/60% for train/validation/test, and compare our JacobiGAD with 18 baselines

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Average performance with multiple runs (heterogeneous graph classification models).
Datasets Metrics HMGNN muxGNN HeGCL RFAGNN SHGLNN JacobiGAD

SF-295

AUROC 0.4112 0.4348 0.6584 0.6799 0.5088 0.7729
AUPRC 0.0421 0.0417 0.1129 0.1090 0.0471 0.2623

Recall@k 0.0477 0.0230 0.1745 0.1802 0.0198 0.3210
F1-score 0.4871 0.4871 0.4876 0.4871 0.4871 0.6356

SN12C

AUROC 0.4309 0.5169 0.6373 0.6958 0.5053 0.7797
AUPRC 0.0410 0.0784 0.0894 0.1077 0.0458 0.2666

Recall@k 0.0315 0.1347 0.1287 0.1577 0.0188 0.3240
F1-score 0.4892 0.5383 0.4874 0.4920 0.4875 0.6329

UACC257

AUROC 0.5512 0.4207 0.6835 0.7129 0.5022 0.7613
AUPRC 0.0698 0.0332 0.1305 0.1297 0.0381 0.1995

Recall@k 0.1014 0.0142 0.2049 0.1755 0.0132 0.2819
F1-score 0.4895 0.4895 0.4962 0.4953 0.4895 0.6246

DBLP

AUROC 0.4849 0.9697 0.9696 0.9814 0.7684 0.9830
AUPRC 0.3786 0.9697 0.9698 0.9826 0.5949 0.9842

Recall@k 0.3602 0.9172 0.9306 0.9530 0.5996 0.9575
F1-score 0.5079 0.9388 0.9522 0.9595 0.6763 0.9651

IMDB

AUROC 0.5256 0.6176 0.6512 0.6594 0.5220 0.7263
AUPRC 0.6063 0.6716 0.7033 0.7119 0.5978 0.7619

Recall@k 0.5983 0.6572 0.6709 0.6909 0.5889 0.7192
F1-score 0.3682 0.5171 0.6089 0.6214 0.3682 0.6585

PDNS

AUROC 0.5563 0.6250 0.7796 0.7359 0.5173 0.8728
AUPRC 0.2115 0.2528 0.4190 0.3977 0.1912 0.6871

Recall@k 0.2420 0.2855 0.4583 0.3980 0.2470 0.6283
F1-score 0.4525 0.5289 0.5432 0.6194 0.4526 0.7760

RCDD

AUROC 0.7105 0.9523 0.9390 0.9809 0.5819 0.9826
AUPRC 0.2848 0.8470 0.8031 0.9219 0.1531 0.9332

Recall@k 0.2911 0.7870 0.7366 0.8645 0.0739 0.8747
F1-score 0.4625 0.8610 0.8404 0.9182 0.4614 0.9280

Transaction

AUROC 0.6409 0.8415 0.8853 0.9338 0.5745 0.9543
AUPRC 0.0773 0.3302 0.3781 0.4331 0.0533 0.5642

Recall@k 0.0572 0.3021 0.3753 0.4348 0.0984 0.5835
F1-score 0.4118 0.6241 0.6447 0.6690 0.3504 0.7944

Table 3: Average performance with multiple runs (GAD models).
Datasets Metrics iGAD GmapAD RumorMixer RQGNN UniGAD JacobiGAD

SF-295

AUROC 0.6768 0.6190 0.4092 0.7657 0.5947 0.7729
AUPRC 0.1040 0.0670 0.0414 0.1938 0.0724 0.2623

Recall@k 0.1531 0.0724 0.0280 0.2683 0.1095 0.3210
F1-score 0.5427 0.4095 0.4871 0.6154 0.4971 0.6356

SN12C

AUROC 0.7416 0.5957 0.3549 0.7695 0.6281 0.7797
AUPRC 0.1581 0.0605 0.0353 0.1973 0.0769 0.2666

Recall@k 0.2242 0.0733 0.0290 0.2558 0.1151 0.3240
F1-score 0.5476 0.3477 0.4875 0.5844 0.4756 0.6329

UACC257

AUROC 0.7404 0.5936 0.4997 0.7599 0.5973 0.7613
AUPRC 0.1323 0.0507 0.0411 0.1894 0.0672 0.1995

Recall@k 0.2140 0.0527 0.0456 0.2465 0.1176 0.2819
F1-score 0.5429 0.3461 0.4895 0.6064 0.5058 0.6246

DBLP

AUROC 0.9791 0.5551 0.5000 0.9804 0.9644 0.9830
AUPRC 0.9803 0.4131 0.3835 0.9829 0.9541 0.9842

Recall@k 0.9396 0.4452 0.3792 0.9463 0.8881 0.9575
F1-score 0.9598 0.5479 0.2772 0.9509 0.9122 0.9651

IMDB

AUROC 0.6530 0.5079 0.4989 0.6707 0.6528 0.7263
AUPRC 0.6971 0.5866 0.5822 0.7254 0.6902 0.7619

Recall@k 0.6909 0.5794 0.5783 0.6845 0.6982 0.7192
F1-score 0.6313 0.5073 0.3681 0.6294 0.6332 0.6585

PDNS

AUROC 0.8502 0.5173 0.5928 0.7550 0.7310 0.8728
AUPRC 0.6399 0.1810 0.2606 0.4109 0.4293 0.6871

Recall@k 0.5870 0.1999 0.2732 0.4309 0.4146 0.6283
F1-score 0.7308 0.5058 0.4526 0.5420 0.6240 0.7760

RCDD

AUROC 0.9794 0.7895 0.7335 0.9624 0.9561 0.9826
AUPRC 0.9225 0.3065 0.3134 0.8740 0.8636 0.9332

Recall@k 0.8611 0.3288 0.4513 0.8073 0.7960 0.8747
F1-score 0.9190 0.6463 0.4614 0.8874 0.8541 0.9280

Transaction

AUROC 0.9431 0.7384 0.6422 0.9353 0.8862 0.9543
AUPRC 0.4626 0.0873 0.0992 0.4939 0.3505 0.5642

Recall@k 0.4897 0.0709 0.1030 0.4966 0.3501 0.5835
F1-score 0.7152 0.3875 0.4213 0.7422 0.6307 0.7944

in the related area. Details can be found in Appendix B. Due to the limited space, we present results
of 7 public and 1 private datasets in Section 5, and those of the other 7 public datasets in Appendix E.

Experimental Settings. We ensure a fair evaluation by standardizing our approach: baseline models
use code from GitHub and their authors’ recommended hyperparameters. Note that, since the most
commonly used three GNNs, GCN, SAGE, and GAT, are designed for node classification tasks, we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

thus implement them with Pytorch_Geometric package and the weighted Cross-Entropy Loss, using
the default hyperparameters. JacobiGAD’s hyperparameters are rigorously tuned via grid search to
maximize validation performance (summed AUROC/AUPRC/Recall@k/F1-score). Configurations
are listed in Appendix D.

5.2 EXPERIMENTAL RESULTS

We conduct a comprehensive comparison of JacobiGAD against three major groups of competing
methods: 8 widely used homogeneous graph classification models, 5 representative heterogeneous
graph classification approaches, and 5 novel graph-level anomaly detection methods. The results
across 8 datasets are summarized in Tables 1, 2, and 3. We elaborate on our findings in detail next.

To begin with, Table 1 demonstrates that JacobiGAD consistently surpasses classical homogeneous
GNN architectures, including GCN, SAGE, GAT, and GIN. These baselines, although foundational,
remain surprisingly competitive compared with several more advanced techniques. Remarkably,
newer homogeneous GNNs, such as LRGNN, GRDL, UQGNN, and UIL, do not perform as well,
frequently falling behind even the simpler models. Their limited performance on heterogeneous graph
anomaly detection can be attributed to two main issues: they cannot adaptively integrate information
across multiple semantic views well, and they lack mechanisms to properly address the severe class
imbalance inherent in GAD tasks.

We then compare JacobiGAD with contemporary heterogeneous graph classification methods, in-
cluding HMGNN, muxGNN, HeGCL, RFAGNN, and SHGLNN. As shown in Table 2, JacobiGAD
consistently yields better detection accuracy across all datasets. Although these models are designed
specifically for heterogeneous graphs, their representation learning pipelines often rely on fixed or
suboptimal strategies for combining heterogeneous modalities, limiting their expressiveness. Thus,
Such drawbacks may distort the graph information, especially when running on complex real-world
heterogeneous graphs, leading to sometimes inferior performance, even compared to state-of-the-art
homogeneous models. Moreover, most of them do not explicitly mitigate data imbalance, which is
especially detrimental in anomaly detection scenarios where abnormal samples are extremely scarce.

Finally, we benchmark against the dedicated graph anomaly detection methods iGAD, GmapAD,
RumorMixer, RQGNN, and UniGAD. Their comparative performance, reported in Table 3, indicates
that JacobiGAD achieves substantially stronger detection capability. These GAD models are tailored
for specific anomaly settings, primarily in homogeneous graphs, and therefore struggle with our
target task. Their architectures generally lack the capacity to jointly capture multi-view semantic
signals and the high-order structural irregularities that characterize anomalies in heterogeneous graphs.
Consequently, even though they are specialized for anomaly detection, their design inherently limits
their applicability in the heterogeneous graph setting considered in this work.

5.3 ABLATION STUDY

We further examine the influence of key components in JacboGAD, i.e., LRFACE , tunable Jacobi
Polynomial parameters α, β, and learnable view weights ωr. As shown in Table 4, the ablation study
demonstrates the critical contribution of each proposed component to the overall performance of
the JacobiGAD. Using LCE to replace LRFACE results in significant and consistent performance
degradation across all datasets, underscoring its vital role in effectively tackling imbalanced issues
in heterogeneous GAD tasks. The learnable parameters (α, β) of Jacobi Polynomials also prove
essential, as the fix of them leads to a clear decline in performance, which shows that, without a
flexible enough graph filter, the model can not handle the complex information within heterogeneous
graphs. Similarly, the learnable relation weight ωr contributes positively, with its fixing causing
noticeable dips, demonstrating the importance of adaptive weights for different relations in the
heterogeneous graphs. To sum up, the full model consistently outperforms all ablated variants,
confirming that all three components work in concert to achieve state-of-the-art anomaly detection
performance across diverse heterogeneous graph datasets.

5.4 HYPERPARAMETER ANALYSIS

Figure 2 reports the AUROC, AUPRC, Recall@k, and F1-score of JacobiGAD on the RCDD
dataset as we vary η, hdim,K, T, ϵ, γ, where η is the learning rate, hdim is the hidden dimension of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Ablation study for component deactivation.
Datasets Metrics JacobiGAD w/o LRFACE w/o learnable (α, β) w/o learnable ωr

SF-295

AUROC 0.7729 0.7591 0.7727 0.7574
AUPRC 0.2623 0.1953 0.2172 0.1940

Recall@k 0.3210 0.2815 0.2905 0.2667
F1-score 0.6356 0.5984 0.6161 0.5931

SN12C

AUROC 0.7797 0.7463 0.7505 0.7651
AUPRC 0.2666 0.2345 0.2119 0.2240

Recall@k 0.3240 0.3035 0.2933 0.2856
F1-score 0.6329 0.6129 0.5733 0.5942

UACC257

AUROC 0.7613 0.7282 0.7365 0.7499
AUPRC 0.1995 0.1617 0.1713 0.1709

Recall@k 0.2819 0.2241 0.2475 0.2535
F1-score 0.6246 0.5634 0.5829 0.5647

DBLP

AUROC 0.9830 0.9820 0.9745 0.9694
AUPRC 0.9842 0.9831 0.9762 0.9683

Recall@k 0.9575 0.9530 0.9441 0.9418
F1-score 0.9651 0.9641 0.9576 0.9605

IMDB

AUROC 0.7263 0.6962 0.7116 0.7025
AUPRC 0.7619 0.7313 0.7514 0.7486

Recall@k 0.7192 0.7045 0.7108 0.7014
F1-score 0.6585 0.6439 0.6325 0.6414

PDNS

AUROC 0.8728 0.8691 0.8728 0.8689
AUPRC 0.6871 0.6749 0.6812 0.6718

Recall@k 0.6283 0.6149 0.6239 0.6195
F1-score 0.7760 0.7695 0.7685 0.7583

RCDD

AUROC 0.9826 0.9808 0.9814 0.9814
AUPRC 0.9332 0.9325 0.9318 0.9293

Recall@k 0.8747 0.8749 0.8739 0.8675
F1-score 0.9280 0.9274 0.9264 0.9237

0.0001 0.0005 0.001 0.005
η

0.875

0.900

0.925

0.950

0.975

64 128 256
hdim

0.875

0.900

0.925

0.950

0.975

1 2 3 4
K

0.875

0.900

0.925

0.950

0.975

2 3 4 5
T

0.875

0.900

0.925

0.950

0.975

1e-8 1e-7 1e-6 1e-5
ε

0.875

0.900

0.925

0.950

0.975

0.1 0.2 0.3 0.4
γ

0.875

0.900

0.925

0.950

0.975

AUROC AUPRC Recall@k F1-score

Figure 2: The change of performance on RCDD when varying different hyperparameters.

