
Published as a conference paper at ICLR 2022

GRAPH-GUIDED NETWORK FOR IRREGULARLY
SAMPLED MULTIVARIATE TIME SERIES

Xiang Zhang
Harvard University
xiang_zhang@hms.harvard.edu

Marko Zeman
University of Ljubljana
marko.zeman@fri.uni-lj.si

Theodoros Tsiligkaridis
MIT Lincoln Laboratory
ttsili@ll.mit.edu

Marinka Zitnik
Harvard University
marinka@hms.harvard.edu

ABSTRACT

In many domains, including healthcare, biology, and climate science, time series
are irregularly sampled with varying time intervals between successive readouts
and different subsets of variables (sensors) observed at different time points. Here,
we introduce RAINDROP, a graph neural network that embeds irregularly sampled
and multivariate time series while also learning the dynamics of sensors purely
from observational data. RAINDROP represents every sample as a separate sensor
graph and models time-varying dependencies between sensors with a novel mes-
sage passing operator. It estimates the latent sensor graph structure and leverages
the structure together with nearby observations to predict misaligned readouts. This
model can be interpreted as a graph neural network that sends messages over graphs
that are optimized for capturing time-varying dependencies among sensors. We use
RAINDROP to classify time series and interpret temporal dynamics on three health-
care and human activity datasets. RAINDROP outperforms state-of-the-art methods
by up to 11.4% (absolute F1-score points), including techniques that deal with
irregular sampling using fixed discretization and set functions. RAINDROP shows
superiority in diverse setups, including challenging leave-sensor-out settings.

1 INTRODUCTION

Multivariate time series are prevalent in a variety of domains, including healthcare, space science,
cyber security, biology, and finance (Ravuri et al., 2021; Sousa et al., 2020; Sezer et al., 2020; Fawaz
et al., 2019). Practical issues often exist in collecting sensor measurements that lead to various
types of irregularities caused by missing observations, such as saving costs, sensor failures, external
forces in physical systems, medical interventions, to name a few (Choi et al., 2020). While temporal
machine learning models typically assume fully observed and fixed-size inputs, irregularly sampled
time series raise considerable challenges (Shukla & Marlin, 2021; Hu et al., 2021). For example,
observations of different sensors might not be aligned, time intervals among adjacent observations are
different across sensors, and different samples have different numbers of observations for different
subsets of sensors recorded at different time points (Horn et al., 2020; Wang et al., 2011).

Prior methods for dealing with irregularly sampled time series involve filling in missing values using
interpolation, kernel methods, and probabilistic approaches (Schafer & Graham, 2002). However,
the absence of observations can be informative on its own (Little & Rubin, 2014) and thus imputing
missing observations is not necessarily beneficial (Agniel et al., 2018). While modern techniques
involve recurrent neural network architectures (e.g., RNN, LSTM, GRU) (Cho et al., 2014) and
transformers (Vaswani et al., 2017), they are restricted to regular sampling or assume aligned
measurements across modalities. For misaligned measurements, existing methods tend to rely on a
two-stage approach that first imputes missing values to produce a regularly-sampled dataset and then
optimizes a model of choice for downstream performance. This decoupled approach does not fully
exploit informative missingness patterns or deal with irregular sampling, thus producing suboptimal

1

Published as a conference paper at ICLR 2022

performance (Wells et al., 2013; Li & Marlin, 2016). Thus, recent methods circumvent the imputation
stage and directly model irregularly sampled time series (Che et al., 2018; Horn et al., 2020).

Previous studies (Wu et al., 2021; Li et al., 2020a; Zhang et al., 2019) have noted that inter-sensor
correlations bring rich information in modeling time series. However, only few studies consider
relational structure of irregularly sampled time series, and those which do have limited ability in
capturing inter-sensor connections (Wu et al., 2021; Shukla & Marlin, 2018). In contrast, we integrate
recent advances in graph neural networks to take advantage of relational structure among sensors. We
learn latent graphs from multivariate time series and model time-varying inter-sensor dependencies
through neural message passing, establishing graph neural networks as a way to model sample-varying
and time-varying structure in complex time series.

vu

Observation

Heart rate

Blood pressure
Blood test

Temperature

Survival

Death

Observations (raindrops)
are unaligned across

different sensors
and have irregular time
intervals between them

Figure 1: The RAINDROP approach. For
sample Si, sensor u is recorded at time t1 as
value xt1i,u, triggering a propagation and trans-
formation of neural messages along edges of
Si’s sensor dependency graph.

Present work. To address the characteristics of irregu-
larly sampled time series, we propose to model temporal
dynamics of sensor dependencies and how those relation-
ships evolve over time. Our intuitive assumption is that the
observed sensors can indicate how the unobserved sensors
currently behave, which can further improve the represen-
tation learning of irregular multivariate time series. We
develop RAINDROP1, a graph neural network that lever-
ages relational structure to embed and classify irregularly
sampled multivariate time series. RAINDROP takes sam-
ples as input, each sample containing multiple sensors and
each sensor consisting of irregularly recorded observa-
tions (e.g., in clinical data, an individual patient’s state of
health is recorded at irregular time intervals with different
subsets of sensors observed at different times). RAINDROP
model is inspired by how raindrops hit a surface at varying
times and create ripple effects that propagate through the
surface. Mathematically, in RAINDROP, observations (i.e.,
raindrops) hit a sensor graph (i.e., surface) asynchronously
and at irregular time intervals. Every observation is processed by passing messages to neighboring
sensors (i.e., creating ripples), taking into account the learned sensor dependencies (Figure 1). As
such, RAINDROP can handle misaligned observations, varying time gaps, arbitrary numbers of
observations, and produce multi-scale embeddings via a novel hierarchical attention.

We represent dependencies with a separate sensor graph for every sample wherein nodes indicate
sensors and edges denote relationships between them. Sensor graphs are latent in the sense that
graph connectivity is learned by RAINDROP purely from observational time series. In addition to
capturing sensor dependencies within each sample, RAINDROP i) takes advantage of similarities
between different samples by sharing parameters when calculating attention weights, and ii) considers
importance of sequential sensor observations via temporal attention.

RAINDROP adaptively estimates observations based on both neighboring readouts in the temporal
domain and similar sensors as determined by the connectivity of optimized sensor graphs. We
compare RAINDROP to five state-of-the-art methods on two healthcare datasets and an activity
recognition dataset across three experimental settings, including a setup where a subset of sensors
in the test set is malfunctioning (i.e., have no readouts at all). Experiments show that RAINDROP
outperforms baselines on all datasets with an average AUROC improvement of 3.5% in absolute
points on various classification tasks. Further, RAINDROP improves prior work by a 9.3% margin
(absolute points in accuracy) when varying subsets of sensors malfunction.

2 RELATED WORK

Our work here builds on time-series representation learning and notions of graph neural networks and
attempts to resolve them by developing a single, unified approach for analysis of complex time series.

Learning with irregularly sampled multivariate time series. Irregular time series are character-
ized by varying time intervals between adjacent observations (Zerveas et al., 2021; Tipirneni &

1Code and datasets are available at https://github.com/mims-harvard/Raindrop.

2

https://github.com/mims-harvard/Raindrop

Published as a conference paper at ICLR 2022

Reddy, 2021; Chen et al., 2020). In a multivariate case, irregularity means that observations can
be misaligned across different sensors, which can further complicate the analysis. Further, because
of a multitude of sampling frequencies and varying time intervals, the number of observations can
also vary considerably across samples (Fang & Wang, 2020; Kidger et al., 2020). Predominant
downstream tasks for time series are classification (i.e., predicting a label for a given sample, e.g.,
Tan et al. (2020); Ma et al. (2020)) and forecasting (i.e., anticipating future observations based
on historical observations, e.g., Wu et al. (2020a)). The above mentioned characteristics create
considerable challenges for models that expect well-aligned and fixed-size inputs (Shukla & Marlin,
2020). An intuitive way to deal with irregular time series is to impute missing values and process
them as regular time series (Mikalsen et al., 2021; Li & Marlin, 2020; Shan & Oliva, 2021). However,
imputation methods can distort the underlying distribution and lead to unwanted distribution shifts.
To this end, recent methods directly learn from irregularly sampled time series (Chen et al., 2018).
For example, Che et al. (2018) develop a decay mechanism based on gated recurrent units (GRU-D)
and binary masking to capture long-range temporal dependencies. SeFT (Horn et al., 2020) takes a
set-based approach and transforms irregularly sampled time series datasets into sets of observations
modeled by set functions insensitive to misalignment. mTAND (Shukla & Marlin, 2021) leverages a
multi-time attention mechanism to learn temporal similarity from non-uniformly collected measure-
ments and produce continuous-time embeddings. IP-Net (Shukla & Marlin, 2018) and DGM2 (Wu
et al., 2021) adopt imputation to interpolate irregular time series against a set of reference points
using a kernel-based approach. The learned inter-sensor relations are static ignoring sample-specific
and time-specific characteristics. In contrast with the above methods, RAINDROP leverages dynamic
graphs to address the characteristics of irregular time series and produce high-quality representations.

Learning with graphs and neural message passing. There has been a surge of interest in applying
neural networks to graphs, leading to the development of graph embeddings (Zhou et al., 2020; Li
et al., 2021), graph neural networks (Wu et al., 2020b), and message passing neural networks (Gilmer
et al., 2017). To address the challenges of irregular time series, RAINDROP specifies a message
passing strategy to exchange neural message along edges of sensor graphs and deal with misaligned
sensor readouts (Riba et al., 2018; Nikolentzos et al., 2020; Galkin et al., 2020; Fey et al., 2020;
Lin et al., 2018; Zhang et al., 2020). In particular, RAINDROP considers message passing on latent
sensor graphs, each graph describing a different sample (e.g., patient, Figure 1), and it specifies a
message-passing network with learnable adjacency matrices. The key difference with the predominant
use of message passing is that RAINDROP uses it to estimate edges (dependencies) between sensors
rather than applying it on a fixed, apriori-given graph. To the best of our knowledge, prior work did
not utilize sensor dependencies for irregularly sampled time series. While prior work used message
passing for regular time series (Wang et al., 2020; Wu et al., 2020c; Kalinicheva et al., 2020; Zha
et al., 2022), its utility for irregularly sampled time series has not yet been studied.

