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Abstract
It is known that when the statistical models are
singular, i.e., the Fisher information matrix at
the true parameter is degenerate, the fixed step-
size gradient descent algorithm takes polynomial
number of steps in terms of the sample size n to
converge to a final statistical radius around the
true parameter, which can be unsatisfactory for
the practical application. To further improve that
computational complexity, we consider utilizing
the local curvature information for parameter esti-
mation. Even though there is a rich literature in
using the local curvature information for optimiza-
tion, the statistical rate of these methods in sta-
tistical models, to the best of our knowledge, has
not been studied rigorously. The major challenge
of this problem is due to the non-convex nature
of sample loss function. To shed light on these
problems, we specifically study the normalized
gradient descent (NormGD) algorithm, a variant
of gradient descent algorithm whose step size is
scaled by the maximum eigenvalue of the Hessian
matrix of the empirical loss function, and deal
with the aforementioned issue with a population-
to-sample analysis. When the population loss
function is homogeneous, the NormGD iterates
reach a final statistical radius around the true pa-
rameter after a logarithmic number of iterations
in terms of n. Therefore, for fixed dimension
d, the NormGD algorithm achieves the optimal
computational complexity O(n) to reach the fi-
nal statistical radius, which is cheaper than the
complexity O(nτ ) of the fixed step-size gradient
descent algorithm for some τ > 1.
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1. Introduction
Optimization serves a critical role in statistical models by
enabling the determination of fixed points in data-dependent
operators. This process is fundamental to finding parameter
values that either maximize likelihood functions or mini-
mize cost functions. The asymptotic performance of these
models is linked to the properties of the population-level
operator, particularly under the assumption of an infinitely
large sample size. Consider the problem of determining
the unique minimizer, denoted as θ⋆, of an objective func-
tion f : Rd → R. Crucially, we must emphasize that
our understanding of the genuine objective function f is
indirect and limited; but instead, we have access to an ap-
proximate (random) objective function fn which serves as
an unbiased estimate of the true objective function. To op-
timize the objective function, the gradient descent (GD)
algorithm has been one of the most well-known and widely
used (first-order) optimization methods for approximating
the true parameter for parametric statistical models (Polyak,
1987; Bubeck, 2015; Nesterov, 2018).

Problem Setup. We are interested in solving the following
optimization problem

θ̂n ∈ argmin
θ∈Rd

fn(θ), (1)

where fn denote as the sample loss function, applied to a set
of data points S = {Xi}ni=1

i.i.d.∼ Pθ⋆ that are independently
and identically distributed according to the probability dis-
tribution Pθ⋆ . In this context, θ⋆ represents the true, yet
unknown, parameter of the distribution Pθ⋆ , and θ̂n is a
solution of (1) which can be viewed as an estimation of the
true parameter θ⋆. Moreover, we define the corresponding
population version of optimization problem (1) as follows:

θ⋆ ∈ argmin
θ∈Rd

f(θ), (2)

where f(θ) := ES∼Pn
θ⋆
[fn(θ)] is the population loss func-

tion, and the expectation is taken with respect to the data. It
is worth noting that we can perceive any optimization algo-
rithm as an iterative procedure, which can be reframed as a
fixed point problem concerning its corresponding operator.
Now, We denote F as the operator defining the iterates at the
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population level, reflecting the idealized scenario of an infi-
nite sample size. Similarly, Fn represents the operator at the
sample level, based on a dataset of size n. The population-
level iterates, defined as θt := F (θt−1) for t ∈ N, starting
with an initial value of θ0. It is assumed that these iterates
converge to its fixed point θ⋆ as t → ∞. As discussed
earlier, since we do not have access to f , we can use the
sample-based iterates, defined as θtn := F t

n(θ
0) to obtain θ̂n

as an estimate of the true parameter θ⋆.

Sub-optimality of fixed step size GD: An important insight
here is that the statistical and computational complexities
of fixed step size sample GD iterates θtn,GD are determined
by the singularity of Hessian matrix of the population loss
function f at θ⋆. In particular, when the Hessian matrix
of f at θ⋆ is non-singular, i.e., ∇2f(θ⋆) ≻ 0, the previous
works (Balakrishnan et al., 2017; Ho et al., 2020) demon-
strate that θtn,GD converge to a neighborhood of the true pa-
rameter θ⋆ with the optimal statistical radius O((d/n)1/2)
after O(log(n/d)) number of iterations. The logarithmic
number of iterations is a direct consequence of the linear
convergence of fixed step size GD algorithm for solving the
strongly convex population loss function (2). When the Hes-
sian matrix of f at θ⋆ is singular, i.e., det(∇2f(θ⋆)) = 0,
which we refer to as singular statistical models, θtn,GD can
only converge to a neighborhood of θ⋆ with the statistical
radius larger than O((d/n)1/2) and the iteration complexity
becomes polynomial in n. In particular, the work of (Ho
et al., 2020) demonstrates that when the optimization rate
of fixed step size population GD iterates follows the order
of 1/t

1
α′ for some α′ > 0, and the noise magnitude of

∇fn(θ) is at the order of O(rγ
′
(d/n)1/2) for some α′ ≥ γ′

as long as ∥θ − θ⋆∥ ≤ r, then the statistical rate of fixed
step size sample GD iterates is O((d/n)

1
2(α′+1−γ′) ) after

O((n/d)
α′

2(α′+1−γ′) ) number of iterations. Given that the
per iteration cost of fixed step size GD is O(nd), the total
computational complexity of fixed step size GD for solv-

ing singular statistical models is O(n
1+ α′

2(α′+1−γ′) ) for a
fixed dimension d, which is much more expensive than the
optimal computational complexity O(n).

Contribution. To improve the computational complexity of
the GD algorithm, we consider the utilization of the local
curvature information for parameter estimation in statistical
models. These methods go beyond simple gradient-based
methods by incorporating second-order information. New-
ton’s method is known for its fast convergence properties,
making it suitable for finding precise solutions to optimiza-
tion problems. However, it can be expensive to compute and
store the Hessian matrix, particularly in high-dimensional
settings. Indeed, each iteration of Newton’s method de-
mands a computational cost at the order of O(nd + d3) 1

1The cubic term, d3, represents the computational complexity

per iteration. On the other hand, BFGS is a quasi-Newton
method that approximates the Hessian matrix, resulting
in more computational efficiency. It requires a total of
O(nd+d2) arithmetic operations per iteration. Nonetheless,
the question of whether both methods exhibit statistical op-
timality in high-dimensional settings has remained unclear.
These considerations raise the following question:

Is there a method that achieves a balance between compu-
tational efficiency and provable statistical optimality at a
reasonable per-iteration computational cost?

We explore this inquiry and demonstrate that normalized
gradient descent (NormGD) algorithm can attain both statis-
tical optimality and computational efficiency. NormGD is
a variant of the gradient descent algorithm whose step size
is scaled by the maximum eigenvalue of the Hessian ma-
trix of the sample loss function. Calculating the complete
spectrum of a d× d matrix typically demands O(d3) com-
putations. A more efficient alternative is to use the power
iteration method, requiring just O(d2) computations to find
the maximum eigenvalue. Consequently, each iteration of
NormGD necessitates O(nd+ d2) computations. We show
that NormGD provably reaches the optimal statistical radius
after a logarithmic number of iterations. Our results can be
summarized as follows:

1. General theory: We study the computational and statisti-
cal complexities of NormGD iterates when the population
loss function is homogeneous in all directions and the sta-
bility of first-order and second-order information holds. In
particular, when the population loss function f is homoge-
neous with all fast directions, i.e., it is locally strongly con-
vex and smooth, and the concentration bounds between the
gradients and Hessian matrices of the sample and population
loss functions are at the order of O((d/n)1/2), then the Nor-
mGD iterates reach the final statistical radius O((d/n)1/2)
after log(n/d) number of iterations. When the function f
is homogeneous, which corresponds to singular statistical
models, with the fastest and slowest directions are at the
order of ∥θ − θ⋆∥α for some α > 0, and the concentration
bound between Hessian matrices of the sample and pop-
ulation loss functions is O(rγ(d/n)1/2) for some γ ≥ 0
and α ≥ γ + 1, the NormGD iterates converge to a radius
O((d/n)

1
2(α−γ) ) within the true parameter after log(n/d)

number of iterations. Therefore, for fixed dimension d the to-
tal computational complexity of NormGD to reach the final
statistical radius is at the order of O((nd+ d2) log(n/d)),
which is cheaper than that of the fixed step size GD, which
is of the order of O(n1+ α

2(α−γ) ). Details of these results are
in Theorem 2.3 and Proposition 2.4.

2. Examples: We illustrate the general theory for the sta-

associated with calculating the inverse of a d× d matrix using the
Gauss-Jordan elimination approach.
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Table 1: Overview of Results for GLM with Link Function g(r) = rp in low SNR regime with θ⋆ = 0. The second and third columns
represent the optimization properties of the respective algorithms. The fourth column presents the statistical performance of each
algorithm, where NormGD attains the optimal rate while BFGS does not. The last column illustrates the computational complexity of
each algorithm, showcasing that NormGD outperforms Gradient Descent, Newton’s method, and BFGS for a fixed final statistical radius.

Algorithm Optimization Rate
Iterations for
convergence

Statistical error
on convergence

Computational
complexity

Gradient Descent t−1/(2p−2) (n/d)
p−1
p (d/n)

1
2p n

2p−1
p d

1
p

Newton’s Method (Ho et al., 2020) e−κNWTt log(n/d) (d/n)
1
2p

∗
(nd+ d3) log(n/d)

BFGS (Jin et al., 2024) e−κBFGSt log(n/d) (d/n)
1

2p+2
∗

(nd+ d2) log(n/d)

NormGD (Ours) e−κNGDt log(n/d) (d/n)
1
2p (nd+ d2) log(n/d)

∗ Note that the statistical behavior of Newton’s method has not been established for multivariate case. In the univariate case d = 1, both
Newton’s method and BFGS reach the optimal final statistical radius of (d/n)

1
2p .

tistical guarantee of NormGD under two popular statistical
models: generalized linear models (GLM) and Gaussian
mixture models (GMM). For GLM, we consider the settings
when the link function g(r) = rp for p ∈ N and p ≥ 2.
Under the strong signal-to-noise (SNR) regime, namely,
when the norm of the true parameter is sufficiently large, the
NormGD iterates reach the statistical radius O((d/n)1/2)
around the true parameter after log(n/d) number of itera-
tions. On the other hand, for the low SNR regime, specif-
ically, we assume θ⋆ = 0, the final statistical radius of
NormGD updates is O((d/n)

1
2p ) and it is achieved after

log(n/d) number of iterations. Furthermore, we compare
NormGD to gradient descent, Newton’s method, and BFGS
in terms of computational efficiency and statistical opti-
mality. Under low SNR regimes, the computational com-
plexity of GD iterations scales as O(n

2p−1
2p d

1
p ). Addition-

ally, the computational complexity for Newton’s method is
O((nd+d3) log(n/d)), while both BFGS and NormGD ex-
hibit a computational complexity of O((nd+d2) log(n/d))
which are more efficient than GD and Newton’s method.
However, the statistical optimality of BFGS remains subop-
timal (Jin et al., 2024). An overview of the results for the
low SNR GLM is presented in Table 1. Moving to the GMM,
we specifically consider the symmetric two-component lo-
cation setting, which has been considered widely to study
the statistical behaviors of Expectation-Maximization (EM)
algorithm (Balakrishnan et al., 2017; Dwivedi et al., 2020b).
We demonstrate that the statistical radius of NormGD it-
erates under strong and low SNR regimes are respectively
O((d/n)1/2) and O((d/n)1/4). Both of these results are
obtained after log(n/d) number of iterations.