JacobiGAD, K,T are the width and depth of JacobiGAD respectively, ϵ is the small value to keep κc
in RFACE valid, and γ is the adjusted hyperparameter in RFACE. As shown in Figure 2, JacobiGAD
remains stable when varying the hyperparameters, demonstrating its stability.

6 CONCLUSION

This paper proposed JacobiGAD, a novel framework for heterogeneous GAD. Our approach integrates
a theoretically grounded random projection for feature alignment, a Jacobi Polynomial-based spectral
GNN for superior multi-view fusion and cross-geometric representation learning, and a Ricci Flow-
inspired loss that dynamically counteracts class imbalance. Supported by strong theoretical guarantees
and extensive experimental validation, JacobiGAD establishes a new state-of-the-art, providing a
powerful and principled methodology for GAD on complex heterogeneous graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. Constant curvature graph convolutional
networks. In ICML, pp. 486–496, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett (eds.), NeurIPS, pp. 3837–3845, 2016.

Xiangyu Dong, Xingyi Zhang, and Sibo Wang. Rayleigh quotient graph neural networks for graph-
level anomaly detection. In ICLR, 2024.

Xiangyu Dong, Xingyi Zhang, Lei Chen, Mingxuan Yuan, and Sibo Wang. Spacegnn: Multi-space
graph neural network for node anomaly detection with extremely limited labels. In ICLR, 2025.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR Workshop, 2019.

Shen Gao, Haotong Zhang, Xiuying Chen, Chongyang Tao, Dongyan Zhao, and Rui Yan. A trend of
AI conference convergence in similarity: An empirical study through trans-temporal heterogeneous
graph. IEEE Trans. Knowl. Data Eng., 35:9642–9655, 2023.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, pp. 1024–1034, 2017.

Malik Khizar Hayat, Shan Xue, and Jian Yang. Self-supervised heterogeneous hypergraph learning
with context-aware pooling for graph-level classification. In ICDM, pp. 140–149, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Yiqing Lin, Jianheng Tang, Chenyi Zi, H. Vicky Zhao, Yuan Yao, and Jia Li. Unigad: Unifying
multi-level graph anomaly detection. In NeurIPS, pp. 136120–136148, 2024.

Xiaoxiao Ma, Jia Wu, Jian Yang, and Quan Z. Sheng. Towards graph-level anomaly detection via
deep evolutionary mapping. In KDD, pp. 1631–1642, 2023.

Joshua Melton and Siddharth Krishnan. muxgnn: Multiplex graph neural network for heterogeneous
graphs. IEEE Trans. Pattern Anal. Mach. Intell., 45:11067–11078, 2023.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
Workshop, 2020.

Yuanhang Ren and Ye Du. Specializing word vectors by spectral decomposition on heterogeneously
twisted graphs. In COLING, pp. 3599–3609, 2020.

Walter Rudin. Real and complex analysis. McGraw-Hill, Inc., 1987.

Gen Shi, Yifan Zhu, Jian K. Liu, and Xuesong Li. Hegcl: Advance self-supervised learning in
heterogeneous graph-level representation. IEEE Trans. Neural Networks Learn. Syst., 35:13914–
13925, 2024.

Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, and Xiang Wang. A unified
invariant learning framework for graph classification. In KDD, pp. 1301–1312, 2025.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In ICML, pp.
23341–23362, 2022.

Zixiao Wang and Jicong Fan. Graph classification via reference distribution learning: Theory and
practice. In NeurIPS, pp. 137698–137740, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lanning Wei, Zhiqiang He, Huan Zhao, and Quanming Yao. Search to capture long-range dependency
with stacking gnns for graph classification. In WWW, pp. 588–598, 2023.

Lirong Wu, Haitao Lin, Bozhen Hu, Cheng Tan, Zhangyang Gao, Zicheng Liu, and Stan Z. Li.
Beyond homophily and homogeneity assumption: Relation-based frequency adaptive graph neural
networks. IEEE Trans. Neural Networks Learn. Syst., 35:8497–8509, 2024.

Yujia Wu, Bo Yang, Elynn Y. Chen, Yuzhou Chen, and Zheshi Zheng. Conditional prediction ROC
bands for graph classification. In AISTATS, pp. 2458–2466, 2025.

Haowei Xu, Chao Gao, Xianghua Li, and Zhen Wang. Rumormixer: Exploring echo chamber effect
and platform heterogeneity for rumor detection. In PKDD, pp. 21–37, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. Simple and efficient
heterogeneous graph neural network. In AAAI, pp. 10816–10824, 2023.

Zhaoning Yu and Hongyang Gao. Molecular representation learning via heterogeneous motif graph
neural networks. In ICML, pp. 25581–25594, 2022.

Anru R Zhang and Yuchen Zhou. On the non-asymptotic and sharp lower tail bounds of random
variables. Stat, 9:e314, 2020.

Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su, Chuan Zhou, Quan Z.
Sheng, Leman Akoglu, and Charu C. Aggarwal. Dual-discriminative graph neural network for
imbalanced graph-level anomaly detection. In NeurIPS, pp. 24144–24157, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF

Proof of Theorem 1. Suppose we have N vectors v1,v2, · · · ,vN , where vi ∈ Rdi . We first prove
the equivalence of different zero-padding methods, namely end padding, front padding, and scatter
padding. Let D = maxi di, then we have:

• End padding: g(vi) = (vi1,vi2, · · · ,vidi , 0, 0, c . . . , 0),
• Front padding: g(vi) = (0, 0, c . . . , 0,vi1,vi2, · · · ,vidi

),
• Scatter padding: Randomly generate a subset Ii of {1, 2, · · · , D}, where |Ii| = di, then

(g(vi))j =

{
vk, j = the k-th element of Ii,
0, j /∈ Ii

All of these g(·) are linear isometries, i.e., ||g(u)−g(v)|| = ||u−v||, which means the zero padding
ways are equivalent for preserving distance.

Denote xi = g(vi) ∈ RD and draw P ∈ Rd×D with Pij ∼ N (0, 1d), then we have:

f : RD → Rd, f(x) = Px

Consider the random variable

X = ||f(u)||22 =

d∑
k=1

⟨Pk,∗,u⟩2,

where u = xi−xj , and Pk,∗ is the k-th row of P , we have each inner product ⟨Pk,∗,u⟩ is Gaussian
with mean 0 and variance

Var(⟨Pk,∗,u⟩) =
D∑
l=1

Var(Pk,l)u
2
l =

1

d

D∑
l=1

u2
l =
||u||22
d

Hence we have:

Yk =

√
d

||u||22
⟨Pk,∗,u⟩ ∼ N (0, 1),

X =

d∑
k=1

⟨Pk,∗,u⟩2 =
||u||22
d

d∑
k=1

Y 2
k

Therefore, Z =
∑d

k=1 Y
2
k is χ2 with d degrees of freedom, and X =

||u||22
d Z.

A standard inequality (Zhang & Zhou, 2020) for tail bound of χ2 random variable demonstrates:

Pr[|X − u||22| ≥ ϵu||22] ≤ 2e−
ϵ2d
4 ,∀0 < ϵ < 1

Then for any u, we can have:

Pr[(1− ϵ)u||22 ≤ ||Pu ≤ (1 + ϵ)u||22||] ≥ 1− 2e−
ϵ2d
4

We care about M pairs of vectors, then by the union bound, the probability that all M pairs of
distances are preserved is at least 1− 2Me−

ϵ2d
4 .

Proof of Theorem 2. The optimization process of a spectral GNN in graph classification can be
defined as:

argminθk,WL(y,Pooling(
K∑

k=1

θkgk(L)XW))

For simplicity, let L be the MSE loss function, and the pooling function be the mean pooling function.
Then we can reformulate the process for i-th sample with ni nodes as:

argminθk,W

1

2
(pT

K∑
k=1

θkgk(L)XW − y)2,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where pT ∈ R1×ni represents the mean pooling function vector with each entry as 1
ni

. Then, over a
dataset of N graphs, we define the targeted process after reordering as:

argminθk,W

1

2N

N∑
i=1

(

K∑
k=1

θka
(i)
k − y

(i))2,

where a(i)k = (p(i))T gk(L
(i))X(i)W .

According to previous work (Wang & Zhang, 2022), the learned filter function is nearly identical
across different bases since they share the same expressive power and can all reach the global
minimum. Therefore, the optimization of W is largely independent of the basis selection near the
global minimum. In contrast, the optimization of θk is significantly influenced by the choice of basis.
To emphasize the impact of basis selection, we will focus exclusively on the optimization of θk.

To analyze the convergence speed near the global minimum, we then derive the Hessian matrix H of
the process with respect to θk:

Hjk =
1

N

N∑
i=1

a
(i)
j a

(i)
k

Diagonalize each Laplacian matrix L(i) = U (i)Λ(i)(U (i))T , we can get:

a
(i)
k =

ni∑
l=1

gk(λ
(i)
l)ϕ

(i)
l ψ

(i)
l ,

where λ(i)l is the l-th eigenvalue of L(i), ϕ(i)l = [(U (i))TX(i)W]l, and ψ(i)
l = p(i)u

(i)
l .

Since the Laplacian matrix is the normalized Laplacian matrix, the eigenvalue distribution of all
graphs converges to a density ρ(λ) on [0, 2]. Assume the random coefficients ϕ(i)l , ψ

(i)
l decorrelate

between different l, and E[(ϕψ)2|λ] depends only on λ. We have:

1

N

N∑
i=1

a
(i)
j a

(i)
k

N→∞−−−−→
∫ 2

0

gj(λ)gk(λ)ω(λ)dλ,

where ω(λ) = ρ(λ)E[(ϕψ)2|λ]. In other words, we have:

H ∝ [⟨gj , gk⟩ω]Kj,k=0,

where ⟨gj , gk⟩ω =
∫ 2

0
gj(λ)gk(λ)ω(λ)dλ. Reaching the global minimum means H is a diagonal

matrix (⟨gj , gk⟩ω = 0, where j ̸= k), which is equivalent to that g(·) is an orthonormal basis
in the polynomial space. Therefore, we choose a general form of orthogonal polynomials with
flexible enough weight functions to adapt to different graph signal density functions, i.e., Jacobi
Polynomials.

Proof of Theorem 3. We first prove the injectivity of the combination of the Jacobi Polynomial-based
graph filter to show that it can preserve the full information from the original graph.

Suppose we have a combination of Jacobi Polynomial-based graph filter, that is, T (x) =∑V
v=1 P

(αv,βv)
n (Lv)x, where x is a graph signal, P (αv,βv)

n is the Jacobi Polynomial-based graph
filter for the v-th view, and Lv is the Laplacian matrix for v-th view. Define the kernel characterization
for T :

ker(T) = {x ∈ RN |
V∑

v=1

P (αv,βv)
n (Lv)x = 0}

To prove the injectivity is equal to prove ker(T) = {0} under V heterogeneous views.