3 RAINDROP

Let D = {(Si, yi) | i = 1, . . . , N} denote an irregular time series dataset with N labeled samples
(Figure 2). Every sample Si is an irregular multivariate time series with a corresponding label
yi ∈ {1, . . . , C}, indicating which of the C classes Si is associated with. Each sample contains M
non-uniformly measured sensors that are denoted as u, v, etc. RAINDROP can also work on samples
with only a subset of active sensors (see Sec. 4.1). Each sensor is given by a sequence of observations
ordered by time. For sensor u in sample Si, we denote a single observation as a tuple (t, xti,u),
meaning that sensor u was recorded with value xti,u ∈ R at timestamp t ∈ R+. We omit sample index
i and sensor index u in timestamp t. Sensor observations are irregularly recorded, meaning that time
intervals between successive observations can vary across sensors. For sensor u in sample Si, we use
Ti,u to denote the set of timestamps that u, or at least one of u’s L-hop neighbors (L is the number of
layers in RAINDROP’s message passing) is recorded. We use || and T to denote concatenation and
transpose, respectively. We omit layer index l ∈ {1, . . . , L} for simplicity when clear from the text.

Problem (Representation learning for irregularly sampled multivariate time series). A dataset
D of irregularly sampled multivariate time series is given, where each sample Si has multiple sensors
and each sensor has a variable number of observations. RAINDROP learns a function f : Si → zi
that maps Si to a fixed-length representation zi suitable for downstream task of interest, such as
classification. Using learned zi, RAINDROP can predict label ŷi ∈ {1, . . . , C} for Si.

3

Published as a conference paper at ICLR 2022

RAINDROP learns informative embeddings for irregularly samples time series. The learned embed-
dings capture temporal patterns of irregular observations and explicitly consider varying dependencies
between sensors. While we focus on time-series classification in this work, the proposed method can
be easily extended to broader applications such as regression, clustering and generation tasks.

3.1 OVERVIEW OF RAINDROP

Sample

Sensor

Observation
(Section 3.3)

(Section 3.4)

(Section 3.5)

Figure 2: Hierarchical structure
of irregular multivariate time se-
ries dataset. RAINDROP embeds
individual observations consid-
ering inter-sensor dependencies
(Sec. 3.3), aggregates them into
a sensor embedding using tempo-
ral attention (Sec. 3.4), and finally
integrates sensor embeddings into
a sample embedding (Sec. 3.5).

RAINDROP aims to learn a fixed-dimensional embedding zi for a
given sample Si and predict the associated label ŷi. To this end,
it generates sample embeddings using a hierarchical architecture
composed of three levels to model observations (sensor readouts),
sensors, and whole samples (Figure 2). Without loss of generality,
we describe RAINDROP’s procedure as if observations arrive one
at a time (one sensor is observed at time t and other sensors do not
have observations). If there are multiple observations at the same
time, RAINDROP can effortlessly process them in parallel.

RAINDROP first constructs a graph for every sample where nodes rep-
resent sensors and edges indicate relations between sensors (Sec. 3.2).
We use Gi to denote the sensor graph for sample Si and ei,uv to rep-
resent the weight of a directed edge from sensor u to sensor v in Gi.
Sensor graphs are automatically optimized considering sample-wise
and time-wise specificity.

The key idea of RAINDROP is to borrow information from u’s neigh-
bors based on estimated relationships between u and other sensors.
This is achieved via message passing carried out on Si’s dependency
graph and initiated at node u in the graph. When an observation
(t, xti,u) is recorded for sample Si at time t, RAINDROP first em-
beds the observation at active sensor u (i.e., sensor whose value
was recorded) and then propagates messages (i.e., the observation
embeddings) from u to neighboring sensors along edges in sensor
dependency graph Gi. As a result, recording the value of u can affect
u’s embedding as well as embeddings of other sensors that related to u (Sec. 3.3). Finally, RAINDROP
generates sensor embeddings by aggregating all observation embeddings for each sensor (across all
timestamps) using temporal attention weights (Sec. 3.4). At last, RAINDROP embeds sample Si based
on sensor embeddings (Sec. 3.5) and feeds the sample embedding into a downstream predictor.

3.2 CONSTRUCTING SENSOR DEPENDENCY GRAPHS

We build a directed weighted graph Gi = {V, Ei} for every sample Si and refer to it as the sensor
dependency graph for Si. Nodes V represent sensors and edges Ei describe dependencies between
sensors in sample Si that RAINDROP infers. As we show in experiments, RAINDROP can be directly
used with samples that only contain a subset of sensors in V . We denote edge from u to v as a
triplet (u, ei,uv, v), where ei,uv ∈ [0, 1] represents the strength of relationship between sensors u
and v in sample Si. Edge (u, ei,uv, v) describes the relationship between u and v: when u receives
an observation, it will send a neural message to v following edge ei,uv. If ei,uv = 0, there is no
exchange of neural information between u and v, indicating that the two sensors are unrelated. We
assume that the importance of u to v is different than the importance of v to u, and so we treat sensor
dependency graphs as directed, i.e., ei,uv 6= ei,vu. All graphs are initialized as fully-connected graphs
(i.e., ei,uv = 1 for any u, v and Si) and edge weights ei,uv are updated following Eq. 3 during model
training. If available, it is easy to integrate additional domain knowledge into graph initialization.

3.3 GENERATING EMBEDDINGS OF INDIVIDUAL OBSERVATIONS

Let u indicate active sensor at time t ∈ Ti,u, i.e., sensor whose value xti,u is observed at t, and let u be
connected to v through edge (u, ei,uv, v). We next describe how to produce observation embeddings
hti,u ∈ Rdh and hti,v ∈ Rdh for sensors u and v, respectively (Figure 3a). We omit layer index l and
note that the proposed strategy applies to any number of layers.

4

Published as a conference paper at ICLR 2022

Sensor-level
processing in sample

Sensor
embedding

Attention
weights

u v

u v

u v

Observation-level
processing in sample

Message passingSensors Time representation
Learned embeddings

Dot product Weight vectorObservation (input)

vu
Edge weight

attention weight
Inter-sensor

a b

Stacked observation
embeddings

Sample records the value
of sensor at time

c Update edge weight in
Sample at layer

β

Figure 3: (a) RAINDROP generates observation embedding ht
i,u based on observed value xti,u at t, passes

message to neighbor sensors such as v, and generates ht
i,v through inter-sensor dependencies. The αt

i,uv denotes
a time-specific attention weight, calculated based on time representation pt

i and weight vector rv . Edge weight
ei,uv is shared by all timestamps. (b) An illustration of generating sensor embedding. Apply the message
passing in (a) to all timestamps and produce corresponding observation embeddings. We aggregate arbitrary
number of observation embeddings into a fixed-length sensor embedding zi,v while paying distinctive attentions
to different observations. We independently apply the processing procedure to all sensors. (c) RAINDROP

updates edge weight e(l)i,uv based on the edge weight e(l−1)
i,uv from previous layer and the learned inter-sensor

attention weights in all time steps. We explicitly show layer index l as multiple layers are involved.

Embedding an observation of an active sensor. Let u denote an active sensor whose value has just
been observed as xti,u. For sufficient expressive power (Veličković et al., 2018), we map observation
xti,u to a high-dimensional space using a nonlinear transformation: hti,u = σ(xti,uRu). We use sensor-
specific transformations because values recorded at different sensors can follow different distributions,
which is achieved by trainable weight vectors Ru depending on what sensor is activated (Li et al.,
2020b). Alternatives, such as a multilayer perceptron, can be considered to transform xti,u into hti,u.
As hti,u represents information brought on by observing xti,u, we regard hti,u as the embedding of u’s
observation at t. Sensor-specific weight vectorsRu are shared across samples.

Passing messages along sensor dependency graphs. For sensors that are not active at timestamp
t but are neighbors of the active sensor u in the sensor dependency graph Gi, RAINDROP uses
relationships between u and those sensors to estimate observation embeddings for them. We proceed
by describing how RAINDROP generates observation embedding hti,v for sensor v assuming v is a
neighbor of u in Gi. Given hti,u and edge (u, ei,uv, v), we first calculate inter-sensor attention weight
αti,uv ∈ [0, 1], representing how important u is to v via the following equation:

αti,uv = σ(hti,uD[rv||pti]T), (1)

where rv ∈ Rdr is a trainable weight vector that is specific to the sensor receiving the message
(i.e., hti,u). Vector rv allows the model to learn distinct attention weights for different edges going
out from the same sensor u. Further, pti ∈ Rdt is the time representation obtained by converting
a 1-dimensional timestamp t into a multi-dimensional vector pti by passing t through a series of
trigonometric functions (Horn et al., 2020). See Appendix A.1 for details. RAINDROP uses pti to
calculate attention weights that are sensitive to time. Finally,D is a trainable weight matrix mapping
hti,u from dh dimensions to (dr+dt) dimensions. Taken this together, we can estimate the embedding
hti,v for u’s neighbor v as follows:

hti,v = σ(hti,uwuw
T
v α

t
i,uvei,uv), (2)

wherewu,wv ∈ Rdh are trainable weight vectors shared across all samples. Thewu is specific to
active sensor u and wv is specific to neighboring sensor v. In the above equation, ei,uv denotes edge

5

Published as a conference paper at ICLR 2022

weight shared across all timestamps. The above message passing describes the processing of a single
observation at a single timestamp. In case multiple sensors are active at time t and connected with v,
we normalize αti,uv (with softmax function) across active sensors and aggregate messages at v.

Overall, RAINDROP produces observation embedding hti,v for sensor v through its relational con-
nection with u, even though there is no direct measurement of v at time t. These message passing
operations are performed to adaptively and dynamically estimate missing observations in the embed-
ding space based on recorded information and learned graph structure.

Updating sensor dependency graphs. We describe the update of edge weights and prune of graph
structures in the situation that stacks multiple RAINDROP layers (Figure 3). Here we explicitly show
layer index l because multiple layers are involved in the computation. As no prior knowledge is
assumed, we initialize the graph as all sensors connected with each other. However, the fully connected
edges may bridge sensors that should be independent, which will introduce spurious correlations and
prevent the model from paying attention to the truly important connections. Addressing this issue,
RAINDROP automatically updates edge weights and prunes out less important edges. Based on the
aggregated temporal influence driven by the inter-sensor attention weights α(l),t

i,uv , we update edge

weights e(l)i,uv in each layer l ∈ {1, . . . , L} by:

e
(l)
i,uv =

e
(l−1)
i,uv

|Ti,u|
∑
t∈Ti,u

α
(l),t
i,uv, (3)

where Ti,u denotes the set of all timestamps where there is message passes from u to v. In particular,
we set e(0)i,uv = 1 in the initialization of graph structures. We use L = 2 in all our experiments. In

every layer, we order the estimated values e(l)i,uv for all edges in sample Si and prune bottom K%
edges with smallest edge weights (Yang et al., 2021). Pruned edges are not re-added in later layers.

