
Under review as a conference paper at ICLR 2024

DEEP PROBABILISTIC 3D ANGULAR REGRESSION FOR
DIRECTIONAL DARK MATTER DETECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern detectors of elementary particles are approaching a fundamental sensitiv-
ity limit where individual quanta of charge can be localized and counted in 3D.
This enables novel detectors capable of unambiguously demonstrating the particle
nature of dark matter by inferring the 3D directions of elementary particles from
complex point cloud data. The most complex scenario involves inferring the initial
directions of low-energy electrons from their tortuous trajectories. To address this
problem we develop and demonstrate the first probabilistic deep learning model
that predicts 3D directions using a heteroscedastic von Mises-Fisher distribution
that allows us to model data uncertainty. Our approach generalizes the cosine dis-
tance loss which is a special case of our loss function in which the uncertainty is
assumed to be uniform across samples. We utilize a sparse 3D convolutional neu-
ral network architecture and develop approximations to the negative log-likelihood
loss which stabilize training. On a simulated Monte Carlo test set, our end-to-end
deep learning approach achieves a mean cosine distance of 0.104 (26◦) compared
to 0.556 (64◦) achieved by a non-machine learning algorithm. We demonstrate
that the model is well-calibrated and allows selecting low-uncertainty samples
to improve accuracy. This advancement in probabilistic 3D directional learning
could significantly contribute to directional dark matter detection.

1 INTRODUCTION

Elusive, electrically neutral elementary particles can be detected by measuring the recoil trajectories
of atomic nuclei or electrons produced when the neutral particles scatter in a detector. Modern
gaseous detectors are uniquely capable of reconstructing the directions of such recoils. This enables
a highly desirable capability: directional detection of dark matter, neutrinos, and neutrons.

The benefits of obtaining directional information are profound and could prove game-changing in
several areas of fundamental physics. Most importantly, dark matter detection experiments could
reject solar neutrino backgrounds based on recoils pointing back towards the sun, and positively
identify dark matter from the observed angular distribution of recoils (Billard et al., 2014; O’Hare,
2021). This would overcome two major limitations in current experiments seeking to identify the
particle nature of dark matter, which is arguably the most urgent and exciting problem in contem-
porary physics. Directional measurements of electron recoils induced by solar neutrinos would
enable improved measurements of neutrinos from the Sun’s “CNO cycle” which could settle a long-
standing puzzle known as the solar abundance problem (Villante & Serenelli, 2019; O’Hare et al.,
2022). Directional measurements of photoelectrons produced by X-rays enable us to map the X-
ray polarization of extended astrophysical sources, as in the Imaging X-ray Polarimetry Explorer
(Weisskopf et al., 2016). A comprehensive review of directional recoil detection and its benefits can
be found in Vahsen et al. (2021).

The gas time projection chamber (TPC) is the most mature directional recoil detection technology.
Gas TPCs reconstruct the ionization track of the recoiling nucleus or electron. An example of an
electron recoil detected in 3D using a gas TPC developed by Jaegle et al. (2019) is shown in Figure 1.
The detector provides a voxel grid where each voxel is given a value corresponding to the amount
of ionization detected at its position. Inferring the initial direction of the recoiling particle from this
data is a difficult challenge. There are three main obstacles: First, the electron track is not straight,
as the electron scatters in the gas. Second, the recoil starts and ends inside the detector, and it is

1

Under review as a conference paper at ICLR 2024

not clear which side is the beginning, and which side is the end. Third, the non-straight trajectory
and the start-versus-end ambiguity both make it difficult to estimate the uncertainty of any estimated
direction. Unlike many common computer vision problems, even a trained human expert, such as a
graduate student, would have difficulties correctly interpreting this data.

Figure 1: A 40 keV electron recoil reconstructed in 3D using the gas TPC in Jaegle et al. (2019).
Electron recoils can have complex shapes and ambiguous starting points. An agent must identify the
start of the recoil and determine how much of it to fit to determine the initial direction accurately.
The color scale depicts a measure of ionization referred to as the time over threshold (TOT).

We develop a deep learning approach to analyze 3D events and probabilistically predict their initial
direction. To our knowledge, this is the first deep probabilistic approach for predicting 3D directions
with the Von Mises-Fisher distribution on S2. Our framework significantly outperforms traditional
algorithms when applied to a simulated electron recoil data set. Leveraging our framework’s un-
certainty predictions, performance can be enhanced by discarding high-uncertainty samples. By
discarding only the top percentile, our framework achieves the best expected directional perfor-
mance (as defined in Appendix A). This development is far-reaching as it enhances the sensitivity of
all directional recoil detection experiments. Exciting possibilities include aiding in the discovery of
dark matter (Billard et al., 2014; O’Hare, 2021) or resolving the solar abundance problem (Villante
& Serenelli, 2019; O’Hare et al., 2022). The framework can also be applied to general problems
where direction needs to be predicted, we demonstrate this by applying it to the task of detecting 3D
arrows directions in Appendix B.

Our contributions include: 1) The first deep learning framework that predicts direction probabilis-
tically with the von Mises-Fisher distribution on S2, 2) the associated loss function along with
approximations that stabilize training, 3) two tests that empirically demonstrate calibration, some-
thing which is lacking in related work on predicting orientation, 4) a model capable of analyzing
highly-segmented 3D data using state-of-the-art sparse convolution techniques.