Assume the different views of a heterogeneous graph satisfy the following condition:

• Spectral Disjointness: ∀i ̸= j,Eigen(Li) ∩ Eigen(Lj) =, i.e., there are no shared eigenvalues
between Laplacian matrices of different views.

• Full Spectral Coverage: ∪Vv=1Eigen(Lv) = R≥0, i.e., eigenvalues of Laplacian matrix cover the
entire spectrum.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• No Common Eigenvectors: ̸ ∃x ̸= 0,Lvx = λvx,∀v, i.e., different Laplacian matrices have
distinct eigenspaces.

By tuning αv, βv of each P (αv,βv)
n , we can easily obtain root avoidance of the Jacobi Polynomial-

based graph filter:
P (αv,βv)
n (λ) ̸= 0,∀λ ∈ Eigen(Lv),

as P (αv,βv)
n (x) have n real roots in [−1, 1], and the spectra Lv can be rescale to [−1, 1].

By root avoidance and spectral disjointness, we have:

P (αv,βv)
n (λ) ̸= 0⇒ |P (αv,βv)

n (λ)| > δv > 0,

where δv is a small value larger than 0, which shows the strict positivity of |P (αv,βv)
n (λ)|.

Then for x ̸= 0, we expand the eigenbasis of each Lv:

x =

N∑
i=1

cv,iuv,i,

where cv,i = uT
v,ix, uv,i is the i-th eigenvector of Lv , and for a ̸= b, uT

a,cub,d = 0,∀b, d.

Therefore, we can define the v-th filtered component as:

zv = P (αv,βv)
n (Lv)x =

N∑
i=1

P (αv,βv)
n (λv,i)cv,iuv,i

Thus, we can compute:

||T (x)||22 = ⟨
V∑
i=0

zi,

V∑
j=0

zj⟩ =
V∑

v=1

||zv||22 +
∑
i ̸=j

⟨zi, zj⟩,

where ⟨zi, zj⟩ = zT
i zj = 0,∀i ̸= j, due to orthogonality.

By spectral coverage, ∃v and i such that:

|cv,i| > 0, λv,i ∈ Eigen(Lv),

for which view v and i we have:

||zv||22 ≥ |P (αv,βv)
n (λv,i)|2|cv,i|2 > δ2v |cv,i|2 > 0

Thus, we have:
||T (x)||22 > 0⇒ T (x) ̸= 0,

which means strict positivity. Then we have ker(T) = {0}, i.e., injectivity, as desired.

Proof of Theorem 4. We define the fused feature extractor on the target component as:

F(x) =
V∑

v=1

ΠSP
(α∗

v,β
∗
v)

n (Lv)x,

where ΠS is the projection onto the target feature subspace, and P (α∗
v,β

∗
v)

n is the optimized Jacobi
Polynomial filter for view v. Then the enhancement factor is:

γ(F) = min
z∈S,||z||22=1

||F(z)||22,

which represents the worst-case amplification of target features by the fused extractor.

Assume that:

• The target subspace S is spannded by common eigenvectors of all graph Laplacians Lv, which
means for each z ∈ S, ∃i such that Lvz = λv,iz,∀v, where λv,i is the i-th eigenvalue of Lv .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• For each view v, the Jacobi Polynomial filter is designed such that for all eigenvalues λv,i associated
with S, we have ∀z ∈ S, P (α∗

v,β
∗
v)

n (Lv)z = cvz, where cv = P
(α∗

v,β
∗
v)

n (λv,i) > 0.
• There exists a constant cmin > 0 such that cv ≥ cmin,∀v.

Thus, for any z ∈ S with ||z||22 = 1, we have:

ΠSP
(α∗

v,β
∗
v)

n (Lv)z = ΠS(cvz) = cvz,

since ΠSz = z(z ∈ S).
Then we can have:

F(z) =
V∑

v=1

cvz = (

V∑
v=1

cv)z,

whose norm is:

||F(z)||22 = ||(
V∑

v=1

cv)z||22 = |(
V∑

v=1

cv)|||z||22 =

V∑
v=1

cv

Give that cv ≥ cmin > 0,∀v, we have:

γ(F) = min
z∈S,||z||22=1

||F(z)||22 ≥ V cmin,

which means γ(F) = Θ(V).

Next, we show its robustness to noise. Consider a signal x with target component xtarget ∈ S and
noise e ∼ N (0, σ2I) uncorrelated across views. Then we have:

γ(F) = F(xtarget) + F(e)
From the above proof, we have the following for the target term:

||F(xtarget)||22 ≥ γ(F)||xtarget||22 ≥ V cmin||xtarget||22
For the noise term, we have:

E[||F(e)||22] = E[||
V∑

v=1

ΠSP
(α∗

v,β
∗
v)

n (Lv)e||22]

=

V∑
v=1

E[||ΠSP
(α∗

v,β
∗
v)

n (Lv)e||22]

≤
V∑

v=1

σ2||ΠSP
(α∗

v,β
∗
v)

n (Lv)||2F ,

since the noise is uncorrelated across views.

Assume ||ΠSP
(α∗

v,β
∗
v)

n (Lv)||2F ≤M for some constant M , we have:

E[||F(e)||22] ≤ V σ2M

By Jensen’s inequality, we have:

E[||F(e)||22] ≤
√

E[||F(e)||22] ≤ σ
√
VM

Thus, the signal-to-noise ratio is:

||F(xtarget)||22
E[||F(e)||22]

≥ V cmin||xtarget||22
σ
√
VM

=

√
V cmin||xtarget||22

σ
√
M

= Θ(
√
V)

Proof of Theorem 5. The κ-stereographic model provides a unified framework for Euclidean,
Hyperbolic, and Spherical geometries through a common metric, parameterized by the curvature κ:

ds2 =
dr2 + r2dΩ2

(1 + κr2)2
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where s is the square of an infinitesimally small distance between two points in a space, r is the radial
coordinate in stereographic projection, and dΩ2 is the metric on the unit sphere.

Jacobi Polynomials P (α,β)
n (x) are orthogonal polynomials on [−1, 1] with respect to the weight

(1−x)α(1+x)β . They arise as eigenfunctions of the Laplace-Beltrami operator in the κ-sterographic
model for specific values of κ and after appropriate coordinate transformations. Below, we derive the
connections for each geometry.

For κ > 0, the space is sperical with raidus R = 1√
κ

. The Laplace-Beltrami operator ∆ in
stereographic coordinates has eigenfunctions that can be separated into radial and angular parts. The
Laplace-Beltrami operator for a radial function f(r) in n dimensions is:

∆f = κ
(1 + κr2)n

rn−1

d

dr
[rn−1(1 + κr2)2−n df

dr
],

whose eigenvalue equation is ∆f + λf = 0.

To solve the equation, we introduce u = κr2 ≥ 0:

df

dr
= 2
√
κu

df

du
,
d

dr
= 2
√
κu

d

du

Then the equation can be represented as:

(1 + u)n

u
n−1
2

d

du
[u

n
2 (1 + u)2−n df

du
] +

λ

4κ2
f = 0

Change variable to x = u−1
u+1 = κr2−1

κr2+1 , so x ∈ [−1, 1]. Then u = 1+x
1−x and the derivatives become:

d

du
=
dx

du

d

dx
= − 2

(1− x)2
d

dx
,
d2

du2
=

4

(1− x)4
d2

dx2
+

8

(1− x)3
d

dx

Then the equation can be simplifies to the Jacobi differential equation:

(1− x2)d
2f

dx2
+ [β − α− (α+ β + 2)x]

df

dx
+ k(k + α+ β + 1)f = 0,

where α = β = n−2
2 , and k is the quantum number related to the eigenvalue λ = k(k + n− 1)κ.

The solutions are Jacobi Polynomials:

f(r) ∝ P (n−2
2 ,n−2

2)

k (
κr2 − 1

κr2 + 1
)

For κ < 0, the sapce is hyperbolic with curvature radius R = 1√
|κ|

. The spectrum of the Laplace-

Beltrami operator is continuous, and the radial eigenfunctions are not polynomials but can be
expressed as Jacobi functions (analytical continuations of Jacobi Polynomials).

Set κ = −|κ|, so 1 + κr2 = 1− |κ|r2. The eigenvalue equation is similar to the spherical case:

∆f + λf = 0,∆f = κ
(1 + κr2)n

rn−1

d

dr
[rn−1(1 + κr2)2−n df

dr
]

Then we use u = |κ|r2 to get:

(1 + u)n

u
n−1
2

d

du
[u

n
2 (1 + u)2−n df

du
] +

λ

4κ2
f = 0

Change variable to x = u−1
u+1 = |κ|r2−1

|κ|r2+1 , so x ∈ [−∞, 0], then the equation becomes a confluent
hypergeometric equation, which is solved by Jacobi functions with parameters α = β = n−2

2 :

f(r) ∝ P (n−2
2 ,n−2

2)

− 1
2+iσ

(
|κ|r2 − 1

|κ|r2 + 1
),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where σ =
√

λ
|κ| −

(n−1)2

4 ,∀λ > (n−1)2|κ|
4 , and i is the imaginary unit.

For κ = 0, the space is Euclidean space. The Laplace-Beltrami operator reduces to the standard
Laplacian, and the radial eigenfunctions are Bessel functions, which arise as a limit of Jacobi
Polynomials as κ→ 0.

When κ→ 0, the metric is ds2 = dr2 + r2dΩ2, and the radial eigenvalue equation is:
1

rn−1

d

dr
(rn−1 df

dr
) + λf = 0

This is the spherical Bessel equation, whose solutions are Bessel functions:

f(r) ∝ r−
n−2
2 J,

where J stands for Jn(x) =
∑∞

m=0
(−1)m

m!Γ(m+n+1) (
x
2)

2m+n, and Γ(·) is the gamma function.

For fixed r and k, as κ→ 0, the Jacobi Polynomial limit is:

lim
κ→0

P
(n−2

2 ,n−2
2)

k (
κr2 − 1

κr2 + 1
) ∝ r−

n−2
2 Jn−2

2
(
√
k(k + n− 1)r),

Proof of Theorem 6. First, we introduce the following theorem:
Theorem 10 (Weierstrass approximation theorem). Suppose f(x) is a continuous real-valued function
defined on the real interval [a, b]. For every ϵ > 0, there exist a polynomial p such that for all x in
[a, b], we have ||f(x)− p(x)||∞ < ϵ.

Then, given a f(x) ∈ C([−1, 1]) and ϵ > 0, by theorem 10, we can pick a genuine polynomial
p(x) =

∑N
i=1 wix

i so that ||f(x)− p(x)||∞ < ϵ.

And by definition, each Jacobi Polynomial P (α,β)
n (x) is a genuine polynomial of degree n, so:

Span(P (α,β)
0 , P

(α,β)
1 , · · ·) = {all real polynomials in x},

which means every polynonmial p(x) of degree ≤ N can be written uniquely in the Jacobi basis:

p(x) =

N∑
i=1

ciP
(α,β)
i (x)

Hence the finite Jacobi Polynomial sum SN (x) =
∑N

i=1 ciP
(α,β)
i (x) satisfies:

||f(x)− SN (x)||∞ = ||f(x)− p(x)||∞ < ϵ

Thus, any continuous f on [−1, 1] can be uniformly approximated by finite linear combinations of
Jacobi polynomials.

Then we consider the weighted space L2
w[−1, 1], where the weight function is the same as Jacobi

Polynomials:
w(x) = (1− x)α(1 + x)β ,

with α, β > −1.

Let µ be the measure defined by dµ = w(x)dx. Since α, β > −1, the integral satisfies:∫ 1

−1

w(x)dx <∞,

which means µ is a finite Borel measure on [−1, 1].
Denote any function q ∈ L2

w[−1, 1], we then prove that Jacobi Polynomials can approximate it in the
L2
w norm.