Organization. The paper is organized as follows. In Sec-
tion 2 and Appendix A, we provide a general theory for the
statistical guarantee of the NormGD algorithm for solving
parameter estimation in parametric statistical models when
the population loss function is homogeneous. We illustrate

the general theory with generalized linear models and mix-
ture models in Section 3. We conclude the paper with a
few discussions in Section 5. Finally, proofs of the general
theory are in Appendix B while proofs of the examples are
in the remaining appendices in the supplementary material.

Notation. For any n ∈ N, we denote [n] = {1, 2, . . . , n}.
For any matrix A ∈ Rd×d, we denote λmax(A), λmin(A)
respectively the maximum and minimum eigenvalues of the
matrix A. Throughout the paper, ∥ · ∥ denotes the ℓ2 norm
of some vector while ∥ · ∥op denotes the operator norm of
some matrix. For any two sequences {an}n≥1, {bn}n≥1,
the notation an = O(bn) is equivalent to an ≤ Cbn for all
n ≥ 1 where C is some universal constant.

2. General Theory of Normalized Gradient
Descent

In this section, we provide statistical and computational
complexities of NormGD updates for homogeneous set-
tings when all the directions of the population loss function
f have similar behaviors. For the inhomogeneous pop-
ulation loss function, to the best of our knowledge, the
theories for these settings are only for specific statistical
models (Dwivedi et al., 2020a; Zhuo et al., 2021). The gen-
eral theory for these settings is challenging and hence we
leave this direction for future work. To simplify the ensuing
presentation, we denote the NormGD iterates for solving
the samples and population losses functions (1) and (2) as
follows θt+1

n := F NGD
n (θtn) and θt+1 := F NGD(θt), respec-

tively, where sample and population NormGD operators are
defined as follows

F NGD
n (θtn) := θtn − η

λmax(∇2fn(θtn))
∇fn(θ

t
n),

F NGD(θt) := θt − η

λmax(∇2f(θt))
∇f(θt).

Furthermore, we call {θtn}t≥0 and {θt}t≥0 as the sample
and population NormGD iterates respectively.
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Locally strongly convex and smooth settings: For the
homogeneous setting when all directions are fast, namely,
when the population loss function is locally strongly convex,
we defer the general theory of these settings to Appendix A.

Locally convex and smooth settings: Here, we focus on
homogeneous settings where all directions are slow. To
characterize the homogeneous settings, we assume that the
population loss function f is locally convex in the ball
B(θ⋆, r) := {θ ∈ Rd : ∥θ − θ⋆∥ ≤ r} for some given
radius r. Apart from the local convexity assumption, we
also utilize the following assumption on the population loss
function f .

(W.1) (Homogeneous Property) Given the constant α > 0
and the radius r > 0, for all θ ∈ B(θ⋆, r) we have

λmin(∇2f(θ)) ≥ c1∥θ − θ⋆∥α,
λmax(∇2f(θ)) ≤ c2∥θ − θ⋆∥α,

where c1 > 0 and c2 > 0 are some universal constants
depending on r.

The condition α > 0 is to ensure that the Hessian ma-
trix is singular at the true parameter θ⋆. For the set-
ting α = 0, corresponding to the locally strongly convex
setting, the detailed analysis of NormGD is provided in
Appendix A. A simple example of Assumption (W.1) is
f(θ) = ∥θ − θ⋆∥α+2 for all θ ∈ B(θ⋆, r). The Assump-
tion (W.1) is satisfied by several statistical models, such
as low signal-to-noise regime of generalized linear mod-
els with polynomial link functions (see Section 3.1) and
symmetric two-component mixture model when the true
parameter is close to 0 (see Section 3.2). The homogeneous
assumption (W.1) was also considered before to study the
statistical and computational complexities of optimization
algorithms (Ren et al., 2022). It is important to highlight
that Assumption (W.1) is applicable to missing data prob-
lems, including the informative non-response model (refer
to Section 4.1 in (Ho et al., 2020)), and stochastic frontier
models (Lee & Chesher, 1986).

Statistical rate of sample NormGD operator F NGD
n : To

establish the statistical and computational complexities of
sample NormGD updates θtn, we utilize the population to
sample analysis (Yi & Caramanis, 2015; Balakrishnan et al.,
2017; Ho et al., 2020; Kwon et al., 2021). In particular,
using triangle inequality, we have

∥θtn − θ⋆∥ ≤ ∥θtn − θt∥︸ ︷︷ ︸
=:εtstab

+ ∥θt − θ⋆∥︸ ︷︷ ︸
=:εtopt

, (3)

Given this decomposition, the statistical error of θtn is con-
trolled by two terms:

(1) εtstab: the uniform concentration of the sample operator
F NGD
n around the population operator F NGD;

(2) εtopt: the contraction rate of population operator.

For εtopt in equation (3), the homogeneous assumption (W.1)
entails the following contraction rate of population NormGD
operator.
Lemma 2.1. Suppose Assumption (W.1) holds for some
α > 0 and some universal constants c1, c2. Then, if the
step-size η ≤ c21

2c22
, then we have that

∥F (θ)− θ⋆∥ ≤ κ∥θ − θ⋆∥,
where κ < 1 is a universal constant that only depends on
η, c1, c2, α.

The proof of Lemma 2.1 can be found in Appendix B.1.
For εtstab in equation (3), the uniform concentration bound
between F NGD

n and F NGD, can be obtained via the follow-
ing assumption on the concentration bound of ∥∇2fn(θ)−
∇2f(θ)∥op for θ ∈ B(θ⋆, r).

(W.2) (Stability of Second-order Information) For a given
parameter γ ≥ 0, there exist a noise function ε : N×
(0, 1] → R+, universal constant c3 > 0, and some
positive parameter ρ > 0 such that

sup
θ∈B(θ⋆,r)

∥∇2fn(θ)−∇2f(θ)∥op ≤ c3r
γε(n, δ),

for all r ∈ (0, ρ) with probability 1− δ.

The idea of Assumption (W.2) is to control the growth
of the noise function, which is the difference between
the population and sample loss functions, via the second-
order information of these loss functions. The second-
order stability assumption has been previously examined
by (Mei et al., 2018). It is essential to emphasize that
while both our study and (Mei et al., 2018) address the
uniform convergence of the Hessian, our specific empha-
sis lies in leveraging the additional rγ dependency within
the uniform concentration bound to attain a more precise
statistical dependency. A simple example for Assump-

tion (W.2) is when fn(θ) = ∥θ∥2p

2p − ω ∥θ∥2q

2q

√
d
n where

ω ∼ N (0, 1) and p, q are some positive integer numbers
such that p > q. Then, f(θ) = ∥θ∥2p/2p. The Assump-
tion (W.2) is satisfied with γ = 2q − 2 and with the noise

function ε(n, δ) =
√

d log(1/δ)
n . For concrete statistical

examples, we demonstrate later in Section 3 that Assump-
tion (W.2) is satisfied by the generalized linear model and
mixture model. Given Assumption (W.2), we have the fol-
lowing uniform concentration bound between the sample
and population NormGD operators
Lemma 2.2. Assume that Assumptions (W.1) and (W.2) hold
with α ≥ γ + 1. Furthermore, assume that ∇fn(θ

⋆) = 0.
Then, we obtain that

sup
θ∈B(θ⋆,r)\B(θ⋆,rn)

∥F NGD
n (θ)− F NGD(θ)∥

≤ c4r
γ+1−αε(n, δ),
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where rn :=
(

6c3ε(n,δ)
c1

) 1
α−γ

, and c4 is a universal constant
depends on η, c1, c2, c3, α, γ.

The proof of Lemma 2.2 can be found in Appendix B.2. We
have a few remarks with Lemma 2.2. First, the assump-
tion that ∇fn(θ

⋆) = 0 is to guarantee the local stability of
∇fn(θ) around ∇f(θ) (Ho et al., 2020). This assumption is
mild and satisfied by several models, such as low signal-to-
noise regimes in generalized linear models, as demonstrated
in Section 3, and Gaussian mixture models, as discussed in
Section 3.2. Such assumption can also be removed when
α = 0, namely, the population loss function f is locally
strongly convex and smooth (See Appendix A). Second, the
assumption that α ≥ γ + 1 means that the signal is stronger
than the noise in statistical models, which in turn leads to
meaningful statistical rates. Third, the inner radius rn in
Lemma 2.2 corresponds to the final statistical radius, at the
order O(ε(n, δ)

1
α−γ ). It means that we cannot go beyond

that radius, otherwise, the empirical Hessian is not positive
definite. Based on the contraction rate of the population
NormGD operator in Lemma 2.1 and the uniform concentra-
tion of the sample NormGD operator around the population
NormGD operator in Lemma 2.2, we have the following
result on the statistical and computational complexities of
the sample NormGD iterates around the true parameter θ⋆.

Theorem 2.3. Assume that Assumptions (W.1) and (W.2)
and assumptions in Lemma 2.2 hold with α ≥ γ + 1.
Assume that the sample size n is large enough such that
ε(n, δ)

1
α−γ ≤ (1−κ)r

c4C̄γ+1−α where κ is defined in Lemma 2.1,
c4 is the universal constant in Lemma 2.2 and C̄ =
( 6c3c1

)
1

α−γ , and r is the local radius. Then, there exist univer-
sal constants C1, C2 such that with probability 1 − δ, for
t ≥ C1 log(1/ε(n, δ)), the following holds:

min
k∈{0,1,··· ,t}

∥θkn − θ⋆∥ ≤ C2 · ε(n, δ)
1

α−γ .

The proof of Theorem 2.3 follows the argument of part (b)
of Theorem 2 in (Ho et al., 2020); therefore, it is omitted. A
few comments with Theorem 2.3 are in order.

On the approximation of λmax: Computing the whole
spectrum of a d × d matrix requires O(d3) computation.
But fortunately, we can compute the maximum eigen-
value in O(d2) computation with the well-known power
iteration (a.k.a power method, see Chapter 7.3, Golub &
Van Loan, 1996)) which has broad applications in differ-
ent areas (e.g. Hardt et al., 2016). Power iteration can
compute the maximum eigenvalue up to ε error with at
most O

(
log ε

log(λ2/λmax)

)
matrix vector products, where λ2

is the second largest eigenvalue. Hence, when λ2/λmax

is bounded away from 1, we can obtain a high-quality ap-
proximation of λmax with a small number of computations.
There can be some issues when λ2/λmax is close to 1. But

in fact, we only require an approximation of λmax within
statistical accuracy defined in Assumption (W.2) (also see
the proof in Appendix B.2). Hence, without loss of gen-
erality, we can assume λ2(∇2fn(θ)) ≤ λmax(∇2fn(θ))−
c3∥θ − θ⋆∥γε(n, δ), which means λ2(∇2fn(θ))

λmax(∇2fn(θ))
≤ 1 −

c3
c2
∥θ− θ⋆∥γ−α. Since α ≥ γ + 1 and we only consider the

case ∥θ− θ⋆∥ ≤ r, there exists a universal constant cPI < 1
that does not depend on n, d, such that λ2/λmax ≤ cPI.
Therefore, we can compute λmax with a small number of
iterations. However, as pointed out by (Kuczyński & Woźni-
akowski, 1992), the requirement for λ2/λmax to be bounded
away from 1 can be relaxed by introducing a probabilistic
framework through randomization in the algorithm.

