
INTERPRETABLE SEQUENCE CLASSIFICATION VIA
PROTOTYPE TRAJECTORY

ABSTRACT

We propose a novel interpretable recurrent neural network (RNN) model, called
ProtoryNet, in which we introduce a new concept of prototype trajectories. Moti-
vated by the prototype theory in modern linguistics, ProtoryNet makes a prediction
by finding the most similar prototype for each sentence in a text sequence and
feeding an RNN backbone with the proximity of each of the sentences to the proto-
types. The RNN backbone then captures the temporal pattern of the prototypes,
to which we refer as prototype trajectories. The prototype trajectories enable
intuitive, fine-grained interpretation of how the model reached to the final predic-
tion, resembling the process of how humans analyze paragraphs. Experiments
conducted on multiple public data sets reveal that the proposed method not only
is more interpretable but also is more accurate than the current state-of-the-art
prototype-based method. Furthermore, we report a survey result indicating that
human users find ProtoryNet more intuitive and easier to understand, compared to
the other prototype-based methods.

1 INTRODUCTION

Figure 1: Prototype trajectory-based explanation.

Recurrent neural networks (RNN) have
been widely adopted in natural language
processing. RNNs achieve the state-of-
the-art performance by utilizing the con-
textual information in a “memory” mecha-
nism modeled via hidden/cell states. Albeit
the benefit, however, the memory mecha-
nism obstructs the interpretation of model
decisions: as hidden states are carried over
time, various pieces of information get in-
tertwined across time steps, making RNN
models a “black box” inherently.

The black box nature of RNNs has motivated a body of research works aiming to achieve the
interpretability. One approach is to leverage certain architecture design in the DNNs such as
Attention-based methods. As will be discussed in Section 2, the attention-based approaches (Karpathy
et al., 2015; Strobelt et al., 2017; Choi et al., 2016; Guo et al., 2018) visualize the RNN using the
attention mechanism, which weighs the importance of each hidden state element. However, while
a few of them could be quite illuminative, the attention weights are, in fact, not always intelligible.
Rather, they often turn out to be a gibberish collection of numbers that does not possess much sensical
interpretations. In fact, recent research has been considering attention weights as not explanations
(Jain & Wallace, 2019). Furthermore, the analysis of attention weights requires a certain level of
understanding of how RNNs work in theory. Hence, a novice user may find it difficult to understand
and, thus, the broader use in real-world applications might not be so feasible.

The other is prototype-based approaches (Ming et al., 2019), which use prototypes to explain the
decision more intuitively. The process is analogous to how, for example, human doctors and judges
make decisions on a new case by referring to similar previous cases: for a given sequence, a prototype-
based approach looks up a few representative examples, or prototypes, from the data set and deduces
a decision. From the interpretability standpoint, such prototypes then provide intuitive clues and
evidences of how the model has reached a conclusion in a form that even a layperson can understand.

1

However, the existing prototype-based methods find the prototypes at the whole-paragraph level,
making it difficult to break down the analysis at the individual sentence level, e.g., the connections
and flows of individual sentences constituting a paragraph. Moreover, there may not be a suitable
prototype when the length of a sequence is too large (e.g. a long paragraph), as longer sequences
have greater degrees of freedom and, thus, harder to find a matching prototype, as evidenced later in
Section 4.

Here, we advocate the idea that the sentence level prototyping (as opposed to the paragraph level
prototyping in the previous literature) produce more desirable outcomes, namely better interpretability
and higher prediction accuracy. We propose a novel architecture, called ProtoryNet, in which we
introduce a new concept of the prototype trajectory. Given one or more paragraphs, ProtoryNet looks
up the nearest prototype for each sentence and computes the proximity. The prototype proximity
values are then fed into an RNN backbone, which then captures the latent patterns across sentences
by means of the trajectory of prototypes. The prototype trajectory, therefore, illuminates the semantic
structure of a text sequence and the logical flow therein, and, hence, provides highly intuitive, useful
interpretation of how the model has predicted an output, as can be witnessed in Figure 1.

In fact, the prototype theory in modern linguistics supplies a strong justification for the proposed idea
of prototype trajectory. In the prototype theory, linguists view “a sentence as the smallest linguistic
unit that can be used to perform a complete action,” (Alston, 1964) and analyze texts with individual
sentences as building blocks. Linguists assume that the sentences of a category are distributed
along a continuum: at one extreme of this continuum are sentences having a maximal number of
common properties; while on the other extreme are sentences that have only one or very few of such
properties (Panther & Köpcke, 2008). Here, the “ideal” sentence that possesses the maximally shared
common properties can be considered as a prototypical sentence, or a prototype of the category.
Thus, in some sense, this paper takes a meaningful first step towards mathematically formalizing the
prototype theory in modern linguistics and its analysis methods by incorporating the above view in a
computational framework and emulating how linguists analyze a text.

As such, ProtoryNet permits a fine-grained understanding of sequence data alongside an intuitive
explanation of the dynamics of the subsequences. In addition, since the technical details are hidden
in the prototypes, a non-technical user can comprehend the interpretation. However, when necessary,
technical users, i.e., the ones that are more knowledgeable about RNNs, can still look at the coefficients
in RNN, similar to how the attention approaches visualize RNNs, as the proximity vectors feeding
the RNN backbone are essentially one-hot encoded (i.e., zero everywhere except the k-th position for
prototype k), making it convenient to trace how coefficients are related to each prototype.