2 RELATED WORK

2.1 RELATED WORK FROM THE PHYSICS COMMUNITY

Others have been interested in applying deep learning to directional detectors (Schueler et al., 2022;
Glaser et al., 2023). The most related application is X-ray polarimetry Weisskopf et al. (2016) where
it is necessary to determine the initial direction of an electron track. A key difference is that they
reconstruct tracks in 2D and hence only need to predict directions on S1. In the work of Kitaguchi
et al. (2019), the task is framed as a classification problem. The unit circle is split into 36 segments
and a convolutional neural network is trained to classify tracks into a segment via the cross entropy
loss. Event selection is performed based on the predicted probabilities. Our approach is capable
of predicting directions continuously and is also able to do event selection, using the predicted

2

Under review as a conference paper at ICLR 2024

uncertainties. The work of Peirson et al. (2021) uses a deep ensemble to determine 2D directions
with estimates for both data and model uncertainty. The model uncertainty is estimated by using
an ensemble of models. The data uncertainty is modeled by minimizing the negative log-likelihood
(NLL) of a probabilistic prediction. However, they use a Gaussian NLL instead of a von Mises NLL
which is more suitable for 2D directions. Our NLL is derived from the von Mises-Fisher distribution
on S2, the appropriate probabilistic model for learning 3D directions.

2.2 RELATED WORK FROM THE MACHINE LEARNING COMMUNITY

In computer vision, several approaches have applied deep networks to estimating 3D orientation
from 2D images (Liao et al., 2019; Huang et al., 2018; Xiang et al., 2018; Mahendran et al., 2017;
2018). Only a handful consider modeling orientation uncertainty (Prokudin et al., 2018; Gilitschen-
ski et al., 2020; Mohlin et al., 2020). All of these approaches are concentrated on predicting ori-
entation. This is similar to predicting direction but different. Orientation includes an additional
dimension, which would introduce a spurious degree of freedom for our task. For example, an air-
plane’s direction is naturally represented by a point on S2, while the airplane’s orientation requires
an additional parameter specifying a rotation about the plane’s main axis. Representing probability
distributions over orientations in 3D is non-trivial, and the approaches of Prokudin et al. (2018);
Gilitschenski et al. (2020); Mohlin et al. (2020) are all different.

Prokudin et al. (2018) uses Euler angles (pan, tilt, roll) to represent orientation. A unidimensional
von Mises distribution over each angle captures orientation uncertainty. However, jointly predicting
Euler angles has problems due to degeneracies known as gimbal lock. In Mohlin et al. (2020) orien-
tation is represented by 3D rotation matrices. The orientation uncertainty is estimated by outputting
a distribution over SO(3), parameterized by the matrix Fisher distribution. However, this method
poorly models classes with rotational symmetries, such as the test case in Appendix B. Gilitschen-
ski et al. (2020) uses unit quaternions as a representation for object orientation. The uncertainty
is modeled using the Bingham distribution, an antipodally symmetric distribution over S3. Unit
quaternions do not suffer from gimbal lock and are more compact than rotation matrices. How-
ever, the computationally expensive Bingham normalization constant necessitates backpropagation
through an interpolator and use of a lookup table.

Our task is not to find the orientation of a rigid body. We want to find the initial direction in the
trajectories imaged by our detectors. The direction lives on S2, so frameworks that output distribu-
tions over SO(3) or S3 are inappropriate and fail to leverage a dimension of symmetry. This work
proposes an approach focused on predicting directions with distributions on S2. Predicting direction
is a general task with many use cases beyond directional recoil detection, including predicting where
something is pointing, predicting where someone is looking, determining the source direction of a
signal, and predicting wind directions from video images.

3 THE MODEL

We develop two deep learning models. The first is the heteroscedastic convolutional neural network
(HCN), a probabilistic model that predicts directional distributions on S2. The second is the regular
convolutional neural network (RCN), a deterministic model that only estimates direction. The RCN
model serves as deep learning baseline which the HCN model can be compared to.

3.1 ARCHITECTURE

The input is a (120,120,120,1) voxel grid, which means every event has 1,728,000 features. For
a typical electron recoil simulation (discussed in section 4) the fraction of non-zero features is on
the order of 10−4. Sparsity is a common feature in highly-segmented 3D data and it is essential to
take advantage of it to keep computational requirements feasible. All data is stored as PyTorch
Sparse Tensors in the COO(rdinate) format, where only the non-zero entries and their indices
are stored. A DataLoader is used to load batches of sparse tensors on the fly. The coordinates and
values of the non-zero features are passed into our models, where they are immediately converted
into a spconv.SparseConvTensor (Spconv Contributors, 2022).