Since µ is a finite Borel measure on the compact interval [−1, 1], the continuous functions on [−1, 1]
area dense in L2

w[−1, 1], which is proved in (). Thus, for any δ > 0, there exists a continuous function
t on [−1, 1] such that:

||q(x)− t(x)||L2
w
<
δ

2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then, following the previous proof, we have:

||t(x)− p(x)|| = sup
x∈[−1,1]

|t(x)− p(x)| < ϵ,

where p(x) is finite linear combinations of Jacobi polynomials.

For any ϵ > 0, we can choose ϵ, such that:

ϵ2
∫ 1

−1

w(x)dx < (
δ

2
)2

Thus, we have:

||t(x)− p(x)||2L2
w
=

∫ 1

−1

|t(x)− p(x)|2w(x)dx ≤ ϵ2
∫ 1

−1

w(x)dx < (
δ

2
)2,

which means ||t(x)− p(x)||L2
w
< δ

2 .

By triangle inequality, we can derive:

||q(x)− p(x)||L2
w
≤ ||q(x)− t(x)||L2

w
+ ||t(x)− p(x)||L2

w
<
δ

2
+
δ

2
= δ,

which concludes that Jacobi Polynomials can approximate any function q ∈ L2
w[−1, 1].

Proof of Theorem 7. Let EN (f(x)) = mindeg(g(x))≤N ||f(x) − g(x)||∞, where f(x) ∈
Cr−1([−1, 1]), f (r)(x) ∈ L(w(α,β)(x)), r is the derivative order, and w(α,β)(x) = (1−x)α(1+x)β .

We then construct a positive kernel:

K
(r)
N (x, t) =

N∑
k=0

aN,kP
(α,β)
k (x)P

(α,β)
k (t),

where aN,k ≥ 0 chosen so that for each fixed x ∈ [−1, 1]:

• Normalization:
∫ 1

−1
K

(r)
N (x, t)w(α,β)(t)dt = 1,

• Moment vanishing up to order r−1:
∫ 1

−1
(t−x)mK(r)

N (x, t)w(α,β)(t)dt = 0,m = 1, 2, · · · , r−1,

• High-order moment bound:
∫ 1

−1
|t− x|rK(r)

N (x, t)w(α,β)(t)dt ≤ C
Nr , where C depends on r, α, β

The existence of such a kernel is standard, i.e., the classical Jackson kernel in orthogonal-polynomial
theory (Rudin, 1987).

Then define the Jackson operator JN by:

(JNf)(x) =

∫ 1

−1

f(t)K
(r)
N (x, t)w(α,β)(t)dt,

where JNf(x) is a polynomial of degree ≤ N , because K(r)
N (x, ·) is a sum of Jacobi Polynomials up

to degree N . Consequently:

EN (f(x)) ≤ ||f(x)− (JNf)(x)||∞

Next, we use repeated integration of the Taylor formula. For each t ∈ [−1, 1], there holds:

f(t) = f(x) + f ′(x)(t− x) + · · ·+ f (r−1)(x)

(r − 1)!
(t− x)r−1 +Rr(x, t),

where the remainder can be written in integral form:

Rr(x, t) =
1

(r − 1)!

∫ 1

0

(1− u)r−1f (r)(x+ u(t− x))(t− x)rdu

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

By the moment-vanishing property of K(r)
N (x, t), when we subtract out the Taylor part, all terms up

to (t− x)r−1 integrate to 0. Thus:

f(x)− (JNf)(x) =

∫ 1

−1

[f(t)− Taylor at x]K(r)
N (x, t)w(α,β)(t)dt

=

∫ 1

−1

Rr(x, t)K
(r)
N (x, t)w(α,β)(t)dt

Insert the integral form of Rr(x, t):

f(x)−(JNf)(x) =
1

(r − 1)!

∫ 1

−1

∫ 1

0

(1−u)r−1f (r)(x+u(t−x))(t−x)rK(r)
N (x, t)w(α,β)(t)dudt

Taking absolute values and using Fubini’s theorem:

|f(x)−(JNf)(x)| ≤
1

(r − 1)!

∫ 1

−1

(1−u)r−1

∫ 1

0

|f (r)(x+u(t−x))||t−x|rK(r)
N (x, t)w(α,β)(t)dtdu

Then, change variables in the inner integral, i.e., for each fixed u, the map t→ s = x+ u(t− x) is
linear of Jacobian dt = ds

u . Moreoverw(α,β)(t)dt ≤ Cw(α,β)(s)ds, sincew is smooth and u ∈ [0, 1].
One shows:

|t− x|rK(r)
N (x, t)w(α,β)(t)dt ≤ C

Nr
w(α,β)(s)ds,

by the high-order moment bound. Hence, we have:

|f(x)− (JNf)(x)| ≤
C

Nr

∫ 1

0

(1− u)r−1 du

u

∫ 1

−1

|f (r)(s)|w(α,β)(s)ds,

where
∫ 1

0
(1− u)r−1 du

u converges to a constant depending only on r. We conclude:

||f(x)− (JNf)(x)||∞ ≤ |f(x)− (JNf)(x)| ≤
C

Nr

∫ 1

−1

|f (r)(s)|w(α,β)(s)ds,

which completes the proof:

EN (f(x)) ≤ ||f(x)− (JNf)(x)||∞ ≤
C

Nr

∫ 1

−1

|f (r)(t)|w(α,β)(t)dt =
C

N
||f (r)(x)||L1

w
,

where JNf is a polynomial of degree ≤ N and C depends only on r, α, β.

Proof of Theorem 8. For simplicity, we assume the total class number C is 2.

We first calculate the gradient flow of LRFACE using the chain rule:

∇zi,c
LRFACE = (p̃i,c − yi,c)[1− γκcpi,c(1− pi,c)]

Since κc < 0:
γ|κc|pi,c(1− pi,c) > 0⇒ [1 + γ|κc|pi,c(1− pi,c)] > 1

We then calculate the gradient flow of LCE using the chain rule:

∇zi,cLCE = pi,c − 1

We focus on the case when yi,c = 1,pi,c ≈ 0 (probability of anomalous class is low):

|p̃i,c − yi,c| ≈ |pi,c − 1|

Then we can have:

|∇zi,c
LRFACE | = [1 + γ|κc|pi,c(1− pi,c)]|pi,c − 1| > |∇zi,c

LCE | = |pi,c − 1|,

with an amplifying factor [1 + γ|κc|pi,c(1− pi,c)] proportional to γ|κc|.
Next, we prove the adjustment ∆pi,c is (1 + γ|κc|)-Lipschitz continuous, so the topology of the
latent graph embedding space is preserved.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Define g(zi,c) = ∆pi,c = −γκc(pi,c − yi,c), then for two different graphs embedding z1, z2, we
have:

|g(z1)− g(z2)| = | − γκc(p1 − p2)| = γ|κc||p1 − p2|
Since Sigmoid is 1-Lipschitz, we have:

|g(z1)− g(z2)| ≤ γ|κc||z1 − z2|,

which means g(·) is γ|κc|-Lipschitz.

Then the adjusted logit z̃1 = z1 + g(z1), z̃2 = z2 + g(z2) satisfies:

|z̃1 − z̃2| ≤ |z1 − z2|+ |g(z1)− g(z2)| ≤ (1 + γ|κc|)|z1 − z2|,

which means the amplification follows (1 + γ|κc|)-Lipschitz.

Proof of Theorem 9. When p̃i,c = yi,c, there are two cases, i.e., yi,c = 0 and yi,c = 1.

For yi,c = 0, we have:

p̃i,c = 0⇒ Sigmoid(zi,c +∆pi,c) = 0⇒ zi,c +∆pi,c → −∞

In this situation, since zi,c+∆pi,c = zi,c−γκcpi,c, and−γκcpi,c is bounded, zi,c+∆pi,c → −∞
requires zi,c → −∞, which implies pi,c = Sigmoid(zi,c)→ 0 = yi,c.

For yi,c = 1, we have:

p̃i,c = 1⇒ Sigmoid(zi,c +∆pi,c) = 1⇒ zi,c +∆pi,c →∞

In this situation, since zi,c + ∆pi,c = zi,c − γκc(pi,c − 1), and −γκc(pi,c − 1) is bounded,
zi,c +∆pi,c →∞ requires zi,c →∞, which implies pi,c = Sigmoid(zi,c)→ 1 = yi,c.

B DATASETS AND BASELINES

Datasets. MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, and
UACC257 are 10 small-molecule biological activity datasets from TUDataset (Morris et al., 2020),
each corresponding to a different cancer cell line screen. Compounds are represented as heterogeneous
graphs where nodes are atom types and edges are the bonds between them. Remarkablely, we utilize
the original data in the TUDataset datasets, where the number of node and edge types are large, as
the real chemical compounds are extremely complex. The large number of node and edge types in
the public datasets posts additional challenges for the heterogeneous graph-level anomaly detection.
Each compound is labeled as active or inactive against its respective cancer type; we treat inactive
compounds as normal and active ones as anomalies. Node features are one-hot encodings of the atom
labels.

The above public datasets are originally graph classification datasets, whereas the datasets below are
node classification datasets. Therefore, we need to transform them into graph classification datasets.
The transformation is the same:

• We follow the original anomalous ratio to sample nn normal nodes and na anomalous nodes from
a heterogeneous graph, where na

nn+na
is the anomalous ratio of the original dataset, to simulate the

imbalanced nature of graph-level anomaly detection tasks.
• Use original Breadth-First Search algorithm to obtain the subgraph around nn normal nodes and
na anomalous nodes. For small-scale graphs, such as DBLP and IMDB, we set small nn and
na and 3 as the sampling layer number to limit the overlap between graphs, while keep enough
information in each graph. For large-scale graphs, such as PDNS and RCDD, we set large nn
and na and 2 as the sampling layer number to provide diverse enough samples while reduce the
running cost for several baselines for fair comparison, because some of them might cost high
computational resources, as reported in Appendix C.

• Use the center node label as the subgraph label.

DBLP and IMDB are public datasets processed by pytorch_geometric (Fey & Lenssen, 2019). The
DBLP dataset is a subset of the computer science bibliography, comprising four node types: authors,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Datasets used in the experiments, where nn, na are the normal and anomalous number of
graphs respectively, r = na

nn+na
is the anomalous rate of the dataset, n,m are the average number

of nodes and edges in graphs respectively, TV , RE are the types of nodes and edges in graphs
respectively, and d is the dimension of nodes after projection.

Source Type Dataset nn na r n m TV RE d

Public

Bioinfo

MCF-7 25476 2294 0.0826 26.40 28.53 46 129 46
MOLT-4 36625 3140 0.0790 26.10 28.14 64 176 64

PC-3 25941 1568 0.0570 26.36 28.49 45 133 45
SW-620 38122 2410 0.0595 26.06 28.09 65 184 65

NCI-H23 38296 2057 0.0510 26.07 28.10 65 182 65
OVCAR-8 38437 2079 0.0513 26.08 28.11 65 184 65

P388 39174 2298 0.0554 22.11 23.56 72 271 72
SF-295 38246 2025 0.0503 26.06 28.09 65 184 65
SN12C 38049 1955 0.0489 26.08 28.11 65 184 65

UACC257 38345 1643 0.0411 26.09 28.13 64 176 64
Citation DBLP 1197 745 0.3836 162.08 96.29 4 6 50
Social IMDB 1584 1135 0.4174 85.35 59.52 3 4 64

Cybersecurity PDNS 41337 8663 0.1733 48.80 72.13 2 3 32

Finance RCDD 50000 8364 0.1433 17.43 9.20 7 8 256
Private Transaction 20000 437 0.0214 14.87 20.12 6 11 325

papers, terms, and conferences. Authors are categorized by research area (database, data mining,
artificial intelligence, information retrieval) and are represented by a bag-of-words feature vector
derived from their paper keywords. For our task, authors from the database area are designated as
normal nodes, while those from data mining are treated as anomalous. The IMDB dataset is a subset
of the Internet Movie Database, containing movies, actors, and directors as node types. Movies
are classified by genre (action, comedy, drama) and are represented by bag-of-words features from
their plot keywords. In this context, action movies are the normal class, and comedy movies are the
anomalous class.