Comparing to fixed step size gradient descent: Under the
Assumptions (W.1) and (W.2), we have the following result
on the statistical and computational complexities of fixed
step size GD iterates.

Proposition 2.4. Assume that Assumptions (W.1) and (W.2)
hold with α ≥ γ + 1 and ∇fn(θ

⋆) = 0. Suppose the
sample size n is large enough so that ε(n, δ) ≤ C for some
universal constant C. Then there exist universal constant
C1 and C2, such that for any fixed τ ∈

(
0, 1

α−γ

)
, as long

as t ≥ C1ε(n, δ)
− α

α−γ log 1
τ , we have that

∥θtn,GD − θ⋆∥ ≤ C2ε(n, δ)
1

α−γ −τ .

The proof of Proposition 2.4 is similar to Proposition 1
in (Ren et al., 2022), and we omit the proof here. There-
fore, the results in Theorem 2.3 indicate that the NormGD
and fixed-step size GD iterates reach the same statistical ra-
dius ε(n, δ)

1
α−γ within the true parameter θ⋆. Nevertheless,

the NormGD only takes O(log(1/ε(n, δ))) number of iter-
ations while the fixed step size GD takes O(ε(n, δ)−

α
α−γ )

number of iterations. If the dimension d is fixed, the total
computational complexity of NormGD algorithm is at the
order of O(n · log(1/ε(n, δ))), which is much cheaper than
that of fixed-step size GD, O(n · ε(n, δ)− α

α−γ ), to reach the
final statistical radius.

Comparing to Newton’s method and BFGS. To the best
of our knowledge, general theories for Newton’s method
and BFGS algorithms are currently lacking. However, in
Section 3, we will compare the performance of NormGD to
Newton’s method and BFGS for specific models in terms of
both computational complexity and statistical optimality.

3. Examples
In this section, we consider an application of our theories
in the previous section to the generalized linear model and
Gaussian mixture models.
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3.1. Generalized Linear Model (GLM)

Generalized linear model (GLM) has been a widely used
model in statistics and machine learning (Nelder & Wed-
derburn, 1972). It is a generalization of linear regression
model where we use a link function to relate the covari-
ates to the response variable. In particular, we assume that
(Y1, X1), . . . , (Yn, Xn) ∈ R× Rd satisfy

Yi = g(X⊤
i θ⋆) + εi. ∀i ∈ [n] (4)

Here, g : R → R is a given link function, θ⋆ is a true but
unknown parameter, and ε1, . . . , εn are i.i.d. noises from
N (0, σ2) where σ > 0 is a given variance parameter. We
consider the random design setting where X1, . . . , Xn are
i.i.d. from N (0, Id). A few comments with our model as-
sumption. First, in our paper, we will not estimate the link
function g. Second, the assumption that the noise follows
the Gaussian distribution is just for the simplicity of calcu-
lations; similar proof argument still holds for sub-Gaussian
noise. For the purpose of our theory, we consider the link
function g(r) := rp for any p ∈ N and p ≥ 2. When p = 2,
the generalize linear model becomes the phase retrieval
problem (Fienup, 1982; Shechtman et al., 2015; Candes
et al., 2011; Netrapalli et al., 2015).

Least-square loss: We estimate the true parameter θ⋆ via
minimizing the least-square loss function:

min
θ∈Rd

Ln(θ) :=
1

2n

n∑
i=1

(Yi − (X⊤
i θ)p)2. (5)

By letting n goes to infinity, we obtain the population least-
square loss function of GLM:

min
θ∈Rd

L(θ) := 1

2
EX,Y [(Y − (X⊤θ)p)2],

where the outer expectation is taken with respect to X ∼
N (0, Id) and Y = g(X⊤θ⋆)+ ε where ε ∼ N (0, σ2). It is
clear that θ⋆ is the global minimum of the population loss
function L. Furthermore, the function L is homogeneous,
i.e., all directions have similar behaviors. In this section,
we consider two regimes of the GLM for our study of sam-
ple NormGD iterates: Strong signal-to-noise ratio (SNR)
regime and Low signal-to-noise ratio regime.

Strong signal-to-noise ratio regime: The strong SNR
regime corresponds to the setting when θ⋆ is bounded away
from 0 and ∥θ⋆∥ is sufficiently large, i.e., ∥θ⋆∥ ≥ C for
some universal constant C. Under this setting, the popula-
tion loss function L is locally strongly convex and smooth,
i.e., it satisfies Assumption (S.1) under the homogeneous set-
ting with all fast directions. Furthermore, in Appendix C.2
we prove that for Assumption (S.2), for any radius r > 0
there exist universal constants C1, C2, C3 such that as long

as n ≥ C1(d log(d/δ))
2p the following bounds hold

sup
θ∈B(θ⋆,r)

∥∇Ln(θ)−∇L(θ)∥ ≤ C2

√
d+ log(1/δ)

n
,

sup
θ∈B(θ⋆,r)

∥∇2Ln(θ)−∇2L(θ)∥op ≤ C3

√
d+ log(1/δ)

n

(6)

with probability at least 1− δ.

Low signal-to-noise ratio regime: The low SNR regime
corresponds to the setting when the value of ∥θ⋆∥ is suf-
ficiently small. To simplify the computation, we assume
that θ⋆ = 0. Direct calculation shows that ∇Ln(θ

⋆) = 0.
Furthermore, the population loss function becomes

min
θ∈Rd

L(θ) = σ2 + (2p− 1)!!∥θ − θ⋆∥2p
2

. (7)

Under this setting, the function L is no longer locally strong
convex around θ⋆ = 0. Indeed, this function is homoge-
neous with all slow directions (see Appendix C.1 for the
proof):

λmax(∇2L(θ)) ≤ c1∥θ − θ⋆∥2p−2, (8)

λmin(∇2L(θ)) ≥ c2∥θ − θ⋆∥2p−2, (9)

for all θ ∈ B(θ⋆, r) for some r > 0. Here, c1, c2 are some
universal constants depending on r. Therefore, the homoge-
neous Assumption (W.1) is satisfied with α = 2p− 2. Mov-
ing to Assumption (W.2), we demonstrate in Appendix C.2
that there exist universal constants C1 and C2 such that for
r > 0 and n ≥ C1(d log(d/δ))

2p:

sup
θ∈B(θ⋆,r)

∥∇2Ln(θ)−∇2L(θ)∥op

≤ C2(r
p−2 + r2p−2)

√
(d+ log(1/δ))/n (10)

with probability at least 1− δ. Hence, Assumption (W.2) is
satisfied with γ = p− 2. Based on the above results, Theo-
rems 2.3 for homogeneous settings with all slow directions
and A.3 for homogeneous settings with all fast directions
lead to the following statistical and computational complex-
ities of NormGD algorithm.
Corollary 3.1. Given the generalized linear model (4) with
g(r) = rp for some p ∈ N and p ≥ 2, there exists universal
constants c, c̃1, c̃2, c̄1, c̄2 such that when the sample size
n ≥ c(d log(d/δ))2p and the initialization θ0n ∈ B(θ⋆, r)
for some chosen radius r > 0, with probability 1 − δ the
sequence of sample NormGD iterates {θtn}t≥0 satisfies the
following bounds:

(i) When ∥θ⋆∥ ≥ C for some universal constant C,

∥θtn − θ⋆∥ ≤ c̃1

√
d+ log(1/δ)

n
,

holds for t ≥ c̃2 log (n/(d+ log(1/δ))),
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(ii) When θ⋆ = 0, we obtain

min
1≤k≤t

∥θkn − θ⋆∥ ≤ c′1

(
d+ log(1/δ)

n

)1/2p

,

holds for t ≥ c′2 log (n/(d+ log(1/δ))).

Comparison with other methods. For the strong SNR
regime, the sample NormGD only takes logarithmic number
of iterations log(n) to reach the optimal statistical radius
O((d/n)1/2) around the true parameter. This guarantee is
similar to that of the fixed step size GD iterates for solving
the locally strongly convex and smooth loss function (Bal-
akrishnan et al., 2017; Ho et al., 2020). For the low SNR
regime, the sample NormGD iterates reach the final statis-
tical radius O((d/n)

1
2p ) after logarithmic number of itera-

tions in terms of n. In terms of the number of iterations,
it is cheaper than that of the fixed step size GD algorithm,
which takes at least O((n/d)

p−1
p ) number of iterations (See

our discussion after Theorem 2.3). It indicates that the total
computational complexity of NormGD algorithm, which
is at the order of O((nd + d2) log(n/d)), is smaller than
that of fixed step size GD, which is O(n

2p−1
2p d

1
p ). Con-

versely, as demonstrated in (Jin et al., 2024), BFGS re-
quires a logarithmic number of iterations to attain a sta-
tistical radius of O((d/n)

1
2p+2 ) in the low SNR regime

which can be improved to O((d/n)
1
2p ) in the univariate

case. This is suboptimal when compared to the perfor-
mance of NormGD and GD iterates. The statistical per-
formance of Newton’s method has not been conclusively
established for the multivariate scenario. However, (Ho
et al., 2020) demonstrated that in the univariate case, New-
ton’s method can achieve the final statistical radius of
O((d/n)

1
2p ). It is indeed not clear if the statistical behavior

of Newton’s method and BFGS can be improved to the opti-
mal statistical accuracy of O((d/n)

1
2p ) in the multivariate

case. Consequently, the overall computational complex-
ity for these methods becomes O

(
(nd+ d3) · log(n/d)

)
and O

(
(nd+ d2) log(n/d)

)
, respectively. A summary of

the results for the low SNR regime is presented in Table 1.
Therefore, for the low SNR regime, the NormGD algorithm
is more computationally efficient than the fixed step size
GD, Newton’s method, and BFGS for reaching a similar
final statistical radius. Finally, we provide experiments to
verify our theory on the statistical guarantee of the NormGD
in Appendix F.