2 RELATED WORK

In addition to model-agnostic black-box explainers such as LIME (Ribeiro et al., 2016) and
SHAP(Lundberg & Lee, 2017), various post hoc explanation methods have been proposed for
DNN models, such as Integrated Gradients (Sundararajan et al., 2017), DeepLift (Shrikumar et al.,
2017) and NeuroX (Dalvi et al., 2019). Specifically, to understand RNN models, Tsang et al. (2018)
proposes a hierarchical explanations for neural networks to capture interactions and Jin et al. (2019)
adapts the idea to text classification to quantify the importance of each word and phrase. For sentiment
analysis, Murdoch et al. (2018) proposes contextual decomposition method for analyzing individual
predictions made by standard LSTMs, and the method is able to reliably identify words and phrases
of contrasting sentiment, and how they are combined to yield the LSTMs final prediction.

In addition to the external explanation methods, the prior efforts to bring interpretability to RNNs
can be categorized as attention-based and prototype-based approaches. Bahdanau, Cho, and Bengio
(Bahdanau et al., 2014) proposed an encoder-decoder type machine translation algorithm, in which
they implemented an attention mechanism in the decoder. By the means of the alignment probabilities
and the association energy, reflecting the importance of a given word in predicting a translated word,
they let the attention mechanism to weigh which part of the source sentence the model needs to pay
attention to. This not only improved the performance of the model by relieving the burden of the
encoder having to compress all the information about the source sentence into a fixed-length vector,
but also inherently visualized how the translation was conducted through the alignment matrix (e.g.,
Figure 3 of Bahdanau et al. (2014)). Similarly, Rocktäschel et al. (2015) analyzed word-to-word
attention weights for achieving insights into how a long short term memory (LSTM) classifier reasons
about entailment. Zhang et al. (2017) proposed a language model to read and explore discriminative

2

image feature descriptions from reports to learn a direct mapping between lexical components and
image pixels via attention. Similar strategies can be found in a number of other works (e.g. Ismail
et al. (2019); Choi et al. (2016)) that employ the idea of the attention mechanism. However, the
attention-based approaches are mostly intended for expert users. Many non-technical users in the real
world, who lack basic knowledge of how RNNs work (or even neural networks in general), may find
them difficult to understand.

Instead, prototype-based approaches argue that the intuitiveness of interpretation can be significantly
enhanced by visualizing the reasoning process in terms of prototypes. In fact, prototype-based
reasoning has a long history as a fundamental interpretability mechanism in traditional models
(Cupello & Mishelevich, 1988; Fikes & Kehler, 1985; Kim et al., 2014). More recently, the idea
of prototype-based interpretation attracted several authors in neural network research. For instance,
Chen et al. (2019) incorporated the concept of prototypes to convolutional neural networks. A
prototype layer was added after convolutional layers to compare the convolution responses at different
locations with prototypes. From this, users can understand, for example, a bird is classified as a
‘red-bellied woodpecker’ because it has the typical prominent red tint at the belly and the top of its
head as well as the black and white stripes on its wings.

More closely related to the present work, ProSeNet (Ming et al., 2019) added a prototype layer in
RNN. ProSeNet computed the similarities between an input sequence (usually a short prose) and
prototypes and produced the final prediction as a linear combination of the similarities. Despite the
built-in interpretability of ProSeNet, however, an issue might arise when the sequence was too long.
The original paper (Ming et al., 2019) validates ProSeNet only on paragraphs shorter than 25 words.
However, it is easily fathomable that ProSeNet may fail to assimilate a long paragraph data, due
to large degrees of freedom that complicate matching of a prototypical example. This may render
some practical concerns. For instance, in sentiment classification, even if a paragraph is classified
as “negative,” it could consist of several twists of sentiments along sentences (e.g., sarcastic use of
positive proses). With an increased length, such kinds of twists can get harder to be represented
with a prototype, thus making the interpretation difficult and the explanation less credible. This
claim is further supported by findings in modern linguistics, which suggests that sentences, instead of
paragraphs, should be regarded as the basic elements for text analysis (Panther & Köpcke, 2008).

Nonetheless, we share our view with ProSeNet in that the prototype based method is worth paying
attention to. The benefit of prototype-based reasoning resides in the fact that it hides technical
details by encapsulating them with prototypical examples while being still tractable numerically when
desired. Hence, novice users can understand how the reasoning was achieved in RNNs so long as they
can comprehend the prototypes, lowering the barrier for those numerous non-technical users who
may use RNN-based applications in the real world. On the other hand, numerical weights assigned
to prototypes alongside their association with the “nuts and bolts” of RNNs still allow experts to
perform in-depth analyses of how a model has drawn a prediction.

3 METHOD

3.1 THE PROTORYNET ARCHITECTURE

Suppose a data set D =
{
(X(i), y(i)) : i = 1, . . . , N

}
of size N , comprised of text sequences X(i)

and the corresponding labels y(i). Here, note that the superscript (i) may be dropped for notational
convenience hereinafter, unless necessary. Each instance X can be understood as a sequence of
sentences xt ∈ RV at t-th position, yielding the representation X = (xt)

T
t=1, where V is the size

of vocabulary and T := |X| is the number of sentences in the sequence X. y ∈ RC is a multi-hot
encoded vector representing the class labels associated with the sequence X, i.e., the c-th element yc
of y equals 1 if the label c is associated with X or 0 otherwise. C is the total number of classes.

