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ABSTRACT
Despite their widespread success in various domains, Transformer networks have
yet to perform well across datasets in the domain of 3D atomistic graphs such as
molecules even when 3D-related inductive biases like translational invariance and
rotational equivariance are considered. In this paper, we demonstrate that Trans-
formers can generalize well to 3D atomistic graphs and present Equiformer, a graph
neural network leveraging the strength of Transformer architectures and incorporat-
ing SE(3)/E(3)-equivariant features based on irreducible representations (irreps).
First, we propose a simple and effective architecture by only replacing original
operations in Transformers with their equivariant counterparts and including tensor
products. Using equivariant operations enables encoding equivariant information
in channels of irreps features without complicating graph structures. With minimal
modifications to Transformers, this architecture has already achieved strong empir-
ical results. Second, we propose a novel attention mechanism called equivariant
graph attention, which improves upon typical attention in Transformers through
replacing dot product attention with multi-layer perceptron attention and including
non-linear message passing. With these two innovations, Equiformer achieves
competitive results to previous models on QM9, MD17 and OC20 datasets.

1 INTRODUCTION
Machine learned models can accelerate the prediction of quantum properties of atomistic systems
like molecules by learning approximations of ab initio calculations (Gilmer et al., 2017; Zhang et al.,
2018b; Jia et al., 2020; Gasteiger et al., 2020a; Batzner et al., 2022; Lu et al., 2021; Unke et al.,
2021; Sriram et al., 2022; Rackers et al., 2023). In particular, graph neural networks (GNNs) have
gained increasing popularity due to their performance. By modeling atomistic systems as graphs,
GNNs naturally treat the set-like nature of collections of atoms, encode the interaction between
atoms in node features and update the features by passing messages between nodes. One factor
contributing to the success of neural networks is the ability to incorporate inductive biases that exploit
the symmetry of data. Take convolutional neural networks (CNNs) for 2D images as an example:
Patterns in images should be recognized regardless of their positions, which motivates the inductive
bias of translational equivariance. As for atomistic graphs, where each atom has its coordinate in 3D
Euclidean space, we consider inductive biases related to 3D Euclidean group E(3), which include
equivariance to 3D translation, 3D rotation, and inversion. Concretely, some properties like energy of
an atomistic system should be constant regardless of how we shift the system; others like force should
be rotated accordingly if we rotate the system. To incorporate these inductive biases, equivariant
and invariant neural networks have been proposed. The former leverages geometric tensors like
vectors for equivariant node features (Thomas et al., 2018; Weiler et al., 2018; Kondor et al., 2018;
Fuchs et al., 2020; Batzner et al., 2022; Brandstetter et al., 2022; Musaelian et al., 2022), and the
latter augments graphs with invariant information such as distances and angles extracted from 3D
graphs (Schütt et al., 2017; Gasteiger et al., 2020b;a; Liu et al., 2022; Klicpera et al., 2021).
A parallel line of research focuses on applying Transformer networks (Vaswani et al., 2017) to
other domains like computer vision (Carion et al., 2020; Dosovitskiy et al., 2021; Touvron et al.,
2020) and graph (Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Ying et al., 2021; Shi et al.,
2022) and has demonstrated widespread success. However, as Transformers were developed for
sequence data (Devlin et al., 2019; Baevski et al., 2020; Brown et al., 2020), it is crucial to incorporate
domain-related inductive biases. For example, Vision Transformer (Dosovitskiy et al., 2021) shows
that adopting a pure Transformer to image classification cannot generalize well and achieves worse
results than CNNs when trained on only ImageNet (Russakovsky et al., 2015) since it lacks inductive
biases like translational invariance. Note that ImageNet contains over 1.28M images and the size
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is already larger than that of many quantum properties prediction datasets (Ruddigkeit et al., 2012;
Chmiela et al., 2017; Chanussot* et al., 2021). Therefore, this highlights the necessity of including
correct inductive biases when applying Transformers to the domain of 3D atomistic graphs.
Despite their widespread success in various domains, Transformers have yet to perform well across
datasets (Fuchs et al., 2020; Thölke & Fabritiis, 2022; Le et al., 2022) in the domain of 3D atomistic
graphs even when relevant inductive biases are incorporated. In this work, we demonstrate that
Transformers can generalize well to 3D atomistic graphs and present Equiformer, an equivariant
graph neural network utilizing SE(3)/E(3)-equivariant features built from irreducible representations
(irreps) and a novel attention mechanism to combine the 3D-related inductive bias with the strength
of Transformer. First, we propose a simple and effective architecture, Equiformer with dot product
attention and linear message passing, by only replacing original operations in Transformers with
their equivariant counterparts and including tensor products. Using equivariant operations enables
encoding equivariant information in channels of irreps features without complicating graph structures.
With minimal modifications to Transformers, this architecture has already achieved strong empirical
results (Index 3 in Table 6 and 7). Second, we propose a novel attention mechanism called equivariant
graph attention, which improves upon typical attention in Transformers through replacing dot product
attention with multi-layer perceptron attention and including non-linear message passing. Combining
these two innovations, Equiformer (Index 1 in Table 6 and 7) achieves competitive results on
QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), MD17 (Chmiela et al., 2017; Schütt et al.,
2017; Chmiela et al., 2018) and OC20 (Chanussot* et al., 2021) datasets. For QM9 and MD17,
Equiformer achieves overall better results across all tasks or all molecules compared to previous
models like NequIP (Batzner et al., 2022) and TorchMD-NET (Thölke & Fabritiis, 2022). For OC20,
when trained with IS2RE data and optionally IS2RS data, Equiformer improves upon state-of-the-art
models such as SEGNN (Brandstetter et al., 2022) and Graphormer (Shi et al., 2022). Particularly, as
of the submission of this work, Equiformer achieves the best IS2RE result when only IS2RE and
IS2RS data are used and improves training time by 2.3× to 15.5× compared to previous models.
2 RELATED WORKS
We focus on equivariant neural networks here. We provide a detailed comparison between other
equivariant Transformers and Equiformer and discuss other related works in Sec. B in appendix.
SE(3)/E(3)-Equivariant GNNs. Equivariant neural networks (Thomas et al., 2018; Kondor et al.,
2018; Weiler et al., 2018; Fuchs et al., 2020; Miller et al., 2020; Townshend et al., 2020; Batzner
et al., 2022; Jing et al., 2021; Schütt et al., 2021; Satorras et al., 2021; Unke et al., 2021; Brandstetter
et al., 2022; Thölke & Fabritiis, 2022; Le et al., 2022; Musaelian et al., 2022) operate on geometric
tensors like type-L vectors to achieve equivariance. The central idea is to use functions of geom-
etry built from spherical harmonics and irreps features to achieve 3D rotational and translational
equivariance as proposed in Tensor Field Network (TFN) (Thomas et al., 2018), which generalizes
2D counterparts (Worrall et al., 2016; Cohen & Welling, 2016; Cohen et al., 2018) to 3D Euclidean
space (Thomas et al., 2018; Weiler et al., 2018; Kondor et al., 2018). Previous works differ in
equivariant operations used in their networks. TFN (Thomas et al., 2018) and NequIP (Batzner
et al., 2022) use graph convolution with linear messages, with the latter utilizing extra equivariant
gate activations (Weiler et al., 2018). SEGNN (Brandstetter et al., 2022) introduces non-linear
messages (Gilmer et al., 2017; Sanchez-Gonzalez et al., 2020) for irreps features, and the non-linear
messages use the same gate activation and improve upon linear messages. SE(3)-Transformer (Fuchs
et al., 2020) adopts an equivariant version of dot product (DP) attention (Vaswani et al., 2017) with
linear messages, and the attention can support vectors of any type L. Subsequent works on equivariant
Transformers (Thölke & Fabritiis, 2022; Le et al., 2022) follow the practice of DP attention and linear
messages but use more specialized architectures considering only type-0 and type-1 vectors.
The proposed Equiformer incorporates all the advantages through combining MLP attention with
non-linear messages and supporting vectors of any type. Compared to TFN, NequIP, SEGNN and
SE(3)-Transformer, the proposed combination of MLP attention and non-linear messages is more
expressive than pure linear or non-linear messages and pure MLP or dot product attention. Compared
to other equivariant Transformers (Thölke & Fabritiis, 2022; Le et al., 2022), in addition to being
more expressive, the proposed attention mechanism can support vectors of higher degrees (types) and
involve higher order tensor product interactions, which can lead to better performance.
3 BACKGROUND
3.1 E(3) EQUIVARIANCE

