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Abstract: We consider planning for mobile robots conducting missions in real-
world domains where a priori unknown dynamics affect the robot’s costs and
transitions. We study single-episode missions where it is crucial that the robot
appropriately trades off exploration and exploitation, such that the learning of the
environment dynamics is just enough to effectively complete the mission. Thus, we
propose modelling unknown dynamics using Gaussian processes, which provide
a principled Bayesian framework for incorporating online observations made by
the robot, and using them to predict the dynamics in unexplored areas. We then
formulate the problem of mission planning in Markov decision processes under
Gaussian process predictions as Bayesian model-based reinforcement learning.
This allows us to employ solution techniques that plan more efficiently than previ-
ous Gaussian process planning methods are able to. We empirically evaluate the
benefits of our formulation in an underwater autonomous vehicle navigation task
and robot mission planning in a realistic simulation of a nuclear environment.

Keywords: Planning under Uncertainty, Gaussian Processes, Single-Episode
Bayesian Reinforcement Learning

1 Introduction

Real-world mobile robots rarely have complete knowledge of their environment dynamics. When
operating under uncertainty, they need to be able to incorporate their online observations of uncertain
environment features into their plans. In this paper, we consider the single-episode setting where
a robot must carry out a mission in an environment for which the dynamics are not fully known at
deployment time. The mission is specified by a goal state(s) that the agent must eventually reach while
minimising incurred cost under an environment feature that has a priori unknown dynamics. The
robot’s information gathering capabilities are limited, as the environment features are only observable
at the robot’s current state. An example would be a Geiger counter-equipped robot minimising
its cumulative radiation exposure in an environment with an unknown radiation distribution. In
this setting, it is infeasible to pre-plan for every possible environment that might be encountered.
Moreover, even if it were possible to pre-train a standard reinforcement learning (RL) agent on every
possible environment, it would lack the flexibility to adapt the robot’s behaviour taking into account
new observations it can collect during the mission.

To model continuous environment features, we follow previous works [1, 2, 3, 4] and use a Gaussian
process (GP) [5] to predict unknown dynamics away from the agent’s current location. GPs are
well-suited for modelling spatio-temporal distributions by incorporating online measurements into
the posterior distribution, along with a measure of predictive uncertainty. GP prior hyperparameters
can be estimated from physical intuition or from a small dataset of similar environments. Similarly
to [1, 2, 3, 4], our GP maintains a belief over the underlying dynamics of the environment. Rather
than ensuring safe environment exploration or maximising information collected, we extend these
works by formulating a unified Bayes-optimal framework for efficient online mission planning.

We therefore pose our task as online, model-based Bayesian RL (BRL) with a GP belief over the
transition function. As all environmental uncertainty is then encapsulated within the transition
function, we assume that the cost function is known given an instance of the environment dynamics.
Continuing the previous example, the robot does not need to learn online that it incurs more damage
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from higher levels of radiation. Our problem statement also assumes a discrete state space (except for
unknown environment dynamics, which are continuous) and full observability of the current state.

The BRL formulation provides several advantages. First, it is known to optimally trade off exploration
and exploitation [6], which is crucial in the single-mission setting we address: over-exploration may
hinder mission performance or increase the risk of failure. Second, it allows us to intuitively encode
the agent’s transition function and local observability limitations, and reflects the existence of fixed
(but a priori unknown) true underlying environment dynamics; third, it enables the use of efficient
Monte-Carlo planning approaches developed for BRL.

Our contributions are to 1. formulate goal-driven planning in unknown environments as model-based
BRL; 2. adapt the Bayes-adaptive Monte-Carlo planning (BAMCP) algorithm [6] for our GP-based
goal-driven BRL problem formulation; and 3. use this formulation and algorithm to improve on
previous GP planning approaches, both in expressibility and computational efficiency. In particular,
we exploit techniques that allow us to efficiently sample possible environment dynamics from the GP
to use during planning. To the best of our knowledge, we are the first to apply BRL with GP belief
models to goal-driven planning in partially unknown environments.