PDNS and RCDD are public datasets collected from Kaggle 1. The PDNS dataset is a cybersecurity
graph constructed from a seed set of malicious domains. Its infrastructure data is extracted from a
global passive DNS repository. The graph contains two entity types (domains and IPs) connected
by four relations (e.g., "domain resolves to IP"). Each domain node has a 10-dimensional feature
vector derived from its domain name and a binary label identifying it as malicious. We directly use
these original labels to define normal and anomalous nodes. The RCDD is a large-scale e-commerce
network from Alibaba, built for real-world risk detection. It contains 7 node types (e.g., buyer, seller)
and 7 edge types (e.g., buy, sell), though specific names are anonymized for confidentiality. In this
network, risk nodes often disguise themselves by forging relationships. Each node is described by
a 256-dimensional feature vector, and item nodes are labeled as either risk commodities or normal.
These original labels are used to designate the normal and anomalous classes.

The final dataset is a proprietary financial heterogeneous graph provided by a prominent company. Its
objective is to identify sub-networks, or communities, associated with suspicious or non-compliant
activity. The graph schema is complex, comprising 6 node types (e.g., representing real users and
entities) and 11 edge types that define the intricate relationships between them. The task is naturally
a GAD problem: each entire graph is labeled as either containing a risky community or being normal.
We directly adopt these original labels to train our model to distinguish between anomalous and
normal graphs.

Baselines. The first group is homogeneous graph classification models:

• GCN (Kipf & Welling, 2017): A foundational graph convolutional network that performs neigh-
borhood aggregation through a spectral graph convolution-inspired operation.

• SAGE (Hamilton et al., 2017): A scalable inductive framework that generates node embeddings
by sampling and aggregating features from a node’s local neighborhood.

1https://www.kaggle.com/

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• GAT (Velickovic et al., 2018): Employs an attention mechanism to compute hidden representations
by assigning different weights to each neighbor node.

• GIN (Xu et al., 2019): A theoretically powerful model designed to be as expressive as the
Weisfeiler-Lehman graph isomorphism test.

• LRGNN (Wei et al., 2023): Addresses the limitation of shallow receptive fields by stacking
multiple GNNs to capture long-range dependencies between distant nodes.

• GRDL (Wang & Fan, 2024): Treats node embeddings as discrete distributions within a latent
space, enabling graph-level classification without a global readout function.

• UQGNN (Wu et al., 2025): A model that integrates uncertainty quantification into the graph
representation learning process, producing confidence estimates alongside predictions.

• UIL (Sui et al., 2025): Provides a unified framework for invariant graph learning by enforcing both
structural and semantic invariance, leading to the identification of more robust and stable node
representations.

The second group is heterogeneous graph classification models:

• HMGNN (Yu & Gao, 2022): Models complex heterogeneous structures by constructing heteroge-
neous motif graphs to capture rich semantic information from multiple node and edge types.

• muxGNN (Melton & Krishnan, 2023): Represents graphs as multiplex networks, using separate
graphs for each relation type and a coupling graph to connect node representations across these
relations.

• HeGCL (Shi et al., 2024): A contrastive learning framework that learns node and graph embeddings
by contrasting a meta-path view with a global network topology view.

• RFAGNN (Wu et al., 2024): Handles both heterophily and heterogeneity within a unified model
using a relation-based frequency adaptive graph filter.

• SHGLNN (Hayat et al., 2024): Leverages hypergraphs constructed from heterogeneous graphs to
model complex higher-order (intra- and inter-graph) contextual relationships.

The third group is graph-level anomaly detection models:

• iGAD (Zhang et al., 2022): Anomaly detection is performed by comparing input graphs against a
set of prototypical neural substructure patterns.

• GmapAD (Ma et al., 2023): Maps entire graphs into a well-structured latent space where normal
and anomalous graphs are more easily separable.

• RumorMixer (Xu et al., 2024): A specialized model for rumor detection that captures the echo
chamber effect and platform heterogeneity inherent in social networks.

• RQGNN (Dong et al., 2024): Leverages the Rayleigh Quotient to combine spectral and spatial
information for anomaly detection.

• UniGAD (Lin et al., 2024): A unified framework that integrates node-level, subgraph-level, and
graph-level information for comprehensive graph anomaly detection.

C ALGORITHM AND COMPLEXITY

We first analyze the Preprocess function. As shown in Algorithm 1, in lines 1-6, we have in total
of O(N), where N is the number of graphs in the dataset, as we need to find the dmax of all the
graphs. Then, in lines 7-11, we need to do the projection for each graph in the dataset. Each will cost
O(V ddmax), where V is the number of nodes in graphG. Hence, the total cost will beO(Nnddmax),
where n is the average number of nodes in each graph of G. Therefore, the total time complexity of
Preprocess is O(Nnddmax).

Then, we analyze the time complexity of JPGNN for each graph G. As presented in Algorithm 2, in
lines 1-8, the dominant cost is the summation of weighted adjacency matrices. In practice, we don’t
need the summation, as we can multiply the coefficients by the edge weights. Thus, the total cost is
O(E), where E is the number of edges in the graph. Then, for lines 9-16, the dominant cost should
be line 12, which has a cost of O(KTV Ed3hid), where dhid is the hidden dimension of the layer of
the GNN. Therefore, the total time complexity of JPGNN is O(KTV Ed3hid). Next, we analyze the
time complexity of RFACE in Algorithm 3. In lines 1-6, we only need to use basic operations with
O(1) time complexity. Therefore, the total time complexity of RFACE is O(1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1: Preprocess
Input: G, d
Output: G′

1 G′ ← G;
2 dmax ← 0;
3 for G in G do
4 for Xt in G.X do
5 dmax ← max(dmax, dt);

6 P ← Pi,j ∼ N (0, 1d),P ∈ Rd×dmax ;
7 for G in G′ do
8 G.Xproj ← Null;
9 for Xt in G.X do

10 Xproj
t ←Xt ⊕ 0,0 ∈ R|Vt|×(dmax−dt);

11 G.Xproj ← G.Xproj ⊕ PXproj ;

12 Return G′;

Algorithm 2: JPGNN

Input: A,Xproj ,K, T
Output: z

1 A← 0;
2 for Ar in A do
3 A← A+ ωrAr;

4 L← I −D− 1
2AD− 1

2 ;
5 λmax ← max(Eigen(L));
6 L̂← 2

λmax
L− I;

7 H(0) ← σ(XprojW (0));
8 Hstack ←H(0);
9 for k in {1, · · · ,K} do

10 H(k) ← 0;
11 for t in {0, · · · , T} do
12 H(k) ←H(k) + θ

(k)
t P

(α(k),β(k))
t (L̂)H(k−1)W (k);

13 H(k) ← σ(H(k));
14 Hstack ←Hstack ⊕H(k);

15 H ← σ(HstackW);
16 z ← Pooling(H);
17 Return z;

Finally, in Algorithm 4, to clearly show the time complexity of each epoch of the training procedure,
we combine the above time complexities. As shown in lines 7-10, we need to call JPGNN and
RFACE |G| times, so the time complexity of each epoch of the training procedure of JacobiGAD is
O(NKTnmd3hid), where m is the average number of edges in each graph of G.

Compared to homogeneous graph-level classification, such as GRDL models. Its time complexity for
each sample in each training epoch is C1 +O(K(n2 +mn+m2)), as reported in their paper, where
C1 is the time complexity of the used GNN, K is the number of classes, and n,m are the number of
nodes and edges in each graph. Thus, we can easily conclude O(JacobiGAD) ≤ O(GRDL).

Compared to heterogeneous graph-level classification models, such as HeGCL. Its time complexity
for each sample in each training epoch is Q|N |2 + |E|+ |EΦ|+ |Φ||N |, as reported in their paper,
where Q is the number of heads of attention layer, |N |, |E| are the number of nodes and edges in

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 3: RFACE
Input: κ,y, z, γ, C
Output: LRFACE

1 p← Sigmoid(z);
2 ∆pc ← −γκc(pc − yc);
3 p̃← Sigmoid(z +∆p);
4 LRFACE ← 0;
5 for c in {1, · · · , C} do
6 LRFACE ← LRFACE + yc log(p̃c);
7 Return LRFACE ;

Algorithm 4: JacobiGAD
Input: G,f ,K, T, γ, C, ϵ, d, E

1 G′ ← Preprocess(G, d);
2 LRFACE ← 0;
3 κ← 0;
4 for c in {1, · · · , C} do
5 κc ← fc

max(f)+ϵ ;

6 for epoch in 1, · · · , E do
7 for G in G′ do
8 z ← JPGNN(G.A, G.Xproj ,K, T);
9 LRFACE ← LRFACE + RFACE(κ, G.y, z, γ, C);

10 LRFACE ← − 1
|G|LRFACE ;

each graph, |Φ| is the number of meta-path, and |EΦ| is the number of meta-path-based edges. Thus,
we can easily conclude O(JacobiGAD) ≤ O(HeGCL).

Compared to GAD models, such as RQGNN. Its time complexity for each sample in each training
epoch is O(Kqnmd3hid), where K, q are the width and depth of the GNN, n,m are the number of
nodes and edges in each graph, and dhid is the hidden dimension of the layer of the GNN. Thus, we
can easily conclude O(JacobiGAD) ≤ O(RQGNN).

To sum up, we compare the theoretical time complexity of JacobiGAD with representative previous
works in different categories, and conclude that our JacobiGAD has practical cost for real deployment,
as its time complexity is less than or equal to the previous works.

Additionally, we further report the runtime and memory cost of JacobiGAD and compare them with
all baselines across 3 datasets. The results in Table 6 show that JacobiGAD achieves competitive
computational efficiency while maintaining state-of-the-art detection performance.

Empirically, JacobiGAD’s training time is faster than most included baselines, and its total GPU
memory usage stays within a comparable range. This indicates that the model scales well with both
graph size and dataset difficulty. Notably, JacobiGAD maintains SOTA performance while requiring
no additional memory-heavy modules. As a result, JacobiGAD provides a favorable trade-off between
efficiency and accuracy: it preserves strong anomaly detection capability without incurring substantial
computational cost.

These observations confirm that the proposed method is not only effective but also practical for
real-world heterogeneous graph-level anomaly detection scenarios where time and memory resources
are often constrained.

D EXPERIMENTAL SETTINGS

The hyperparameters used for training JacobiGAD are provided in Table 7. The model
was tuned through an extensive grid search over the following values: learning rate η ∈

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Average wall-clock time (s) and total memory cost (MB).
Cost Datasets MCF-7 IMDB RCDD
Type Baselines Memory Time Memory Time Memory Time

Homogeneous Graph Classification

GCN 800.88 82.09 643.80 12.06 1165.37 214.11
SAGE 707.21 83.63 539.50 12.16 1065.95 219.77
GAT 842.66 101.17 645.05 18.88 1167.25 242.17
GIN 693.98 484.71 495.53 65.97 1027.38 1383.77

LRGNN 845.38 1013.79 823.08 357.49 1344.03 1505.59
GRDL 812.52 734.36 614.29 234.39 1301.55 1937.96

UQGNN 1199.74 229.02 944.09 319.57 1335.56 267.89
UIL 1177.79 332.46 918.78 60.83 1253.44 741.10

Heterogeneous Graph Classification

HMGNN 2098.57 342.67 913.00 121.24 2629.50 492.56
muxGNN 5450.38 91.28 1325.74 27.08 12548.35 405.09
HeGCL 17812.20 1933.91 1031.01 52.65 5156.08 762.66

RFAGNN 1240.74 255.83 898.17 43.41 1743.74 523.85
SHGLNN 653.80 571.93 799.83 105.06 1007.95 2123.87

Graph-level Anomaly Detection

iGAD 799.52 289.79 821.83 144.45 1247.28 801.91
GmapAD 1335.84 1885.73 1077.30 85.76 2073.54 33755.93

RumorMixer 739.81 6253.59 667.43 1401.91 1192.67 12094.97
RQGNN 1177.37 2151.12 1062.88 248.91 1682.53 8817.05
UniGAD 964.59 162.33 1077.91 110.22 1420.30 2013.64

Ours JacobiGAD 1265.71 136.22 803.02 26.67 1250.07 170.07

Table 7: Hyperparameters for different datasets, where η is learning rate, hdim is hidden dimension
of JPGNN layers, and K,T are the width and depth of the JPGNN.