3

Under review as a conference paper at ICLR 2024

Both models begin with a feature extraction portion, a series of submanifold sparse convolution,
sparse convolution, and sparse max pooling layers. The details of the layers and the order in which
they are applied is outlined in Figure 2. These sparse operations allow us to convolve and down-
sample our input data without expressing them as dense tensors, significantly increasing speed and
reducing memory usage. Sparse convolution and max pooling are equivalent to their dense counter-
parts, except they operate on sparse tensors. In submanifold sparse convolution (Graham & van der
Maaten, 2017; Graham et al., 2018), padding is applied so that the input and output have the same
shape. An output site is active if and only if the corresponding input site is active, in which case
the output feature vector is computed in the same manner as for regular convolution. Since the
number of active sites is unchanged, submanifold sparse convolution allows us to process our input
through several layers while maintaining its sparseness. The implementation of the layers specified
in Figure 2 is through SpConv (Spconv Contributors, 2022) which is based on Yan et al. (2018).

Inputs
120x120x120

Feature maps
32@120x120x120

Feature maps
50@58x58x58

SubMConv3d
Kernel 7x7x7
Stride 1x1x1

SubMConv3d
Kernel 5x5x5
Stride 1x1x1

SparseConv3d
Kernel 6x6x6
Stride 2x2x2

Feature maps
40@120x120x120 Feature maps

50@29x29x29

SparseMaxPool3d
Kernel 2x2x2
Stride 2x2x2

Feature maps
30@14x14x14

SparseConv3d
Kernel 3x3x3
Stride 2x2x2

Feature maps
10@12x12x12

SparseConv3d
Kernel 3x3x3
Stride 1x1x1

Feature maps
10@6x6x6

SparseMaxPool3d
Kernel 2x2x2
Stride 2x2x2

Flatten

Figure 2: The feature extraction portion of our models. Each convolutional layer includes a learnable
bias and is followed by a RelU activation. Padding is only applied in the SubMConv3d layers,
where it is set such that the input and output have the same shape. The implementation is via
SpConv (Spconv Contributors, 2022).

After applying the layers in Figure 2, the data is converted into a dense tensor and flattened. The
flattened tensor is then passed on to the dense portion of the neural network. The HCN and RCN
models have the same feature extraction portion but differing dense portions. For the RCN model,
the dense portion is illustrated on the left of Figure 3. Here, the dense portion is fully connected
and the output is 3 normalized neurons, to be interpreted as the predicted direction on S2. The
dense portion of the HCN model is illustrated on the right of Figure 3. The HCN model is a copy
of the RCN model with an additional head. The additional head leads to a single output neuron to
be interpreted as the predicted uncertainty. The details of the dense portions of our models are in
Figure 3.

2160 neurons, flattened input
500 neurons, relU activation
200 neurons, relU activation
50 neurons, tanh activation
3 neurons, L2 norm activation
1 neuron, softplus activation

Figure 3: The dense portion of our models. The feature extraction described in Figure 2 is followed
by either the left or the right neural network to make the RCN or HCN model, respectively. The
illustrations do not display the actual number of neurons per layer. The number of neurons and the
activation functions are specified in the legend. A learnable bias is added to every layer.

4

Under review as a conference paper at ICLR 2024

3.2 LOSS FUNCTIONS

The RCN model is trained using the cosine distance loss function

CSLoss =
1

N

N∑
i=1

1−
yi · ypredi

max(|yi||ypredi|, ϵ)
, (1)

where ypredi is the predicted direction, yi is the true direction, ϵ is a small positive value to avoid
division by 0, and N is the number of examples in a batch.

The HCN model is trained via heteroscedastic regression to predict a distribution of directions by
specifying a mean direction and spread (uncertainty). To do this we need a probabilistic distribution
of directions on S2. The 5-parameter Fisher–Bingham distribution (Kent, 1982) is the analogue of
the bivariate normal distribution on S2

f(x) =
1

c(κ, β)
exp {κvT

1 · x+ β
[
(vT

2 · x)2 − (vT
3 · x)2

]
}. (2)

Above, c(κ, β) is a normalization constant, κ ∈ R+ determines the spread, β ∈ [0, κ/2) determines
the ellipticity, and v1,v2,v3 determine the mean direction, major axis, and minor axis, respectively.
We simplify Equation 2 to only model uncertainty isotropically about the mean direction by setting
β = 0. By doing so, we obtain

f(x) =
κ

4π sinhκ
exp

(
κvT

1 · x
)
. (3)

This special case of the 5-parameter Fisher–Bingham distribution is also known as the von
Mises–Fisher distribution on S2 (Mardia et al., 2000).

Given the predicted directions (ypredi) and predicted uncertainties (κi) of the HCN model, as well
as the true directions (yi), we use Equation 3 to calculate the likelihood as

L =

N∏
i=1

κi

4π sinh (κi)
eκi(yi·ypredi

),

and the NLL, scaled by batch size, is

− lnL
N

=
−1

N

N∑
i=1

ln(
κi

4π sinh (κi)
) + κi(yi · ypredi). (4)

The HCN model is trained to predict directional distributions as in Equation 3 that minimize the
NLL.

We note that Equation 4 generalizes Equation 1. If we assume κi is constant (the uncertainty is
uniform), the first term in Equation 4 becomes a constant. Furthermore, Since ypredi and yi are unit
vectors, the denominator in Equation 1 is 1. Now, it is easy to see that under the uniform uncertainty
assumption, Equations 1 and 4 are equivalent up to a constant offset and scale factor. Therefore, the
HCN and RCN models are heteroscedastic/homoscedastic counterparts.