Atomistic systems are often described using coordinate systems. For 3D Euclidean space, we can
freely choose coordinate systems and change between them via the symmetries of 3D space: 3D
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translation, rotation and inversion ( r⃗ → −r⃗ ). The groups of 3D translation, rotation and inversion
form Euclidean group E(3), with the first two forming SE(3), the second being SO(3), and the last
two forming O(3). The laws of physics are invariant to the choice of coordinate systems and therefore
properties of atomistic systems are equivariant, e.g., when we rotate our coordinate system, quantities
like energy remain the same while others like force rotate accordingly. Formally, a function f mapping
between vector spaces X and Y is equivariant to a group of transformation G if for any input x ∈ X ,
output y ∈ Y and group element g ∈ G, we have f(DX(g)x) = DY (g)f(x), where DX(g) and
DY (g) are transformation matrices parametrized by g in X and Y . For learning on 3D atomistic
graphs, features and learnable functions should be E(3)-equivariant to geometric transformation
acting on position r⃗. In this work, following previous works (Thomas et al., 2018; Kondor et al., 2018;
Weiler et al., 2018) implemented in e3nn (Geiger et al., 2022), we achieve SE(3)/E(3)-equivariance
by using equivariant features based on vector spaces of irreducible representations and equivariant
operations for learnable functions. In the main text, we discuss SE(3)-equivariance and benchmark
Equiformer with SE(3)-equivariance. We leave the discussion on inversion and E(3)-equivariance
in Sec. A and present results of E(3)-equivariance in Sec. D.2 and Sec. F.4 in appendix.