ProtoryNet interfaces with text data via a sentence encoder (Figure 2a) modeled as a mapping
r : RV → RJ , where J is the dimension of sentence encoding specified by the user. That is,
the encoder takes each sentence xt ∈ X and produces a sentence embedding et = r(xt). In this
paper, the development of the encoder r is beyond the scope of this paper and, hence, we employ a
pre-trained BERT-based sentence encoder with mean-tokens pooling (Reimers & Gurevych, 2019),
where J = 768 by default.

3

Figure 2: The architecture of ProtoryNet.

The sentence embeddings et are fed into the prototype layer (Figure 2b), in which a set of trainable
prototypes P =

{
pk ∈ RJ : k = 1, . . . ,K

}
are compared with et, where K := |P| is the number of

prototypes specified by the user. Then, given a distance metric d : RJ → R+, the proximity st,k of the

sentence embedding et to a given prototype pk is measured as st,k := s(et,pk) = exp
(
−d(et,pk)

ψ2

)
,

where ψ ∈ R is a user-specified constant. Between two popular choices for the distance metric d,
namely the cosine distance and the Euclidean distance, we find that there is no significant difference
between the two. Hence, we use the Euclidean distance in our experiments for convenience.

Note here that the intermediate throughput of the prototype layer is the similarity matrix S̃ = [st,k]
of the size T ×K, associating the t-th sentence with the k-th prototype. The rows of the similarity
matrix S̃ then constitute the input to the LSTM backbone at time step t (Figure 2c), which then finally
produces an output prediction. Here, the sparsity transformation is performed on the similarity matrix
S̃ before feeding it into the LSTM backbone by setting each row to zero except for the position where
st,k is the maximum. That is, each row of the transformed similarity matrix S would be of the same
topology as the one-hot encoded vector, whose elements equal st,k∗ at k∗ := argmaxk st,k and 0
otherwise. The sparsity transformation of S̃ to S enhances the interpretability of the architecture, by
enforcing each sentence be matched with no more than a single prototype and, thus, disentangling
the information. This is accomplished only at a small cost of accuracy, as observed from an ablation
study in Appendix.
Motivating Example The text data in Figure 2 exemplifies the use of ProtoryNet for sentiment
analysis (text classification). In this example, the task is to predict whether the review of a restaurant
is positive or not. The input text data X is comprised of T = 4 sentences, in this particular case, and
the label y is the binary sentiment label of the review, either “positive” ([1, 0]) or “negative” ([0, 1]).
To this, ProtoryNet converts the text data into sentence embeddings, each of which are then matched
with the closest prototype. Observe, in the figure, that the prototypes that ProtoryNet produced are,
indeed, morphosyntactically equivalent to the corresponding input sentences, well-exemplifying them
semantically. The one-hot-like similarity vectors between the sentences and the prototypes are then
fed into the LSTM backbone, which captures the patterns and trends in the trajectory of prototypes
and, finally, predicts the final sentiment label, which, in this case, is “negative.”
3.2 OBJECTIVE FUNCTIONS

The training objectives of ProtoryNet entail four different terms aiming to achieve both the prediction
accuracy and the interpretability. Below are the details of their definitions.

Accuracy The accuracy loss is defined as the square loss between the predicted value and the
ground truth label, promoting the model to make accurate predictions:

Lacc(D) :=
1

N

N∑
i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2. (1)

4

Diversity To ensure diverse and non-overlapping prototypes, we define the diversity loss term
added to enforce the minimum mutual distance δ among the prototypes:

dmin := min
k1,k2

d(pk1 ,pk2), (2)

Ldiv(D) := σ (η(δ − dmin)) , (3)

where σ(·) is the sigmoid function and η is a smoothing constant, which we set η = 1 empirically.
The constant δ ∈ R+

∗ is a positive real number defined by the user, to enforce the minimum separation
among prototypes. Hence, when the distances among the prototypes do not meet the minimum
separation requirement i.e., dmin < δ, the η(δ − dmin) term will have some positive value, making the
diversity loss term Ldiv active; on the other hand, when the minimum separation requirement is met
and thus, dmin > δ, then the sigmoid function will pull the loss term to zero. Note that a smaller η
will make such a transition by the sigmoid function smoother.

Prototypicality The accuracy and the diversity terms alone, it is observable a prominent tendency of
prototypes diverging away from the sentences during training. Such a behavior introduces overfitting,
in which prototypes become less generalizable, as the prototypes lose their representativity of a
category. Hence, we introduce the prototypicality loss, which promotes each sentence in the database
to have a representative prototype close to it:

Lproto =
1

S

∑
X∈D

∑
xt∈X

min
k
d(r(xt),pk), (4)

where S is the total number of sentences in the data set.

Final loss The final loss function combines the above loss terms:

L = Lacc + αLdiv + βLproto (5)

Empirically, coefficients values of α = 0.1 and β = 1e−4 are used in this paper.

Remarks on Prototype Interpretability The diversity and prototypicality terms are designed for
improving the interpretability. Here, to achieve good explanations, prototypes need to be different
from each other to avoid redundancy, thus the diversity term. In addition, each input sentence
needs to be mapped to a prototype that is similar enough to make the explanation convincing, thus
the prototypicality term. These two loss terms can be considered regularization terms to serve
interpretability purposes. Similar loss terms have been introduced in other prototype based DNN
models (Ming et al., 2019; Chen et al., 2019). We will later show in experiments that these two terms
do not hurt the predictive performance. This can be explained by the recent research on Rashomon Set
(Semenova et al., 2019; Rudin, 2019), that there exist many models with very similar performance, so
one can add customized constraints to the model to achieve additional benefits, such as interpretability.