3.3 PRACTICAL CONSIDERATIONS

Now that we’ve outlined the models, we discuss the practical considerations of implementing the
HCN model. The first is the ln term on the right-hand side of Equation 4. If κi ≥ 87, the argument
of the ln term evaluates as zero making the loss infinite. When κ = 0, Equation 3 is isotropic, and
as κ increases the distribution becomes more localized (the uncertainty decreases). Hence, as the
model learns directions accurately it will encounter κi ≥ 87, and all gradients will be nan. To avoid
this, we use the limit

lim
κi→∞

ln(
κi

4π sinh (κi)
) = ln(

κi

2π
)− κi.

This limit is a close approximation, even for small values of κi. If κ = 9, the values of
ln(κi

4π sinh (κi)
) and ln(κi

2π)−κi are indistinguishable when using the 32-bit floating point data type.
Therefore, instead of using Equation 4, we express our loss function as

NLL =
−1

N

N∑
i=1

where
(
κ < 9, ln(

κi

4π sinh (κi)
), ln(

κi

2π
)− κi

)
+ κi(yi · ypredi). (5)

5

Under review as a conference paper at ICLR 2024

Above, we use the PyTorch operation torch.wherewhich has three arguments. If the condition
in the first argument is True then torch.where is evaluated as the second argument; otherwise,
torch.where is evaluated as the third argument.

Using torch.where introduces another consideration. If the second or third argument is in-
finite, then torch.where will produce nan in the backward pass, even if the condition se-
lects the non-infinite term. This is discussed in https://github.com/pytorch/pytorch/
issues/68425. The PyTorch MaskedTensor is suggested as a solution for this (see
https://pytorch.org/maskedtensor/main/notebooks/nan_grad.html); how-
ever, this API is still in the prototype stage and is not implemented for all of the functions we
use. Therefore, Equation 5 does not solve our issue because we still get nan in the backward pass
whenever ln(κi

4π sinh (κi)
) evaluates as infinity.

To solve our problem, we must remove the term ln κi

4π sinh (κi)
from Equation 5 completely. We

replace it with its 15th-order Taylor Series about κ = 0

T15(ln
κi

4π sinh (κi)
) = ln(4π)+

κ2

6
− κ4

180
+

κ6

2835
− κ8

37800
+

κ10

467775
− 691κ12

3831077250
+

2κ14

127702575
.

We stop at the 15th-order because higher powers of κ make the Taylor series unstable. We now have
two approximations for ln κi

4π sinh (κi)
, for low and high κ. Putting these together we arrive at the

final form of the loss function for the HCN model

NLL =
−1

N

N∑
i=1

where
(
κ < 2.65, T15(ln

κi

4π sinh (κi)
), ln(

κi

2π
)− κi

)
+ κi(yi · ypredi). (6)

The condition κ < 2.65 is chosen so that the maximum percent difference between Equations 4
and 6 is minimized to 0.14%.

4 APPLICATION TO ELECTRON RECOILS

For a demonstration of our models on a simple case see Appendix B. Here, we apply our models to
determine the initial direction of electron recoils because that is the most complex scenario in gas
TPCs. As an electron recoils through gas it undergoes multiple scattering which alters the trajectory
of the recoiling electron and creates a track of secondary, ionized electrons. By reconstructing the
positions of the secondary electrons in 3D, directional gas TPCs can infer the initial direction of
the recoiling electron. Determining the direction is a complicated task because of the non-trivial
track shapes, illustrated in Figure 1. An agent must determine which side of the recoil track is the
starting point, and how much of the track beyond the starting point to fit in order to optimize the
initial direction prediction. As the electron recoils it loses energy and in the process becomes more
highly ionizing. Hence the charge density along the track can be used to determine the starting
point. To first order, there are two effects influencing the angular resolution of electron recoils:
the multiple scattering of the recoiling electron and the effective point resolution with which the
secondary electrons are detected. Multiple scattering makes the electron lose directionality as it
travels, suggesting only the very beginning of the track should be used to determine the initial
direction. On the other hand, the effective point resolution sets a lower limit on the length scale
where meaningful information can be extracted from the track. The models need to learn the best
trade-off between these two effects on a tack-by-track basis to provide the most accurate initial
direction predictions.

4.1 SIMULATION, PREPROCESSING, AND DATA SPLITS

Below we detail the steps taken to create our simulated electron recoil data sets. The specification
of the gas mixture, pressure, temperature, and diffusion are inspired by Jaegle et al. (2019).

1. We simulate 106 electron recoils at 40, 45, and 50 keV in a 70% He : 30% CO2 gas mixture
at 20◦C and 760 Torr using Degrad (Biagi, 2014). All electron recoil simulations begin
at the origin with the initial momentum in the positive z-direction. This produces a track of
secondary (ionized) electrons for each electron recoil simulation, illustrated in Figure 4a.

6

https://github.com/pytorch/pytorch/issues/68425
https://github.com/pytorch/pytorch/issues/68425
https://pytorch.org/maskedtensor/main/notebooks/nan_grad.html

Under review as a conference paper at ICLR 2024

2. To include the diffusion in the detector, Gaussian smearing is applied to each ionized elec-
tron in the track. For each track, the amount of smearing is drawn from a uniform distribu-
tion of 160− 466 µm, the smallest and largest expected values in Jaegle et al. (2019).