3.2 IRREDUCIBLE REPRESENTATIONS

A group representation (Dresselhaus et al., 2007; Zee, 2016) defines transformation matrices DX(g)
of group elements g that act on a vector space X . For 3D Euclidean group E(3), two examples of
vector spaces with different transformation matrices are scalars and Euclidean vectors in R3, i.e.,
vectors change with rotation while scalars do not. To address translation symmetry, we operate on
relative positions. The transformation matrices of rotation and inversion are separable and commute.
We discuss irreducible representations of SO(3) below and discuss inversion in Sec. A.3 in appendix.

Any group representation of SO(3) on a given vector space can be decomposed into a concatenation
of provably smallest transformation matrices called irreducible representations (irreps). Specifically,
for group element g ∈ SO(3), there are (2L+1)-by-(2L+1) irreps matrices DL(g) called Wigner-D
matrices acting on (2L+ 1)-dimensional vector spaces, where degree L is a non-negative integer. L
can be interpreted as an angular frequency and determines how quickly vectors change when rotating
coordinate systems. DL(g) of different L act on independent vector spaces. Vectors transformed by
DL(g) are type-L vectors, with scalars and Euclidean vectors being type-0 and type-1 vectors. It is
common to index elements of type-L vectors with an index m called order, where −L ≤ m ≤ L.
Irreps Features. We concatenate multiple type-L vectors to form SE(3)-equivariant irreps features.
Concretely, irreps feature f has CL type-L vectors, where 0 ≤ L ≤ Lmax and CL is the number of
channels for type-L vectors. We index irreps features f by channel c, degree L, and order m and
denote as f (L)

c,m. Different channels of type-L vectors are parametrized by different weights but are
transformed with the same DL(g). Regular scalar features correspond to only type-0 vectors.

Spherical Harmonics. Euclidean vectors r⃗ in R3 can be projected into type-L vectors f (L) by using
spherical harmonics (SH) Y (L): f (L) = Y (L)( r⃗

||r⃗|| ). SH are E(3)-equivariant with DL(g)f
(L) =

Y (L)( D1(g)r⃗
||D1(g)r⃗|| ). SH of relative position r⃗ij generates the first set of irreps features. Equivariant

information propagates to other irreps features through equivariant operations like tensor products.

3.3 TENSOR PRODUCT

Tensor products can interact different type-L vectors. We discuss tensor products for SO(3) below
and those for O(3) in Sec. A.4. The tensor product denoted as ⊗ uses Clebsch-Gordan coefficients to
combine type-L1 vector f (L1) and type-L2 vector g(L2) and produces type-L3 vector h(L3):

h(L3)
m3

= (f (L1) ⊗ g(L2))m3 =

L1∑
m1=−L1

L2∑
m2=−L2

C
(L3,m3)
(L1,m1)(L2,m2)

f (L1)
m1

g(L2)
m2

(1)

where m1 denotes order and refers to the m1-th element of f (L1). Clebsch-Gordan coefficients
C

(L3,m3)
(L1,m1)(L2,m2)

are non-zero only when |L1 − L2| ≤ L3 ≤ |L1 + L2| and thus restrict output
vectors to be of certain types. For efficiency, we discard vectors with L > Lmax, where Lmax is a
hyper-parameter, to prevent vectors of increasingly higher dimensions.

We call each distinct non-trivial combination of L1 ⊗ L2 → L3 a path. Each path is independently
equivariant, and we can assign one learnable weight to each path in tensor products, which is similar
to typical linear layers. We can generalize Eq. 1 to irreps features and include multiple channels
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Figure 1: Architecture of Equiformer. We embed input 3D graphs with atom and edge-degree
embeddings and process them with Transformer blocks, consisting of equivariant graph attention and
feed forward networks. In this figure, “⊗” denotes multiplication, “⊕” denotes addition, and “DTP”
stands for depth-wise tensor product.

∑
within a circle denotes summation over all neighbors. Gray

cells indicate intermediate irreps features.

of vectors of different types through iterating over all paths associated with channels of vectors. In
this way, weights are indexed by (c1, l1, c2, l2, c3, l3), where c1 is the c1-th channel of type-l1 vector
in input irreps feature. We use ⊗w to represent tensor product with weights w. Weights can be
conditioned on quantities like relative distances.