2 Related Work

Non-myopic decision-making with an unknown transition function requires reasoning over possible
observation (i.e. function evaluation) sequences. This task has been investigated from the perspective
of several fields, including sequential Bayesian optimisation (BO) of unknown functions. An example
BO objective could be to stay within a computational evaluation budget while improving a GP model
of the unknown function. Some recent methods are able to pose multiple-step look-ahead in GPs
as a single joint optimisation problem [7]. However, we focus on physical systems such as mobile
robots which are required to physically move and observe any queried location: observations cannot
be made in parallel or at freely specified locations. This implies reachability, observability and cost
limitations that are not usually considered when using BO.

Considering some of these aspects, recent literature [8, 3] performs non-myopic “informative path
planning” for environmental monitoring. Similar to our approach, these methods perform Monte-
Carlo tree search (MCTS) [9] in belief space with a GP belief. However, they assume robot actions
have deterministic outcomes, and do not consider the case where the unknown environment features
can affect robot transition dynamics, as we do. This recent literature uses a partially observable
Markov decision process (POMDP) [10] problem formulation, and plan with MCTS trees of com-
putationally expensive GP-represented beliefs due to their BO objective. Our Bayes-adaptive MDP
(BAMDP) [11] formulation more appropriately represents the existence of fixed but a priori unknown
environment dynamics. In the context of a goal-based planning objective, the two formulations and
solution methods are equivalent, as we demonstrate in this paper. However, we use model-based BRL
techniques to root sample the GP environment belief. This avoids computationally expensive belief
updates, enabling the construction of larger MCTS trees within the same computational budget.

Monte-Carlo tree search in GP-modelled unknown environments has also been carried out in [12],
where the environment features affect only transition durations in a semi-MDP. A model-based BRL
method with a Gaussian process dynamical model (GPDM) belief representation was presented
in [13]. Their method must make restrictive maximum likelihood transition/observation assumptions
for tractability, due to their unfocused Monte-Carlo planning algorithm. Alternatively, some RL
techniques such as Gaussian Process temporal difference [14] use GPs to directly model an MDP
value function. We argue that GP modelling the real-world environmental phenomena, rather than the
value function, lets us provide physically principled and interpretable prior knowledge.

3 Preliminaries

Markov Decision Processes. We consider stochastic shortest path (SSP) MDP problems [15], as
they are well-suited for specifying single episode goal-driven missions. An SSP MDP is defined as a
tupleM = 〈S, s0, A, T, C,G〉, where S is a finite set of states; s0 ∈ S is the initial state; A is a finite
set of actions; T : S ×A× S → [0, 1] is a probabilistic transition function T (s, a, s′) = p(s′ | s, a);
C : S × A → R≥0 is a cost function; and G ⊂ S is a set of absorbing, zero-cost goal states. A
history h of an MDPM is a state-action sequence s0a0s1a1 · · · at−1st such that T (si, ai, si+1) > 0
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for all i ∈ {0, · · · , t− 1}. We denote the set of all histories ofM asHM. A stationary, deterministic
policy is a mapping π : S → A that defines the action to take at each state. A policy is proper in a
state s if it reaches a goal state sg ∈ G when starting from s with probability 1. In an SSP MDP
there must exist a policy that is proper in all states, and all improper policies must incur infinite cost.
Under these assumptions, there exists a cost-optimal proper policy [16].

Bayesian RL. In BRL, an agent uses Bayesian inference to maintain a posterior distribution, or
belief, over the true dynamics of the underlying model given some prior distribution. For an MDP,
either or both of the transition function T and cost function C could be a priori unknown. We focus on
the case where only T is unknown. C can be assumed to be known in our setting, as it represents the
known effect of a given instance of environment dynamics on the robot. For example, the time cost
of travelling against given water current vectors can be calculated given the value of the vectors and
the vehicle’s known dynamics. Given a history h = s0a0s1a1 · · · at−1st, it is possible to generate
the posterior belief over the transition function T given h. This can be carried out with successive
applications of Bayes’ rule p(T | hi) ∝ p(hi | T )p(T ) from the initial history h0 = s0 up to the
full history ht = h. This allows for the definition of a Bayes-adaptive MDP (BAMDP) [11], which
achieves Bayes optimality by adding histories to its state representation, and encoding uncertainty over
T in its transition function. LetM = 〈S, s0, A, T, C,G〉 be an MDP with a prior belief p(T ) over the
true transition function T . The corresponding BAMDP is an MDPM+ = 〈S+, s+0 , A, T