3.4 GENERATING SENSOR EMBEDDINGS

Next we describe how to aggregate observation embeddings into sensor embeddings zi,v, taking
sensor v as an example (Figure 3b). Previous step (Sec. 3.3) generates observation embeddings for
every timestamp when either v or v’s neighbor is observed. The observation embeddings at different
timestamps have unequal importance to the the sensor embedding (Zerveas et al., 2021). We use
the temporal attention weight (scalar) βti,v to represent the importance of observation embedding at
t. We use Ti,v = {t1, t2, . . . , tT } to denote all the timestamps when a readout is observed in v (we
can directly generate hti,v) or in v’s neighbor (we can generate hti,v through message passing). The
βti,v is the corresponding element of vector βi,v which include the temporal attention weights at all
timestamps t ∈ Ti,v .

We use temporal self-attention to calculate βi,v , which is different from the standard self-attention (Hu
et al., 2020; Yun et al., 2019). The standard dot-product self-attention generates an attention matrix
with dimension of T × T (where T = |Ti,v| can vary across samples) that has an attention weight for
each pair of observation embeddings. In our case, we only need a single attention vector where each
element denotes the temporal attention weight of an observation embedding when generating the
sensor embedding. Thus, we modify the typical self-attention model to fit our case: using a trainable
s ∈ RT×1 to map the self-attention matrix (RT×T) to T -dimensional vector βi,v (RT×1) through
matrix product (Appendix A.2).

The following steps describe how to generate sensor embeddings. We first concatenate observation
embedding hti,v with time representation pti to include information of timestamp. Then, we stack
the concatenated embeddings [hti,v||pti] for all t ∈ Ti,v into a matrix Hi,v. The Hi,v contains all
information of observations and timestamps for sensor v. We calculate βti,v through:

βi,v = softmax

(
Qi,vK

T
i,v√

dk
s

)
, (4)

where Qi,v and Ki,v are two intermediate matrices that are derived from the stacked observation
embeddings. In practice, Qi,v = Hi,vWQ and Ki,v = Hi,vWK are linearly mapped from Hi,v

6

Published as a conference paper at ICLR 2022

parameterized by WQ and WK , respectively (Vaswani et al., 2017). The
√
dk is a scaling factor

where dk is the dimension after linear mapping. Based on the learned temporal attention weights
βti,v , we calculate sensor embedding zi,v through:

zi,v =
∑
t∈Ti,v

(βti,v[h
t
i,v||pti]W), (5)

where weight matrixW is a linear projector shared by all sensors and samples. It is worth to mention
that all attention weights (such as αti,uv and βi,v) can be multi-head. In this work, we describe the
model in the context of single head for brevity.

Using attentional aggregation, RAINDROP can learn a fixed-length sensor embedding for arbitrary
number of observations. Meanwhile, RAINDROP is capable of focusing on the most informative
observation embeddings. We process all observation embeddings as a whole instead of sequentially,
which allows parallel computation for faster training and also mitigates the performance drop caused
by modeling long dependencies sequentially. In the case of sensors with very large number of
observations, we can reduce the length of time series by subsampling or splitting a long series into
multiple short series.

3.5 GENERATING SAMPLE EMBEDDINGS

Finally, for sample Si, we aggregate sensor embeddings zi,v (Eq. 5) across all sensors to obtain an
embedding zi ∈ Rdz through a readout function g as follows: zi = g(zi,v | v = 1, 2, . . . ,M) (such
as concatenation). When a sample contains a large number of sensors, RAINDROP can seamlessly use
a set-based readout function such as averaging aggregation (Appendix A.3). Given an input sample
Si, RAINDROP’s strategy outlined in Sec. 3.2-3.5 produces a sample embedding zi that can be further
optimized for downstream tasks.

3.6 IMPLEMENTATION AND PRACTICAL CONSIDERATIONS

Loss function. RAINDROP’s loss function is formulated as: L = LCE + λLr, where Lr =
1
M2

∑
u,v∈V

∑
i,j∈V ||ei,uv − ej,uv||2/(N − 1)2, where LCE is cross entropy and Lr is a regu-

larizer to encourage the model to learn similar sensor dependency graphs for similar samples. The Lr
measures averaged Euclidean distance between edge weights across all samples pairs, in all sensor
pairs (including self-connections). The λ is a user-defined coefficient. Practically, as N can be large,
we calculate Lr only for samples in a batch.

Downstream tasks. If a sample has auxiliary attributes (e.g., a patient’s demographics) that do not
change over time, we can project the attribute vector to a da-dimensional vector ai with a fully-
connected layer and concatenate it with the sample embedding, getting [zi||ai]. At last, we feed
[zi||ai] (or only zi if ai is not available) into a neural classifier ϕ : Rdz+da → {1, . . . , C}. In our
experiments, ϕ is a 2-layer fully-connected network with C neurons at the output layer returning
prediction ŷi = ϕ([zi||ai]) for sample Si.
Sensor dependencies. While modeling sensor dependencies, we involve observation embedding
(hti,u, Eq. 1) of each sample in the calculation of attention weights. Similarly, to model time-wise
specificity in graph structures, we consider time information (pti, Eq. 1) when measuring αti,uv.
RAINDROP can capture similar graph structures across samples from three aspects (Appendix A.4):
(1) the initial graphs are the same in all samples; (2) the parameters in message passing (Ru; wu,
wv, Eq. 2), inter-sensor attention weights calculation (D, Eq. 1), and temporal attention weights
calculation (s, Eq. 4; W , Eq. 5) are shared by all samples; (3) we encourage the model to learn
similar graph structures by adding a penalty to disparity of structures (Lr).
Scalability. RAINDROP is efficient because embeddings can be learned in parallel. In particular, pro-
cessing of observation embeddings is independent across timestamps. Similarly, sensor embeddings
can be processed independently across different sensors (Figure 3). While the complexity of temporal
self-attention calculation grows quadratically with the number of observations, it can be practically
implemented using highly-optimized matrix multiplication.

7

Published as a conference paper at ICLR 2022

4 EXPERIMENTS

Datasets. Below we briefly overview healthcare and human activity datasets. (1) P19 (Reyna et al.,
2020) includes 38,803 patients that are monitored by 34 sensors. Each patient is associated with a
binary label representing the occurrence of sepsis. (2) P12 (Goldberger et al., 2000) records temporal
measurements of 36 sensors of 11,988 patients in the first 48-hour stay in ICU. The samples are
labeled based on hospitalization length. (3) PAM (Reiss & Stricker, 2012) contains 5,333 segments
from 8 activities of daily living that are measured by 17 sensors. Details are in Appendix A.5.

Baselines. We compare RAINDROP with five state-of-the-art baselines: Transformer (Vaswani et al.,
2017), Trans-mean, GRU-D (Che et al., 2018), SeFT (Horn et al., 2020), and mTAND (Shukla &
Marlin, 2021). The Trans-mean is an imputation method combining transformer architecture with
commonly used average interpolation (i.e., missing values are replaced by average observations in
each sensor). The mTAND (Shukla & Marlin, 2021) method has been shown to outperform numerous
recurrent models including RNN-Impute (Che et al., 2018), RNN-Simple, and Phased-LSTM (Neil
et al., 2016), along with ordinary differential equations (ODE)-based models such as LATENT-ODE
and ODE-RNN (Chen et al., 2018). For this reason, we compare with mTAND and do not report
comparison with those techniques in this paper. Even though, to better show the superiority of
RAINDROP, we provide extensive comparison with popular approaches, such as DGM2-O (Wu et al.,
2021) and MTGNN (Wu et al., 2020c), that are designed for forecasting tasks. Further details are in
Table 1 and Appendix A.11. Details on hyperparameter selection and baselines are in Appendix A.6,
and evaluation metrics are presented in Appendix A.7.

4.1 RESULTS ACROSS DIVERSE EVALUATION SETTINGS

Setting 1: Classic time series classification. Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup. We randomly split the dataset into training
(80%), validation (10%), and test (10%) set. The indices of these splits are fixed across all methods.
Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results. As shown in Table 1, RAINDROP obtains the best performance across three benchmark
datasets, suggesting its strong performance for time series classification. In particular, in binary
classification (P19 and P12), RAINDROP outperforms the strongest baselines by 5.3% in AUROC
and 4.8% in AUPRC on average. In a more challenging 8-way classification on the PAM dataset,
RAINDROP outperforms existing approaches by 5.7% in accuracy and 5.5% in F1 score. Further
exploratory analyses and benchmarking results are shown in Appendix A.9-A.10.

Table 1: Method benchmarking on irregularly sampled time series classification (Setting 1).