Dataset η hdim K T
MCF-7 0.005 128 3 5

MOLT-4 0.0001 256 4 5
PC-3 0.001 128 2 5

SW-620 0.005 64 4 4
NCI-H23 0.001 256 3 5

OVCAR-8 0.0005 256 4 5
P388 0.0001 128 4 4

SF-295 0.001 256 3 4
SN12C 0.001 256 3 4

UACC257 0.0005 64 4 4
DBLP 0.0001 256 2 5
IMDB 0.005 128 2 5
PDNS 0.001 128 3 3
RCDD 0.005 128 1 3

Transaction 0.001 64 1 4

{0.005, 0.001, 0.0005, 0.0001}, hidden dimension size hdim ∈ {64, 128, 256}, K ∈ {1, 2, 3, 4},
and T ∈ {2, 3, 4, 5}. The optimal hyperparameter set was chosen based on the best composite
performance, considering AUROC, AUPRC, Recall@k, and F1-score, on the validation set, and we
report the test results for this configuration. Note that for hyperparameters in RFACE, i.e., ϵ and γ, we
set them as default values 1e− 8 and 0.3 respectively, as they reach a relatively better performance.
All trials were executed on an NVIDIA Quadro RTX 8000 to maintain a consistent experimental
environment.

E ADDITIONAL EXPERIMENTAL RESULTS

To further demonstrate the robustness and generality of our method, we conduct additional experi-
ments on 7 public graph benchmarks: MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, and
P388. Evaluating on this expanded set enables a more rigorous assessment of our model’s ability to
generalize across different graph distributions.

Across all datasets, our method consistently outperforms representative homogeneous graph clas-
sification baselines, shown in Table 8, heterogeneous graph classification approaches, shown in

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 8: Average performance with multiple runs (homogeneous graph classification models).
Datasets Metrics GCN SAGE GAT GIN LRGNN GRDL UQGNN UIL JacobiGAD

MCF-7

AUROC 0.6720 0.7264 0.6971 0.7110 0.7070 0.5349 0.5238 0.7162 0.7679
AUPRC 0.1460 0.2318 0.1983 0.1730 0.2434 0.1115 0.0878 0.2367 0.3403

Recall@k 0.1808 0.2818 0.2585 0.2150 0.2825 0.1590 0.0792 0.2716 0.3769
F1-score 0.4783 0.5949 0.5832 0.4872 0.5458 0.4785 0.4785 0.5503 0.6597

MOLT-4

AUROC 0.6628 0.7155 0.7076 0.6880 0.7334 0.5257 0.5856 0.6867 0.7381
AUPRC 0.1367 0.2051 0.2288 0.1611 0.2353 0.1208 0.1016 0.1735 0.3097

Recall@k 0.1624 0.2649 0.2797 0.2033 0.2962 0.1948 0.1200 0.2171 0.3519
F1-score 0.4803 0.5903 0.6100 0.4954 0.4906 0.4794 0.4794 0.4794 0.6507

PC-3

AUROC 0.6717 0.7157 0.7391 0.7109 0.7389 0.5106 0.5395 0.7352 0.7677
AUPRC 0.1017 0.1869 0.1973 0.1321 0.2289 0.0797 0.0693 0.2008 0.3064

Recall@k 0.1318 0.2359 0.2657 0.1679 0.3050 0.1360 0.0903 0.2370 0.3603
F1-score 0.4941 0.5882 0.6064 0.4853 0.5120 0.4853 0.4853 0.5229 0.6394

SW-620

AUROC 0.7000 0.7619 0.7187 0.7270 0.7660 0.5601 0.5525 0.7202 0.7728
AUPRC 0.1342 0.2137 0.1737 0.1371 0.2281 0.0996 0.0654 0.1484 0.2697

Recall@k 0.1715 0.2697 0.2172 0.1853 0.2918 0.1362 0.0539 0.1777 0.3347
F1-score 0.4990 0.5880 0.5695 0.5509 0.4896 0.4847 0.4847 0.4888 0.6461

NCI-H23

AUROC 0.6950 0.7416 0.7703 0.7284 0.7812 0.5150 0.5254 0.7656 0.7900
AUPRC 0.1064 0.1976 0.1904 0.1299 0.2056 0.0945 0.0546 0.1916 0.2927

Recall@k 0.1296 0.2623 0.2502 0.1595 0.2632 0.1441 0.0583 0.2421 0.3417
F1-score 0.4939 0.5667 0.5979 0.5452 0.5566 0.4869 0.4869 0.5056 0.6546

OVCAR-8

AUROC 0.6791 0.7464 0.7296 0.6917 0.7467 0.5213 0.5148 0.7152 0.7762
AUPRC 0.0947 0.1797 0.1840 0.1100 0.2066 0.0834 0.0530 0.1429 0.2888

Recall@k 0.1162 0.2452 0.2652 0.1346 0.2388 0.1474 0.0585 0.1867 0.3438
F1-score 0.4882 0.5728 0.5886 0.5598 0.4893 0.4868 0.4868 0.4876 0.6461

P388

AUROC 0.6444 0.7424 0.7269 0.7391 0.7148 0.6196 0.5169 0.7375 0.7896
AUPRC 0.0911 0.2151 0.2413 0.2131 0.1508 0.2493 0.0615 0.2175 0.3929

Recall@k 0.1255 0.3067 0.3336 0.3009 0.2045 0.2843 0.0718 0.2980 0.4431
F1-score 0.4912 0.4942 0.4990 0.6053 0.4858 0.4858 0.4858 0.5608 0.7061

Table 9: Average performance with multiple runs (heterogeneous graph classification models).
Datasets Metrics HMGNN muxGNN HeGCL RFAGNN SHGLNN JacobiGAD

MCF-7

AUROC 0.3652 0.5570 0.6733 0.6990 0.5079 0.7679
AUPRC 0.0646 0.1402 0.1735 0.1829 0.0774 0.3403

Recall@k 0.0792 0.2070 0.2367 0.2186 0.0378 0.3769
F1-score 0.4965 0.4848 0.4817 0.5022 0.4785 0.6597

MOLT-4

AUROC 0.5068 0.5009 0.6675 0.6540 0.4980 0.7381
AUPRC 0.1038 0.0809 0.1462 0.1472 0.0737 0.3097

Recall@k 0.1242 0.0801 0.1874 0.1773 0.0483 0.3519
F1-score 0.5084 0.5003 0.4794 0.4849 0.4794 0.6507

PC-3

AUROC 0.5359 0.4511 0.6913 0.6923 0.5201 0.7677
AUPRC 0.0903 0.0516 0.1372 0.1157 0.0547 0.3064

Recall@k 0.1010 0.0308 0.1690 0.1456 0.0202 0.3603
F1-score 0.4869 0.4909 0.4852 0.4877 0.4853 0.6394

SW-620

AUROC 0.5392 0.4823 0.6610 0.6633 0.5012 0.7728
AUPRC 0.0678 0.0629 0.1419 0.1114 0.0555 0.2697

Recall@k 0.0816 0.0781 0.1978 0.1660 0.0207 0.3347
F1-score 0.4854 0.4860 0.4853 0.4846 0.4847 0.6461

NCI-H23

AUROC 0.3299 0.5302 0.7090 0.6834 0.5212 0.7900
AUPRC 0.0357 0.0615 0.1621 0.1024 0.0490 0.2927

Recall@k 0.0300 0.0858 0.2340 0.1482 0.0178 0.3417
F1-score 0.4867 0.5160 0.4891 0.4869 0.4869 0.6546

OVCAR-8

AUROC 0.4711 0.4449 0.6673 0.6691 0.5154 0.7762
AUPRC 0.0634 0.0457 0.1188 0.0950 0.0489 0.2888

Recall@k 0.0817 0.0481 0.1707 0.1282 0.0224 0.3438
F1-score 0.4867 0.4872 0.4883 0.4960 0.4868 0.6461

P388

AUROC 0.5734 0.4296 0.5765 0.7270 0.6333 0.7896
AUPRC 0.0925 0.0632 0.0749 0.1745 0.0774 0.3929

Recall@k 0.1313 0.1066 0.0964 0.2379 0.0718 0.4431
F1-score 0.4858 0.5284 0.4878 0.5663 0.4858 0.7061

Table 9, and graph-level anomaly detection methods, shown in Table 10. These results reinforce the
effectiveness and broad applicability of our approach and confirm that the improvements are not
confined to a narrow set of benchmarks but hold across a diverse collection of graph domains.

F ABLATION STUDY

In this section, we will further analyze the influence of different components in JacobiGAD. To be
specific, we will investigate different components in three dimensions, that is, component deactivation
(additional experiments), input replacement, and polynomial degradation.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 10: Average performance with multiple runs (GAD models).
Datasets Metrics iGAD GmapAD RumorMixer RQGNN UniGAD JacobiGAD

MCF-7

AUROC 0.7140 0.5889 0.3951 0.7332 0.5987 0.7679
AUPRC 0.1913 0.1001 0.0663 0.2585 0.1133 0.3403

Recall@k 0.2629 0.1147 0.0621 0.3065 0.1467 0.3769
F1-score 0.5637 0.4046 0.4785 0.5768 0.5091 0.6597

MOLT-4

AUROC 0.7111 0.6108 0.4985 0.7082 0.5880 0.7381
AUPRC 0.2025 0.1018 0.0789 0.2248 0.1067 0.3097

Recall@k 0.2749 0.1056 0.0786 0.2845 0.1433 0.3519
F1-score 0.5766 0.4351 0.4794 0.6072 0.4915 0.6507

PC-3

AUROC 0.7040 0.5707 0.3878 0.7260 0.6308 0.7677
AUPRC 0.1254 0.0665 0.0448 0.2143 0.0958 0.3064

Recall@k 0.1807 0.0755 0.0287 0.2880 0.1403 0.3603
F1-score 0.5117 0.3826 0.4853 0.6207 0.5091 0.6394

SW-620

AUROC 0.7280 0.6058 0.4230 0.7687 0.6195 0.7728
AUPRC 0.1699 0.0760 0.0498 0.2105 0.0972 0.2697

Recall@k 0.2254 0.0761 0.0346 0.2621 0.1480 0.3347
F1-score 0.5606 0.4092 0.4847 0.5883 0.5000 0.6461

NCI-H23

AUROC 0.7531 0.5556 0.4007 0.7817 0.6276 0.7900
AUPRC 0.1616 0.0572 0.0408 0.2618 0.0877 0.2927

Recall@k 0.2316 0.0615 0.0324 0.3142 0.1377 0.3417
F1-score 0.5577 0.2746 0.4869 0.6258 0.5087 0.6546

OVCAR-8

AUROC 0.7205 0.6147 0.4042 0.7381 0.5975 0.7762
AUPRC 0.1449 0.0673 0.0414 0.1973 0.0734 0.2888

Recall@k 0.2228 0.0793 0.0248 0.2596 0.0954 0.3438
F1-score 0.5538 0.3971 0.4868 0.5903 0.4542 0.6461

P388

AUROC 0.6776 0.5620 0.4369 0.7625 0.6065 0.7896
AUPRC 0.1989 0.0643 0.0504 0.2572 0.0763 0.3929

Recall@k 0.2828 0.0790 0.0464 0.3256 0.0892 0.4431
F1-score 0.5622 0.4655 0.4858 0.5559 0.4862 0.7061

Table 11: Ablation study for component deactivation.
Datasets Metrics JacobiGAD w/o LRFACE w/o learnable (α, β) w/o learnable ωr