4 EQUIFORMER

First, we propose a simple and effective architecture, Equiformer with dot product attention and linear
message passing, by only replacing original operations in Transformers with their equivariant coun-
terparts and including tensor products for SE(3)/E(3)-equivariant irreps features. The equivariant
operations are discussed in Sec. 4.1. The equivariant version of dot product attention can be found in
Sec. C.3, and that of other modules in Transformers can be found in Sec. 4.3. Second, we propose a
novel attention mechanism called equivariant graph attention in Sec. 4.2. The proposed Equiformer
combines these two innovations and is illustrated in Fig. 1.

4.1 EQUIVARIANT OPERATIONS FOR IRREPS FEATURES

We discuss below equivariant operations, which serve as building blocks for equivariant graph
attention and other modules, and analyze how they remain equivariant in Sec. C.1. They include the
equivariant version of operations in Transformers and depth-wise tensor products as shown in Fig. 2.

Linear. Linear layers are generalized to irreps features by transforming different type-L vectors
separately. Specifically, we apply separate linear operations to each group of type-L vectors. We
remove bias terms for non-scalar features with L > 0 as biases do not depend on inputs, and therefore,
including biases for type-L vectors with L > 0 can break equivariance.

Layer Normalization. Transformers adopt layer normalization (LN) (Ba et al., 2016) to stabilize
training. Given input x ∈ RN×C , with N being the number of nodes and C the number of
channels, LN calculates the linear transformation of normalized input as LN(x) =

(
x−µC

σC

)
◦ γ + β,

where µC , σC ∈ RN×1 are mean and standard deviation of input x along the channel dimension,
γ, β ∈ R1×C are learnable parameters, and ◦ denotes element-wise product. By viewing standard
deviation as the root mean square value (RMS) of L2-norm of type-L vectors, LN can be generalized
to irreps features. Specifically, given input x ∈ RN×C×(2L+1) of type-L vectors, the output is
LN(x) =

(
x

RMSC(norm(x))

)
◦ γ, where norm(x) ∈ RN×C×1 calculates the L2-norm of each type-L

vectors in x, and RMSC(norm(x)) ∈ RN×1×1 calculates the RMS of L2-norm with mean taken
along the channel dimension. We remove means and biases for type-L vectors with L ̸= 0.
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Figure 2: Equivariant operations used in Equiformer. (a) Each gray line between input and output
irreps features contains one learnable weight. (b) “RMS” denotes the root mean square value along
the channel dimension. For simplicity, we have removed multiplying by γ here. (c) Gate layers are
equivariant activation functions where non-linearly transformed scalars are used to gate non-scalar
irreps features. (d) The left two irreps features correspond to two input irreps features, and the
rightmost one is the output irreps feature. The two gray lines connecting two vectors in the input
irreps features and one vector in the output irreps feature form a path and contain one learnable
weight. An alternative visualization of depth-wise tensor products can be found in Fig. 3 in appendix.
We show SE(3)-equivariant operations here, which can be generalized to E(3)-equivariant features.

Gate. We use the gate activation (Weiler et al., 2018) for equivariant activation function as shown
in Fig. 2(c). Typical activation functions are applied to type-0 vectors. For vectors of higher L, we
multiply them with non-linearly transformed type-0 vectors for equivariance. Specifically, given
input x containing non-scalar CL type-L vectors with 0 < L ≤ Lmax and (C0 +

∑Lmax

L=1 CL) type-0
vectors, we apply SiLU (Elfwing et al., 2017; Ramachandran et al., 2017) to the first C0 type-0
vectors and sigmoid function to the other

∑Lmax

L=1 CL type-0 vectors to obtain non-linear weights and
multiply each type-L vector with corresponding non-linear weights. After the gate activation, the
number of channels for type-0 vectors is reduced to C0.

Depth-wise Tensor Product. The tensor product defines interaction between vectors of different
L. To improve its efficiency, we use the depth-wise tensor product (DTP), where one type-L vector
in output irreps features depends only on one type-L′ vector in input irreps features as illustrated
in Fig. 2(d) and Fig. 3, with L being equal to or different from L′. This is similar to depth-wise
convolution (Howard et al., 2017), where one output channel depends on only one input channel.
Weights w in the DTP can be input-independent or conditioned on relative distances, and the DTP
between two tensors x and y is denoted as x ⊗DTP

w y. Note that the one-to-one dependence of
channels can significantly reduce the number of weights and thus memory complexity when weights
are conditioned on relative distances. In contrast, if one output channel depends on all input channels,
in our case, this can lead to out-of-memory errors when weights are parametrized by relative distances.