3.3 TRAINING

For the training of ProtoryNet, the adaptive moment estimation (ADAM) optimizer (Kingma & Ba,
2014) was employed. The learning rate was set to be 1e−4 and the exponential decay rates for the
first and the second moment estimates were 0.9 and 0.999, respectively. Below are further details
used for generating the results in this paper.

Differentiability Training of ProtoryNet requires the computation of the index where the simi-
larity matrix S̃ is maximum for the sparsity transformation in the prototype layer. This operation,
unfortunately, is not differentiable and may lead to an unexpected training behavior during auto-
differentiation in deep learning packages. We get around this issue by the following approximation
technique. Suppose the similarity matrix S̃ = [s̃1, . . . , s̃T] where s̃t ∈ RK is a column vector whose
elements indicate how similar the t-th sentence is to each of the prototypes. If we let Softmax(·) to
denote the softmax function, then for some large constant γ,

Γ = [Softmax(γ · s1), ...,Softmax(γ · sT)] (6)

approximates the selection matrix whose element equals to 1 at the position corresponding to where
st is the maximum for each column t and 0 elsewhere. Here, we find γ ≥ 1e6 gives a reasonable

5

approximation empirically. With the selection matrix, the sparsity transformation can be approximated
as follows without explicitly computing the maximum:

S ≈ Γ� S̃ (7)

where � is the Hadamard product. Note that the softmax function is differentiable and, thus, is S.

Prototype Initialization The training of ProtoryNet can benefit from the initialization method
described below. We first embed all sentences separately in the training data set. Then, in the
embedding space, all sentences in the data set are clustered using the k-medoids clustering algorithm
to categorize sentences by their semantic meaning. The medoids obtained from the k-medoids
algorithm can be considered as the representative examples of each cluster and, hence, plausible
candidates for prototypes. Thus, for the training of ProtoryNet, we use these medoids to initialize
prototypes, which in turn accelerates the convergence.

Prototype Projection It should be noted that the numerical solutions for the prototypes are found
in the embedding space. These numerical solutions are not automatically intelligible to human users
and need to be deciphered. To this end, we project the prototypes to the closest sentence in the
embedding space every 10 epochs during the training process, similar to the technique proposed in
Ming et al. (2019); Chen et al. (2019):

pk = argmin
xt∈X(i),∀X(i)∈D

d(r(xt),pk), k ∈ [1,K] (8)

Sentiment Scores for Prototypes Once the training is done, ProtoryNet returns a set of K proto-
types. We then feed them back into the trained ProtoryNet one at a time, to evaluate the sentiment
score of each individual prototype. These sentiment scores will later be used to provide quantitative
visualizations of how the tones and sentiments change within a text data.

4 EXPERIMENTS

In this section, we evaluate our model on five different data sets. A vanilla LSTM method, a state-
of-the-art black-box model (DistilBERT Sanh et al. (2019)), and a state-of-the-art prototype-based
interpretable model (ProSeNet Ming et al. (2019)) are compared against our method.We also compare
with a classic non-neural baseline bag-of-words, which provide explanations at word level.

Data set DistilBERT Vanilla LSTM ProSeNet ProtoryNet ProtoryNet (avg) Bag-of-words

IMDB .923 (±.001) .873 (±.007) .835 (±.008) .849 (±.002) .801 (±.002) .870 (±.004)
Amazon Reviews .941 (±.004) .871 (±.004) .840 (±.011) .882 (±.004) .860 (±.005) .869 (±.005)
Yelp Reviews .957 (±.003) .897 (±.004) .868 (±.008) .872 (±.002) .859 (±.004) .902 (±.010)
Rotten Tomatoes .841 (±.001) .751 (±.004) .748 (±.006) .762 (±.007) .656 (±.010) .749 (±.005)
Hotel Reviews .976 (±.006) .947 (±.004) .909 (±.007) .949 (±.004) .856 (±.006) .944 (±.008)

Table 1: Performance of ProtoryNet in comparison with other benchmark models. The mean accuracy
and the standard deviation from a 5-fold cross validation are reported in each case. Boldface denotes
the best performing model, excluding the black box model, DistilBERT, which outperformed the
others in all cases. Note each data set had balanced labels.

4.1 PREDICTION ACCURACY

Reported in Table 1 are the means and the standard deviations of accuracy evaluated from 5-fold
cross validations. It is clear that the state-of-the-art black box model (DistilBERT) outperforms the
interpretable models (ProSeNet and ProtoryNet) in all data sets used. Note, however, that DistilBERT
was pre-trained on a massive corpus of text data before being transferred to each specific data set.
Hence, the performance metrics of DistilBERT should only be used for sanity check. Compared
against the vanilla LSTM, the prediction performance of the interpretable models were on par.
ProtoryNet is slightly better than Bag-of-words on average.