+, C+, G+〉,
where S+ = S ×HM; s+0 = (s0, h0); C+((s, h), a) = C(s, a); G+ = {(s, h) ∈ S+ | s ∈ G}; and

T+((s, h), a, (s′, has′)) =
∫
T

T (s, a, s′)p(T | h)dT. (1)

Although the state-history pairs in S+ are redundant because the current state can be extracted from
the history, we use the (s, h) notation for clarity as in [6]. A policy in a BAMDP is a mapping
π : S × HM → A. The optimal policy π∗ minimises the expected cumulative cost to reach G+,
given the prior over T . This policy is stationary in S+ but is history-dependent in the original MDP.
π∗ considers the posterior p(T | h) and adapts its action selection to account for the conditional
distribution of T given the observed h.

Gaussian Processes. A GP is a collection of random variables, any finite number of which have
a joint Gaussian distribution [5]. A GP regression is of the form o(s) ∼ GP(m(s), k(s, s′)),
giving a probability distribution over functions fully specified by the mean m(s) and kernel k(s, s′)
functions. We can let m(s) = 0 without loss of generality. Given a dataset of n noisy observations
D = {(si, o(si) + εi)}ni=1 for locations si and where εi ∼ N (0, σ2

η) is Gaussian observation noise,
GP regression predicts unknown environment feature values at all inputs s∗. The kernel function
k is parameterised by hyperparameters θ. Given hyperparameter priors p0(θ), their values are
commonly optimised by maximising the log marginal likelihood for the model given the dataset. The
resulting Gaussian posterior, conditioned on the observations o = [o(s1) + ε1, . . . , o(sn) + εn]

T, is
a multivariate normal pGP

(
o(s∗) | s∗,D)

)
∼ N (µ∗,Σ∗), where µ∗ = KT

∗ (Kn + σ2
ηI)
−1o, and

Σ∗ = K∗∗ −KT
∗ (Kn + σ2

ηI)
−1K∗.

The positive semi-definite kernel matrix Kn = [k(s, s′)]s,s′∈sn , K∗ = [k(s, s′)]s∈sn,s′∈s∗ , K∗∗ =
[k(s, s′)]s,s′∈s∗ , and I ∈ Rn×n is the identity matrix. We can sample functions from the GP posterior
at a finite set of m points, incurring O((n+m)3) computational cost.

4 Approach

4.1 Problem Formulation

In order to clearly separate known system transition dynamics from the unknown environment
dynamics, we represent the unknown environment and its effect on the agent as an MDP with
Unknown Feature Values (U-MDP) [4].

Let Sk be a set of state features with discrete, known values (e.g. pose of a robot in a grid map)
and Se a set of state features with unknown values in R (e.g. the water current vector at a pose).
Let o : Sk → Se be an a priori unknown mapping that specifies the values o(sk) ∈ Se observed at
locations sk ∈ Sk. An SSP U-MDP is a tupleMo = 〈So, so0, Ao, T o, Co, Go〉where: So = Sk×Se;
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so0 is the initial state so0 =
(
sk,0, o(sk,0)

)
; Ao is a finite set of actions; T o is the U-MDP transition

function T o : (Sk × Se)×A× Sk → [0, 1]. As the state of the U-MDP is uniquely defined by the
value of the known state feature(s) sk ∈ Sk, the transition function of the U-MDP only represents the
change in the known state feature(s); Co : So × A → R≥0 is the cost function; and Go ⊂ Sk is
the set of goal states, defined only across known value state features as o(sg) is not known for all
sg ∈ Go. The problem addressed in this paper is formalised as an SSP U-MDP. The objective is to
find a policy that minimises the expected cost to a reach state (sk, o(sk)) ∈ So such that sk ∈ Go.

4.2 From U-MDPs to GP-BAMDPs

For notational simplicity, in the following we assume a single state feature with unknown values.
The approach presented below can easily be extended to cases with more than one unknown value
state feature, either using a multi-output GP [17] or multiple single-output GPs. The former assumes
non-independent feature dynamics, where learning about one could improve predictions of another.