3. To make our simulations isotropic, a random rotation is applied to the track. The true initial
direction after rotation is saved.

4. The track is translated so that the origin is the center of charge. An example of a simulation
at this stage is shown in Figure 4b

5. The tracks are then binned into a (120, 120, 120) voxel grid, each voxel is a (500µm)3 cube.
In binning, data is directly transformed into PyTorch Sparse Tensors in the COO
format. Tracks that are not fully contained in the voxel grid are discarded. An illustration
of a simulation at this stage is shown in Figure 4c.

The final dataset contains 2,766,798 simulations. A random data split is used to create a training set
(80%) and a validation set (20%). To create the test data sets we simulate another 2 × 104 electron
recoils at 40 and 50 keV. We follow the same steps outlined above except for a slight modification.
The applied Gaussian smearing is no longer drawn from a uniform distribution. Instead, we probe
two specific cases: a high diffusion case where 443 µm of smearing is applied and a low diffusion
case where 200 µm is applied. The two energies and two diffusion cases give us four test data sets.

The simulation framework, Degrad, is the standard software package used in physics for simulating
the interaction of low-energy electrons in gasses Pfeiffer et al. (2019). The focus of this work is to
compare the different models, and our simulations provide a typical setup on which to compare
performance. The performance in any particular detector is expected to differ slightly due to the
sim-to-real gap. In the future we plan to use radioactive source data to train our models, thereby
avoiding the sim-to-real gap entirely. Simulation parameters, such as diffusion and binning, were
deliberately conservative compared to what is experimentally achievable. We verified that model
performance is robust against modest variation of the Degrad input parameters, such as temperature.

(a) Raw Degrad simulation (b) Processed simulation

(c) Voxilized simulation

Figure 4: An electron recoil simulation at various prepossessing stages. The processed simulation
is made by randomly rotating, applying Gaussian smearing, and mean-centering the raw simulation.
That is then binned into a (120, 120, 120) voxel grid with a (500µm)3 resolution. The red arrows
indicate the true direction.

7

Under review as a conference paper at ICLR 2024

4.2 TRAINING

Both models are trained using the Adam optimizer with lr = 0.0001, betas = (0.94, 0.999), eps =
10−7, and the PyTorch default value for all other parameters. The deep learning models are trained
with mini-batches of size N = 256. Hyperparameters were optimized by exploring values in the
range eps ∈ [10−8, 10−6], lr ∈ [10−6, 10−4], and N ∈ [64, 256].

Both the RCN and HCN models are trained on the training set while their loss on the validation set
is used for early stopping and hyperparameter selection. If the validation loss has not decreased in
the last five epochs, training is stopped. The weights corresponding to the lowest validation loss are
saved and used for the final model. The validation cosine distance loss achieved by the final RCN
model is 0.078 and the validation NLL loss achieved by the final HCN model is 0.179.

4.3 PERFORMANCE

We evaluate the trained model on the independent test sets discussed in Section 4.1 by comparing it
to a non-machine learning algorithm and to our estimation of the best expected directional perfor-
mance. The non-machine learning algorithm (Non-ML) is adapted from Marco et al. (2022). We
generalize the original algorithm to 3D and explore different variations where we tune its parameters
on the test sets and give the algorithm the correct head-tail. The best expected directional perfor-
mance (Best-Expected) is estimated by utilizing information that is only available in simulation.
The purpose of Best-Expected is not to be a viable option for analysis but to provide a benchmark
of exceptional performance. Non-ML and Best-Expected are detailed in Appendix A. Furthermore,
the RCN model provides a deep learning baseline to compare HCN to.

To compare all of our models, we use the cosine distance loss in Equation 1. In Appendix A we
explain that the Non-ML algorithm has a track efficiency based on the parameters used. Hence,
when comparing the models we plot the cosine distance loss versus the percentage of omitted tracks,
referred to as the efficiency cut. In Figure 5, we display the performance of all models on the 40
keV test data set with 443 µm Gaussian smearing (left) and the 50 keV test data set with 200
µm Gaussian smearing (right). In both cases, we find that the deep learning models significantly
outperform Non-ML, even under the most optimistic assumptions. On the 40 keV test data set with
443 µm Gaussian smearing and at a 0% efficiency cut, the RCN, HCN, and Best-Expected models
achieve a cosine distance loss of 0.104, 0.104, and 0.098, respectively. On the 50 keV test data set
with 200 µm Gaussian smearing and at a 0% efficiency cut, the models achieve a cosine distance
loss of 0.0624, 0.0632, and 0.0569, in the same order. The HCN and RCN models have similar
performance. However, the accuracy of the HCN model can be improved by discarding events with
low κi (high predicted uncertainty). The HCN model outperforms Best-Expected with just a 1%
efficiency cut, in both cases.

To assess the calibration of the HCN model we plot a 2D histogram of the predicted uncertainty
(κi) and the angle from the true direction to the predicted direction (θi) for all test data, displayed
in Figure 6a. The spread in θi gets smaller for higher values of κ, indicating that the HCN model is
predicting κi appropriately. The solid red curve in Figure 6a shows the mean angle, calculated for
each bin in κ. Using Equation 3, we can also calculate the expected mean angle as a function of κ

θavg. =

∫ 2π

0

∫ π

0

θ
κ

4π sinhκ
exp (κ cos (θ)) sin(θ)dθdϕ =

π

2 sinh(κ)

(
Io(κ)− e−κ

)
,

where Io is a modified Bessel function of the first kind. The expected mean angle as a function of κ
is plotted as the dashed black line in Figure 6a. The agreement of the expected mean angle with the
mean angle for each bin in kappa suggests that the HCN model is well-calibrated.