3.2. Gaussian Mixture Models (GMM)

We now consider Gaussian mixture models (GMM), one of
the most popular statistical models for modeling heteroge-
neous data (Lindsay, 1995; McLachlan & Basford, 1988).
Parameter estimation in these models plays an important
role in capturing the heterogeneity of different subpopu-

lations. The common approach to estimate the location
and scale parameters in these model is via maximizing the
log-likelihood function. The statistical guarantee of the max-
imum likelihood estimator (MLE) in Gaussian mixtures had
been studied in (Chen, 1995; Ho & Nguyen, 2016). How-
ever, since the log-likelihood function is non-concave, we
do not have closed-form expressions for the MLE. There-
fore, in practice we utilize optimization algorithms to ap-
proximate the MLE. However, a complete picture about
the statistical and computational complexities of these op-
timization algorithms has remained missing. In order to
shed light on the behavior of NormGD algorithm for solv-
ing GMM, we consider a simplified yet important setting
of this model, symmetric two-component location GMM.
This model had been used in the literature to study the
statistical behaviors of Expectation-Maximization (EM) al-
gorithm (Balakrishnan et al., 2017; Dwivedi et al., 2020b).
We assume that the data X1, X2, . . . , Xn are i.i.d. sam-
ples from 1

2N (−θ⋆, σ2Id) +
1
2N (θ⋆, σ2Id) where σ > 0

is given and θ⋆ is true but unknown parameter. Our goal is
to obtain an estimation of θ⋆ via also using the symmetric
two-component location Gaussian mixture:

1

2
N (−θ, σ2Id) +

1

2
N (θ, σ2Id). (11)

As we mentioned earlier, we obtain an estimation of θ⋆ via
maximizing the sample log-likelihood function associated
with model (11), which is given by:

min
θ∈Rd

L̄n(θ) := − 1

n

n∑
i=1

log

(
1

2
ϕ(Xi|θ, σ2Id)

+
1

2
ϕ(Xi| − θ, σ2Id)

)
. (12)

Here, ϕ(·|θ, σ2Id) is density function of Gaussian distribu-
tion with mean θ and covariance σ2Id. Similar to GLM,
we also consider two regimes of the true parameter: Strong
signal-to-noise regime when ∥θ⋆∥/σ is sufficiently large
and Low signal-to-noise regime when ∥θ⋆∥/σ is sufficiently
small. To analyze the behaviors of sample NormGD iterates,
we define the population version of the estimation (12) as
follows:

min
θ∈Rd

L̄(θ) := −E
[
log

(
1

2
ϕ(X|θ, σ2Id)

+
1

2
ϕ(X| − θ, σ2Id)

)]
. (13)

where Here, the outer expectation is taken with respect to
X ∼ 1

2N (−θ⋆, σ2Id) +
1
2N (θ⋆, σ2Id). We can check that

L̄ is also homogeneous in all directions. The strong SNR
regime corresponds to the setting when L̄ is homogeneous
with all fast directions while the low SNR regime is associ-
ated with the setting when L̄ is homogeneous with all slow

7
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directions. In this section, we only focus on establishing
the statistical behaviors of the NormGD algorithm under
the low SNR regime while these behaviors under the strong
SNR regime can be found in Appendix E.

Low signal-to-noise regime: Now we move to the low
SNR regime, namely, when ∥θ⋆∥/σ is sufficiently small.
For the simplicity of computation we specifically assume
that θ⋆ = 0. Under this setting, the true model becomes
a single Gaussian distribution with mean 0 and covariance
matrix σ2Id while the fitted model (11) has two components
with similar weights and symmetric means. This setting is
widely referred to as over-specified mixture model, namely,
we fit the true mixture model with more components than
needed, in statistics and machine learning (Chen, 1995;
Rousseau & Mengersen, 2011). It is important in practice as
the true number of components is rarely known and to avoid
underfitting the true model, we tend to use a fitted model
with more components than the true number of components.
In Appendix D.1, we prove that the population loss function
L̄ is homogeneous with all slow directions and satisfy the
following properties:

λmax(∇2L̄(θ)) ≤ c1∥θ − θ⋆∥2, (14)

λmin(∇2L̄(θ)) ≥ c2∥θ − θ⋆∥2, (15)

for all θ ∈ B(θ⋆, σ
2 ) where c1 and c2 are some universal

constants. Therefore, the population loss function L̄ satisfies
Assumption (W.1) with α = 2. For the stability of second-
order information, we prove in Appendix D.2 that there exist
universal constants C1 and C2 such that for any r > 0, with
probability 1− δ

sup
θ∈B(θ⋆,r)

∥∇2L̄n(θ)−∇2L̄(θ)∥ ≤ C2

√
d log(1/δ)

n
,

(16)

as long as n ≥ C1d log(1/δ). The uniform concentra-
tion bound (16) shows that for the low SNR regime of
two-component location Gaussian mixtures, the stability
of second-order information in Assumption (W.2) is satis-
fied with γ = 0. Moreover, from Lemma 1 in (Dwivedi
et al., 2020a) we know ∇L̄n(θ

⋆) = 0. Combining the re-
sults from the homogeneous behaviors of population loss
function in equations (14), (15), and the uniform concentra-
tion bound in equation (16) to the result of Theorem 2.3, we
obtain that the NormGD updates reach the final statistical
radius (d/n)1/4 after log(n) number of iterations. Now, we
would like to formally state the statistical behaviors of the
NormGD iterates for both the strong and low SNR regimes.

Corollary 3.2. Given the symmetric two-component mix-
ture model (11), we can find positive universal constants
c, c̄1, c̄2, c

′
1, c

′
2 such that with probability at least 1−δ, when

n ≥ cd log(1/δ) the sequence of NormGD iterates {θtn}t≥0

satisfies the following bounds:

(i) When ∥θ⋆∥ ≥ C for some constant C and the initializa-
tion θ0n ∈ B(θ⋆, ∥θ∥⋆

4 ), we obtain that

∥θtn − θ⋆∥ ≤ c̄1

√
d log(1/δ)

n
,

as long as t ≥ c̄2 log (n/(d log(1/δ))),

(ii) Under the setting θ⋆ = 0 and the initialization θ0n ∈
B(θ⋆, σ

2 ), we have

min
1≤k≤t

∥θkn − θ⋆∥ ≤ c′1

(
d log(1/δ)

n

)1/4

,

for t ≥ c′2 log (n/(d log(1/δ))).

Comparison with other methods. For the low SNR
regime, Newton’s method and NormGD iterates reach the
final statistical radius of O((d/n)1/4) after a logarithmic
number of iterations in terms of n while the EM iterates
reach the same radius after O((n/d)1/2) number of iter-
ations (Dwivedi et al., 2020b). It demonstrates that the
total computational complexity for NormGD is on the order
of O((nd + d2) · log n), which represents a significantly
more efficient compared to the EM algorithm and Newton’s
method, both of which operate at the order of O(n3/2d−1/2)
and O((nd+d3)·log n), respectively. It is worth mentioning
that there is currently no established set of results for BFGS
in the GMM setting. Finally, we provide experiments to
verify our theory on the statistical guarantee of the NormGD
in Appendix F.

4. Experiments
In this section, we perform numerical experiments on the
generalized linear model to empirically verify our theoreti-
cal results regarding the convergence rates and the statistical
rates of the sample iterates. We conducted a comparative
analysis between NormGD and fixed step-size gradient de-
scent, Newton’s method, and BFGS as baseline methods.
Further information about the experimental setup and sup-
plementary numerical experiments for the Gaussian mixture
model can be found in Appendix F.

Convergence Rate. We run each algorithm in low and
high SNR settings to verify our theoretical results for the
generalized linear model. As shown in Figure 1a when
in the strong signal-to-noise setting, all methods and our
proposed Normalized Gradient Descent method (referred to
as NormGD) converge linearly. However, once we shift to
the low signal-to-noise setting, all second-order methods,
that is, Newton’s, BFGS, and NormGD, converge linearly,
while GD converges sublinearly, as shown in Figure 1b.

Statistical Rate. To further verify our corollaries, especially
how the statistical error scales with n, we plot the statistical
error versus sample size in Figure 2. The experiments were
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Figure 1: Left: All methods converge linearly in the high signal-to-noise setting; Right: all second-order methods converge
linearly in the low signal-to-noise setting while GD converges sub-linearly.
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(a) Convergence rate of sample iterates
in High SNR setting with n = 1000
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(b) Convergence rate of sample iterates
in Low SNR setting with n = 1000

Figure 2: Left: (High SNR) The statistical error of all methods roughly scales with n−0.5; Right: (Low SNR) the statistical
error roughly scales with n−0.25 for all methods.
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(a) Statistical rate of sample iterates
in High SNR setting with d = 2
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(b) Statistical rate of sample iterates
in Low SNR setting with d = 2

repeated for 10 times for 20 sample sizes from nmin = 100
to nmax = 10000 and the average of the statistical error
is shown. The slope is computed as the linear regression
coefficient of the log sample size versus the log statistical
error. As in this log-log plot, in the strong signal-to-noise
setting, the statistical error roughly scales with n−0.5, while
in the low signal-to-noise setting, the statistical error roughly
scales with n−0.25. This coincides with our theory as in
Corollary 3.1.

5. Conclusion
In this paper, we show that by utilizing second-order in-
formation in the design of optimization algorithms, we are
able to improve the computational complexity of these algo-
rithms for solving parameter estimation in statistical models.
In particular, we study the statistical and computational
complexities of the NormGD algorithm, a variant of gra-
dient descent algorithm whose step size is scaled by the

maximum eigenvalue of the Hessian matrix of the loss func-
tion. We show that when the population loss function is
homogeneous, the NormGD algorithm only needs a logarith-
mic number of iterations to reach the final statistical radius
around the true parameter. In terms of iteration complex-
ity and total computational complexity, it is cheaper than
fixed step size GD algorithm, which requires a polynomial
number of iterations to reach the similar statistical radius
under the singular statistical model settings. It is worth
mentioning that beyond homogeneous assumption even the
theoretical guarantee for popular second order methods like
Newton’s method or BFGS has not been established. We
leave a rigorous theory for NormGD and other methods
beyond assumption (W.1) in future work. We wish to re-
mark that there are potentially more efficient algorithms
than NormGD by employing more structures of the Hessian
matrix, such as using the trace of the Hessian matrix as the
scaling factor of the GD algorithm. We leave a detailed
development for such direction in future work.
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Kuczyński, J. and Woźniakowski, H. Estimating the largest
eigenvalue by the power and lanczos algorithms with a
random start. SIAM Journal on Matrix Analysis and Appli-
cations, 13(4):1094–1122, 1992. doi: 10.1137/0613066.
URL https://doi.org/10.1137/0613066.

Kwon, J. Y., Ho, N., and Caramanis, C. On the minimax op-
timality of the EM algorithm for learning two-component
mixed linear regression. In AISTATS, 2021.

Lee, L.-F. and Chesher, A. Specification testing when
score test statistics are identically zero. Journal of
Econometrics, 31(2):121–149, 1986. ISSN 0304-4076.
doi: https://doi.org/10.1016/0304-4076(86)90045-X.
URL https://www.sciencedirect.com/
science/article/pii/030440768690045X.

Lindsay, B. Mixture Models: Theory, Geometry and Appli-
cations. In NSF-CBMS Regional Conference Series in
Probability and Statistics. IMS, Hayward, CA., 1995.

McLachlan, G. J. and Basford, K. E. Mixture Models: Infer-
ence and Applications to Clustering. Statistics: Textbooks
and Monographs. New York, 1988.

Mei, S., Bai, Y., and Montanari, A. The landscape of em-
pirical risk for nonconvex losses. The Annals of Statis-
tics, 46(6A), December 2018. ISSN 0090-5364. doi:
10.1214/17-aos1637. URL http://dx.doi.org/
10.1214/17-AOS1637.

Mou, W., Ho, N., Wainwright, M. J., Bartlett, P., and
Jordan, M. I. A diffusion process perspective on pos-
terior contraction rates for parameters. arXiv preprint
arXiv:1909.00966, 2019.

10

http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758
http://proceedings.mlr.press/v48/hardt16.html
http://proceedings.mlr.press/v48/hardt16.html
https://openreview.net/forum?id=PIL3YWXmx2
https://openreview.net/forum?id=PIL3YWXmx2
https://doi.org/10.1137/0613066
https://www.sciencedirect.com/science/article/pii/030440768690045X
https://www.sciencedirect.com/science/article/pii/030440768690045X
http://dx.doi.org/10.1214/17-AOS1637
http://dx.doi.org/10.1214/17-AOS1637


Improving Computational Complexity in Statistical Models with Local Curvature Information

Nelder, J. A. and Wedderburn, R. W. M. Generalized linear
models. Journal of the Royal Statistical Society: Series A
(General), 135, 1972.