4.2 EQUIVARIANT GRAPH ATTENTION

Self-attention (Vaswani et al., 2017; Veličković et al., 2018; Fuchs et al., 2020; Khan et al., 2021;
Ying et al., 2021; Brody et al., 2022) transforms features sent from one spatial location to another with
input-dependent weights. We use the notion from Transformers (Vaswani et al., 2017) and message
passing networks (Gilmer et al., 2017) and define message mij sent from node j to node i as follows:

mij = aij × vij (2)

where attention weights aij depend on features on node i and its neighbors N (i) and values vij
are transformed with input-independent weights. In Transformers and Graph Attention Networks
(GAT) (Veličković et al., 2018; Brody et al., 2022), vij depends only on node j. In message passing
networks (Gilmer et al., 2017), vij depends on features on nodes i and j with constant aij . The
proposed equivariant graph attention adopts tensor products to incorporate content and geometric
information and uses multi-layer perceptron attention for aij and non-linear message passing for vij
as illustrated in Fig. 1(b).

Incorporating Content and Geometric Information. Given features xi and xj on target node
i and source node j, we combine the two features with two linear layers to obtain initial message
xij = Lineardst(xi) + Linearsrc(xj). xij is passed to a DTP layer and a linear layer to consider
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geometric information like relative position contained in different type-L vectors in irreps features:

x′
ij = xij ⊗DTP

w(||r⃗ij ||) SH(r⃗ij) and fij = Linear(x′
ij) (3)

where x′
ij is the tensor product of xij and spherical harmonics embeddings (SH) of relative position

r⃗ij , with weights parametrized by ||r⃗ij ||. fij considers semantic and geometric features on source
and target nodes in a linear manner and is used to derive attention weights and non-linear messages.

Multi-Layer Perceptron Attention. Attention weights aij capture how each node interacts with
neighboring nodes. aij are invariant to geometric transformation, and thus, we only use type-0 vectors
(scalars) of message fij denoted as f (0)

ij for attention. Note that f (0)
ij encodes directional information,

as they are generated by tensor products of type-L vectors with L ≥ 0. Inspired by GATv2 (Brody
et al., 2022), we adopts multi-layer perceptron attention (MLPA) instead of dot product attention
(DPA) used in Transformers (Vaswani et al., 2017). In contrast to dot product, MLPs are universal
approximators (Hornik et al., 1989; Hornik, 1991; Cybenko, 1989) and can theoretically capture any
attention patterns. Given f

(0)
ij , we uses one leaky ReLU layer and one linear layer for aij :

zij = a⊤LeakyReLU(f
(0)
ij ) and aij = softmaxj(zij) =

exp(zij)∑
k∈N (i) exp(zik)

(4)

where a is a learnable vectors of the same dimension as f (0)
ij and zij is a single scalar. The output of

attention is the sum of value vij multipled by corresponding aij over all neighboring nodes j ∈ N (i),
where vij can be obtained by linear or non-linear transformations of fij as discussed below.

Non-Linear Message Passing. Values vij are features sent from one node to another, transformed
with input-independent weights. We first split fij into f

(L)
ij and f

(0)
ij , where the former consists

of type-L vectors with 0 ≤ L ≤ Lmax and the latter consists of scalars only. Then, we perform
non-linear transformation to f

(L)
ij to obtain non-linear message:

µij = Gate(f (L)
ij ) and vij = Linear([µij ⊗DTP

w SH(r⃗ij)]) (5)

We apply gate activation to f
(L)
ij to obtain µij . We use one DTP and a linear layer to enable interaction

between non-linear type-L vectors, which is similar to how we transform xij into fij . Weights w
here are input-independent. We can also use f

(L)
ij directly as vij for linear messages.

Multi-Head Attention. Following Transformers (Vaswani et al., 2017), we can perform h parallel
equivariant graph attention functions given fij . The h different outputs are concatenated and projected
with a linear layer, resulting in the final output yi as illustrated in Fig. 1(b). Note that parallelizing
attention functions and concatenating can be implemented with “Reshape”.

4.3 OVERALL ARCHITECTURE

For completeness, we discuss other modules in Equiformer here.

Embedding. This module consists of atom embedding and edge-degree embedding. For the former,
we use a linear layer to transform one-hot encoding of atom species. For the latter, as depicted in
the right branch in Fig. 1(c), we first transform a constant one vector into messages encoding local
geometry with two linear layers and one intermediate DTP layer and then use sum aggregation to
encode degree information (Xu et al., 2019; Shi et al., 2022). The DTP layer has the same form as
that in Eq. 3. We scale the aggregated features by dividing with the squared root of average degrees
in training sets so that standard deviation of aggregated features would be close to 1.

Radial Basis and Radial Function. Relative distances ||r⃗ij || parametrize weights in some DTP
layers. To reflect subtle changes in ||r⃗ij ||, we represent distances with radial basis like Gaussian
radial basis (Schütt et al., 2017) and radial Bessel basis (Gasteiger et al., 2020b;a). We transform
radial basis with a learnable radial function to generate weights for those DTP layers. The function
consists of a two-layer MLP, with each linear layer followed by LN and SiLU, and a final linear layer.

Feed Forward Network. Similar to Transformers, we use two equivariant linear layers and an
intermediate gate activation for the feed forward networks in Equiformer.