Between ProSeNet and ProtoryNet, ProtoryNet outperformed ProSeNet for all five cases overall. In
particular, the performance difference was clearer when long text data were analyzed. In Table 2,
we split each data set into short and long samples—paragraphs that were less than 25 words were
classified as short samples, following the criterion used in the ProSeNet paper Ming et al. (2019). As

6

Data set % of short
reviews

ProSeNet (Ming et al., 2019) ProtoryNet (ours)
Short Long Short Long

IMDB 0.09 0.883 (±0.126) 0.835 (±0.008) 0.865 (±0.127) 0.849 (±0.009)
Amazon 5.08 0.868 (±0.014) 0.833 (±0.009) 0.879 (±0.034) 0.882 (±0.004)
Yelp 9.22 0.879 (±0.018) 0.859 (±0.016) 0.794 (±0.005) 0.879 (±0.002)
Rotten Tomatoes 61.37 0.754 (±0.009) 0.721 (±0.015) 0.774 (±0.006) 0.738 (±0.015)
Hotel reviews 2.22 1.000 (±0.000) 0.904 (±0.006) 1.000 (±0.000) 0.948 (±0.024)

Table 2: Comparison between ProSeNet and ProtoryNet on text data of different lengths. In the table
are the means and the standard deviations of accuracy over 5-fold cross validation. The two methods
perform similarly on short reviews (≤ 25 words), while ProtoryNet performs better on long reviews
in all data sets. The second column represents the proportion of short reviews in each data set.

shown in the table, ProSeNet and ProtoryNet were on par when short proses were analyzed, while
ProtoryNet was always better than ProSeNet when long paragraphs were concerned. In fact, this
can be a substantial advantage of ProtoryNet as instances with less than 25 words are quite rare in
real-world data sets. Note, in Table 2, more than 90% of instances are more than 25 words, with an
exception of the Rotten Tomatoes data set.

Figure 3: Effect of K on accuracy.

In addition, we investigated how the number of prototypes, K,
influences the performance of ProtoryNet. In Figure 3, the
performance of ProtoryNet on the Amazon Review data set is
plotted with respect to different values of K. Other hyperpa-
rameters were controlled to be the same and the performance
measures (accuracy) were averaged over 5-fold cross validation
experiments (the whiskers in the figure represent the standard
deviation). Compared to the ProSeNet baseline, ProtoryNet
reaches high accuracy much quicker with only a few prototypes and shows a steady increase of
performance afterwards. The same analyses on the other data sets are available in Appendix.

Furthermore, we conducted an ablation study on the sparsity transformation. We measured the
change in prediction accuracy when the sparsity transformation step had been removed and the dense
similarity matrix S̃ had been used directly. The result revealed that there was only a small drop of
accuracy (approx. 1%) caused by the sparsity transformation, while the benefit of interpretability was
huge (see Appendix for the detail).

4.2 PROTOTYPE TRAJECTORIES

Figure 4: Prototype trajectories of two positive sentiment examples (a, b) and two negative samples
(c, d). The corresponding prototypes are available in Appendix.

Prototypes and their trajectory play a critical role in ProtoryNet. Here, we show four examples of
prototype trajectories in Figure 4, two for positive sentiment data and two for negative ones curated
from the Yelp Review data. Observe that the trajectories can be drastically different even for the

7

same sentiment class. For example, review (c) starts off with a negative sentence and changes the
tone in the middle to positive and then ends with a negative sentence while (d) maintains the negative
tone from the beginning to the end. As such, interpretation of ProtoryNet can be more fine-grained,
generating a deeper insights to users.

4.3 THE EFFECT OF DIVERSITY AND PROTOPYPICALITY TERMS

The diversity and prototypicality terms are designed to improve interpretability since it forces each
sentence to be mapped to a prototype that is close enough to it and prototypes to be sufficiently
different from each other. Therefore, in this section, we examine whether the two terms serve such
purposes, and meanwhile, whether these two terms hurt the predictive performance.

Figure 5: The effect of α, β on interpretability

Effect on Interpretability We plot
two types of distances for hotel
dataset. First, since the explanations
are based on prototypes, we need the
prototypes to be similar enough to the
input sentences mapped to them in or-
der to make the explanation convinc-
ing. Thus we compute the Euclidean
distances between each sentence and
the prototypes they are mapped to.
Second, we want prototypes to be at
least dmin (in this experiment we choose dmin = 8) away from each other, since if prototypes are too
similar, then similar sentences may be mapped to different prototypes, causing confusion to users.
Therefore, we compute the Euclidean distances between each pair of prototypes. Figure 5 shows,
when setting α, β non-zero, the distances between sentences and their prototypes are closer and
prototypes are sufficiently away from each other, compared to when α, β = 0, proving the effect of
the diversity and prototypicality terms on interpretability.

Figure 6: Sensitivity analysis.

Effect on Accuracy We performed a sensitivity analysis to
understand the effect of the two terms on predictive perfor-
mance. We trained ProtoryNet on the Amazon dataset with
different combinations of α = 0, 1e−3, 1e−2, 1e−1, 1, and β =
0, 1e−5, 1e−4, 1e−3, 1e−2. As seen in Figure 6, our experiment
revealed that the performance of ProtoryNet is not so sensitive to
the selection of the parameters α and β. Between α and β, Pro-
toryNet was more sensitive to β, which may reveal the trade-off
between the different loss terms. The results also illustrate how
different loss terms impact the overall performance - when α = 0
or β = 0. The best performance was achieved when α and β are
set to small values instead of 0. A possible explanation would be that, having some constraints on the
prototypes’ diversity (Ldiv) and their representativeness (Lproto) prevents overfitting as these terms
“regulate” prototypes. Sensitivity analysis for other datasets are included in the Appendix.