P19 P12 PAM
Methods AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1 score

Transformer 83.2± 1.3 47.6± 3.8 65.1± 5.6 95.7± 1.6 83.5± 1.5 84.8± 1.5 86.0± 1.2 85.0± 1.3
Trans-mean 84.1± 1.7 47.4± 1.4 66.8± 4.2 95.9± 1.1 83.7± 2.3 84.9± 2.6 86.4± 2.1 85.1± 2.4
GRU-D 83.9±1.7 46.9± 2.1 67.2± 3.6 95.9± 2.1 83.3± 1.6 84.6± 1.2 85.2± 1.6 84.8± 1.2
SeFT 78.7± 2.4 31.1± 2.8 66.8± 0.8 96.2± 0.2 67.1± 2.2 70.0± 2.4 68.2± 1.5 68.5± 1.8
mTAND 80.4± 1.3 32.4± 1.8 65.3± 1.7 96.5± 1.2 74.6± 4.3 74.3± 4.0 79.5± 2.8 76.8± 3.4
IP-Net 84.6± 1.3 38.1± 3.7 72.5± 2.4 96.7± 0.3 74.3± 3.8 75.6± 2.1 77.9± 2.2 76.6± 2.8
DGM2-O 86.7± 3.4 44.7± 11.7 71.2± 2.5 96.9± 0.4 82.4± 2.3 85.2± 1.2 83.9± 2.3 84.3± 1.8
MTGNN 81.9± 6.2 39.9± 8.9 67.5± 3.1 96.4± 0.7 83.4± 1.9 85.2± 1.7 86.1± 1.9 85.9± 2.4

RAINDROP 87.0± 2.3 51.8± 5.5 72.1± 1.3 97.0± 0.4 88.5± 1.5 89.9± 1.5 89.9± 0.6 89.8± 1.0

Setting 2: Leave-fixed-sensors-out. Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup. RAINDROP can compensate for missing sensor obser-
vations by exploiting dependencies between sensors. To this end, we test whether RAINDROP can
achieve good performance when a subset of sensors are completely missing. This setting is practically
relevant in situations when, for example, sensors fail or are unavailable. We select a fraction of
sensors and hide all their observations in both validation and test sets (training samples are not
changed). In particular, we leave out the most informative sensors as defined by information gain
analysis (Appendix A.8). The left-out sensors are fixed across samples and models. Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results. We
report results taking PAM as an example. In Table 2 (left block), we observe that RAINDROP achieves
top performance in 18 out of 20 settings when the number of left-out sensors goes from 10% to 50%.
With the increased amount of missing data, RAINDROP yield greater performance improvements.
RAINDROP outperforms baselines by up to 24.9% in accuracy, 50.3% in precision, 29.3% in recall,
and 42.8% in F1 score.

8

Published as a conference paper at ICLR 2022

Setting 3: Leave-random-sensors-out. Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup.Setup. Setting 3 is similar to Setting 2 except that left-out
sensors are randomly selected in each sample instead of being fixed. In each test sample, we select
a subset of sensors and regard them as missing by replacing all of their observations with zeros.
Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results. We provide results for the PAM dataset in Table 2 (right block). We find that RAINDROP
achieves better performance than baselines in 16 out of 20 settings and that Trans-mean and GRU-D
are the strongest competitors. Further, we evaluated RAINDROP in another setting where the model is
trained on one group of samples (e.g., females) and tested on another group not seen during training
(e.g., males). Experimental setup and results are detailed in Appendix A.13.

Table 2: Classification performance on samples with a fixed set of left-out sensors (Setting 2) or random missing
sensors (Setting 3) on the PAM dataset. Results for P19 dataset (Settings 2-3) are shown in Appendix A.12.

Missing
sensor ratio Methods PAM (Setting 2: leave-fixed-sensors-out) PAM (Setting 3: leave-random-sensors-out)

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

10%

Transformer 60.3± 2.4 57.8± 9.3 59.8± 5.4 57.2± 8.0 60.9± 12.8 58.4± 18.4 59.1± 16.2 56.9± 18.9
Trans-mean 60.4± 11.2 61.8± 14.9 60.2± 13.8 58.0± 15.2 62.4± 3.5 59.6± 7.2 63.7± 8.1 62.7± 6.4
GRU-D 65.4± 1.7 72.6± 2.6 64.3± 5.3 63.6± 0.4 68.4± 3.7 74.2± 3.0 70.8± 4.2 72.0± 3.7
SeFT 58.9± 2.3 62.5± 1.8 59.6± 2.6 59.6± 2.6 40.0± 1.9 40.8± 3.2 41.0± 0.7 39.9± 1.5
mTAND 58.8± 2.7 59.5± 5.3 64.4± 2.9 61.8± 4.1 53.4± 2.0 54.8± 2.7 57.0± 1.9 55.9± 2.2
RAINDROP 77.2± 2.1 82.3± 1.1 78.4± 1.9 75.2± 3.1 76.7± 1.8 79.9± 1.7 77.9± 2.3 78.6± 1.8

20%

Transformer 63.1± 7.6 71.1± 7.1 62.2± 8.2 63.2± 8.7 62.3± 11.5 65.9± 12.7 61.4± 13.9 61.8± 15.6
Trans-mean 61.2± 3.0 74.2± 1.8 63.5± 4.4 64.1± 4.1 56.8± 4.1 59.4± 3.4 53.2± 3.9 55.3± 3.5
GRU-D 64.6± 1.8 73.3± 3.6 63.5± 4.6 64.8± 3.6 64.8± 0.4 69.8± 0.8 65.8± 0.5 67.2± 0.0
SeFT 35.7± 0.5 42.1± 4.8 38.1± 1.3 35.0± 2.2 34.2± 2.8 34.9± 5.2 34.6± 2.1 33.3± 2.7
mTAND 33.2± 5.0 36.9± 3.7 37.7± 3.7 37.3± 3.4 45.6± 1.6 49.2± 2.1 49.0± 1.6 49.0± 1.0
RAINDROP 66.5± 4.0 72.0± 3.9 67.9± 5.8 65.1± 7.0 71.3± 2.5 75.8± 2.2 72.5± 2.0 73.4± 2.1

30%

Transformer 31.6± 10.0 26.4± 9.7 24.0± 10.0 19.0± 12.8 52.0± 11.9 55.2± 15.3 50.1± 13.3 48.4± 18.2
Trans-mean 42.5± 8.6 45.3± 9.6 37.0± 7.9 33.9± 8.2 65.1± 1.9 63.8± 1.2 67.9± 1.8 64.9± 1.7
GRU-D 45.1± 2.9 51.7± 6.2 42.1± 6.6 47.2± 3.9 58.0± 2.0 63.2± 1.7 58.2± 3.1 59.3± 3.5
SeFT 32.7± 2.3 27.9± 2.4 34.5± 3.0 28.0± 1.4 31.7± 1.5 31.0± 2.7 32.0± 1.2 28.0± 1.6
mTAND 27.5± 4.5 31.2± 7.3 30.6± 4.0 30.8± 5.6 34.7± 5.5 43.4± 4.0 36.3± 4.7 39.5± 4.4
RAINDROP 52.4± 2.8 60.9± 3.8 51.3± 7.1 48.4± 1.8 60.3± 3.5 68.1± 3.1 60.3± 3.6 61.9± 3.9

40%

Transformer 23.0± 3.5 7.4± 6.0 14.5± 2.6 6.9± 2.6 43.8± 14.0 44.6± 23.0 40.5± 15.9 40.2± 20.1
Trans-mean 25.7± 2.5 9.1± 2.3 18.5± 1.4 9.9± 1.1 48.7± 2.7 55.8± 2.6 54.2± 3.0 55.1± 2.9
GRU-D 46.4± 2.5 64.5± 6.8 42.6± 7.4 44.3± 7.9 47.7± 1.4 63.4± 1.6 44.5± 0.5 47.5± 0.0
SeFT 26.3± 0.9 29.9± 4.5 27.3± 1.6 22.3± 1.9 26.8± 2.6 24.1± 3.4 28.0± 1.2 23.3± 3.0
mTAND 19.4± 4.5 15.1± 4.4 20.2± 3.8 17.0± 3.4 23.7± 1.0 33.9± 6.5 26.4± 1.6 29.3± 1.9
RAINDROP 52.5± 3.7 53.4± 5.6 48.6± 1.9 44.7± 3.4 57.0± 3.1 65.4± 2.7 56.7± 3.1 58.9± 2.5

50%

Transformer 21.4± 1.8 2.7± 0.2 12.5± 0.4 4.4± 0.3 43.2± 2.5 52.0± 2.5 36.9± 3.1 41.9± 3.2
Trans-mean 21.3± 1.6 2.8± 0.4 12.5± 0.7 4.6± 0.2 46.4± 1.4 59.1± 3.2 43.1± 2.2 46.5± 3.1
GRU-D 37.3± 2.7 29.6± 5.9 32.8± 4.6 26.6± 5.9 49.7± 1.2 52.4± 0.3 42.5± 1.7 47.5± 1.2
SeFT 24.7± 1.7 15.9± 2.7 25.3± 2.6 18.2± 2.4 26.4± 1.4 23.0± 2.9 27.5± 0.4 23.5± 1.8
mTAND 16.9± 3.1 12.6± 5.5 17.0± 1.6 13.9± 4.0 20.9± 3.1 35.1± 6.1 23.0± 3.2 27.7± 3.9
RAINDROP 46.6± 2.6 44.5± 2.6 42.4± 3.9 38.0± 4.0 47.2± 4.4 59.4± 3.9 44.8± 5.3 47.6± 5.2

4.2 ABLATION STUDY AND VISUALIZATION OF OPTIMIZED SENSOR GRAPHS

Ablation study. Considering the PAM dataset and a typical setup (Setting 1), we conduct an ablation
study to evaluate how much various RAINDROP’s components contribute towards its final performance.
We examine the following components: inter-sensor dependencies (further decomposed into weights
including ei,uv, rv, pti, and αti,uv), temporal attention, and sensor-level concatenation. We show
in Appendix A.14 (Table 7) that all model components are necessary and that regularization Lr
contributes positively to RAINDROP’s performance.

Visualizing sensor dependency graphs. We investigate whether samples with the same labels get
more similar sensor dependency graphs than samples with different labels. To this end, we visualize
inter-sensor dependencies (P19; Setting 1) and explore them. Figure 4 shows distinguishable patterns
between graphs of negative and positive samples, indicating that RAINDROP can extract relationships
that are specific to downstream sample labels. Further differential analysis provides insights that can
inform early detection of sepsis from P19 clinical data. Details are in Appendix A.15.

5 CONCLUSION

We introduce RAINDROP, a graph-guided network for irregularly sampled time series. RAINDROP
learns a distinct sensor dependency graph for every sample capturing time-varying dependencies be-
tween sensors. The ability to leverage graph structure gives RAINDROP unique capability to naturally
handle misaligned observations, non-uniform time intervals between successive observations, and
sensors with varying numbers of recorded observations. Our findings have implications for using
message passing as a way to leverage relational information in multivariate time series.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

This material is based upon work supported by the Under Secretary of Defense for Research and
Engineering under Air Force Contract No. FA8702-15-D-0001. M.Z. is supported, in part, by
NSF under nos. IIS-2030459 and IIS-2033384, Harvard Data Science Initiative, Amazon Research
Award, Bayer Early Excellence in Science Award, AstraZeneca Research, and Roche Alliance with
Distinguished Scientists Award. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the funders. The
authors declare that there are no conflict of interests.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our work by clearly presenting the model and providing publicly
accessible code and data. For all datasets used in this work, we share downloadable links to the
raw sources and processed and ready-to-run datasets with the research community through this link:
https://github.com/mims-harvard/Raindrop. We specify all training details (e.g., preprocessing, data
splits, hyperparameters, sensor selection) in the main text and Appendix. Python implementation of
RAINDROP and all baseline methods is available at the aforementioned link. Detailed description of
data, scripts, and configurations along with examples of usage are also provided.