Output Head. The last feed forward network transforms features on each node into a scalar. We
perform sum aggregation over all nodes to predict scalar quantities like energy. Similar to edge-degree
embedding, we divide the aggregated scalars with the squared root of average numbers of atoms.
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Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Methods Units a30 meV meV meV D cal/mol K meV meV a20 meV meV meV

NMP (Gilmer et al., 2017)† .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
SchNet (Schütt et al., 2017) .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant (Anderson et al., 2019)† .085 61 34 38 .038 .026 20 21 .961 21 22 2.03
LieConv (Finzi et al., 2020)† .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
DimeNet++ (Gasteiger et al., 2020a) .044 33 25 20 .030 .023 8 7 .331 6 6 1.21
TFN (Thomas et al., 2018)† .223 58 40 38 .064 .101 - - - - - -
SE(3)-Transformer (Fuchs et al., 2020)† .142 53 35 33 .051 .054 - - - - - -
EGNN (Satorras et al., 2021)† .071 48 29 25 .029 .031 12 12 .106 12 11 1.55
PaiNN (Schütt et al., 2021) .045 46 28 20 .012 .024 7.35 5.98 .066 5.83 5.85 1.28
TorchMD-NET (Thölke & Fabritiis, 2022) .059 36 20 18 .011 .026 7.62 6.16 .033 6.38 6.15 1.84
SphereNet (Liu et al., 2022) .046 32 23 18 .026 .021 8 6 .292 7 6 1.12
SEGNN (Brandstetter et al., 2022)† .060 42 24 21 .023 .031 15 16 .660 13 15 1.62
EQGAT (Le et al., 2022) .053 32 20 16 .011 .024 23 24 .382 25 25 2.00

Equiformer .046 30 15 14 .011 .023 7.63 6.63 .251 6.74 6.59 1.26

Table 1: MAE results on QM9 testing set. † denotes using different data partitions.
Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Methods energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces

SchNet (Schütt et al., 2017) 16.0 58.5 3.5 13.4 3.5 16.9 5.6 28.6 6.9 25.2 8.7 36.9 5.2 24.7 6.1 24.3
DimeNet (Gasteiger et al., 2020b) 8.8 21.6 3.4 8.1 2.8 10.0 4.5 16.6 5.3 9.3 5.8 16.2 4.4 9.4 5.0 13.1
PaiNN (Schütt et al., 2021) 6.9 14.7 - - 2.7 9.7 3.9 13.8 5.0 3.3 4.9 8.5 4.1 4.1 4.5 6.0
TorchMD-NET (Thölke & Fabritiis, 2022) 5.3 11.0 2.5 8.5 2.3 4.7 3.3 7.3 3.7 2.6 4.0 5.6 3.2 2.9 4.1 4.1
NequIP (Lmax = 3) (Batzner et al., 2022) 5.7 8.0 - - 2.2 3.1 3.3 5.6 4.9 1.7 4.6 3.9 4.0 2.0 4.5 3.3

Equiformer (Lmax = 2) 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.5 4.1 3.8 2.1 4.3 3.3
Equiformer (Lmax = 3) 5.3 6.6 2.5 8.1 2.2 2.9 3.2 5.4 4.4 2.0 4.3 3.9 3.7 2.1 4.3 3.4

Table 2: MAE results on MD17 testing set. Energy and force are in units of meV and meV/Å.

5 EXPERIMENT

We benchmark Equiformer on QM9 (Sec. 5.1), MD17 (Sec. 5.2) and OC20 (Sec. 5.3) datasets.
Moreover, ablation studies (Sec. 5.4) are conducted to demonstrate that Equiformer with dot prodcut
attention and linear message passing has already achieved strong empirical results on QM9 and
OC20 datasets and verify that the proposed equivariant graph attention improves upon typical dot
product attention in Transformer as well as dot product attention in other equivariant Transformers.
Additional results of including inversion can be found in Sec. D.2 and Sec. F.4.

5.1 QM9
Dataset. The QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) (CC BY-NC SA
4.0 license) consists of 134k small molecules, and the goal is to predict their quantum properties. The
data partition we use has 110k, 10k, and 11k molecules in training, validation and testing sets. We
minimize mean absolute error (MAE) between prediction and normalized ground truth.
Training Details. Please refer to Sec. D.1 in appendix for details on architecture, hyper-parameters
and training time.
Results. We summarize the comparison to previous models in Table 1. Equiformer achieves overall
better results across 12 regression tasks compared to each individual model. The comparison to
SEGNN, which uses irreps features as Equiformer, demonstrates the effectiveness of combining
non-lienar message passing with MLP attention. Additionally, Equiformer achieves better results
for most tasks when compared to other equivariant Transformers, which are SE(3)-Transformer,
TorchMD-NET and EQGAT. This demonstrates a better adaption of Transformers to 3D graphs and
the effectiveness of the proposed equivariant graph attention. We note that for the tasks of µ and R2,
PaiNN and TorchMD-NET use different architectures, which take into account the property of the
task. In contrast, we use the same architecture for all tasks. We compare training time in Sec. D.3.