4.4 USER EVALUATION

The interpretability of ProtoryNet was further validated via a survey conducted on 111 individuals,
among which 42 identified themselves as non-technical users. Subjects were recruited through two
different channels. Individuals from the authors’ home institution holding a master’s degree or above
having advanced knowledge of RNNs have been recruited as technical users. Non-technical users
were recruited from Amazon Mechanical Turk. The summary statistics of the subjects as well as the
survey design are disclosed in Appendix.

We first evaluated the interpretability of the explanation by testing whether the model-selected
prototypes were indeed representative of the input text to the human users. We asked the users to
choose the most appropriate prototype for a given sentence out of four options presented to them, one
of which was the actual prototype matched by the model, other two were randomly selected from
the rest of the prototypes, and the other was “None of the above.” We created 10 such questions by
sampling reviews from the Yelp Review data set, each for ProtoryNet and ProSeNet. As reported in

8

Figure 7: Interpretability of ProtoryNet assessed by human users. The p-values are evaluated for
comparing the responses for ProtoryNet and ProSeNet on technical users and non-technical users,
respectively.

Figure 7a, ProtoryNet showed a more significant agreement between the model-selected prototype
and the prototype that the human users found the most appropriate. For both technical users and
non-technical users, ProtoryNet was significantly better than ProSeNet, as was validated by the t-test.
The difference between technical users and non-technical users was insignificant, suggesting that
non-technical users can comprehend prototypes equally well as technical users.

The survey also included self-report questions to assess how easy it was for them to select a prototype
in a score ranging between 1 (very difficult) and 5 (very easy). As reported in Figure 7b, subjects
found that ProtoryNet was easier to interpret in general, and the improvement in interpretaiblity was
more significant for technical users. Again, the difference between technical users and non-technical
users was insignificant.

Finally, we measured how easily the users can learn to interpret the results of ProtoryNet. For this,
each subject was randomly assigned to either ProtoryNet or ProSeNet and trained on how the model
that they are assigned to makes predictions. Then, their proficiency was measured by showing them
three examples on which the model had made an incorrect prediction and asking them to diagnose the
problem by pointing out an inappropriately matched prototype. The problematic prototype (i.e., the
“correct answer” for the survey question) was determined via a discussion among the authors, which
later turned out to be aligned with the consensus in the survey responses as well. As in Figure 7c, the
both subject groups were more accurate at diagnosing ProtoryNet in general. An explanation to this
should be that ProtoryNet uses shorter prototypes than ProSeNet and, thus, is easier to comprehend.
We notice that the while technical users find ProtoryNet easier to debug, such difference was not
significant for non-technical users. In fact, there was no significant difference between technical users
and non-technical users when they use ProSeNet since it was almost equally difficult to these two
groups of users.

5 CONCLUSION

In this paper, we introduced a novel idea of prototype trajectory in RNNs. Our model, ProtoryNet,
utilizes the prototype trajectories to map a text data into a sequence of prototypical sentences,
illuminating the underlying dynamics of semantics within the text data. We showed that ProtoryNet
could achieve a predictive performance higher than the current state-of-the-art. In addition, sentence
level prototype trajectory allowed fine-grained analysis of paragraphs. Moreover, the survey result
suggested that ProtoryNet provided more intuitive prototypes than the state-of-the-art method and
that the novice users were able to interpret ProtoryNet equally well as the expert users.

Our immediate future work would be to apply ProtoryNet to other types of sequence data, such
as medical data, longitudinal data, etc. In a more theoretical context, it would be interesting
to mathematically formalize some of the well-established requirements to be a prototype in the
linguistics literature. For example, Panther and Köpcke (Panther & Köpcke, 2008) assert several
conditions that a prototype must possess—a prototypical sentence is an affirmative declarative
sentence; the subject is in the nominative case; the verb in a prototype is in the active voice and in
the indicative mood; to list a few. Albeit non-trivial, the mathematical translation of such conditions
should bring more interpretability and, perhaps, a better performance of ProtoryNet.

9

REFERENCES

William P Alston. Philosophy of language. Prentice Hall, 1964.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: Deep learning for interpretable image recognition. In Advances in Neural Information
Processing Systems, pp. 8928–8939, 2019.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter
Stewart. Retain: An interpretable predictive model for healthcare using reverse time attention
mechanism. In Advances in Neural Information Processing Systems, pp. 3504–3512, 2016.

James M Cupello and David J Mishelevich. Managing prototype knowledge/expert system projects.
Communications of the ACM, 31(5):534–550, 1988.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass. What
is one grain of sand in the desert? analyzing individual neurons in deep nlp models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 6309–6317, 2019.

Richard Fikes and Tom Kehler. The role of frame-based representation in reasoning. Communications
of the ACM, 28(9):904–920, 1985.

Tian Guo, Tao Lin, and Yao Lu. An interpretable LSTM neural network for autoregressive exogenous
model. arXiv preprint arXiv:1804.05251, 2018.

Aya Abdelsalam Ismail, Mohamed Gunady, Luiz Pessoa, Hector Corrada Bravo, and Soheil Feizi.
Input-cell attention reduces vanishing saliency of recurrent neural networks. In Advances in Neural
Information Processing Systems, pp. 10813–10823, 2019.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and Xiang Ren. Towards hierarchical importance
attribution: Explaining compositional semantics for neural sequence models. arXiv preprint
arXiv:1911.06194, 2019.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078, 2015.