ETHICS STATEMENT

The ability of RAINDROP to learn robust information about sensors’ representations and dependencies
creates new opportunities for applications, where time series are predominant, e.g., in healthcare,
biology, and finance. In all these fields, especially in healthcare applications, our method should
be used with caution. Although our model can gain valuable insights from time series, users must
consider the limitations of machine-guided predictions. As with all data-driven solutions, our model
may make biased predictions. In the case of biomedical data, biases can exist within the data itself,
which can be, for example, caused by considering demographic attributes, such as age, weight,
and gender, that might correlate with protected/regulated attributes. When target classes are highly
imbalanced, our model can mitigate the issues by upsampling minority classes in every processed
batch.

All datasets in this paper are publicly available and are not associated with any privacy or security
concern. Further, all data are anonymized to guard against breaching patients’ protected health
information. We followed PhysioNet privacy policy and guidelines (https://archive.physionet.org/
privacy.shtml) when experimenting with P12 and P19 datasets.

10

https://github.com/mims-harvard/Raindrop
https://archive.physionet.org/privacy.shtml
https://archive.physionet.org/privacy.shtml

Published as a conference paper at ICLR 2022

REFERENCES

Denis Agniel, Isaac S Kohane, and Griffin M Weber. Biases in electronic health record data due to
processes within the healthcare system: retrospective observational study. British Medical Journal,
361, 2018.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific Reports, 8(1):1–12, 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differen-
tial equations. In NeurIPS, 2018.

Zekai Chen, E Jiaze, Xiao Zhang, Hao Sheng, and Xiuzheng Cheng. Multi-task time series forecasting
with shared attention. In ICDM Workshop, pp. 917–925, 2020.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. 2014.

Edward Choi, Zhen Xu, Yujia Li, Michael Dusenberry, Gerardo Flores, Emily Xue, and Andrew Dai.
Learning the graphical structure of electronic health records with graph convolutional transformer.
In AAAI, volume 34, pp. 606–613, 2020.

Federico Errica, Davide Bacciu, and Alessio Micheli. Graph mixture density networks. In ICML, pp.
3025–3035, 2021.

Chenguang Fang and Chen Wang. Time series data imputation: A survey on deep learning approaches.
arXiv:2011.11347, 2020.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning on
molecular graphs. arXiv:2006.12179, 2020.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. Message
passing for hyper-relational knowledge graphs. arXiv:2009.10847, 2020.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan Sajjad, Preslav Nakov,
Deming Chen, and Marianne Winslett. Compressing large-scale transformer-based models: A case
study on bert. Transactions of the Association for Computational Linguistics, 9:1061–1080, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pp. 1263–1272. PMLR, 2017.

Ary L. Goldberger, Luis A. Nunes Amaral, L Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and Harry Eugene
Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for
complex physiologic signals. Circulation, 101 23:E215–20, 2000.

Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set functions for
time series. pp. 4303–4313, 2020.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, pp. 7132–7141, 2018.

Wenjie Hu, Yang Yang, Ziqiang Cheng, Carl Yang, and Xiang Ren. Time-series event prediction
with evolutionary state graph. In WSDM, pp. 580–588, 2021.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In The
Web Conference, pp. 2704–2710, 2020.

Ekaterina Kalinicheva, Dino Ienco, Jérémie Sublime, and Maria Trocan. Unsupervised change
detection analysis in satellite image time series using deep learning combined with graph-based
approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
13:1450–1466, 2020.

11

Published as a conference paper at ICLR 2022

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. arXiv:2005.08926, 2020.

Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation of brain
connectome with spatio-temporal attention. arXiv:2105.13495, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Liying Li, Yang Liu, Tongquan Wei, and Xin Li. Exploring inter-sensor correlation for missing data
estimation. In IECON, pp. 2108–2114. IEEE, 2020a.

Michelle M Li, Kexin Huang, and Marinka Zitnik. Representation learning for networks in biology
and medicine: Advancements, challenges, and opportunities. arXiv:2104.04883, 2021.

S. C.-X. Li and B. M. Marlin. A scalable end-to-end gaussian process adapter for irregularly sampled
time series classification. In NIPS, pp. 1804–1812, 2016.

Steven Cheng-Xian Li and Benjamin Marlin. Learning from irregularly-sampled time series: A
missing data perspective. In ICML, pp. 5937–5946. PMLR, 2020.

Xiaoxue Li, Yanmin Shang, Yanan Cao, Yangxi Li, Jianlong Tan, and Yanbing Liu. Type-aware
anchor link prediction across heterogeneous networks based on graph attention network. In AAAI,
volume 34, pp. 147–155, 2020b.

Wu Lin, Nicolas Hubacher, and Mohammad Emtiyaz Khan. Variational message passing with
structured inference networks. ICLR, 2018.

R. J. Little and D. B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, 3 edition,
2014.

Qianli Ma, Sen Li, and Garrison Cottrell. Adversarial joint-learning recurrent neural network for
incomplete time series classification. TPAMI, 2020.

Karl Øyvind Mikalsen, Cristina Soguero-Ruiz, Filippo Maria Bianchi, Arthur Revhaug, and Robert
Jenssen. Time series cluster kernels to exploit informative missingness and incomplete label
information. Pattern Recognition, 115:107896, 2021.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: accelerating recurrent network training
for long or event-based sequences. In NIPS, pp. 3889–3897, 2016.

Giannis Nikolentzos, Antoine Tixier, and Michalis Vazirgiannis. Message passing attention networks
for document understanding. In AAAI, volume 34, pp. 8544–8551, 2020.

S Ravuri, K Lenc, M Willson, D Kangin, R Lam, P Mirowski, M Athanassiadou, S Kashem, S Madge,
R Prudden, et al. Skillful precipitation nowcasting using deep generative models of radar, arxiv.
Nature, 597:672–677, 2021.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In
ISWC, pp. 108–109, 2012.

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from clinical data:
The physionet/computing in cardiology challenge 2019. Critical Care Medicine, 48(2):210–217,
2020.

Pau Riba, Andreas Fischer, Josep Lladós, and Alicia Fornés. Learning graph distances with message
passing neural networks. In ICPR, pp. 2239–2244. IEEE, 2018.

J. L. Schafer and J. W. Graham. Missing data: Our view of the state of the art. Psychological
Methods, 7(2), 2002.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series fore-
casting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing,
90:106181, 2020.

12

Published as a conference paper at ICLR 2022

Siyuan Shan and Junier B Oliva. Nrtsi: Non-recurrent time series imputation for irregularly-sampled
data. arXiv:2102.03340, 2021.

Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel Ramage, Nada
Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Research, 13(11):2498–2504, 2003.

Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly
sampled time series. In ICLR, 2018.

Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly sampled
time series. In ICLR, 2021.

Satya Narayan Shukla and Benjamin M Marlin. A survey on principles, models and methods for
learning from irregularly sampled time series. 2020.

Rafael T Sousa, Lucas A Pereira, and Anderson S Soares. Improving irregularly sampled time series
learning with dense descriptors of time. arXiv:2003.09291, 2020.

Qingxiong Tan, Mang Ye, Baoyao Yang, Siqi Liu, Andy Jinhua Ma, Terry Cheuk-Fung Yip, Grace
Lai-Hung Wong, and PongChi Yuen. DATA-GRU: Dual-attention time-aware gated recurrent unit
for irregular multivariate time series. In AAAI, volume 34, pp. 930–937, 2020.

Sindhu Tipirneni and Chandan K Reddy. Self-supervised transformer for multivariate clinical
time-series with missing values. arXiv:2107.14293, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu.
Traffic flow prediction via spatial temporal graph neural network. In The Web Conference 2020,
pp. 1082–1092, 2020.

Zhen Wang, Yang Zhang, Ai Jiang, Ji Zhang, Zhao Li, Jun Gao, Ke Li, and Chenhao Lu. Dama-net:
A novel predictive model for irregularly asynchronously and sparsely sampled multivariate time
series. In ICML’W, 2011.

B. J. Wells, K. M. Chagin, A. S. Nowacki, and M. W. Kattan. Strategies for handling missing data in
electronic health record derived data. EGEMS, 1(3), 2013.

Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. Adversarial sparse
transformer for time series forecasting. In NeurIPS, volume 33, 2020a.

Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu, Xuchao
Zhang, Haifeng Chen, and Susan Davidson. Dynamic gaussian mixture based deep generative
model for robust forecasting on sparse multivariate time series. In AAAI, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020b.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
the dots: Multivariate time series forecasting with graph neural networks. In KDD, pp. 753–763,
2020c.

Jianing Yang, Yongxin Wang, Ruitao Yi, Yuying Zhu, Azaan Rehman, Amir Zadeh, Soujanya
Poria, and Louis-Philippe Morency. Mtag: Modal-temporal attention graph for unaligned human
multimodal language sequences. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1009–1021, 2021.

13

Published as a conference paper at ICLR 2022

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. In NeurIPS, volume 32, pp. 11983–11993, 2019.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning. In KDD, pp.
2114–2124, 2021.

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Towards similarity-aware time-series
classification. SDM, 2022.

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for unsuper-
vised anomaly detection and diagnosis in multivariate time series data. In AAAI, volume 33, pp.
1409–1416, 2019.

Li Zhang, Dan Xu, Anurag Arnab, and Philip HS Torr. Dynamic graph message passing networks. In
CVPR, pp. 3726–3735, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020.

14

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 ENCODING TIMESTAMPS

For a given time value t, we pass it to trigonometric functions with the frequency of 10,000 (Vaswani
et al., 2017) and generate time representation pt ∈ Rξ (omit sample index i for brevity) through (Horn
et al., 2020):

pt2k = sin(
t

100002k/ξ
), pt2k+1 = cos(

t

100002k/ξ
), (6)

where ξ is the expected dimension. In this work, we set ξ = 16 in all experimental settings for all
models. Please note, we encode the time value which is a continuous timestamp, instead of time
position which is a discrete integer indicating the order of observation in time series.