Building onto the 2D histogram in Figure 6a, we check whether the predicted directions in a κ bin
behave as if they are drawn from a von Mises-Fisher distribution with that value of κ. For each bin
in κ, we compute a distribution of yi · ypredi values and fit it with Equation 3 to obtain κfit. In a
perfect scenario, we expect κfit to match the bin center value. The κfit value for each bin versus the
bin center value in plotted in Figure 6b. The diagonal solid line indicates perfect agreement and the
dashed lines around it show the width of a bin in κ. Looking at both Figures 6aand 6b, we see good
agreement in the predicted and fit κ values in the regions where the majority of our statistics lie.

8

Under review as a conference paper at ICLR 2024

0 20 40 60 80
Efficiency Cut [%]

0.1

0.2

0.3

0.4

0.5

Co
sin

e
Di

st
an

ce
 L

os
s

HCN
RCN
Best-Expected
1% efficiency cut
Non-ML standard
Non-ML tuned

0 20 40 60 80
Efficiency Cut [%]

0.1

0.2

0.3

0.4

0.5

Co
sin

e
Di

st
an

ce
 L

os
s

HCN
RCN
Best-Expected
1% efficiency cut
Non-ML standard
Non-ML tuned

Figure 5: Cosine distance loss versus efficiency cuts for all models on the 40 keV test data set with
443 µm Gaussian smearing (left) and the 50 keV test data set with 200 µm Gaussian smearing (right).
The RCN (red diamond) and Best-Expected (horizontal line) models have no efficiency cuts. For
the HCN model, we improve accuracy by cutting examples with higher predicted uncertainty, results
are presented with a blue curve. The dashed vertical line indicates when the HCN model beats Best-
Expected. The orange point and black star indicate the performance of the Non-ML method with
standard parameters and with parameters tuned on the test set, respectively. The downward arrows
indicate how much improvement is possible if we cheat and give Non-ML the correct head-tail.

(a) (b)

Figure 6: Left: 2D histogram of predicted uncertainty (κ) and the angle from true to predicted
direction for all test data. The red curve is the mean angle for each bin in κ. The black dashed curve
is the expected mean angle according to Equation 3. Right: The cosine of the angles for each bin in
κ is fit to Equation 3 to obtain κfit, plotted with statistical error bars versus the bin center κ value.

5 CONCLUSION

This works integrates all the essential components required for applying deep learning to modern
directional recoil detectors. We discuss the challenge of handling sparse 3D data, which is increas-
ingly critical as detectors become more finely segmented. For the first time, we introduce a deep
probabilistic approach that utilizes the von Mises-Fisher distribution on S2 to predict 3D directions
along with their associated uncertainties. We outline the approximations on the NLL necessary for
stable training. Additionally, we propose two tests to assess model calibration and we demonstrate
that efficiency cuts on high uncertainty events effectively improve accuracy. The culmination of our
work is a general and robust framework that marks a significant advancement over existing non-
machine learning methods. These advancements have the potential to contribute to several realms
of fundamental physics. This general approach is applicable to any task requiring 3D direction
estimation with uncertainty.

9

Under review as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

REFERENCES

S. Biagi. Degrad – transport of electrons in gas mixtures, 2014. URL http://magboltz.web.
cern.ch/magboltz.

J. Billard, L. Strigari, and E. Figueroa-Feliciano. Implication of neutrino backgrounds on the reach
of next generation dark matter direct detection experiments. Phys. Rev. D, 89(2):023524, 2014.
doi: 10.1103/PhysRevD.89.023524.

Igor Gilitschenski, Roshni Sahoo, Wilko Schwarting, Alexander Amini, Sertac Karaman, and
Daniela Rus. Deep orientation uncertainty learning based on a bingham loss. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ryloogSKDS.

C. Glaser, S. McAleer, S. Stjärnholm, P. Baldi, and S.W. Barwick. Deep-learning-based re-
construction of the neutrino direction and energy for in-ice radio detectors. Astroparticle
Physics, 145:102781, 2023. ISSN 0927-6505. doi: https://doi.org/10.1016/j.astropartphys.
2022.102781. URL https://www.sciencedirect.com/science/article/pii/
S0927650522000822.

Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307, 2017.

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation with
submanifold sparse convolutional networks. CVPR, 2018.

Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu. Cooper-
ative holistic scene understanding: Unifying 3d object, layout, and camera pose estimation. In
Advances in Neural Information Processing Systems, pp. 206–217, 2018.

I. Jaegle et al. Compact, directional neutron detectors capable of high-resolution nuclear recoil
imaging. Nucl. Instrum. Meth. A, 945:162296, 2019. doi: 10.1016/j.nima.2019.06.037.

John T. Kent. The fisher-bingham distribution on the sphere. Journal of the Royal Statistical Society.
Series B (Methodological), 44(1):71–80, 1982. ISSN 00359246. URL http://www.jstor.
org/stable/2984712.