Been Kim, Cynthia Rudin, and Julie A Shah. The Bayesian case model: A generative approach for
case-based reasoning and prototype classification. In Advances in Neural Information Processing
Systems, pp. 1952–1960, 2014.

Diederik P Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in neural information processing systems, pp. 4765–4774, 2017.

Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and steerable sequence learning via
prototypes. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 903–913, 2019.

W James Murdoch, Peter J Liu, and Bin Yu. Beyond word importance: Contextual decomposition to
extract interactions from lstms. arXiv preprint arXiv:1801.05453, 2018.

Klaus-Uwe Panther and Klaus-Michael Köpcke. A prototype approach to sentences and sentence
types. Annual Review of Cognitive Linguistics, 6(1):83–112, 2008.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, 2014.

10

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using Siamese BERT-
networks. arXiv preprint arXiv:1908.10084, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, and Phil Blunsom.
Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664, 2015.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Lesia Semenova, Cynthia Rudin, and Ronald Parr. A study in rashomon curves and volumes: A
new perspective on generalization and model simplicity in machine learning. arXiv preprint
arXiv:1908.01755, 2019.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. arXiv preprint arXiv:1704.02685, 2017.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush. LSTMVis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks. IEEE Transactions on
Visualization and Computer Graphics, 24(1):667–676, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. arXiv
preprint arXiv:1703.01365, 2017.

Michael Tsang, Youbang Sun, Dongxu Ren, and Yan Liu. Can i trust you more? model-agnostic
hierarchical explanations. arXiv preprint arXiv:1812.04801, 2018.

Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough, and Lin Yang. MDNet: A semantically
and visually interpretable medical image diagnosis network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6428–6436, 2017.

6 APPENDIX

6.1 REPRODUCIBILITY

6.1.1 DATA SETS

IMDB Movie Reviews The IMDB Movie Reivews data set is a standard benchmark data set
for binary sentiment classification and is available at https://ai.stanford.edu/˜amaas/
data/sentiment/. The data set is comprised of 25,000 movie reviews, divided equally into
12,500 positive and 12,500 negative reviews. The total of 332,541 sentences are found in the data set.
All of those reviews samples were included in our experiments.

Amazon Product Reviews The Amazon Product Review data set is publicly available on Kaggle:
https://www.kaggle.com/bittlingmayer/amazonreviews. In our experiment, we
took random samples of a similar size to the IMDB data set—30,001 reviews were randomly selected
from the original Amazon data set, among which 15,429 were positive and 14,572 were negative.
The total of 192,709 sentences were found.

Yelp Reviews The Yelp Reviews data set was obtained from http://goo.gl/JyCnZq. The
data set is comprised of 555,000 Yelp review samples and their corresponding labels. The authors of
the data set has binarized the sentiment scores by assuming 1 and 2 stars as a negative sentiment and
3 and 4 stars as a positive sentiment. The total of 30,000 review samples were extracted via random
sampling, in which the number of positive reviews were 14,389 and the number of negative reviews
were 15,611.

11

https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://www.kaggle.com/bittlingmayer/amazonreviews
http://goo.gl/JyCnZq

Rotten Tomatoes The Rotten Tomatoes Movie Review data set is a corpus of movie reviews
used for sentiment analysis and is available at https://github.com/nicolas-gervais/
rotten-tomatoes-dataset. The total of 30,000 reviews were randomly selected, in which
the proportion between the positive reviews and the negative reviews was exactly 1:1.

Hotel Reviews The Hotel Reviews data set is comprised of 20,000 review samples evaluat-
ing 1,000 hotels and is available on Kaggle: https://www.kaggle.com/datafiniti/
hotel-reviews. In this paper, we assumed a positive sentiment for reviews of 4 and 5 star ratings
and a negative sentiment for reviews of 1 and 2 stars. Reviews with 3 stars were ignored. This
assignment yields 17,746 positive reviews and 2,254 negative ones. To balance out the data set, we
randomly picked 2,254 positive reviews to make them equal, making the total of 4,508 reviews used
in our experiments.

6.1.2 MODELS

Vanilla LSTM We used 300-dimensional GloVe word embeddings Pennington et al. (2014) to
encode words in sentences. An LSTM model with 2 hidden layers of size 128 each was used. The
final prediction was made by a fully connected layer of size 256. A dropout layer of the rate 0.5 was
used immediately before the fully connected layer.

DistilBERT DistilBERT Sanh et al. (2019) is considered as a light-weight version of the state-of-
the-art BERT model with smaller, faster, and less expensive deployment time and resources. In our
experiments, a pre-trained DistilBERT model was transferred to each target data set.

ProSeNet ProSeNet Ming et al. (2019) is a state-of-the-art prototype-based interpretable RNN. For
the implementation of ProSeNet, we used an LSTM layer with 2 hidden layers of size 128 and the
dropout rate 0.5 for the sequence encoder. This is the same configuration as the ProtoryNet’s RNN
layer. We fixed K = 200 for all experiments for both ProSeNet and ProtoryNet, with an exception of
Figure 3.

For fair comparison, we used the fixed constant K = 200 for both ProtoryNet and ProSeNet. In
addition, the LSTM layer in ProtoryNet was implemented to have the same architecture as the baseline
methods to eliminate the bias.