A.2 ADDITIONAL INFORMATION ON THE CALCULATION OF TEMPORAL ATTENTION WEIGHT

The Eq. 4 describes how we learn the temporal attention weights vector βi,v for sensor v, following
the self-attention formalism. Different from the standard self-attention mechanism that generates an
self-attention matrix, we generate a temporal attention weight vector. The reason is that we only need
an attention weight vector (instead of a matrix) to aggregate the observation embeddings into a single
sensor embedding through weighted sum.

In the standard self-attention matrix, each element denotes the dependency of an observation em-
bedding on another observation embedding. Similarly, each row describes the dependencies of an
observation embedding on all other observation embeddings (all the observations belong to the same
sensor). Our intuition is to aggregate a row in the self-attention matrix into a scalar that denotes the
importance of the observation embedding to the whole sensor embedding.

In practice, we apply the weighted aggregation, parameterized by s, to every row in the self-attention
matrix and concatenate the generated scalars into an attention vector. Next, we give a concrete
example to specifically describe the meaning of s. Each row, j, of the self-attention matrix captures
relationships of observation embedding htji,v to all observation embeddings {htki,v : k = 1, ..., T}.
Then, using the learnable weight vector s, these correlations between observations are aggregated
across time to obtain temporal importance weight βtji,v. The βtji,v represents the importance of the
corresponding observation to the whole sensor embedding.

A.3 ADDITIONAL INFORMATION ON SAMPLE EMBEDDING

As we generate sample embedding by concatenating all sensor embeddings, the sample embedding
could be relatively long when there is a large number of sensors. To alleviate this issue, on one
hand, we can reduce the dimension of sample embeddings by adding a neural layer (such as a simple
fully-connected layer) after the concatenation. On the other hand, when the number of sensors is super
large, our model is flexible and can effortlessly switch the concatenation to other readout functions
(such as averaging aggregation): this will naturally solve the problem of long vectors. We empirically
show that concatenation works better than averaging in our case. We see a boost in the AUROC score
by 0.6% using concatenation instead of averaging for generating sample embeddings(P19; Setting 1).

A.4 ADDITIONAL INFORMATION ON SAMPLE SIMILARITIES

In this work, we assume all samples share some common characteristics to some extent. When
modeling the similarities across samples, we do not consider the situation where the samples are
similar within latent groups and different across groups.

Our study focuses on the question of irregularity rather than the question of distribution shifts in time
series. To this end, in our experiments, we first rigorously benchmark Raindrop using a standard
evaluating setup (Setting 1, which is classification of irregular time series). This is the only setup that
most existing methods consider (e.g., Shukla & Marlin (2021); Che et al. (2018)) and we want to
make sure our comparisons are fair. In order to provide a more rigorous assessment of Raindrop’s
performance, we also consider more challenging setups in our experiments (i.e., Settings 2-4) when
the dataset is evaluated in a non-standard manner and the split is informed by a select data attribute.

15

Published as a conference paper at ICLR 2022

Table 3: Dataset statistics. The ‘#-timestamps’ refers to the number of all sampling timestamps measured in this
dataset. The ‘#-classes’ means the number of categories in dataset labels. The ’Static info’ indicates if sample’s
static attributes (e.g., height and weight) are available. The ‘missing ratio’ denotes the ratio between the number
of missing observations and the number of all possible observations if the dataset is fully-observed.

Datasets #-samples #-sensors #-timestamps #-classes Static info Missing ratio (%)

P19 38,803 34 60 2 True 94.9
P12 11,988 36 215 2 True 88.4
PAM 5,333 17 600 8 False 60.0

Our results on Setting 1 are consistent with those on Settings 2-4. Results on harder Settings 2-4 show
that Raindrop can perform comparably better than baselines. Results across these diverse settings
increase our confidence that Raindrop is quite flexible and widely applicable.

A.5 FURTHER DETAILS ON DATASETS

P19: PhysioNet Sepsis Early Prediction Challenge 2019. P19 dataset (Reyna et al., 2020) contains
38,803 patients and each patient is monitored by 34 irregularly sampled sensors including 8 vital
signs and 26 laboratory values. The original dataset has 40,336 patients, we remove the samples with
too short or too long time series, remaining 38,803 patients (the longest time series of the patient
has more than one and less than 60 observations). Each patient is associated with a static vector
indicating attributes: age, gender, time between hospital admission and ICU admission, ICU type,
and ICU length of stay (days). Each patient has a binary label representing occurrence of sepsis
within the next 6 hours. The dataset is highly imbalanced with only ∼4% positive samples.

P12: PhysioNet Mortality Prediction Challenge 2012. P12 dataset (Goldberger et al., 2000)
includes 11,988 patients (samples), after removing 12 inappropriate samples following (Horn et al.,
2020). Each patient contains multivariate time series with 36 sensors (excluding weight), which are
collected in the first 48-hour stay in ICU. Each sample has a static vector with 9 elements including
age, gender, etc. Each patient is associated with a binary label indicating length of stay in ICU, where
negative label means hospitalization is not longer than 3 days and positive label marks hospitalization
is longer than 3 days. P12 is imbalanced with ∼93% positive samples.

PAM: PAMAP2 Physical Activity Monitoring. PAM dataset (Reiss & Stricker, 2012) measures
daily living activities of 9 subjects with 3 inertial measurement units. We modify it to suit our
scenario of irregular time series classification. We excluded the ninth subject due to short length
of sensor readouts. We segment the continuous signals into samples with the time window of 600
and the overlapping rate of 50%. PAM originally has 18 activities of daily life. We exclude the
ones associated with less than 500 samples, remaining 8 activities. After modification, PAM dataset
contains 5,333 segments (samples) of sensory signals. Each sample is measured by 17 sensors
and contains 600 continuous observations with the sampling frequency 100 Hz. To make time
series irregular, we randomly remove 60% of observations. To keep fair comparison, the removed
observations are randomly selected but kept the same for all experimental settings and approaches.
PAM is labelled by 8 classes where each class represents an activity of daily living. PAM does not
include static attributes and the samples are approximately balanced across all 8 categories.

To feed given data into neural networks, we set the input as zero if no value was measured. In highly
imbalanced datasets (P19 and P12) we perform batch minority class upsampling, which means that
every processed batch has the same number of positive and negative class samples. The dataset
statistics including sparse ratio are provided in Table 3.

A.6 FURTHER DETAILS ON MODEL HYPERPARAMETERS

Baseline hyperparameters. The implementation of baselines follows the corresponding papers
including SeFT (Horn et al., 2020), GRU-D (Che et al., 2018), and mTAND (Shukla & Marlin,
2021). We follow the settings of Transformer baseline in (Horn et al., 2020) while implementing
Transformer in our work. For average imputation in Trans-mean, we replace the missing values by
the global mean value of observations in the sensor (Shukla & Marlin, 2020). We use batch size of

16

Published as a conference paper at ICLR 2022

128 and learning rate of 0.0001. Note that we upsample the minority class in each batch to make the
batch balance (64 positive samples and 64 negative samples in each batch).

The chosen hyperparameters are the same across datasets (P19, P12, PAM), models (both baselines
and RAINDROP), and experimental settings. Remarkably, we found that all the baselines make
dummy predictions (classify all testing samples as the majority label) on PAM in Setting 2-3 while
RAINDROP makes reasonable predictions. For the comparison to make sense (i.e., the baselines can
make meaningful predictions), we use learning rate of 0.001 for baselines on PAM. GRU-D has 49
layers while other models have 2 layers. We run all models for 20 epochs, store the parameters that
obtain the highest AUROC in the validation set, and use it to make predictions for testing samples.
We use the Adam algorithm for gradient-based optimization (Kingma & Ba, 2014).

RAINDROP hyperparameters. Next, we report the setting of unique hyperparameters in our RAIN-
DROP. In the generation of observation embedding, we setRu as a 4-dimensional vector, thus the
produced observation embedding has 4 dimensions. The dimensions of time representation pt and
rv are both 16. The trainable weight matrixD has shape of 4× 32. The dimensions of wu and wv
are the same as the number of sensors: 34 in P19, 36 in P12, and 17 in PAM. We set the number of
RAINDROP layers L as 2 while the first layer prunes edges and the second layer does not. We set the
proportion of edge pruning as 50% (K=50), which means we remove half of the existing edges that
have the lowest weights. The dk is set to 20, while the shape of W is 20 × 20. All the activation
functions, without specific clarification, are sigmoid functions. The da is set equal to the number
of sensors. The first layer of ϕ has 128 neurons while the second layer has C neurons (i.e., 2 for
P19 and P12; 8 for PAM). We set λ = 0.02 to adjust Lr regularization scale. All the preprocessed
datasets and implementation codes are made available online. Further details are available through
RAINDROP’s code and dataset repository.

Readout function. Here we discuss the selection of readout function g in section 3.5. Our preliminary
experiments show that concatenation outperforms other popular aggregation functions such as
averaging (Errica et al., 2021) and squeeze-excitation readout function (Kim et al., 2021; Hu et al.,
2018). While any of those aggregation functions can be considered, we used concatenation throughout
all experiments in this manuscript.

A.7 PERFORMANCE METRICS

Since P19 and P12 datasets are imbalanced, we use the Area Under a ROC Curve (AUROC) and
Area Under Precision-Recall Curve (AUPRC) to measure performance. As the PAM dataset is nearly
balanced, we also report accuracy, precision, recall and F1 score. We report mean and standard
deviation values over 5 independent runs. Model parameters that achieve the best AUROC value on
the validation set are used for test set.

A.8 FURTHER DETAILS ON SETUP DETAILS FOR SETTING 2

In Setting 2, the selected missing sensors are fixed across different models and chosen in the following
way. First, we calculate the importance score for each sensor and rank them in a descending order.
The importance score is based on information gain, which we calculate with feeding the observations
into a Random Forest classifier with 20 decision trees. In particular, we treat each sample as only
having one sensor, then feed the single sensor into random forest classifier and record the AUROC.
The higher AUROC indicates the sensor provides higher information gain. When we have sensors
ranked by their AUROC values, we choose the first n sensors (the ones with highest AUROC values)
and replace all observations in these sensors by zeros in all samples in validation and test set. The
number of missing sensors is defined indirectly from the user with the sensors’ missing ratio which
ranges from 0.1 to 0.5.