Nesterov, Y. Lectures on Convex Optimization. Springer,
2018.

Netrapalli, P., Jain, P., and Sanghavi, S. Phase retrieval using
alternating minimization. IEEE Transactions on Signal
Processing, 63(18):4814–4826, 2015. doi: 10.1109/TSP.
2015.2448516.

Polyak, B. T. Introduction to Optimization. Optimization
Software, Inc., New York, 1987.

Ren, T., Cui, F., Atsidakou, A., Sanghavi, S., and Ho, N.
Towards statistical and computational complexities of
Polyak step size gradient descent. In AISTATS, 2022,
2022.

Rousseau, J. and Mengersen, K. Asymptotic behaviour
of the posterior distribution in overfitted mixture mod-
els. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73:689–710, 2011.

Shechtman, Y., Eldar, Y. C., Cohen, O., Chapman, H. N.,
Miao, J., and Segev, M. Phase retrieval with application
to optical imaging: A contemporary overview. IEEE
Signal Processing Magazine, 32(3):87–109, 2015. doi:
10.1109/MSP.2014.2352673.

van der Vaart, A. W. and Wellner, J. Weak Convergence and
Empirical Processes. Springer-Verlag, New York, NY,
1996.

Wainwright, M. J. High-Dimensional Statistics: A Non-
Asymptotic Viewpoint. Cambridge University Press, 2019.

Yi, X. and Caramanis, C. Regularized EM algorithms:
A unified framework and statistical guarantees. In Ad-
vances in Neural Information Processing Systems, pp.
1567–1575, 2015.

Zhuo, J., Kwon, J., Ho, N., and Caramanis, C. On
the computational and statistical complexity of over-
parameterized matrix sensing. arXiv preprint arXiv:
2102.02756, 2021.

11



Improving Computational Complexity in Statistical Models with Local Curvature Information

Supplementary Materials for “Improving Computational Complexity in
Statistical Models with Local Curvature Information”

In the supplementary material, we collect proofs and results deferred from the main text. In Appendix A, we provide general
theory for the statistical guarantee of NormGD for the homogeneous settings with all fast directions of the population
loss function. In Appendix B, we provide proofs for the main results in the main text. We then provide proofs for the
statistical and computational complexities of NormGD under generalized linear models and mixture models respectively
in Appendices C and D. We study the statistical behaviors of the NormGD under the strong signal-to-noise regime of
the symmetric two-component location Gaussian mixtures in Appendix E. Finally, we provide experiments to illustrate
the statistical behaviors of the NormGD iterates under the generalized linear model and the Gaussian mixture model in
Appendix F.

A. Homogeneous Settings with All Fast Directions
In this Appendix, we provide statistical guarantee for the NormGD iterates when the population loss function is homogeneous
with all fast directions. Following the population to sample analysis in equation (3), we first consider the strong convexity
and Lipschitz smoothness assumptions that characterize all fast directions.

(S.1) (Strong convexity and Lipschitz smoothness) For some radius r > 0, for all θ ∈ B(θ⋆, r) we have

c̄1 ≤ λmin(∇2f(θ)) ≤ λmax(∇2f(θ)) ≤ c̄2,

where c̄1 > 0 and c̄2 > 0 are some universal constants depending on r.

The Assumption (S.1) is a special case of Assumption (W.1) when α = 0. A simple example for the function f that satisfies
Assumption (S.1) is f(θ) = ∥θ∥2.

Given the Assumption (S.1), we obtain the following result for the contraction of the population NormGD operator F around
the true parameter θ⋆.

Lemma A.1. Assume Assumption (S.1) holds for some universal constants c̄1, c̄2. Then, if the step-size η ≤ c̄22
2c̄21

, then we
have that

∥F (θ)− θ⋆∥ ≤ κ̄∥θ − θ⋆∥,

where κ̄ < 1 is a universal constant that only depends on η, c̄1, c̄2.

The proof of Lemma A.1 is a direct from the proof of Lemma 2.1 with α = 0; therefore, its proof is omitted.

(S.2) (Stability of first and second-order information) For some fixed positive parameter r > 0, there exist a noise function
ε : N× (0, 1] → R+, and universal constants c̄3, c̄4 > 0 depends on r, such that

sup
θ∈B(θ⋆,r)

∥∇fn(θ)−∇f(θ)∥ ≤ c̄3 · ε(n, δ),

sup
θ∈B(θ⋆,r)

∥∇2fn(θ)−∇2f(θ)∥op ≤ c̄4 · ε(n, δ).

for all r ∈ (0, r) with probability 1− δ.

We would like to remark that the assumption in the uniform concentration of ∇fn(θ) around ∇f(θ) is standard for
analyzing optimization algorithms for solving parameter estimation under locally strongly convex and smooth population
loss function (Balakrishnan et al., 2017; Ho et al., 2020). The extra assumption on the uniform concentration of the empirical
Hessian matrix ∇2fn(θ) around the population Hessian matrix ∇2f(θ) is to ensure that λmax(∇2fn(θ) in NormGD
algorithm will stay close to λmax(∇2f(θ)). These two conditions are sufficient to guarantee the stability of the sample
NormGD operator Fn around the population NormGD operator in the following lemma.

12
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Lemma A.2. Assume that Assumption (S.2) holds, and n is sufficiently large such that c̄1 > 2c̄3ε(n, δ). Then, we obtain
that

sup
θ∈B(θ⋆,r)

∥Fn(θ)− F (θ)∥ ≤ c̄5ε(n, δ),

and c̄5 is a universal constant depends on η, c̄1, c̄2, c̄3, c̄4.

Proof. With straightforward calculation, we have that

∥Fn(θ)− F (θ)∥ ≤η

(∥∥∥∥∇f(θ)(λmax(∇2f(θ))− λmax(∇2fn(θ)))

λmax(∇2fn(θ))λmax(∇2f(θ))

∥∥∥∥+ ∥∥∥∥∇fn(θ)−∇f(θ)

λmax(∇2fn(θ))

∥∥∥∥)
≤η

(
c̄2c̄3ε(n, δ)

(c̄1 − c̄3ε(n, δ))c̄1
+

c̄4ε(n, δ)

c̄1 − c̄3ε(n, δ)

)
≤η

(
2c̄2c̄3 + 2c̄1c̄4

c̄12

)
ε(n, δ).

Take c̄5 accordingly, we conclude the proof.

Theorem A.3. Assume Assumptions (S.1) and (S.2) hold, and n is sufficient large such that c̄1 > 2c̄3ε(n, δ) and c̄5ε(n, δ) ≤
(1 − κ̄)r where κ̄ is the constant defined in Lemma A.1. Then, there exist universal constants C̄1, C̄2 such that for
t ≥ C̄1 log(1/ε(n, δ)), the following holds:

∥θtn − θ⋆∥ ≤ C̄2 · ε(n, δ).

Proof. With the triangle inequality, we have that

∥θt+1
n − θ⋆∥ =∥Fn(θ

t
n)− θ⋆∥

≤∥Fn(θ
t
n)− F (θtn)∥+ ∥F (θtn)− θ⋆∥

≤ sup
θ∈B(θ⋆,r)

∥Fn(θ)− F (θ)∥+ κ̄∥θtn − θ⋆∥

≤c̄5ε(n, δ) + κ̄r ≤ r.

Hence, we know ∥θtn − θ⋆∥ ≤ r for all t ∈ N. Furthermore, by repeating the above argument T times, we can obtain that

∥θTn − θ⋆∥ ≤c̄5ε(n, δ)

(
T−1∑
t=0

κ̄t

)
+ κ̄T ∥θ0n − θ⋆∥

≤ c̄5
1− κ̄

ε(n, δ) + κ̄T r.

By choosing T ≤ log(r)+log(1/ε(n,δ))
log(1/κ̄) , we know κ̄T r ≤ ε(n, δ), hence

∥θTn − θ⋆∥ ≤
(

c̄5
1− κ̄

+ 1

)
ε(n, δ).

Take C̄1, C̄2 accordingly, we conclude the proof.

B. Proofs of Main Results
In this Appendix, we provide proofs for the results in the main text.

13
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B.1. Proof of Lemma 2.1

We start from the following lemma:

Lemma B.1. Assume Assumption (W.1) holds, we have that

f(θ)− f(θ⋆) ≥ c1∥θ − θ⋆∥α+2

(α+ 1)(α+ 2)
.

Proof. Consider g(θ) = f(θ)− c1∥θ−θ⋆∥α+2

(α+1)(α+2) . With Assumption (W.1), we know that

∇2g(θ) = ∇2f(θ)− c1
(α+ 1)(α+ 2)

(
α(α+ 2)∥θ − θ⋆∥α−2(θ − θ)⋆(θ − θ⋆)⊤ + (α+ 2)∥θ − θ⋆∥αI

)
⪰ 0,

as the operator norm of α(α+ 2)∥θ − θ⋆∥α−2(θ − θ⋆)(θ − θ⋆)⊤ + (α+ 2)∥θ∥αI is less than (α+ 1)(α+ 2)∥θ − θ⋆∥α.
Meanwhile, we have that

∇g(θ) = ∇f(θ)− c1∥θ − θ⋆∥α
α+ 1

(θ − θ⋆).

As ∇f(θ⋆) = 0, we know ∇g(θ⋆) = 0, which means θ⋆ is the minimizer of g. Hence,

f(θ⋆) = g(θ⋆) ≤ g(θ) = f(θ)− c1∥θ − θ⋆∥α+2

(α+ 1)(α+ 2)
,

which means

f(θ)− f(θ⋆) ≥ c1∥θ − θ⋆∥α+2

(α+ 1)(α+ 2)
.

As a consequence, we obtain the conclusion of Lemma B.1.

Now, we prove Lemma 2.1. Notice that

∥F (θ)− θ⋆∥2 =

∥∥∥∥θ − η

λmax(∇2f(θ))
∇f(θ)− θ⋆

∥∥∥∥2
=∥θ − θ⋆∥2 − 2η

λmax(∇2f(θ))
⟨∇f(θ), θ − θ⋆⟩+ η2

λ2
max(∇2(f(θ)))

∥∇f(θ)∥2

=∥θ − θ⋆∥2 − η

λmax(∇2f(θ))

(
2⟨∇f(θ), θ − θ⋆⟩ − η

λmax(∇2f(θ))
∥∇f(θ)∥2

)
≤∥θ − θ⋆∥2 − η

λmax(∇2f(θ))

(
2(f(θ)− f(θ⋆))− η

λmax(∇2f(θ))
∥∇f(θ)∥2

)
,

where the last inequality is due to the convexity. With Assumption (W.1), we have that

∥∇f(θ)∥ =

∥∥∥∥∫ 1

0

∇2f(θ⋆ + t(θ − θ⋆))(θ − θ⋆)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(θ⋆ + t(θ − θ⋆))(θ − θ⋆)
∥∥ dt

≤
∫ 1

0

λmax(∇2f(θ⋆ + t(θ − θ⋆)))∥θ − θ⋆∥dt

≤
∫ 1

0

c2t
α∥(θ − θ⋆)∥α∥θ − θ⋆∥dt

≤ c2
α+ 1

∥θ − θ⋆∥α+1.