To estimate the unknown mapping o, we propose that the agent maintains a GP model created
by adding a new observation of o at each timestep. Specifically, after observing history h =
(sk,0, se,0)a0(sk,1, se,1)a1...at−1(sk,t, se,t), we define Dh = {(sk,i, se,i) | i ∈ {0, . . . , t}}. Then,
the GP model is denoted as GPDh

and the GP posterior over o(sk) is given by pGP
(
se | sk,Dh

)
.

We assume that observations of o have negligible noise, which corresponds to full observability of
the current state. Finally, note that by modelling unknown environment features with a GP we are
implicitly making regularity and Lipschitz continuity modelling assumptions on the environment
feature functions [5].

We now formulate SSP U-MDP as a BAMDP with GP belief over the transition function.
Proposition 1. Let Mo = 〈So, so0, Ao, T o, Co, Go〉 be a U-MDP. The GP-BAMDP for Mo

is a BAMDP Mo+ = 〈So+, so0+, Ao, T o
+, Co+, Go+〉 where the transition function incorpo-

rates the GP posterior. Formally, for s = (sk, se), s
′ = (s′k, s

′
e) ∈ So; a ∈ A; and

h = (sk,0, se,0)a0(sk,1, se,1)a1...at−1(sk,t, se,t) ∈ HM
o

for (sk,t, se,t) = (sk, se):

T o+((s, h), a,(s′, has′)) = T o
(
(sk, se), a, s

′
k

)
· pGP

(
s′e | s′k,Dh

)
. (2)

Proof. We start by noting that the integral in Equation (1) is the product of two components. The
first component is a specific possible transition function. As the single unknown component of T o is
the mapping o, the value of T o(s, a, s′) given knowledge of o is defined according to the U-MDP
transition function, ensuring that the unknown state feature dynamics are consistent with o:

T o((sk, se), a, (s
′
k, s
′
e) | o) = T o

(
(sk, se), a, s

′
k

)
I[s′e = o(s′k)], (3)

where I[.] is the indicator function. The second component is the posterior distribution over possible
transition functions given a history h, which in our case is the GP posterior pGP :

p(o(s′k) | h) = pGP
(
o(s′k) | s′k,Dh

)
. (4)

As the unknown state feature dynamics are deterministic given o, the integral over T from Equation (1)
only has value when the indicator function in Equation (3) is 1. This leads to Equation (2), where all
uncertainty in T is captured in the GP posterior over o, and T o+ represents the combination of the
U-MDP transition function and the GP belief over the values of the unknown state features.

4.3 Solving U-MDPs with BAMCP

GP-BAMCP. Having framed the U-MDP mission planning problem as a BAMDP, we can exploit
MCTS planning frameworks that were developed in this context. Specifically, we base our algorithm
on BAMCP [6]. This algorithm plans in belief space1, but builds search trees of action-observation
histories rather than of belief states. The search tree consists of alternating state and action nodes and
is constructed over the course of Monte-Carlo trials starting from the root node and sampling action
outcomes from a generative model. BAMCP adapts the concept of root sampling from POMCP [18],
where for each MCTS trial a transition function T is sampled from the root belief node and used
throughout the trial. Actions are chosen inside the search tree using a tree policy, most commonly
UCT [9]. New leaf nodes’ values are estimated heuristically by continuing the trial trajectory from
the leaf node using a rollout policy.

1The distribution over the transition function T in the case of BAMCP.
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Algorithm 1 GP-BAMCP: PLAN

1: procedure PLAN(GPDh
, history h, start

state (sk, se), goal state set Go)
2: repeat
3: ô← sample from GPDh

4: T̂ ((sk, se), a, (s
′
k, s
′
e)) ←

T o((sk, se), a, (s
′
k, s
′
e) | ô)

5: SIMULATE((sk, se), h, T̂ , Go)
6: until TIMEOUT( )
7: return argminaQ

(
h, a
)

8: end procedure

Past — actual history

MCTS — tree policy

πrollout

sk

a1 a2

h

ha1s
′

GPDh

s′k
GPDh∪{(s′k, s′e)}

Sample s′ = (s′k, s
′
e)

according to T | GPDh

Parent node

Child node

Figure 1: Example BAMDP MCTS search-tree,
with search nodes as ellipses. Green shows search
node generation/contents with a root sampling ap-
proach, and blue shows full belief planning.