A.9 ADDITIONAL INFORMATION ON MISSING PATTERN

This work propose RAINDROP which is a novel solution for irregularity in multivariate time series
through inter-sensor dependencies. RAINDROP is not in conflict with other solutions (such as missing
pattern and temporal decay) for irregularity. However, as the missing pattern is widely discussed
in modelling incomplete time series (Che et al., 2018), we explore how to combine the advantages
of relational structures and missing pattern. We adopt mask matrix as a proxy of missing pattern

17

Published as a conference paper at ICLR 2022

as in Che et al. (2018). Taking the architecture of RAINDROP, we concatenate the observation xti,u
with a binary mask indicator bti,u as input. The indicator bti,u is set as 1 when there is an observation
of sensor i at time t and set as 0 otherwise. All the experimental settings and hyperparameters are
the same as in RAINDROP (P19; Setting 1). The experimental results show that taking advantage of
missing pattern can slightly boost the AUROC by 1.2% and AUPRC by 0.9% in P19. This empirically
shed the light for future research on integrating multiple characteristics in representation of irregularly
time series.

A.10 COMPARISON BETWEEN TEMPORAL ATTENTION AND LSTM

We conduct extensive experiments to compare the effectiveness of temporal attention and LSTM. To
this end, we replace the temporal attention in sensor embedding generation (Eq 4-5) in RAINDROP by
LSTM layer which processes all observation embeddings sequentially. We use zero padding to convert
the irregular observations into fixed-length time series so the data can be fed into LSTM architecture.
We regard the last output of LSTM as generated sensor embedding. The number of LSTM cells
equal to the dimension of observation embedding. All the model structures are identical except in
the part of temporal attention and LSTM. We keep all experimental settings (P19; Setting 1) and
hyperparameter selections the same. The experimental results show that the temporal self-attention
outperform LSTM by 1.8% (AUROC) and additionally saved 49% of the training time. One potential
reason is that the self-attention mechanism avoids recursion and allows parallel computation and also
reduces performance degradation caused by long-term dependencies (Ganesh et al., 2021; Vaswani
et al., 2017).

A.11 ADDITIONAL INFORMATION ON METHOD BENCHMARKING

Taking experimental Setting 1 (i.e., classic time series classification) as an example, we conduct
extensive experiments to compare Raindrop with ODE-RNN (Chen et al., 2020), DGM2-O (Wu et al.,
2021), EvoNet (Hu et al., 2021), and MTGNN (Wu et al., 2020c). As IP-Net (Shukla & Marlin, 2018)
and mTAND (Shukla & Marlin, 2021) are from the same authors, we only compare with mTAND
which is the latest model. For the baselines, we follow the settings as provided in their public codes.
For methods, which cannot deal with irregular data (e.g., EvoNet and MTGNN), we first impute the
missing data using mean imputation and then feed data into the model. For forecasting models (e.g.,
MTGNN) which are strictly not comparable with the proposed classification model, we formulate the
task as a single-step forecasting, concatenate the learned representations from all sensors and feed
into a fully-connected layer (work as classifier) to make prediction, and use cross-entropy to quantify
the loss.

A.12 RESULTS FOR P19 (SETTINGS 2-3)

Here we report the experimental results for P19 in Setting 2 (Table 4) and Setting 3 (Table 5).

Table 4: Classification on samples with fixed missing sensors (P19; Setting 2)

Models
Missing ratio

0% 10% 20% 30% 40% 50%

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Transformer 83.2 ± 1.3 47.6 ± 3.8 77.4 ± 3.5 38.2 ± 4.2 75.7 ± 3.4 35.2 ± 5.4 75.1 ± 3.5 35.5 ± 4.4 75.3 ± 3.5 36.2 ± 4.2 74.9 ± 3.1 35.5 ± 5.0
Trans-mean 84.1 ± 1.7 47.4 ± 1.4 79.2 ± 2.7 40.6 ± 5.7 79.8 ± 2.5 38.3 ± 2.8 76.9 ± 2.4 37.5 ± 5.9 76.4 ± 2.0 36.3 ± 5.8 74.1 ± 2.3 41.3 ± 4.7
GRU-D 83.9 ± 1.7 46.9 ± 2.1 79.6 ± 2.2 37.4 ± 2.5 77.5 ± 3.1 36.5 ± 4.6 76.6 ± 2.9 35.1 ± 2.4 74.6 ± 2.7 35.9± 2.7 74.1 ± 2.9 33.2 ± 3.8
SeFT 78.7 ± 2.4 31.1 ± 2.8 77.3 ± 2.4 25.5 ± 2.3 63.5 ± 2.0 14.0 ± 1.1 62.3 ± 2.1 12.9 ± 1.2 57.8 ± 1.7 9.8 ± 1.1 56.0 ± 3.1 7.8 ± 1.3
mTAND 80.4 ± 1.3 32.4 ± 1.8 79.7 ± 2.2 29.0 ± 4.3 77.8 ± 1.9 25.3 ± 2.4 77.7 ± 1.9 27.8 ± 2.6 79.4 ± 2.0 32.1 ± 2.1 77.3 ± 2.1 27.0 ± 2.5
RAINDROP 87.0 ± 2.3 51.8 ± 5.5 84.3 ± 2.5 46.1 ± 3.5 81.9 ± 2.1 45.2 ± 6.4 81.4 ± 2.1 43.7 ± 7.2 81.8 ± 2.2 44.9 ± 6.6 79.7 ± 1.9 43.8 ± 5.6

Table 5: Classification on samples with random missing sensors (P19; Setting 3)

Models
Missing ratio

0% 10% 20% 30% 40% 50%

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Transformer 83.2 ± 1.3 47.6 ± 3.8 82.2 ± 2.7 46.8 ± 3.5 81.6 ± 3.5 42.5 ± 8.5 81.3 ± 3.1 42.1 ± 4.5 80.2 ± 2.9 41.9 ± 6.8 79.2 ± 1.9 43.7 ± 3.7
Trans-mean 84.1 ± 1.7 47.4 ± 1.4 82.5 ± 3.7 44.7 ± 6.8 81.7 ± 2.0 45.9 ± 3.6 81.2 ± 2.2 43.2 ± 6.3 80.2 ± 1.7 41.5 ± 4.8 79.8 ± 3.1 39.3 ± 5.1
GRU-D 83.9 ± 1.7 46.9 ± 2.1 81.2 ± 3.4 46.4 ± 2.7 78.6 ± 4.1 43.3 ± 2.4 76.3 ± 2.5 28.5 ± 2.1 74.2 ± 2.7 29.6 ± 3.1 74.6 ± 3.5 26.5 ± 4.2
SeFT 78.7 ± 2.4 31.1 ± 2.8 76.8 ± 2.2 28.3 ± 2.5 77.0 ± 2.2 24.1 ± 2.4 75.2 ± 2.2 22.5 ± 3.0 73.6 ± 2.7 18.3 ± 3.2 72.6 ± 2.5 15.7 ± 1.9
mTAND 80.4 ± 1.3 32.4 ± 1.8 75.2 ± 2.5 24.5 ± 2.4 74.4 ± 3.5 24.6 ± 3.5 74.2 ± 3.2 22.6 ± 2.3 74.1 ± 2.6 23.1 ± 3.6 73.9 ± 3.7 24.6 ± 3.7
RAINDROP 87.0 ± 2.3 51.8 ± 5.5 85.5 ± 2.1 50.2 ± 5.5 83.5 ± 3.2 47.4 ± 7.0 83.1 ± 1.5 48.2 ± 4.7 82.6 ± 1.7 48.0 ± 5.5 80.9 ± 2.4 45.2 ± 6.9

18

Published as a conference paper at ICLR 2022

Table 6: Comparison of results when excluding dependency graph in RAINDROP (P19; Setting 4). The results
are the same as in Table 8 except the row of ‘RAINDROP w/o graph’, where we do not consider inter-sensor
dependencies and set all sensors as independent in the dependency graph.

Model Generalizing to a new patient group

Train: Young→ Test: Old Train: Old→ Test: Young Train: Male→ Test: Female Train: Female→ Test: Male

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Transformer 76.2± 0.7 30.5± 4.8 76.5± 1.1 33.7± 5.7 77.8± 1.1 26.0± 6.2 75.2± 1.0 30.3± 5.5
Trans-mean 80.6± 1.4 39.8± 4.2 78.4± 1.1 35.8± 2.9 80.2± 1.7 32.1± 1.9 76.4± 0.8 32.5± 3.3
GRU-D 76.5± 1.7 29.5± 2.3 79.6± 1.7 35.2± 4.6 78.5± 1.6 31.9± 4.8 76.3± 2.5 31.1± 2.6
SeFT 77.5± 0.7 26.6± 1.2 78.9± 1.0 32.7± 2.7 78.6± 0.6 31.1± 1.2 76.9± 0.5 26.4± 1.1
mTAND 79.0± 0.8 28.8± 2.3 79.4± 0.6 29.8± 1.2 78.0± 0.9 26.5± 1.7 78.9± 1.2 29.2± 2.0
RAINDROP w/o graph 80.5± 1.1 31.6± 2.1 78.5± 0.9 36.7± 2.7 81.3± 1.5 36.8± 1.7 77.5± 1.9 33.4± 2.6
RAINDROP 83.2± 1.6 43.6± 4.7 82.0± 4.4 44.3± 3.6 85.0± 1.4 45.2± 2.9 81.2± 3.8 40.7± 2.9

Table 7: Results of ablation study on the PAM dataset (Setting 1).