5.2 MD17
Dataset. The MD17 dataset (Chmiela et al., 2017; Schütt et al., 2017; Chmiela et al., 2018) (CC
BY-NC) consists of molecular dynamics simulations of small organic molecules, and the goal is to
predict their energy and forces. We use 950 and 50 different configurations for training and validation
sets and the rest for the testing set. Forces are derived as the negative gradient of energy with respect
to atomic positions. We minimize MAE between prediction and normalized ground truth.
Training Details. Please refer to Sec. E.1 in appendix for details on architecture, hyper-parameters
and training time.
Results. We train Equiformer with Lmax = 2 and 3 and summarize the results in Table 2.
Equiformer achieves overall better results across 8 molecules compared to each individual model.
Compared to TorchMD-NET, which is also an equivariant Transformer, the difference lies in the pro-
posed equivariant graph attention, which is more expressive and can support vectors of higher degree
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Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

CGCNN (Xie & Grossman, 2018) 0.6149 0.9155 0.6219 0.8511 0.7509 3.40 1.93 3.10 2.00 2.61
SchNet (Schütt et al., 2017) 0.6387 0.7342 0.6616 0.7037 0.6846 2.96 2.33 2.94 2.21 2.61
DimeNet++ (Gasteiger et al., 2020a) 0.5621 0.7252 0.5756 0.6613 0.6311 4.25 2.07 4.10 2.41 3.21
PaiNN (Schütt et al., 2021) 0.575 0.783 0.604 0.743 0.6763 3.46 1.97 3.46 2.28 2.79
SpinConv (Shuaibi et al., 2021) 0.5583 0.7230 0.5687 0.6738 0.6310 4.08 2.26 3.82 2.33 3.12
SphereNet (Liu et al., 2022) 0.5625 0.7033 0.5708 0.6378 0.6186 4.47 2.29 4.09 2.41 3.32
SEGNN (Brandstetter et al., 2022) 0.5327 0.6921 0.5369 0.6790 0.6101 5.37 2.46 4.91 2.63 3.84

Equiformer 0.5037 0.6881 0.5213 0.6301 0.5858 5.14 2.41 4.67 2.69 3.73

Table 3: Results on OC20 IS2RE testing set.
Energy MAE (eV) ↓ EwT (%) ↑

Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

GNS (Godwin et al., 2022) 0.54 0.65 0.55 0.59 0.5825 - - - - -
GNS + Noisy Nodes (Godwin et al., 2022) 0.47 0.51 0.48 0.46 0.4800 - - - - -
Graphormer (Shi et al., 2022) 0.4329 0.5850 0.4441 0.5299 0.4980 - - - - -

Equiformer 0.4222 0.5420 0.4231 0.4754 0.4657 7.23 3.77 7.13 4.10 5.56
Equiformer + Noisy Nodes 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04

Table 4: Results on OC20 IS2RE validation set when IS2RS is adopted during training.
Energy MAE (eV) ↓ EwT (%) ↑ Training time

Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average (GPU-days)

GNS + Noisy Nodes (Godwin et al., 2022) 0.4219 0.5678 0.4366 0.4651 0.4728 9.12 4.25 8.01 4.64 6.5 56 (TPU)
Graphormer (Shi et al., 2022)† 0.3976 0.5719 0.4166 0.5029 0.4722 8.97 3.45 8.18 3.79 6.1 372 (A100)

Equiformer + Noisy Nodes 0.4171 0.5479 0.4248 0.4741 0.4660 7.71 3.70 7.15 4.07 5.66 24 (A6000)

Table 5: Results on OC20 IS2RE testing set when IS2RS is adopted during training. † denotes
using ensemble of models trained on both IS2RE training and validation sets. In contrast, we use
the same single Equiformer model in Table 4, which is trained only on the training set. Note that
Equiformer achieves better results with much less computation.

L (i.e., we use Lmax = 2 and 3) instead of restricting to type-0 and type-1 vectors (i.e., Lmax = 1).
For the last three molecules, although Equiformer with Lmax = 2 achieves lower force MAE but
higher energy MAE, we can adjust the weights of energy loss and force loss so that Equiformer
achieves lower MAE for both energy and forces as shown in Table 12 in appendix. Compared to
NequIP, which also uses irreps features and Lmax = 3, Equiformer with Lmax = 2 achieves overall
lower MAE although including higher Lmax can improve performance. When using Lmax = 3,
Equiformer achieves lower MAE results for most molecules. This suggests that the proposed attention
can improve upon linear messages even when the size of training sets becomes small. We compare
the training time of NequIP and Equiformer in Sec. E.3. Additionally, for Equiformer, increasing
Lmax from 2 to 3 improves MAE for most molecules except benzene, which results from overfitting.