Our online MCTS planning algorithm, a modified version of BAMCP for GP beliefs, is described
in Algorithm 1. To simplify the presentation, we assume that the rollout policy is able to reach the
goal set with probability 1. Our algorithm replaces BAMCP’s depth d and reward R parameters
with the goal set G and costs C, respectively, to reflect the SSP mission setting of our work. In our
case root sampling of T is performed by sampling from the current GP posterior, as described in
lines 3 and 4. Concretely, we take a sample ô ∼ GPDh

where ô : Sk → Se is a possible mapping
from known states to values of the unknown state features. Sampling ô from the root belief node
corresponds to sampling a possible environment that is consistent with the current GP environment
model, i.e. trained only on real-world observations. Finally, in line 7, the agent greedily selects a
single real-world action by running MCTS trials up to a computational budget.

Treatment of continuous se. Equation (2) represents a BAMDP with both discrete (known value)
and continuous (unknown value) state features, and therefore also a combination of a discrete
transition function, T o, and a continuous transition function given by the GP belief over o. This
presents challenges for MCTS methods, since the probability of transitioning to the same state twice
is 0. To enable generalisation between histories and allow the search tree to reach depths greater
than 1, our algorithm aggregates similar outcomes in se into the same child search node. Each search
node has an associated “mean” value se, where all outcomes ‖s′e − se‖1 < ε will be associated with
that node. When two MCTS trials sample s = (sk, se) and s′ = (sk, s

′
e) from the same start state

and action, if ‖se − se‖1 < ε and ‖s′e − se‖1 < ε, the two histories will be associated with the same
child node. Note that this only associates histories to nodes and does not discretise the computation of
reward or transition probabilities. The ε parameter therefore controls the search-tree branching factor,
similarly to ε in [12] and the two branching factor parameters in progressive widening MCTS [19].

4.4 Theoretical Analysis

Equivalence to Partially Observable MDP Belief Planning Methods. Figure 1 depicts an ex-
ample MCTS search-tree mid-mission. Several real actions have been taken in the environment,
corresponding to the history h in the root node. When carrying out BAMCP root sampling, a new
leaf node is added to the MCTS tree by appending the parent node history with a new state. This new
state s ∼ T (s, a, ·) is sampled from the MDP transition function which was itself sampled from the
root for this MCTS simulation, in lines 3 and 4 in Algorithm 1. This is depicted in green in Figure 1.

Several previous approaches [8, 3] that integrate GPs and MDPs for decision-making in uncertain
environments use a partially observable MDP (POMDP) [10]. We call these POMDP belief MCTS
approaches. These methods incorporate a GP environment belief into the POMDP state, and use
MCTS to plan in belief space. Here, new belief state leaf nodes are generated using a belief update
from the parent node. Belief update in this context is carried out by sampling a hypothesised data
point õ ∼ pGP

(
· | sk,Dparent

)
from the parent node GP belief posterior and augmenting the child

belief node’s GP dataset with this new point: Dparent ∪ {(sk, õ)}. This is shown in blue in Figure 1,
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Goal state

Cost 45888

Cost 97311

(a) Example radiation domain visualisation, with a
robot trajectory generated by GP-SSP-BAMCP (red)
and by GP belief MCTS (green) algorithms.
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Cost 17072

Cost 30258

{vx, vy}

(b) Example ocean currents domain visualisation, with
an AUV trajectory generated by GP-SSP-BAMCP
(red) and by GP belief MCTS (green) algorithms.

Figure 2: Experiment domains. Randomly selected multi-goal problem instances are shown.

where the GP in the child node can be explicitly generated by a belief update from the parent node
GP. GP belief updates require adding a single new data point to the model, the complexity of which
can be reduced from O(N3) to O(N2) where N is the number of data and sample points [17]. Even
with this reduction, the belief update is still computationally expensive as the dataset of real and
hypothesised observations grows. Furthermore, the belief updates are required sequentially, once per
MCTS simulation to generate a new leaf node. This greatly slows the MCTS procedure.