MCF-7

AUROC 0.7679 0.7400 0.7358 0.7181
AUPRC 0.3403 0.2794 0.2763 0.2517

Recall@k 0.3769 0.3232 0.3275 0.2992
F1-score 0.6597 0.5945 0.5982 0.6124

MOLT-4

AUROC 0.7381 0.7216 0.7280 0.7186
AUPRC 0.3097 0.2927 0.2593 0.2807

Recall@k 0.3519 0.3455 0.3174 0.3349
F1-score 0.6507 0.6375 0.6302 0.6400

PC-3

AUROC 0.7677 0.7526 0.7308 0.7584
AUPRC 0.3064 0.2589 0.2578 0.2780

Recall@k 0.3603 0.2986 0.3209 0.3390
F1-score 0.6394 0.6087 0.6172 0.6378

SW-620

AUROC 0.7728 0.7457 0.7480 0.7553
AUPRC 0.2697 0.2434 0.2467 0.2568

Recall@k 0.3347 0.3071 0.3119 0.3098
F1-score 0.6461 0.6031 0.6210 0.6236

NCI-H23

AUROC 0.7900 0.7684 0.7895 0.7735
AUPRC 0.2927 0.2444 0.2647 0.2899

Recall@k 0.3417 0.3158 0.3142 0.3409
F1-score 0.6546 0.5967 0.6395 0.6265

OVCAR-8

AUROC 0.7762 0.7521 0.7636 0.7578
AUPRC 0.2888 0.2189 0.2532 0.2371

Recall@k 0.3438 0.2716 0.3117 0.2925
F1-score 0.6461 0.6003 0.6130 0.6022

P388

AUROC 0.7896 0.7332 0.7699 0.7733
AUPRC 0.3929 0.3262 0.3693 0.3729

Recall@k 0.4431 0.3836 0.4032 0.4119
F1-score 0.7061 0.6762 0.6354 0.6698

F.1 ADDITIONAL COMPONENT DEACTIVATION

To further validate the contribution of each component in our framework, we conduct an extended
ablation study on 7 other benchmark datasets: MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8,
and P388.

In this expanded evaluation of Table 11, we follow the same setting shown in Section 5.3. Across
all datasets, the full model consistently achieves the highest detection scores, while removing any
major component leads to clear and reproducible degradation. These results collectively demonstrate

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 12: Ablation study for input replacement.
Datasets Metrics JacobiGAD SVD Concat MLP

MCF-7

AUROC 0.7679 0.7258 0.7235 0.7393
AUPRC 0.3403 0.2549 0.2459 0.3060

Recall@k 0.3769 0.2905 0.3028 0.3508
F1-score 0.6597 0.5935 0.5972 0.6419

MOLT-4

AUROC 0.7381 0.7257 0.7223 0.7106
AUPRC 0.3097 0.2607 0.2745 0.2412

Recall@k 0.3519 0.3137 0.3471 0.3052
F1-score 0.6507 0.6292 0.6377 0.6163

PC-3

AUROC 0.7677 0.7645 0.7378 0.7397
AUPRC 0.3064 0.2669 0.2450 0.2537

Recall@k 0.3603 0.3220 0.2880 0.3092
F1-score 0.6394 0.5849 0.6113 0.6256

SW-620

AUROC 0.7728 0.7576 0.7322 0.7365
AUPRC 0.2697 0.2508 0.2233 0.2319

Recall@k 0.3347 0.3133 0.2863 0.2953
F1-score 0.6461 0.6209 0.6162 0.6195

NCI-H23

AUROC 0.7900 0.7718 0.7319 0.7474
AUPRC 0.2927 0.2556 0.2317 0.2394

Recall@k 0.3417 0.3320 0.2858 0.2947
F1-score 0.6546 0.6304 0.6046 0.6129

OVCAR-8

AUROC 0.7762 0.7567 0.7444 0.7729
AUPRC 0.2888 0.2333 0.2319 0.2462

Recall@k 0.3438 0.2877 0.2965 0.2901
F1-score 0.6461 0.5892 0.5923 0.5889

P388

AUROC 0.7896 0.7779 0.7862 0.7439
AUPRC 0.3929 0.3501 0.3702 0.3376

Recall@k 0.4431 0.4054 0.4271 0.4054
F1-score 0.7061 0.6592 0.6938 0.6760

SF-295

AUROC 0.7729 0.7554 0.7563 0.7421
AUPRC 0.2623 0.2179 0.1935 0.1820

Recall@k 0.3210 0.3004 0.2733 0.2502
F1-score 0.6356 0.6124 0.6103 0.5859

SN12C

AUROC 0.7797 0.7682 0.7523 0.7568
AUPRC 0.2666 0.2457 0.2671 0.2430

Recall@k 0.3240 0.3078 0.3291 0.3018
F1-score 0.6329 0.6329 0.6380 0.6221

UACC257

AUROC 0.7613 0.7692 0.7440 0.7505
AUPRC 0.1995 0.2218 0.1660 0.1988

Recall@k 0.2819 0.2901 0.2475 0.2677
F1-score 0.6246 0.6214 0.5775 0.5930

DBLP

AUROC 0.9830 0.9679 0.9780 0.9805
AUPRC 0.9842 0.9665 0.9796 0.9822

Recall@k 0.9575 0.9374 0.9441 0.9508
F1-score 0.9651 0.9294 0.9576 0.9623

IMDB

AUROC 0.7263 0.6665 0.6961 0.6905
AUPRC 0.7619 0.7282 0.7318 0.7215

Recall@k 0.7192 0.6824 0.7035 0.6951
F1-score 0.6585 0.6046 0.6445 0.6402

PDNS

AUROC 0.8728 0.8697 0.8673 0.8707
AUPRC 0.6871 0.6650 0.6801 0.6865

Recall@k 0.6283 0.6206 0.6204 0.6247
F1-score 0.7760 0.7526 0.7708 0.7676

RCDD

AUROC 0.9826 0.9777 0.9829 0.9806
AUPRC 0.9332 0.9174 0.9322 0.9288

Recall@k 0.8747 0.8550 0.8775 0.8623
F1-score 0.9280 0.9161 0.9284 0.9194

that each component contributes meaningfully to the final performance and that their combination is
essential for achieving the strong detection capability of our method.

F.2 INPUT REPLACEMENT

Next, we investigate the influence of different ways of input for JacobiGAD, i.e., SVD, Concat, and
MLP.

As shown in Table 12, this ablation study evaluates the efficacy of the proposed input function in
JacobiGAD for unifying features from different views in a heterogeneous graph by comparing it

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

against three common alternative methods: SVD (which may lose critical information), Concat
(which creates a high-dimensional feature space), and MLP (which causes higher computational cost
and may easily overfit). The results consistently demonstrate that JacobiGAD’s specialized integration
method, Gaussian projection, significantly outperforms all three alternatives across the vast majority
of datasets and metrics. Although there are rare, minor exceptions where an alternative method
performs comparably on some datasets, the overall trend is unequivocal: the custom-designed input
function in JacobiGAD is uniquely capable of effectively synthesizing heterogeneous information,
which is a critical factor in the model’s superior anomaly detection performance.

F.3 POLYNOMIAL DEGRADATION

Finally, we analyze the influence of different polynomials for JacobiGAD, i.e., Gegenbauer (α =
β = λ− 1

2), Chebyshev (α = β = − 1
2), and Legendre (α = β = 0).

As shown in Table 13, the ablation study demonstrates that the choice of polynomial basis for the
graph filter is critical, with the proposed Jacobi polynomials consistently outperforming Gegenbauer,
Chebyshev, and Legendre polynomials across all datasets and metrics. The key drawback of these
alternative polynomials is their inherent rigidity. Unlike the parameter-rich Jacobi basis, which
can be adaptively tuned to fit the complex spectral characteristics of heterogeneous graphs, the
fixed spectral response of Chebyshev and Legendre polynomials and the limited single-parameter
flexibility of Gegenbauer polynomials render them less capable of capturing the nuanced patterns
necessary for effective anomaly detection. This lack of adaptability manifests clearly in the significant
performance gaps, indicating that the alternative filters struggle to generate the highly discriminative
representations needed to reliably separate anomalies from normal nodes in complex graph data.

G LEARNED PARAMETERS

In this section, we will present the learned parameters of one run of our experiment to show the
influence of different parameters on all datasets.

The blank slot of Table 14 is due to the best K for different datasets not being the same. As shown in
Table 14, the results further demonstrate the importance of learnable (α, β) as the best performance
of different datasets requires distinct combinations of (α, β), instead of fixed parameters.

In Table 15, we present the statistical information of ωr, due to the large number of different relations
in heterogeneous datasets. We use the row Range as the start and the end of the range. For example,
for the first range of MCF-7, it is formed by [−1.4456,−1.0144). And the corresponding frequency
is reported in the row Frequency. In this case, the frequency of [−1.4456,−1.0144) is 1. Other
cases can be deduced by analogy. We can be informed by Table 15 that the learnable ωr is of vital
importance for heterogeneous GAD, as the best ωr for different datasets can distribute evenly, focus
on the center part, or lie mainly on the extreme spots.

H COMPARISON WITH FOCAL LOSS

We further compare our proposed RFACE with Focal loss, a classical loss for imbalanced data, to
demonstrate the effectiveness of our proposed methods.

Assume we have logits z = [z1, · · · , zC], where C is the number of classes, sigmoid per class
p = [p1, · · · , pC], where pi = Sigmoid(zi), and multi-label target y = [y1, · · · , yC] ∈ {0, 1}C ,
then we will investivate the gradients of Cross-Entropy loss, Focal loss, and RFACE to show the key
advantages of RFACE.

For Cross-Entropy loss:

LCE = −
C∑
i=1

[yi log pi + (1− yi) log(1− pi)],

the gradient vector is:
∇zLCE = p− y

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 13: Ablation study for polynomial degradation.
Datasets Metrics JacobiGAD Gegenbauer Chebyshev Legendre

MCF-7

AUROC 0.7679 0.7281 0.7146 0.6986
AUPRC 0.3403 0.2787 0.2375 0.2384

Recall@k 0.3769 0.3217 0.2847 0.2767
F1-score 0.6597 0.6048 0.5889 0.5886

MOLT-4

AUROC 0.7381 0.7180 0.7076 0.7202
AUPRC 0.3097 0.2587 0.2476 0.2475

Recall@k 0.3519 0.3068 0.3100 0.3132
F1-score 0.6507 0.6225 0.6248 0.6224

PC-3

AUROC 0.7677 0.7226 0.7589 0.7384
AUPRC 0.3064 0.2057 0.2494 0.2281

Recall@k 0.3603 0.2508 0.3092 0.2944
F1-score 0.6394 0.5689 0.6061 0.5974

SW-620

AUROC 0.7728 0.7386 0.7441 0.7381
AUPRC 0.2697 0.2392 0.2461 0.2233

Recall@k 0.3347 0.3105 0.2988 0.2766
F1-score 0.6461 0.5995 0.6294 0.5905

NCI-H23

AUROC 0.7900 0.7758 0.7891 0.7727
AUPRC 0.2927 0.2413 0.2556 0.2274

Recall@k 0.3417 0.3045 0.3296 0.3020
F1-score 0.6546 0.5775 0.5679 0.6101

OVCAR-8

AUROC 0.7762 0.7703 0.7733 0.7691
AUPRC 0.2888 0.2551 0.2388 0.2367

Recall@k 0.3438 0.3101 0.3117 0.3117
F1-score 0.6461 0.6286 0.6048 0.6003

P388

AUROC 0.7896 0.7554 0.7564 0.7656
AUPRC 0.3929 0.3465 0.3424 0.3587

Recall@k 0.4431 0.3952 0.4054 0.3988
F1-score 0.7061 0.6855 0.6886 0.6790

SF-295

AUROC 0.7729 0.7670 0.7578 0.7461
AUPRC 0.2623 0.2085 0.1939 0.1919

Recall@k 0.3210 0.2724 0.2634 0.2634
F1-score 0.6356 0.5965 0.5965 0.6020

SN12C

AUROC 0.7797 0.7459 0.7384 0.7404
AUPRC 0.2666 0.2284 0.2308 0.2224

Recall@k 0.3240 0.3018 0.2864 0.2805
F1-score 0.6329 0.6052 0.6080 0.6138

UACC257

AUROC 0.7613 0.7484 0.7390 0.6997
AUPRC 0.1995 0.1995 0.1715 0.1587

Recall@k 0.2819 0.2708 0.2525 0.2231
F1-score 0.6246 0.5656 0.5659 0.5827

DBLP

AUROC 0.9830 0.9778 0.9756 0.9746
AUPRC 0.9842 0.9802 0.9750 0.9732

Recall@k 0.9575 0.9508 0.9463 0.9418
F1-score 0.9651 0.9632 0.9557 0.9539

IMDB

AUROC 0.7263 0.7096 0.7130 0.7060
AUPRC 0.7619 0.7485 0.7552 0.7444

Recall@k 0.7192 0.7119 0.7108 0.7098
F1-score 0.6585 0.6527 0.6461 0.6565

PDNS

AUROC 0.8728 0.8724 0.8721 0.8716
AUPRC 0.6871 0.6732 0.6844 0.6860

Recall@k 0.6283 0.6145 0.6270 0.6241
F1-score 0.7760 0.7700 0.7704 0.7702

RCDD

AUROC 0.9826 0.9809 0.9805 0.9815
AUPRC 0.9332 0.9283 0.9290 0.9299

Recall@k 0.8747 0.8741 0.8719 0.8667
F1-score 0.9280 0.9279 0.9229 0.9220

For Focal loss:

LFocal = −
C∑
i=1

[yi(1− pi)γ log pi + (1− yi)pγi log(1− pi)],

the gradient vector is:
∇zLFocal = sFocal(p− y),

where sFocal is a scalar vector for each class i, depending on the ground truth label yi, the predicted
probability with no midification pi, and the power for measuring the difficulty of samples γ.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 14: Learned (α, β) for Jacobi Polynomials.

Datasets α β
MCF-7 0.1123 1.2406 1.2030 1.7027 1.5336 1.8209

MOLT-4 1.9611 0.8162 0.2852 1.8448 0.3078 1.0801 0.7354 1.5658
PC-3 0.8800 1.6410 0.0865 0.8657

SW-620 0.4661 1.608 1.3252 0.0181 1.9602 0.3216 0.4713 0.5893
NCI-H23 0.3489 1.5247 1.9206 1.8042 1.0248 1.3645

OVCAR-8 1.3458 1.6198 0.6928 1.0384 0.1690 0.0049 0.2966 1.1328
P388 1.0701 0.5101 0.1645 0.2895 1.9218 1.5771 0.1775 0.1930

SF-295 0.7552 0.326 1.4094 0.3687 0.4355 1.8797
SN12C 0.7820 0.8886 0.9901 0.9222 0.1497 0.3569

UACC257 1.7794 1.7520 1.7412 1.9050 1.0449 0.2968 1.0761 0.3197
DBLP 1.9142 0.4518 1.7499 0.3554
IMDB 0.6390 0.5686 0.7820 1.3118
PDNS 0.6258 0.5431 1.9307 0.1602 1.1881 0.7147
RCDD 0.4016 0.8339

Table 15: Learned ωr for different relations.
Datasets Metrics

MCF-7 Range -1.4456 -1.0144 -0.5832 -0.1519 0.2793 0.7105 1.1417 1.5729 2.0042 2.4354 2.8666
Frequency 1 0 1 19 30 27 16 25 7 3

MOLT-4 Range 0.0200 0.2136 0.4071 0.6006 0.7942 0.9877 1.1813 1.3748 1.5684 1.7619 1.9555
Frequency 19 12 12 25 22 18 19 17 18 14

PC-3 Range 0.0103 0.2200 0.4297 0.6394 0.8490 1.0587 1.2684 1.4781 1.6878 1.8974 2.1071
Frequency 14 10 19 14 14 10 14 8 30 10

SW-620 Range -1.1965 -0.6950 -0.1936 0.3078 0.8093 1.3107 1.8121 2.3136 2.8150 3.3164 3.8179
Frequency 2 3 20 44 45 42 24 2 1 1

NCI-H23 Range -0.0007 0.2072 0.4151 0.6230 0.8309 1.0389 1.2468 1.4547 1.6626 1.8705 2.0784
Frequency 17 21 14 21 17 18 21 14 24 15

OVCAR-8 Range -0.0148 0.1907 0.3963 0.6019 0.8074 1.0130 1.2185 1.4241 1.6296 1.8352 2.0407
Frequency 22 16 21 18 22 15 13 19 17 21

P388 Range 0.0009 0.2002 0.3995 0.5988 0.7981 0.9974 1.1967 1.3960 1.5953 1.7946 1.9939
Frequency 24 30 26 26 19 28 31 27 26 34

SF-295 Range -0.1725 0.0563 0.2852 0.5140 0.7429 0.9717 1.2006 1.4294 1.6583 1.8871 2.1160
Frequency 8 22 24 26 19 22 13 17 22 11

SN12C Range -0.0906 0.1206 0.3317 0.5428 0.7540 0.9651 1.1762 1.3873 1.5985 1.8096 2.0207
Frequency 12 17 28 22 20 21 19 18 17 10

UACC257 Range -0.0503 0.1549 0.3601 0.5653 0.7705 0.9757 1.1809 1.3861 1.5913 1.7965 2.0017
Frequency 8 10 18 19 29 10 16 22 23 21

DBLP Range -0.0094 0.1563 0.3220 0.4878 0.6535 0.8193 0.9850 1.1507 1.3165 1.4822 1.6480
Frequency 2 0 0 0 1 0 1 1 0 1

IMDB Range -0.0099 0.1620 0.3339 0.5058 0.6777 0.8496 1.0214 1.1933 1.3652 1.5371 1.7090
Frequency 1 0 0 1 0 0 0 0 0 2

PDNS Range 0.3526 0.4796 0.6065 0.7335 0.8604 0.9874 1.1143 1.2413 1.3682 1.4952 1.6221
Frequency 1 0 0 0 1 0 0 0 0 1

RCDD Range 0.7637 0.8787 0.9938 1.1089 1.2240 1.3390 1.4541 1.5692 1.6842 1.7993 1.9144
Frequency 3 0 1 1 0 1 0 0 0 2

For RFACE:

LRFACE = −
C∑
i=1

[yi log p
′
i + (1− yi) log(1− p′i)],

p′i = Sigmoid(zi + γκi∇ziLCE),

the gradient vector is:
∇zLRFACE = sRFACE(p

′ − y),

where sRFACE is a scalar vector for each class i, depending on the ground truth label yi, the
predicted probability with logit modification (indicating class frequency by κi and sample difficulty
by∇zi

LCE) pi, the coefficient of modification term γ, and the class-frequency-based curvature κi.

As shown above, the advantage of the proposed RFACE over Focal loss stems from its distinct
mechanism for addressing class imbalance in heterogeneous graph-level anomaly detection. RFACE

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 16: Ablation study for Focal Loss.
Datasets Metrics JacobiGAD w/ Focal Loss

MCF-7

AUROC 0.7679 0.7544
AUPRC 0.3403 0.2846

Recall@k 0.3769 0.3261
Macro-F1 0.6597 0.6106

MOLT-4

AUROC 0.7381 0.7273
AUPRC 0.3097 0.2612

Recall@k 0.3519 0.3429
Macro-F1 0.6507 0.5796

PC-3

AUROC 0.7677 0.7490
AUPRC 0.3064 0.2275

Recall@k 0.3603 0.3050
Macro-F1 0.6394 0.6203

SW-620

AUROC 0.7728 0.7497
AUPRC 0.2697 0.2537

Recall@k 0.3347 0.3264
Macro-F1 0.6461 0.6281

NCI-H23

AUROC 0.7900 0.7417
AUPRC 0.2927 0.2281

Recall@k 0.3417 0.3028
Macro-F1 0.6546 0.6255

OVCAR-8

AUROC 0.7762 0.7310
AUPRC 0.2888 0.2259

Recall@k 0.3438 0.2925
Macro-F1 0.6461 0.5880

P388

AUROC 0.7896 0.7503
AUPRC 0.3929 0.3136

Recall@k 0.4431 0.3749
Macro-F1 0.7061 0.6431

SF-295

AUROC 0.7729 0.7369
AUPRC 0.2623 0.1916

Recall@k 0.3210 0.2691
Macro-F1 0.6356 0.5812

SN12C

AUROC 0.7797 0.7682
AUPRC 0.2666 0.2182

Recall@k 0.3240 0.2975
Macro-F1 0.6329 0.5929

UACC257

AUROC 0.7613 0.7558
AUPRC 0.1995 0.1749

Recall@k 0.2819 0.2414
Macro-F1 0.6246 0.5580

DBLP

AUROC 0.9830 0.9754
AUPRC 0.9842 0.9647

Recall@k 0.9575 0.9463
Macro-F1 0.9651 0.9550

IMDB

AUROC 0.7263 0.6874
AUPRC 0.7619 0.7371

Recall@k 0.7192 0.6940
Macro-F1 0.6585 0.6291

PDNS

AUROC 0.8728 0.8612
AUPRC 0.6871 0.6611

Recall@k 0.6283 0.5981
Macro-F1 0.7760 0.7297

RCDD

AUROC 0.9826 0.9797
AUPRC 0.9332 0.9306

Recall@k 0.8747 0.8741
Macro-F1 0.9280 0.9276

applies a class-dependent and difficulty-aware logit transformation. This transformation modifies
the optimization gradient based on both class frequency and sample difficulty. As a result, RFACE
reshapes the decision boundary by explicitly expanding the margins of minority anomaly classes and
gently contracting the margins of dominant normal classes, based on both class and difficulty. This
curvature-inspired adjustment acts like a discrete Ricci flow step, improving the geometric regularity
of the representation space by amplifying deviations. In heterogeneous graph data, where anomalies
arise from subtle irregularities and specialized node–edge interactions, such margin rebalancing is

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

crucial: it ensures that minority classes receive sustained and directionally beneficial updates even
when the classifier becomes confident about them, preventing premature gradient vanishing.

In contrast, Focal loss only rescales the Cross-Entropy gradient through a difficulty-based factor
s, which offers no mechanism to correct class-frequency–induced imbalance. Because Focal loss
downweights "easy" samples regardless of their class, it may inadvertently suppress minority-class
gradients once the model becomes moderately confident, leading to possible overfitting to "hard"
samples. Moreover, Focal loss treats all classes identically and cannot incorporate global distributional
information; the optimization trajectory therefore lacks the class-dependent curvature adjustment that
RFACE introduces. This makes Focal loss sensitive to the randomness of minibatch composition,
more prone to instability on small anomalous sets, and often ineffective when many anomalies are
not “hard” samples, where class number information rather than prediction confidence determines
anomaly separability.

Beyond gradient modification, RFACE also provides additional advantages, as proved in Theorems 8
(RFACE will amplify information of the minority class) and 9 (RFACE will converge), while Focal
loss is a heuristic-oriented loss without guarantee. These theoretical advantages are also strongly
supported by our empirical results. As shown in Table 16, RFACE consistently outperforms the Focal
loss variant on all datasets.

Together, these theoretical insights and empirical observations demonstrate that RFACE is signifi-
cantly better suited than Focal loss for heterogeneous graph-level anomaly detection, offering stronger
geometric corrections, more stable optimization, better calibration, and improved exploitation of
graph information.

34

	Introduction
	Related Work
	Preliminaries
	Method
	Overview
	Heterogeneous Feature Projection and Multi-View Topology
	Jacobi Polynomial-based Graph Neural Network
	Ricci Flow-inspired loss function

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study
	Hyperparameter Analysis

	Conclusion
	Proof
	Datasets and Baselines
	Algorithm and Complexity
	Experimental Settings
	Additional Experimental Results
	Ablation Study
	Additional Component Deactivation
	Input Replacement
	Polynomial Degradation

	Learned Parameters
	Comparison with Focal Loss