Takao Kitaguchi, Kevin Black, Teruaki Enoto, Asami Hayato, Joanne E. Hill, Wataru B. Iwakiri,
Philip Kaaret, Tsunefumi Mizuno, and Toru Tamagawa. A convolutional neural network ap-
proach for reconstructing polarization information of photoelectric x-ray polarimeters. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 942:162389, 2019. ISSN 0168-9002. doi: https://doi.org/10.1016/
j.nima.2019.162389. URL https://www.sciencedirect.com/science/article/
pii/S0168900219309726.

Shuai Liao, Efstratios Gavves, and Cees G. M. Snoek. Spherical regression: Learning viewpoints,
surface normals and 3d rotations on n-spheres. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Long Beach, USA, June 2019.

Siddharth Mahendran, Haider Ali, and René Vidal. 3d pose regression using convolutional neural
networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 494–495, 2017. doi: 10.1109/CVPRW.2017.73.

Siddharth Mahendran, Haider Ali, and René Vidal. A mixed classification-regression framework
for 3d pose estimation from 2d images. ArXiv, abs/1805.03225, 2018. URL https://api.
semanticscholar.org/CorpusID:13688430.

Alessandro Di Marco et al. A weighted analysis to improve the x-ray polarization sensitivity of the
imaging x-ray polarimetry explorer. The Astronomical Journal, 163(4):170, mar 2022. doi: 10.
3847/1538-3881/ac51c9. URL https://dx.doi.org/10.3847/1538-3881/ac51c9.

10

http://magboltz.web.cern.ch/magboltz
http://magboltz.web.cern.ch/magboltz
https://openreview.net/forum?id=ryloogSKDS
https://openreview.net/forum?id=ryloogSKDS
https://www.sciencedirect.com/science/article/pii/S0927650522000822
https://www.sciencedirect.com/science/article/pii/S0927650522000822
http://www.jstor.org/stable/2984712
http://www.jstor.org/stable/2984712
https://www.sciencedirect.com/science/article/pii/S0168900219309726
https://www.sciencedirect.com/science/article/pii/S0168900219309726
https://api.semanticscholar.org/CorpusID:13688430
https://api.semanticscholar.org/CorpusID:13688430
https://dx.doi.org/10.3847/1538-3881/ac51c9

Under review as a conference paper at ICLR 2024

Kanti V Mardia, Peter E Jupp, and KV Mardia. Directional statistics, volume 2. Wiley Online
Library, 2000.

David Mohlin, Josephine Sullivan, and Gérald Bianchi. Probabilistic orientation estimation with
matrix fisher distributions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 4884–4893. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf.

Ciaran A. J. O’Hare. New Definition of the Neutrino Floor for Direct Dark Matter Searches. Phys.
Rev. Lett., 127(25):251802, 2021. doi: 10.1103/PhysRevLett.127.251802.

Ciaran A. J. O’Hare et al. Recoil imaging for dark matter, neutrinos, and physics beyond the Stan-
dard Model. In Snowmass 2021, 3 2022.

A.L. Peirson, R.W. Romani, H.L. Marshall, J.F. Steiner, and L. Baldini. Deep ensemble analy-
sis for imaging x-ray polarimetry. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment, 986:164740, 2021.
ISSN 0168-9002. doi: https://doi.org/10.1016/j.nima.2020.164740. URL https://www.
sciencedirect.com/science/article/pii/S0168900220311372.

Dorothea Pfeiffer et al. Interfacing Geant4, Garfield++ and Degrad for the Simulation of Gaseous
Detectors. Nucl. Instrum. Meth. A, 935:121–134, 2019. doi: 10.1016/j.nima.2019.04.110.

Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. Deep directional statistics: Pose estimation
with uncertainty quantification. In European Conference on Computer Vision (ECCV), September
2018.

J. Schueler, M. Ghrear, S. E. Vahsen, P. Sadowski, and C. Deaconu. Deep learning for improved
kev-scale recoil identification in high resolution gas time projection chambers, 2022.

Spconv Contributors. Spconv: Spatially Sparse Convolution Library, October 2022. URL https:
//github.com/traveller59/spconv.

Sven E. Vahsen, Ciaran A. J. O’Hare, and Dinesh Loomba. Directional Recoil Detection. Ann. Rev.
Nucl. Part. Sci., 71:189–224, 2021. doi: 10.1146/annurev-nucl-020821-035016.

FL Villante and A Serenelli. An updated discussion of the solar abundance problem. In Solar
Neutrinos: Proceedings of the 5th International Solar Neutrino Conference, pp. 103–120. World
Scientific, 2019.

Martin C. Weisskopf et al. The imaging x-ray polarimetry explorer (ixpe). Results
in Physics, 6:1179–1180, 2016. ISSN 2211-3797. doi: https://doi.org/10.1016/j.rinp.
2016.10.021. URL https://www.sciencedirect.com/science/article/pii/
S221137971630448X.

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes. 2018.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10), 2018. ISSN 1424-8220. doi: 10.3390/s18103337. URL https://www.mdpi.com/
1424-8220/18/10/3337.