In contrast, our method does not explicitly generate these hypothesised GPs and plans only using
histories. The child node in Figure 1 still represents the same belief as the GP shown in blue, but
only contains the history obtained using a root sampled transition function. We prove the history-GP
equivalence, and hence the validity of root sampling in our setting, by showing that the probability
of generating a history from the BAMDP is the same for root sampling as it is for maintaining and
updating full GP belief at each belief node.
Proposition 2. Let Pht

π (ht+τ ) be the probability of a history ht+τ in the BAMDP, starting at history
ht under policy π, when carrying out individual GP belief updates at every stage; and P̃ht

π (ht+τ ) be
the probability of ht+τ when carrying out GP root sampling. Then, Pht

π (ht+τ ) = P̃ht
π (ht+τ ) for all

policies π and all histories ht+τ .

The proof is given in the appendix and is a direct adaptation of Lemma 1 in [20], accounting for the GP
posterior over the transition function, and applies to a general stochastic policy π : HM×A→ [0, 1].

Once any new real observations have been added to the root node GP, one can draw an arbitrary
number of root samples to plan with at little additional computational cost. This means we can run
more trials with the same computational budget, thus building a larger MCTS search tree, as we
demonstrate in Section 5. Finally, we note that, due to the BO setting of [8, 3], where the objective is
directly related to the uncertainty in the function being predicted by the GP, it is not enough to ensure
the same distribution over histories. Thus, they must maintain full GP beliefs in their search nodes.

5 Experiments

Domains Description. We experimentally evaluate the proposed method in two simulated domains.

1) Radiation domain: a robot must navigate to a goal location (single-goal variant), or one of three
goal locations (multi-goal variant), in a 20m × 20m reactor room with an unknown distribution
of radiation level, while minimising its cumulative exposure. The GP model is log-warped [21]
to constrain the predictions to be strictly positive and better model order-of-magnitude variation
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in radiation level caused by 1/r2 “solid angle” radiation physics. Goal locations and radiation
distributions are randomly generated and described in full in the appendix. The map (Figure 2a) is
discretised into an 8-connected grid with side length 1.0m. The robot pose therefore comprises the
known value U-MDP state features: Sk is a finite set of (x, y) locations {x, y} ⊆ Sk. The radiation
level is a single unknown value state feature Se = R≥0 where rad exp ∈ Se is the level at a location.
The reactor room world is from [22] and is used with Gazebo [23] and ROS [24].

2) Ocean currents domain: an autonomous underwater vehicle (AUV) must navigate underwater to
one of a set of two to three goal locations (multi-goal variant) or a single goal location (single-goal
variant) across a 10km × 10km map, under the influence of currents. These are drawn from a
real-world ocean current dataset and modelled online by a multi-output coregionalised GP [25]. The
AUV is simulated by a kinematics, guidance, navigation and control (GNC) model of a small AUV.
The robot pose comprises the known value U-MDP state features: Sk is a finite set of (x, y) locations
{x, y} ⊆ Sk on a 18 × 20 hexagonal grid of states, giving approximately 500m spacing between
states. An example state grid with ground-truth currents is shown in Figure 2b. The unknown value
state features Se = R2 represent the current x and y velocities {vx, vy} ∈ Se. The cost function
encodes the expected traversal time between states given the AUV’s water-relative velocity and the
current vector values. Additional domain details and parameters are given in the appendix.

Algorithms. Our online BAMCP variant as described in Algorithm 1 is evaluated against two other
GP belief planning algorithm baselines. The performance of sampling-based methods is dependent
on the assigned compute budget to select each action, therefore we vary compute budget in each
experiment. The GP mean belief MCTS algorithm represents a full GP belief planning approach that
makes maximum likelihood assumptions. This is similar to [13], but with a GP rather than GPDM
model and replacing the Monte Carlo action selection search with MCTS due to the complexity of
the search problem. The GP belief MCTS algorithm represents the other full GP belief planning
approaches [8, 3] which plan with GP beliefs inside the MCTS search tree, but sample a fixed
environment dynamics instance for the MCTS rollout. This avoids carrying out belief updates during
the rollout, leading to a speed up in MCTS trials per second. For all algorithms the rollout policy is
to choose the action that minimises the travel distance from the next state to the closest goal state.