14
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As η ≤ c21
2c22

≤ c21(α+1)

c22(α+2)
, we have that

η

λmax(∇2f(θ))

(
f(θ)− f(θ⋆)− η

λmax(∇2f(θ))
∥∇f(θ)∥2

)
≥ η

c2

(
c1

(α+ 1)(α+ 2)
− ηc22

c1(α+ 1)2

)
∥θ − θ⋆∥2.

Hence, we find that

∥F (θ)− θ⋆∥2 ≤
(
1− η

c2

(
c1

(α+ 1)(α+ 2)
− ηc22

c1(α+ 1)2

))
∥θ − θ⋆∥2.

Take κ accordingly, we conclude the proof.

B.2. Proof of Lemma 2.2

Notice that

∥Fn(θ)− F (θ)∥ =

∥∥∥∥ η

λmax(∇2fn(θ))
∇fn(θ)−

η

λmax(∇2f(θ))
∇f(θ)

∥∥∥∥
=η

∥∥∥∥∇fn(θ)λmax(∇2f(θ))−∇f(θ)λmax(∇2fn(θ))

λmax(∇2fn(θ))λmax(∇2f(θ))

∥∥∥∥
≤η

(∥∥∥∥∇f(θ)(λmax(∇2f(θ))− λmax(∇2fn(θ)))

λmax(∇2fn(θ))λmax(∇2f(θ))

∥∥∥∥+ ∥∥∥∥∇fn(θ)−∇f(θ)

λmax(∇2fn(θ))

∥∥∥∥) .

For the term ∥∇fn(θ)−∇f(θ)∥, we have that

∥∇fn(θ)−∇f(θ)∥ ≤∥∇fn(θ
⋆)−∇f(θ⋆)∥

+

∥∥∥∥∫ 1

0

(∇2fn(θ
⋆ + t(θ − θ⋆))−∇2f(θ⋆ + t(θ − θ⋆)))(θ − θ⋆)dt

∥∥∥∥
≤
∫ 1

0

∥(∇2fn(θ
⋆ + t(θ − θ⋆))−∇2f(θ⋆ + t(θ − θ⋆)))(θ − θ⋆)∥dt

≤
∫ 1

0

∥∇2fn(θ
⋆ + t(θ − θ⋆))−∇2f(θ⋆ + t(θ − θ⋆))∥op∥θ − θ⋆∥dt

≤
∫ 1

0

c3t
γε(n, δ)∥θ − θ⋆∥γ+1dt

=
c3∥θ − θ⋆∥γ+1ε(n, δ)

γ + 1
.

Meanwhile, it’s straightforward to show that

|λmax(∇2fn(θ))− λmax(∇f(θ))| ≤ 3c3r
γε(n, δ).

Hence, we have that

∥Fn(θ)− F (θ)∥ ≤η

(∥∥∥∥∇f(θ)(λmax(∇2f(θ))− λmax(∇2fn(θ)))

λmax(∇2fn(θ))λmax(∇2f(θ))

∥∥∥∥+ ∥∥∥∥∇fn(θ)−∇f(θ)

λmax(∇2fn(θ))

∥∥∥∥)
≤η

(
3c2c3r

γ+1−αε(n, δ)

(α+ 1)(c1rα − 3c3rγε(n, δ))c1rα
+

c3r
γε(n, δ)

(γ + 1)(c1rα − 3c3rγ+1ε(n, δ))

)
.

As r ≥
(

6c3ε(n,δ)
c1

)1/(α−γ)

, we can further have

∥Fn(θ)− F (θ)∥ ≤η

(
6c2c3

(α+ 1)c21
+

2c3
(γ + 1)c1

)
rγ+1−αε(n, δ).

Taking c4 accordingly, we conclude the proof.
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C. Proof of Generalized Linear Models
In this appendix, we provide the proof for the NormGD in generalized linear models.

C.1. Homogeneous assumptions

Based on the formulation of the population loss function L in equation (7), we have

∇L(θ) = 2p(2p− 1)!!(θ − θ⋆)∥θ − θ⋆∥2p−2,

∇2L(θ) = (2p(2p− 1)!!)∥θ − θ⋆∥2p−4
(
∥θ − θ⋆∥2Id + (2p− 4)(θ − θ⋆)(θ − θ⋆)⊤

)
.

Notice that, θ− θ⋆ is an eigenvector of ∥θ− θ⋆∥2Id + (2p− 4)(θ− θ⋆)(θ− θ⋆)⊤ with eigenvalue (2p− 3)∥θ− θ⋆∥2, and
any vector that is orthogonal to θ − θ⋆ (which forms a d − 1 dimensional subspace) is an eigenvector of ∥θ − θ⋆∥2Id +
(2p− 4)(θ − θ⋆)(θ − θ⋆)⊤ with eigenvalue ∥θ − θ⋆∥2. Hence, we have that

λmax(∥θ − θ⋆∥2Id + (2p− 4)(θ − θ⋆)(θ − θ⋆)⊤) =(2p− 3)∥θ − θ⋆∥2,
λmin(∥θ − θ⋆∥2Id + (2p− 4)(θ − θ⋆)(θ − θ⋆)⊤) =∥θ − θ⋆∥2,

which shows that L(θ) satisfies the homogeneous assumption.

C.2. Uniform concentration bound

The proof for the first concentration bound (6) is in Appendix D.1 of (Ren et al., 2022); therefore, it is omitted. We focus
on proving the second uniform concentration bounds (6) and (10) for the Hessian matrix ∇2Ln(θ) around the Hessian
matrix ∇2L(θ) under both the strong and low signal-to-noise regimes. Indeed, we would like to show the following uniform
concentration bound that captures both the bounds (6) and (10).
Lemma C.1. There exist universal constants C1 and C2 such that as long as n ≥ C1(d log(d/δ))

2p we obtain that

sup
θ∈B(θ⋆,r)

∥∇2Ln(θ)−∇2L(θ)∥op ≤ C2

(
(r + ∥θ⋆∥)p−2 + (r + ∥θ⋆∥)2p−2

)√d+ log(1/δ)

n
. (17)

Proof of Lemma C.1. Direct calculation shows that

∇2Ln(θ) =
1

n

n∑
i=1

(
p(2p− 1)(X⊤

i θ)2p−2 − p(p− 1)Yi(X
⊤
i θ)p−2

)
XiX

⊤
i ,

∇2L(θ) =E
[
p(2p− 1)(X⊤θ)2p−2 − p(p− 1)(X⊤θ⋆)p(X⊤θ)p−2XX⊤] .

Therefore, we obtain

∇2Ln(θ)−∇2L(θ) =p(2p− 1)

(
1

n

n∑
i=1

(X⊤
i θ)2p−2XiX

⊤
i − E

[
(X⊤θ)2p−2XX⊤])

− p(p− 1)

(
1

n

n∑
i=1

Yi(X
⊤
i θ)p−2XiX

⊤
i − E

[
(X⊤θ⋆)p(X⊤θ)p−2XX⊤]) .

Using the triangle inequality with the operator norm, the above equation leads to

sup
θ∈B(θ⋆,r)

∥∇2Ln(θ)−∇2L(θ)∥op ≤ C(A1 +A2 +A3), (18)

where C is some universal constant and A1, A2, A3 are defined as follows:

A1 = sup
θ∈B(θ⋆,r)

∥∥∥∥ 1n
n∑

i=1

(X⊤
i θ)2p−2XiX

⊤
i − E

[
(X⊤θ)2p−2XX⊤]∥∥∥∥

op
,

A2 = sup
θ∈B(θ⋆,r)

∥∥∥∥ 1n
n∑

i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2XiX
⊤
i

∥∥∥∥
op
,

A3 = sup
θ∈B(θ⋆,r)

∥∥∥∥ 1n
n∑

i=1

(X⊤
i θ⋆)p(X⊤

i θ)p−2XiX
⊤
i − E

[
(X⊤θ⋆)p(X⊤θ)p−2XX⊤]∥∥∥∥

op
. (19)
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With variational characterization of the operator norm and upper bound the norm of any θ ∈ B(θ⋆, r) with r + ∥θ⋆∥, we
have

A1 ≤ (r + ∥θ⋆∥)2p−2T1,

A2 ≤ (r + ∥θ⋆∥)p−2T2,

A3 ≤ (r + ∥θ⋆∥)p−2T3,

where the terms T1, T2, T3 are defined as follows:

T1 := sup
u∈Sd−1,θ∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

(X⊤
i θ)2p−2(X⊤

i u)2 − E
[
(X⊤θ)2p−2(X⊤u)2

]∣∣∣∣∣
T2 := sup

u∈Sd−1,θ∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2(X⊤
i u)2

∣∣∣∣∣
T3 := sup

u∈Sd−1,θ∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

(X⊤
i θ⋆)p(X⊤

i θ)p−2(X⊤
i u)2 − E

[
(X⊤θ⋆)p(X⊤θ)p−2(X⊤u)2

]∣∣∣∣∣ ,
where Sd−1 is the unit sphere in Rd. We know consider the high probability bound of each individual terms following the
proof strategy in (Ren et al., 2022).

Bound for T2: Assume U is a 1/8-cover of Sd−1 under ∥ · ∥2 with at most 17d elements, the standard discretization
arguments (e.g. Chapter 6 in (Wainwright, 2019)) show

sup
u∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2(X⊤
i u)2

∣∣∣∣∣ ≤2 sup
u∈U

∣∣∣∣∣ 1n
n∑

i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2(X⊤
i u)2

∣∣∣∣∣ .
With a symmetrization argument, we know for any even integer q ≥ 2,

E

(
sup

u∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2(X⊤
i u)2

∣∣∣∣∣
)q

≤E

(
sup

u∈Sd−1

∣∣∣∣∣ 2n
n∑

i=1

εi(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2(X⊤
i u)2

∣∣∣∣∣
)q

,

where {εi}i∈[n] is a set of i.i.d. Rademacher random variables. Furthermore, for a compact set Ω, we define

R(Ω) := sup
θ∈Ω,p′∈[1,p]

∣∣∣∣∣ 2n
n∑

i=1

εi(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p
′−2(X⊤

i u)2

∣∣∣∣∣ ,
where N (t) is a t-cover of Sd−1 under ∥ · ∥2. Then we have

R(Sd−1) ≤2R(N (t)) + 3p−2tR(Sd−1).

By taking t = 3−p+1, we obtain that R(Sd−1) ≤ 3R(N (3−p+1)). Furthermore, with the union bound, for any q ≥ 1 we
have that

sup
θ∈Sd−1,p′∈[2,p]

E

[∣∣∣∣∣ 2n
n∑

i=1

εi(Yi − (X⊤
i θ⋆)p((X⊤

i θ)p
′−2(X⊤

i u)2

∣∣∣∣∣
q]

≤ E[Rq(N (3−p+1))]

p|N (3−p+1)| .