A NON-MACHINE LEARNING ALGORITHMS

Here, we detail the non-machine learning algorithms to which we compare our models. The first
algorithm, Non-ML, is adapted from Marco et al. (2022) where it is discussed in the context of
determining the initial direction of a photoelectron track imaged in 2D by the IXPE. We generalized
the algorithm so that it can be applied to our 3D simulations. The Non-ML algorithm is outlined
below:

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0168900220311372
https://www.sciencedirect.com/science/article/pii/S0168900220311372
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv
https://www.sciencedirect.com/science/article/pii/S221137971630448X
https://www.sciencedirect.com/science/article/pii/S221137971630448X
https://www.mdpi.com/1424-8220/18/10/3337
https://www.mdpi.com/1424-8220/18/10/3337

Under review as a conference paper at ICLR 2024

1. Find the barycenter (xb) of the track, defined as xb =
∑

i qixi∑
i qi

, where qi is the charge in a
voxel and xi is the position of the voxel. Center the track on xb.

2. Compute the weighted covariance matrix. Use its singular value decomposition (SVD) to
find the principal axis vPA (the axis on which the second moment is maximized) and the
second moment along vPA, denoted as M2.

3. Compute the third moment (M3) about vPA. M3 is also known as the skewness and it
is used to keep only the initial part of the recoil track. Keep only the points satisfying
sgn((xi − xb) · vPA) = sgn(M3).

4. M2 sets the length scale along the principal axis, keep only the points satisfying 1.5M2 <
(xi − xb) · vPA < 3M2

5. The two conditions above are meant to isolate the beginning portion of the track. The
interaction point (xIP) is defined as the charge-weighted center of the remaining points.
Center the remaining points on xIP.

6. The remaining points are re-weighted with wi = exp (−dist(xIP,xi)/wo), where wo =
0.05 as specified in Marco et al. (2022). Compute the weighted covariance matrix and use
SVD to find the principal axis, this gives the initial axial direction of the track, denoted as
vIP.

Above, 1.5M2, 3M2, and wo = 0.05 are all adopted from Marco et al. (2022), it is possible that
these values are not optimal for our application. Hence, we also investigate the performance when
these parameters are tuned to minimize the cosine distance loss on each test data set. There is no
discussion of assigning a head-tail to vIP. We employ two approaches: In the first, we assign the
head-tail such that vIP · vPA => 0. In the Second, we simply assign the correct head-tail, such that
vIP · vTrue => 0 where vTrue is the true direction. Finally, the selections applied in steps 3 and 4
may not leave enough points to determine a principal axis for a subset of the tracks. In this case,
the track is omitted and the track efficiency is noted. When tuning the parameters, we only consider
cases resulting in a track efficiency of greater than 10%.

The second algorithm, Best-Expected, attempts to estimate the best possible directional performance
by using information that is only available in simulation. The purpose is not to be a viable option
for analysis but to provide a benchmark allowing us to check how close our models are to the best
expected performance. The implementation of this method is outlined below:

1. For each simulation, Identify the true starting point. The true starting point is informa-
tion that is only known in simulation. One of the key challenges faced by our models is
identifying the starting point which can be ambiguous.

2. Make a sphere of radius ε centered on the true starting point. The value of ε is specified by
tuning it to minimize the cosine distance loss for each test data set.

3. Determine the principal axis of the points contained within the sphere using SVD.
4. Assign a head-tail to the principal axis such that it agrees with the true direction. In this

step, the true label is used to assist the algorithm, giving it a significant advantage.
5. The final vector direction obtained is used as the predicted direction of this method.

Since this algorithm is given information about the true starting point, it is tuned on the test data sets,
and it uses the truth head-tail information, we reason it is a good approximation of the best expected
performance.

B APPLICATION TO A SIMPLE CASE

To provide an illustrative tutorial of applying our models, we demonstrate their application to deter-
mining the direction of 3D arrows. Isotropic arrows with a constant shape and uniform density are
generated and binned into a (120, 120, 120) voxel grid. An example is displayed in figure 7. We
generate 6000 arrows, 4000 are used for the training set and 1000 are used for the validation and test
sets. The RCN and HCN models are trained on the training set while their validation loss is used for
early stopping. If the validation loss has not decreased in the last 2 epochs, training is stopped. The
weights corresponding to the lowest validation loss are saved and used for the final model.

12

Under review as a conference paper at ICLR 2024

In this simple case, both models are fully trained within minutes. The cosine distance loss of the
RCN and HCN models on the test data set is 4× 10−4 and 8× 10−4, respectively. As expected, the
direction predictions are much more accurate than Section 4. The lowest predicted κi by HCN on
the test data set is 443, meaning the model is much more confident in the predicted directions than
for the electron recoil case. The code needed to create the arrow data sets, train our models, and test
our models is available at https://github.com/fake-acc/tmp-fake-repo.

Figure 7: An example of a 3D arrow for the application to a simple case.

13

https://github.com/fake-acc/tmp-fake-repo

	Introduction
	Related work
	Related work from the physics community
	 Related work from the machine learning community

	The model
	Architecture
	Loss functions
	Practical considerations

	Application to Electron recoils
	Simulation, Preprocessing, and Data splits
	training
	Performance

	Conclusion
	Non-Machine Learning algorithms
	Application to a Simple case