We used TensorFlow v1.151 to implement ProtoryNet and the other benchmark models including stan-
dard LSTM and ProSeNet. For DistilBERT, we used an implementation that was available in the Hug-
ging Face Transformers Library (https://github.com/huggingface/transformers),
which was implemented in PyTorch and TensorFlow 2.0.

For pre-processing, the period (‘.’), the question mark (‘?’), and the exclamation mark (‘!’) were
used as delimiters to define the boundary between sentences. All words were then converted to the
lowercase and punctuations were removed using the definition in string.punctuation constant
in Python 3.5. In all experiments, we used pre-trained BERT-based language model with mean-tokens
pooling Reimers & Gurevych (2019) to convert the raw sentence data to sentence embeddings.

6.2 ABLATION STUDY

6.2.1 SPARSITY TRANSFORMATION

In this paper, the sparsity transformation from S̃ to S was used to enhance the interpretability of the
model. However, the effect of the sparsity transformation on the model performance has not been
investigated in the main text. Hence, we compare ProtoryNet’s performance with and without the
sparsity transformation.

As reported in Table 3, ProtoryNet without the sparsity transformation exhibits a better performance
than when the sparsity transformation was used. Although the margin was narrow, such a trend
was statistically significant. This should be an inevitable cost paid in exchange of the enhanced
interpretability. A future investigation may include representing a sentence with more than a single
prototype, to balance between the interpretability and the increased accuracy.

1https://www.tensorflow.org/

12

https://github.com/nicolas-gervais/rotten-tomatoes-dataset
https://github.com/nicolas-gervais/rotten-tomatoes-dataset
https://www.kaggle.com/datafiniti/hotel-reviews
https://www.kaggle.com/datafiniti/hotel-reviews
https://github.com/huggingface/transformers

Data set Dense Sparse

IMDB 0.861 (±0.002) 0.849 (±0.002)
Amazon Reviews 0.893 (±0.015) 0.882 (±0.004)
Yelp Reviews 0.885 (±0.002) 0.872 (±0.002)
Rotten Tomatoes 0.796 (±0.003) 0.762 (±0.003)
Hotel Reviews 0.944 (±0.003) 0.949 (±0.004)

Table 3: Performance comparison between non-sparse S̃ and sparse S as the input to the LSTM layer.
The mean accuracy and the standard deviation from 5-fold cross validation are reported for each case.
Boldface was used to indicate the one with a better performance.

6.2.2 DISTANCE METRICS

One of the design decisions we made for ProtoryNet architecture was between the cosine distance
and the Euclidean distance metrics. However,as reported in Table 4, a comparative study revealed
that there was no significant difference in performance.

Data set Cosine Euclidean

IMDB 0.879 (±0.004) 0.849 (±0.002)
Amazon Reviews 0.881 (±0.003) 0.882 (±0.004)
Yelp Reviews 0.879 (±0.005) 0.872 (±0.002)
Rotten Tomatoes 0.760 (±0.004) 0.762 (±0.003)
Hotel Reviews 0.946 (±0.008) 0.949 (±0.004)

Table 4: Performance comparison between the cosine distance and the Euclidean distance. The mean
accuracy and the standard deviation from 5-fold cross validation are reported for each case. Boldface
was used to indicate the one with a better performance.

6.2.3 INFLUENCE OF THE NUMBER OF PROTOTYPES ON ACCURACY

Here, we provide additional results to show how the number of prototypes K impacts the model
performance.
6.3 SENSITIVITY ANALYSIS

We provide sensitivity analysis on all datasets except the one in the main paper. The sensitivity
analysis studies how the predictive performance varies with different values of α and β

6.3.1 LIST OF PROTOTYPES IN SECTION 4.2

Figure 10 shows the prototypes and their sentiment scores used in the main text Section 4.2 and the
main text Figure 4. Note that several sentences could be mapped to one prototype.

13

Figure 8: Effect of K on the model accuracy.

14

(a) IMDB (b) Hotel reviews

(c) Rotten Tomatoes (d) Yelp reviews

Figure 9: Effect of α, β on the model accuracy

15

(a)

(b)

(c)

(d)

Figure 10: The prototypes and sentiment scores used in Figure 4.

16

6.3.2 SURVEY QUESTIONS

Figures below show a few examples of the survey questions we used for the user evaluation study.

For the prototype selection, we created 10 questions each, for ProSeNet and ProtoryNet. Here we
only show one example in Figure 11.

Figure 12 and Figure 13 show how we educated the subjects about how ProtoryNet or ProSeNet
work.

For diagnosing the ProSeNet and ProtoryNet, we create 3 questions for each model. We show one
example for each model in Figure 14 and Figure 15.

Figure 11: Prototype selection question.

17

Figure 12: Education material for ProtoryNet

18

Figure 13: Education material for ProSeNet

Figure 14: Diagnosis question for ProtoryNet model

19

Figure 15: Diagnosis question for ProSeNet model

20

	Introduction
	Related Work
	Method
	The ProtoryNet Architecture
	Objective Functions
	Training

	Experiments
	Prediction Accuracy
	Prototype Trajectories
	The effect of diversity and protopypicality terms
	User Evaluation

	Conclusion
	Appendix
	Reproducibility
	Data Sets
	Models

	Ablation Study
	Sparsity Transformation
	Distance Metrics
	Influence of the number of prototypes on accuracy

	Sensitivity Analysis
	List of prototypes in Section 4.2
	Survey Questions