Therefore, we only need to consider E
[∣∣∣ 2n ∑n

i=1 εi(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p
′−2(X⊤

i u)2
∣∣∣q]. An application of Khintchine’s

inequality (Boucheron et al., 2013) demonstrates that we can find a universal constant C such that for all p′ ∈ [2, p], we have

E

[∣∣∣∣∣ 2n
n∑

i=1

εi(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p
′−2(X⊤

i u)2

∣∣∣∣∣
q]

≤ E

(Cq

n2

n∑
i=1

(Yi − (X⊤
i θ⋆)p)2(X⊤

i θ)2(p
′−2)(X⊤

i u)4

)q/2
 .
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From the assumptions on Yi and Xi for all i ∈ [n], we have

E
[
(Yi − (X⊤

i θ⋆)p)2(X⊤
i θ)2(p

′−2)(X⊤
i u)4

]
≤(2p′)p

′
,

E
[(

(Y − (X⊤
i θ⋆)p)2(X⊤

i θ)2(p
′−4)(X⊤

i u)4
)q/2]

≤(2p′q)p
′q.

From Lemma 2 in (Mou et al., 2019), we have∣∣∣∣∣ 1n
n∑

i=1

(
(Y − (X⊤

i θ⋆)p)2(X⊤
i θ)2(p

′−2)(X⊤
i u)4

)q/2
− E

[
(Yi − (X⊤

i θ⋆)p)2(X⊤
i θ)2(p

′−2)(X⊤
i u)4

]∣∣∣∣∣
≤ (8p′)p

′

√
log 4/δ

n
+ (2p′ log(n/δ))p

′ log 4/δ

n

with probability at least 1− δ. Hence, we find that

E

( 1

n

n∑
i=1

(Yi − (X⊤
i θ⋆)p)2(X⊤

i θ)2(p
′−1)(X⊤

i u)4

)q/2


≤(4p′)p
′q + 2q/2

∫ ∞

0

P
[∣∣∣∣ n∑

i=1

(
(Yi − (X⊤

i θ⋆)p)2(X⊤
i θ)2(p

′−2)(X⊤
i u)4

)q/2
− E

[
(Yi − (X⊤

i θ⋆)p)2(X⊤
i θ)2(p

′−2)(X⊤
i u)4

]∣∣∣∣ ≥ λ

]
dλq/2

≤(4p′)p
′q + C ′p′q

(
(32p′)p

′q/2n−q/4)Γ(q/4)

+(8p′)(p
′+1)q/2n−q/2

(
(log n)(p+1)q/2 + Γ((p′ + 1)q/2)

))
,

where C ′ is a universal constant and Γ(·) is the Gamma function. As a result, we have that

E

[∣∣∣∣∣
(
1

n

n∑
i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2X⊤
i u− E[(X⊤θ⋆)p(X⊤θ)p−1(X⊤u)4]

)∣∣∣∣∣
q]

≤ p · 3dp+2d+q

(
Cq

n

)q/2 (
(4p)pq + 2C ′pq (32p)pq n−q/4Γ(q/4)

+(8p)(p+1)q/2n−q/2
(
(log n)(p+1)q/2 + Γ((p+ 1)q/2)

))
,

for any u ∈ U . Eventually, with union bound, we obtain

(
E

[∥∥∥∥∥ 1n
n∑

i=1

(Yi − (X⊤
i θ⋆)p)(X⊤

i θ)p−2XiX
⊤
i

∥∥∥∥∥
q])1/q

≤ 2 · (17)d/q · 3 dp+2d
q +1

[√
Cpq

n
+

(
Cpq

n

)3/4

+
Cp

n
(log n+ q)(p+1)/2

]
,

where Cp is a universal constant that only depends on p. Take q = d(p+ 3) + log(1/δ) and use the Markov inequality, we
get the following bound on the second term T2 with probability 1− δ:

T2 ≤ c1

(√
d+ log(1/δ)

n
+

1

n

(
d+ log

(n
δ

)) p+1
2

)
. (20)
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Bounds for T1 and T3: Using the same argument as that of T2, we obtain the following high probability bounds for T1

and T3:

T1 ≤ c2

(√
d+ log(1/δ)

n
+

1

n

(
d+ log

(n
δ

)) 2p+1
2

)
., (21)

T3 ≤ c3

(√
d+ log(1/δ)

n
+

1

n

(
d+ log

(n
δ

)) 2p+1
2

)
. (22)

with probability 1 − δ where c2 and c3 are some universal constants. Plugging the bounds (20), (21), and (22) to the
bounds (18) and (19), and use the condition that n ≥ C1(d log(d/δ))

2p we obtain the conclusion of the lemma.

D. Proof of Gaussian Mixture Models
In this appendix, we provide the proof for the NormGD in Gaussian mixture models.

D.1. Homogeneous Assumptions

The proof for the claim (14) is direct from Appendix A.2.2 from (Ren et al., 2022). Therefore, we only focus on proving the
claim (15). Indeed, direct calculation shows that

∇2L̄(θ) = 1

σ2

(
Id −

1

σ2
E
(
XX⊤sech2

(
X⊤θ
σ2

)))
.

We can simplify the computation of ∇2L̄ via a change of coordinates. In particular, we choose an orthogonal matrix Q such
that Qθ = ∥θ∥e1. Here, e1 = (1, 0, . . . , 0) is the first canonical basis in dimension d. We then denote W = QX

σ . Since
X ∼ N (0, σ2Id), we have W = (W1, · · · ,Wd) ∼ N (0, Id). Therefore, we can rewrite ∇2L̄ as follows:

∇2L̄(θ) = 1

σ2

(
Id − EW

(
WW⊤sech2

(
W1∥θ∥

σ

)))
=

1

σ2
(Id −B) .

It is clear that the matrix B is diagonal matrix and satisfies that B11 = EW1

[
W 2

1 sech2
(

W1∥θ∥
σ

)]
, Bii =

EW1

[
sech2

(
W1∥θ∥

σ

)]
for all 2 ≤ i ≤ d. An application of sech2(x) ≤ 1− x2 + 2

3x
4 for all x ∈ R shows that

B11 ≤ EW1

[
W 2

1

(
1− W 2

1 ∥θ∥2
σ2

+
2W 4

1 ∥θ∥4
3σ4

)]
= 1− 3∥θ∥2

σ2
+

10∥θ∥4
σ4

,

Bii ≤ EW1

[(
1− W 2

1 ∥θ∥2
σ2

+
2W 4

1 ∥θ∥4
3σ4

)]
= 1− ∥θ∥2

σ2
+

2∥θ∥4
σ4

,

for all 2 ≤ i ≤ d. When ∥θ∥ ≤ σ
2 , we have that ∥θ∥2

σ4 ≤ 1
4 , and hence

B11 ≤ 1− 3∥θ∥2
σ2

+
10∥θ∥4
σ4

≤ 1− ∥θ∥2
2σ2

,

Bii ≤ 1− ∥θ∥2
σ2

+
2∥θ∥4
σ4

≤ 1− ∥θ∥2
2σ2

, ∀ 2 ≤ i ≤ d.

Hence, as long as ∥θ∥ ≤ σ/2 we have that

λmin(∇2L̄(θ)) ≥ ∥θ∥2
2σ2

,

which concludes the proof.

D.2. Uniform Concentration Bounds for Mixture Models

See Corollary 4 in (Balakrishnan et al., 2017) for the proof of the uniform concentration result between ∇L̄n(θ) and ∇L̄(θ)
in equation (24) for the strong signal-to-noise regime. Now, we prove the uniform concentration bounds between ∇2L̄n(θ)
and ∇L̄(θ) in equations (24) and (16) for both the strong signal-to-noise and low signal-to-noise regimes. It is sufficient to
prove the following lemma.
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Lemma D.1. There exist universal constants C1 and C2 such that as long as n ≥ C1d log(1/δ) we obtain that

sup
θ∈B(θ⋆,r)

∥∇2Ln(θ)−∇2L(θ)∥op ≤ C2(∥θ⋆∥+ σ2)

√
d+ log(1/δ)

n
. (23)

Proof of Lemma D.1. For the sample log-likelihood function of the Gaussian mixture model, direct calculation shows that

L̄n(θ) =
∥θ∥2 + 1

n

∑n
i=1 ∥Xi∥2

2σ2
− 1

n

n∑
i=1

log

(
exp

(
−X⊤

i θ

σ2

)
+ exp

(
X⊤

i θ

σ2

))
− log(2(

√
2π)dσd).

Therefore, we find that

∇L̄n(θ) =
θ

σ2
− 1

nσ2

n∑
i=1

Xi tanh

(
X⊤

i θ

σ2

)
,

∇2L̄n(θ) =
1

σ2

(
Id −

1

nσ2

n∑
i=1

XiX
⊤
i sech2

(
X⊤

i θ

σ2

))
,

where sech2(x) = 4
(exp(−x)+exp(x))2 for all x ∈ R.

For the population log-likelihood function, we have

∇2L̄(θ) = 1

σ2

(
Id −

1

σ2
E
(
XX⊤sech2

(
X⊤θ
σ2

)))
.

Therefore, we obtain that

∇2L̄n(θ)−∇2L̄(θ) = 1

σ4

(
1

n

n∑
i=1

XiX
⊤
i sech2

(
X⊤

i θ

σ2

)
− E

(
XX⊤sech2

(
X⊤θ
σ2

)))
.

Use the variational characterization of operator norm, it’s sufficient to consider

T = sup
u∈Sd−1,θ∈B(θ⋆,r)

∣∣∣∣∣ 1n
n∑

i=1

(X⊤
i u)2sech2

(
X⊤

i θ

σ2

)
− E

(
(X⊤u)2sech2

(
X⊤θ
σ2

))∣∣∣∣∣ .
With a standard discretization argument (e.g. Chapter 6 in (Wainwright, 2019)), let U be a 1/8-cover of Sd−1 under ∥ · ∥2
whose cardinality can be upper bounded by 17d, we have that

sup
u∈Sd−1,θ∈B(θ⋆,r)

∣∣∣∣∣ 1n
n∑

i=1

(X⊤
i u)2sech2

(
X⊤

i θ

σ2

)
− E

(
(X⊤u)2sech2

(
X⊤θ
σ2

))∣∣∣∣∣
≤2 sup

u∈U,θ∈B(θ⋆,r)

∣∣∣∣∣ 1n
n∑

i=1

(X⊤
i u)2sech2

(
X⊤

i θ

σ2

)
− E

(
(X⊤u)2sech2

(
X⊤θ
σ2

))∣∣∣∣∣ .
With a symmetrization argument on probability (van der Vaart & Wellner, 1996), we have that

P

[
sup

θ∈B(θ⋆,r)

∣∣∣∣∣ 1n
n∑

i=1

(X⊤
i u)2sech2

(
X⊤

i θ

σ2

)
− E

(
(X⊤u)2sech2

(
X⊤θ
σ2

))∣∣∣∣∣ ≥ t

]

≤c1P

[
sup

θ∈B(θ⋆,r)

∣∣∣∣∣ 2n
n∑

i=1

εi(X
⊤
i u)2sech2

(
X⊤

i θ

σ2

)∣∣∣∣∣ ≥ c2t

]
,

where {εi} is a set of i.i.d Rademacher random variable and c1 and c2 are two positive universal constants. Define

Z := sup
θ∈B(θ⋆,r)

∣∣∣∣∣ 2n
n∑

i=1

εi(X
⊤
i u)2sech2

(
X⊤

i θ

σ2

)∣∣∣∣∣ .
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For x ∈ R, define (x)+ = max(x, 0), (x)− = min(x, 0). Furthermore, for random variable X , we denote

∥X∥q = (E[Xq])
1/q

.