RAINDROP Model Accuracy Precision Recall F1 score

W/o weights vectorRu 81.1 ± 2.6 81.9 ± 2.4 80.1 ± 1.6 81.6 ± 2.1

W/o inter-sensor dependency

W/o ei,uv 82.6 ± 1.2 82.9± 1.6 84.3± 1.4 83.8 ± 1.7
W/o rv 86.5 ± 2.4 83.3 ± 1.9 82.6± 1.5 82.9 ± 1.4
W/o pti 79.8 ± 2.7 80.1 ± 3.6 80.6 ± 1.7 80.2 ± 2.9
W/o αti,uv 85.2 ± 2.5 86.4 ± 2.7 84.5 ± 2.9 85.6 ± 2.9

W/o temporal attention 81.5 ± 1.9 84.6± 1.7 83.9 ± 2.5 84.2 ± 2.2

W/o sensor level concatenation 84.4 ± 2.1 86.7± 1.1 85.2± 1.9 85.8 ± 2.6

W/o regularization term Lr 87.3 ± 2.9 88.6± 3.4 87.1± 2.8 87.6 ± 3.1

Full RAINDROP 88.5±1.5 89.9±1.5 89.9±0.6 89.8±1.0

A.13 EVALUATION ON GROUP-WISE TIME SERIES CLASSIFICATION

To understand whether RAINDROP can adaptively adjust its structure and generalize well to other
groups of samples which were not observed while training the model. In this setting we split the data
into two groups, based on a specific static attribute. The first split attribute is age, where we classify
people into young (< 65 years) and old (≥ 65 years) groups. We also split patients into male and
female by gender attribute. Given the split attribute, we use one group as a train set and randomly
split the other group into equally sized validation and test set.

Taking P19 as an example, we present the classification results when the training and testing samples
are from different groups. As shown in Table 8, RAINDROP achieves the best results over all of
the four given cross-group scenarios. For instance, RAINDROP claims large margins (with 4.8% in
AUROC and 13.1% in AUPRC absolute improvement) over the second best model while training on
males and testing on female patients.

Although RAINDROP is not designed to address domain adaptation explicitly, the results show that
RAINDROP performs better than baselines when transferring from one group of samples to another.
One reason for our good performance is that the learned inter-sensor weights and dependency graphs
are sample-specific and their learning is based on the sample’s observations. Thus, the proposed
RAINDROP has the power, to some extent, to adaptively learn the inter-sensor dependencies based on
the test sample’s measurements. RAINDROP is not generalizing to new groups, but generalizing to
new samples, which leads to a good performance even though our model is not designed for domain
adaptation. We validate the reason empirically. We remove the inter-sensor dependencies (set all
sensors isolated in the dependency graph; set all αti,uv and eti,uv as 0) in RAINDROP and evaluate the
model in group-wise time series classification. The experimental results show that the performance
drops a lot when excluding dependency graphs and message passing in RAINDROP (Table 6). Without
inter-sensor dependencies our model is on par with other baselines and does not outperform them by
a large margin.

19

Published as a conference paper at ICLR 2022

23
22

20

19

18

17

16

15

14

13

12
11

10
9

8
7

5

1

21

0

6

4

3

2

33

32

31

30

29

28
27

26
25 24

(a) Negative samples

11
10

9
8

7
6

28

3

21

0

12

5

4

2

1

33

32

31

30

29

27
26

25 24 23
22

20

19

18

17

16

15

14

13

(b) Positive samples

Figure 4: Learned structure for negative and positive samples (P19; Setting 1). The nodes numbered from 0 to
33 denote 34 sensors used in P19 (sensor names are listed in Appendix A.15). To make the visualized structures
easier to understand, we use darker green to denote higher weight value and yellow to denote lower weight value.
We can observe distinguishable patterns across two learned sensor dependency graphs, indicating RAINDROP is
able to adaptively learn graph structures that are sensitive to the classification task. For example, we find that the
nodes 1 (pulse oximetry), 5 (diastolic BP), and 12 (partial pressure of carbon dioxide from arterial blood) have
lower weights in negative samples.

Table 8: Classification results when train and test samples originate from different groups (P19).

Model Generalizing to a new patient group

Train: Young→ Test: Old Train: Old→ Test: Young Train: Male→ Test: Female Train: Female→ Test: Male

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Transformer 76.2± 0.7 30.5± 4.8 76.5± 1.1 33.7± 5.7 77.8± 1.1 26.0± 6.2 75.2± 1.0 30.3± 5.5
Trans-mean 80.6± 1.4 39.8± 4.2 78.4± 1.1 35.8± 2.9 80.2± 1.7 32.1± 1.9 76.4± 0.8 32.5± 3.3
GRU-D 76.5± 1.7 29.5± 2.3 79.6± 1.7 35.2± 4.6 78.5± 1.6 31.9± 4.8 76.3± 2.5 31.1± 2.6
SeFT 77.5± 0.7 26.6± 1.2 78.9± 1.0 32.7± 2.7 78.6± 0.6 31.1± 1.2 76.9± 0.5 26.4± 1.1
mTAND 79.0± 0.8 28.8± 2.3 79.4± 0.6 29.8± 1.2 78.0± 0.9 26.5± 1.7 78.9± 1.2 29.2± 2.0
RAINDROP 83.2± 1.6 43.6± 4.7 82.0± 4.4 44.3± 3.6 85.0± 1.4 45.2± 2.9 81.2± 3.8 40.7± 2.9

A.14 FURTHER DETAILS ON ABLATION STUDY

We provide ablation study, taking PAM at Setting 1 as an example, in Table 7. In the setup of ‘W/o
sensor level concatenation’, we take the average of all sensor embeddings (in stead of concatenating
them together) to obtain sample embedding. Experimental results show that the full RAINDROP
model achieves the best performance, indicating every component or designed structure is useful
to the model. For example, we find that excluding inter-sensor attention weights αti,uv will cause a
decrease of 3.9% in accuracy while excluding edge weights ei,uv (i.e., dependency graphs) will drop
the accuracy by 7.1%.

A.15 VISUALIZATION OF INTER-SENSOR DEPENDENCY GRAPHS LEARNED BY RAINDROP

We visualize the learned inter-sensor dependencies (i.e., ei,uv before the averaging operation in Eq. 3)
on P19 in early sepsis prediction. The visualizations are implemented with Cytoscape (Shannon
et al., 2003). The data shown are for testing set of P19 including 3,881 samples (3708 negative
and 173 positive). As RAINDROP learns the specific graph for each sample, we take average of all
positive samples and visualize it in Figure 4b; and visualize the average of all negative samples in
Figure 4b. As we take average, the edges with weights smaller than 0.1 (means they rarely appear
in graphs) are ignored. The averaged edge weights range from 0.1 to 1. We initialize all sample
graphs as complete graph that has 1,156 = 34× 34 edges, then prune out 50% of them in training
phase, remaining 578 edges. The 34 nodes in figures denote 34 sensors measured in P19, as listed

20

Published as a conference paper at ICLR 2022

32

2

6

25

3

13

8

28

33

26

20

1831

14

4

11

16

7

15

1

5

17

29

10

30 19

22

12

9

24
2327

Figure 5: Differential structure of dependency graphs between positive and negative samples. The edges are
directed. We select the top 50 edges with largest difference (in absolute value) between two patterns. The edges
are colored by the divergences. The darker color denotes the connection is more crucial to classification task.
Node 0 is not included in this figure as it is not connected with any sensor. We can infer that the heart rate is
stable whether the patient will get sepsis or not. Moreover, we can see the edge from node 3 (systolic BP) to
node 13 (Oxygen saturation from arterial blood) and the connection from node 6 (Respiration rate) to node 25
(Potassium) are informative for distinguishing sample classes.

https://physionet.org/content/challenge-2019/1.0.0/. We list the sensor names here: 0: HR; 1: O2Sat;
2: Temp; 3: SBP; 4: MAP; 5: DBP; 6: Resp; 7: EtCO2; 8: BaseExcess; 9: HCO3; 10: FiO2; 11:
pH; 12: PaCO2; 13: SaO2; 14: AST; 15: BUN; 16: Alkalinephos; 17: Calcium; 18: Chloride; 19:
Creatinine; 20: Bilirubin_direct; 21: Glucose; 22: Lactate; 23: Magnesium; 24: Phosphate; 25:
Potassium; 26: Bilirubin_total; 27: TroponinI; 28: Hct; 29: Hgb; 30: PTT; 31: WBC; 32: Fibrinogen;
33: Platelets.

We also visualize the differential inter-sensor connections between the learned dependency graphs
from patients who are likely to have sepsis and the graphs from patients who are unlikely to suffer
from sepsis. Based on the aggregated graph structures of positive and negative samples, we calculate
the divergence between two groups of patients and report the results in Figure 5. In detail, we sort
edges by the absolute difference of edge weights across negative and positive samples. On top of
the visualization of the 50 most distinctive edges, we can have a series of concrete insights. For
example, the dependency between node 6 (Respiration rate) to node 25 (Potassium) is important to
the early prediction of sepsis. Note these data-driven observations could be biased and still need
confirmation and future analysis from healthcare professionals. The edges in both Figure 4 and
Figure 5 are directed. The edge arrows might be difficult to recognize due to the small figure size.
We will provide high-resolution figures to our public repository.

Furthermore, we statistically measure the similarities across samples within the same class and
dissimilarities across samples from different classes. Specifically, for every sample, we calculate:
1) the average Euclidean distance between its dependency graph and the dependency graphs of all
samples from the same class; 2) the average distance with all samples from the different classes. The
P19 dataset has 38,803 samples including 1,623 positive samples and 37,180 negative samples. For
a fair comparison, we randomly select 1,623 samples from the negative cohort, then mixed them
with an equal number of positive samples to measure the averaged Euclidean distances intra- and
inter-classes. We select the cohort for 5 independent times with replacement. We find that the distance
((8.6 ± 1.7) × 10−5) among dependency graphs of positive samples is smaller than the distance
((12.9 ± 3.1) × 10−5) across samples. The results show that the learned dependency graphs are
similar within the same class and dissimilar across classes, which demonstrates RAINDROP can learn
label-sensitive dependency graphs.

21

https://physionet.org/content/challenge-2019/1.0.0/

	Introduction
	Related Work
	Raindrop
	Overview of Raindrop
	Constructing Sensor Dependency Graphs
	Generating Embeddings of Individual Observations
	Generating Sensor Embeddings
	Generating Sample Embeddings
	Implementation and Practical Considerations

	Experiments
	Results across Diverse Evaluation Settings
	Ablation Study and Visualization of Optimized Sensor Graphs

	Conclusion
	Appendix
	Encoding Timestamps
	Additional information on the calculation of temporal attention weight
	Additional information on sample embedding
	Additional information on sample similarities
	Further details on datasets
	Further details on model hyperparameters
	Performance metrics
	Further details on Setup details for Setting 2
	Additional information on missing pattern
	Comparison between temporal attention and LSTM
	Additional information on method benchmarking
	Results for P19 (Settings 2-3)
	Evaluation on group-wise time series classification
	Further details on ablation study
	Visualization of inter-sensor dependency graphs learned by Raindrop