Results. The plots in Figure 3 are from multiple randomly generated problem instances: 10 for the
currents domain, and 5 for the radiation domain. Each algorithm/MCTS time budget combination
is given 25 repeats. Values are normalised by the expected minimum achievable cost for the
corresponding randomly generated problem, calculated using an exact method and full knowledge of
the environment. Due to stochasticity in the simulated robot and environment, it is possible for some
runs to achieve costs below this value. Experiments are run on a 3.20GHz i7 / 64GB RAM machine.

In the ocean currents domain, Figures 3a and 3b, GP-SSP-BAMCP significantly outperforms the other
algorithms. It is capable of achieving close to optimal cost with only 1 second of computation budget.
Given an increased computational budget, each algorithm achieves lower cost-to-goal mean and
variance. At lower computational budgets, the GP belief MCTS algorithm consistently outperforms
the GP mean belief MCTS algorithm, which must carry out a belief update for each step it takes
towards a goal state during a rollout. The 1000ms / GP mean belief MCTS combination is not shown,
as the algorithm is not capable of building a meaningful plan within that time limit.

GP-SSP-BAMCP also significantly outperforms the baselines in the radiation domain, shown in
Figures 3c and 3d. In this case, note that the increase in cost-to-goal with additional computation
time is caused by the robot spending more time planning while being exposed to radiation, while the
normalisation denominator is kept constant. For all methods additional computation time increases
plan quality, but this can be offset by the additional stationary time spent planning. The 3000ms time
budget case corresponds to the robot spending ∼ 50% of its runtime planning rather than moving.

As a summary, GP-SSP-BAMCP’s higher performance is due to its ability to carry out far more
MCTS trials than the two full belief planning methods. On average across all sampled problem
scenarios, GP-SSP-BAMCP carries out ∼ 100× more MCTS trials per second than GP mean belief
MCTS, and ∼ 40× more than GP belief MCTS.
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(b) Multi-goal AUV time cost to goal results.
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(c) Single-goal radiation exposure cost to goal results.
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(d) Multi-goal radiation exposure cost to goal results.

Figure 3: Single- and multi-goal experiment results. Plots consist of 25 simulated experiments for
each algorithm/MCTS time budget combination in each randomly generated problem instance for
that domain.

6 Conclusion

We have proposed a unified Bayesian RL framework for single-mission robot planning in GP-
modelled unknown environments, and demonstrated that we are able to plan more effectively in
representative real-world environments than previous approaches are able to. One potential avenue
for future work is to apply progressive widening [19] or function approximation [20] techniques
to our BAMCP search tree, to determine whether these produce better plans given the continuous
GP-BAMDP state-space. Relaxing the assumption of negligible measurement noise would require
introducing partial observability alongside transition function uncertainty. The reformulation would
transform the BAMDP into a more complex Bayes-adaptive POMDP [26] with continuous GP belief.
This would allow us to address settings with very high localisation uncertainty and sensor noise.

Limitations. As with any method using exact GP regression, there is a limit to the size of environ-
ment that can practically be modelled. Although root sampling limits the computational cost of GP
planning, exact GP regression scales withO((n+m)3) where n is the number of data points andm is
the number of sample points. In future work we aim to replace exact GP predictions with approximate
GP posterior sampling [27] to reduce the GP computational burden and improve scalability.

As our evaluation is in simulation there may exist a sim-to-real transfer gap when using the method
with a real robot. This concern should be partly alleviated by our use of realistic Gazebo [23]
simulation and use of real-world currents data with a complex kinematic AUV simulation. The
proposed method is also a higher-level planning approach, meaning that the gap should be less wide
than with low-level control methods, which are more sensitive to small sim-to-real changes.

Finally, for some environments or problem settings there is less inherent value in carrying out online
planning. For example, with only a single goal state and few feasible routes to that state, the best
approach for the radiation domain may be to navigate as quickly as possible to that state without
incurring the radiation exposure costs of stopping to plan.
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