With Theorem 15.5 in (Boucheron et al., 2013), there exists an absolute constant C, such that for all q ≥ 2,∥∥(Z − E[Z])+
∥∥
q
≤
√
Cq∥V +∥q/2,

where is the Efron-Stein estimate that is defined as

V + =

n∑
i=1

E
[
(Z − Z ′

i)
2
+)|X

]
where Z ′

i is obtained by replacing the variable Xi by an independent copy X ′
i (see Section 6.9 of (Boucheron et al., 2013)

for the details). With the proof idea of Theorem 15.14 in (Boucheron et al., 2013), V + can be bounded as

V + ≤ sup
θ∈B(θ⋆,r)

1

n
E
[
(X⊤u)4sech4

(
X⊤θ
σ2

)]
+ sup

θ∈B(θ⋆,r)

4

n2

n∑
i=1

(X⊤
i u)4sech4

(
X⊤

i θ

σ2

)

≤ 1

n
E
[
(X⊤u)4

]
+

4

n2

n∑
i=1

(X⊤
i u)4.

Here we use the fact that 0 ≤ sech2(x) ≤ 1 for all x in the last step. Notice that, X⊤
i u ∼ 1

2N (u⊤θ⋆, σ2)+ 1
2N (−u⊤θ⋆, σ2).

We can verify that there exists absolute constant c, such that

E
[
(X⊤

i u)2p
]
= EX∼N (u⊤θ⋆,σ2)

[
(X⊤u)2p

]
≤ (2cp)p(∥θ⋆∥2 + σ2)p.

Apply Lemma 2 in (Mou et al., 2019) with Yi = (X⊤
i u)4, we have that

1

n

n∑
i=1

(X⊤
i u)4 ≤ c(∥θ⋆∥2 + σ2)2

(
1 +

√
log 1/δ

n
+

√
log n/δ log 1/δ

n

)
,

with probability at least 1− δ for some absolute constant c. As n ≥ C1(d+ log 1/δ), we can conclude that

V + ≤ c′(∥θ⋆∥2 + σ2)2

n

for some universal constant c′. Furthermore, as Z ≥ 0, we have that∥∥(Z − E[Z])−
∥∥
q
≤ E[Z].

Hence, with Minkowski’s inequality, we have that

∥Z∥q ≤ 2E[Z] +

√
cq(∥θ⋆∥2 + σ2)2

n
,

for some absolute constant c. We now bound E[Z]. Consider the following function class

G :=

{
gθ : X → (X⊤u)2sech2

(
X⊤θ
σ2

) ∣∣∣∣θ ∈ Rd

}
.

Clearly, the function class G has an envelop function Ḡ(X) = (X⊤u)2. Meanwhile, as the function sech2 is monotonic in
(−∞, 0) and (0,∞) and θ here effects only in the form X⊤θ. Following some algebra we know the VC subgraph dimension
of G is at most d+ 2. Hence, the L2-covering number of G can be bounded by

N̄(t) := sup
Q

∣∣N (G, ∥ · ∥L2(Q), t∥Ḡ∥L2(Q))
∣∣ ≤ (1/t)c(d+1)
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for any t > 0, where c is an absolute constant. With Dudley’s entropy integral bound (e.g. (Wainwright, 2019, Theorem
5.22)), we have

E[Z] ≤c

√∑n
i=1(X

⊤
i u)4

n2

∫ 1

0

√
1 + N̄(t)dt

≤c

√
d(∥θ⋆∥2 + σ2)2

n

for some absolute constant c.

Take q = log 1/δ, use the Markov equality and an union bound over u, we know there exist universal constants C1 and C2,
such that the following inequality

sup
θ∈B(θ⋆,r)

∣∣∣∣∣ 1n
n∑

i=1

XiX
⊤
i sech2

(
X⊤

i θ

σ2

)
− E

(
XiX

⊤
i sech2

(
X⊤θ
σ2

))∣∣∣∣∣
≤ C2(∥θ⋆∥2 + σ2)

√
d+ log 1/δ

n

holds with probability at least 1− δ as long as n ≥ C1(d+ log 1/δ). As a consequence, we obtain the conclusion of the
lemma.

E. Gaussian mixture models: Strong Signal-to-Noise Regime
In this appendix, we study the behavior of the NormGD under the strong signal-to-noise regime of the symmetric two-
component Gaussian mixture models (11).

Strong signal-to-noise regime: Recall that we obtain an estimation of θ⋆ via maximizing the sample log-likelihood function
associated with model (11). For the strong signal-to-noise regime, we assume that ∥θ⋆∥ ≥ Cσ for some universal constant
C. Since the function L̄ is locally strongly convex and smooth as long as θ ∈ B(θ⋆, ∥θ⋆∥

4 ) (see Corollary 1 in (Balakrishnan
et al., 2017)), the Assumption (S.1) under the homogeneous setting with all fast directions is satisfied. Furthermore, as long
as we choose the radius r ≤ ∥θ⋆∥

4 and the sample size n ≥ C1d log(1/δ) for some universal constant C1, with probability at
least 1− δ there exist universal constants C2 and C3 such that

sup
θ∈B(θ⋆,r)

∥∇L̄n(θ)−∇L̄(θ)∥ ≤ C2

√
d log(1/δ)/n,

sup
θ∈B(θ⋆,r)

∥∇2L̄n(θ)−∇2L̄(θ)∥op ≤ C3

√
d log(1/δ)/n. (24)

The proof of claims (24) is in Appendix D.2. In light of Theorem A.3 in Appendix A for homogeneous settings with all fast
directions, the NormGD iterates converge to the final statistical radius (d/n)1/2 after log(n) iterations (see Corollary 3.2 for
a formal statement of this result).

Comparison with other methods. In the strong signal-to-noise case, Newton’s method and NormGD reach the final
statistical radius (d/n)1/2 around the true parameter θ⋆ after log(n) number of iterations, while the fixed step size GD
algorithm, which is also the EM algorithm for the symmetric two-component mixture, requires (d/n)1/2 number of iterations
to reach the same statistical radius of (d/n)1/2 (Ho et al., 2020).

F. Experimental Setup and Additional Experiments
In this appendix, we initially present the specifics of the experimental setup. Additionally, we include further experiments
involving Gaussian mixture models.

F.1. Experimental Setup

Initialization. We initialize the starting point by uniformly sampling a point from a unit sphere centered at the true parameter
θ⋆, i.e., θ0 := θ⋆ + α · ρ0 where ρ0 ∼ Uniform(Sd−1). Throughout the experiments, for strong signal-to-noise ratio, we set
θ⋆ =

√
d · 1d, and in low signal-to-noise ratio setting, we simply set θ⋆ = 0d.
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Baselines. In our simulation, we conducted a comparative analysis between NormGD and fixed step-size gradient descent,
Newton’s method, and BFGS as the baseline methods. For BFGS algorithm the iterative method is defined as

θt+1 = θt − ηHt∇f(θt), ∀t ≥ 0, (25)

where Ht ∈ Rd×d and η is the step size. There are several approaches for approximating Ht leading to different quasi-
Newton methods, but in this paper, we focus on the method considered in (Jin et al., 2024), in which Ht is updated as

Ht =

(
I − st−1u

⊤
t−1

s⊤t−1ut−1

)
Ht−1

(
I − ut−1s

⊤
t−1

s⊤t−1ut−1

)
+

st−1s
⊤
t−1

s⊤t−1ut−1
, ∀t ≥ 1, (26)

where st−1 := θt − θt−1 and ut−1 := ∇f(θt)−∇f(θt−1) for all t ≥ 1. It is worth mentioning that in all experiments we
initialize H0 := (∇2f(θ0))−1 to help with the stability of BFGS.

Synthetic Data. In the experiments for GLM described in Section 4, we created a dataset of samples {(Xi, Yi)}ni=1 ⊂
Rd × R under the following criteria: Xi follows a normal distribution with zero mean and covariance matrix Id, and
Yi = g(X⊤

i θ⋆) + εi. Here, the function g(r) is defined as g(r) := r2, and the noise terms {εi}ni=1 are independent and
identically distributed following a zero mean normal distribution with variance σ2. Throughout the simulations for the
generalized linear model, we maintained a sample size of n = 1000, a data dimension of d = 2, a noise variance of
σ2 = 0.01, and a learning rate of η = 0.1.

In the GMM experiments, we generated a set of samples {Xi}ni=1 ⊂ Rd from the Gaussian mixture of two-component
symmetric location: {Xi}ni=1

i.i.d.∼ 1
2N (θ⋆, σ2Id) +

1
2N (−θ⋆, σ2Id). To do so, we first generate n i.i.d. Rademacher random

variables {σi}ni=1 uniformly chosen from {±1}. Then, we generate i.i.d. samples from the conditional distribution of
Xi|σi ∼ N (σiθ

⋆, σ2Id). Throughout the simulations for the Gaussian mixture model, we set the sample size n = 1000, the
dimension of the data of d = 5, and the variance of the Gaussian component σ2 = 1.

F.2. Gaussian Mixture Model

In this Appendix, we conduct numerical experiments on the Gaussian mixture model to empirically validate our theoretical
findings concerning the convergence rates and the statistical rates of the sample iterates.

Figure 3: Convergence Rate for the Gaussian Mixture Model (GMM). Left: All methods converge linearly in the high
signal-to-noise setting; Right: NormGD and Newton’s method in the low signal-to-noise setting converges linearly while
GD converges sub-linearly.
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(a) Convergence rate of sample iterates
in High SNR setting with n = 1000
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(b) Convergence rate of sample iterates
in Low SNR setting with n = 1000

Convergence Rate. To verify our theory in Corollary 3.2, we performed a simulation on Gaussian Mixture Model (GMM),
and the results are shown in Figure 3. We fixed the learning rate at η = 0.01. As shown in Figure 3, we have depicted the
convergence rates of Gradient Descent, Newton’s method, and NormGD for strong and low signal-to-noise ratio settings.
Notably, we do not include a comparison with BFGS due to its instability in both settings. In Figure 3a, we show the
linear convergence of sample iterations in the strong signal-to-noise setting. Meanwhile, in Figure 3b, we demonstrate the
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sublinear convergence of fixed step-size gradient descent and the linear convergence of Newton’s and NormGD in the low
SNR setting. Moreover, NormGD converges to a smaller statistical radius compared to the other methods, as shown in
Figure 3b.

Figure 4: Statistical rate for the Gaussian Mixture Model (GMM). Left: (High SNR) The statistical error of all methods
roughly scales with n−0.5; Right: (Low SNR) the statistical error roughly scales with n−0.25 for all methods.
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(a) Statistical rate of sample iterates
in High SNR setting with d = 5
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(b) Statistical rate of sample iterates
in Low SNR setting with d = 5

Statistical Rate. We further validate our corollaries, particularly in terms of how the statistical error scales with the sample
size n, we generated a graph showing the statistical error versus the sample size in Figure 4. These experiments were
repeated 10 times for 20 sample sizes from nmin = 100 to nmax = 10000, and the plot displays the average statistical error.
The slope was calculated as the linear regression coefficient for the logarithm of the statistical error versus the logarithm of
the sample size. In this log-log plot, in the strong signal-to-noise setting, the statistical error appears to scale roughly with
n−0.5, while in the low signal-to-noise setting, it roughly scales with n−0.25. These observations align with our theoretical
predictions, as discussed in Corollary 3.2.
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