5.3 OC20
Dataset. The Open Catalyst 2020 (OC20) dataset (Chanussot* et al., 2021) (Creative Commons
Attribution 4.0 License) consists of larger atomic systems, each composed of a molecule called
adsorbate placed on a slab called catalyst. Each input contains more atoms and more diverse atom
types than QM9 and MD17. We focus on the task of initial structure to relaxed energy (IS2RE),
which is to predict the energy of a relaxed structure (RS) given its initial structure (IS). Performance
is measured in MAE and energy within threshold (EwT), the percentage in which predicted energy
is within 0.02 eV of ground truth energy. In validation and testing sets, there are four sub-splits
containing in-distribution adsorbates and catalysts (ID), out-of-distribution adsorbates (OOD-Ads),
out-of-distribution catalysts (OOD-Cat), and out-of-distribution adsorbates and catalysts (OOD-Both).
Please refer to Sec. F.1 for the detailed description of OC20 dataset.
Setting. We consider two training settings based on whether a node-level auxiliary task (Godwin
et al., 2022) is adopted. In the first setting, we minimize MAE between predicted energy and ground
truth energy without any node-level auxiliary task. In the second setting, we incorporate the task of
initial structure to relaxed structure (IS2RS) as a node-level auxiliary task.
Training Details. Please refer to Sec. F.2 in appendix for details on Equiformer architecture,
hyper-parameters and training time.
IS2RE Results without Node-Level Auxiliary Task. We summarize the results on validation and
testing sets under the first setting in Table 15 in appendix and Table 3. Compared with state-of-the-
art models like SEGNN and SphereNet, Equiformer consistently achieves the lowest MAE for all
the four sub-splits in validation and testing sets. Note that EwT considers only the percentage of
predictions close enough to ground truth and the distribution of errors, and therefore improvement in
average errors (MAE) would not necessarily reflect that in error distributions (EwT). A more detailed

8



Published as a conference paper at ICLR 2023

Methods

Non-linear
message passing

MLP
attention

Dot product
attention

Task α ∆ε εHOMO εLUMO µ Cν Training time Number of
Index Unit a30 meV meV meV D cal/mol K (minutes/epoch) parameters

1 ✓ ✓ .046 30 15 14 .011 .023 12.1 3.53M
2 ✓ .051 32 16 16 .013 .025 7.2 3.01M
3 ✓ .053 32 17 16 .013 .025 7.8 3.35M

Table 6: Ablation study results on QM9.
Methods Energy MAE (eV) ↓ EwT (%) ↑

Non-linear
message passing

MLP
attention

Dot product
attention

Training time Number of
Index ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average (minutes/epoch) parameters

1 ✓ ✓ 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93 130.8 9.12M
2 ✓ 0.5168 0.6308 0.5088 0.5657 0.5555 4.59 2.82 4.79 3.02 3.81 91.2 7.84M
3 ✓ 0.5386 0.6382 0.5297 0.5692 0.5689 4.37 2.60 4.36 2.86 3.55 99.3 8.72M

Table 7: Ablation study results on OC20 IS2RE validation set.
discussion can be found in Sec. F.6 in appendix. We also note that models are trained by minimizing
MAE, and therefore comparing MAE could mitigate the discrepancy between training objectives
and evaluation metrics and that OC20 leaderboard ranks the relative performance according to MAE.
Additionally, we compare the training time of SEGNN and Equiformer in Sec. F.5.
IS2RE Results with IS2RS Node-Level Auxiliary Task. We report the results on validation and
testing sets in Table 4 and Table 5. As of the date of the submission of this work, Equiformer achieves
the best results on IS2RE task when only IS2RE and IS2RS data are used. Notably, the result in
Table 5 is achieved with much less computation. We note that under this setting, greater depths and
thus more computation translate to better performance (Godwin et al., 2022) and that Equiformer
demonstrates incorporating equivariant features and the proposed equivariant graph attention can
improve training efficiency by 2.3× to 15.5× compared to invariant message passing networks and
invariant Transformers.
5.4 ABLATION STUDY

We conduct ablation studies to show that Equiformer with dot product attention and linear message
passing has already achieved strong empirical results and demonstrate the improvement brought by
MLP attention and non-linear messages in the proposed equivariant graph attention. Dot product
(DP) attention only differs from MLP attention in how attention weights aij are generated from fij .
Please refer to Sec. C.3 in appendix for further details. For experiments on QM9 and OC20, unless
otherwise stated, we follow the hyper-parameters used in previous experiments.
Result on QM9. The comparison is summarized in Table 6. Compared with models in Table 1,
Equiformer with dot product attention and linear message passing (Index 3) achieves competitve
results. Non-linear messages improve upon linear messages when MLP attention is used while
non-linear messages increase the number of tensor product operations in each block from 1 to 2 and
thus inevitably increase training time. On the other hand, MLP attention achieves similar results to
DP attention. We conjecture that DP attention with linear operations is expressive enough to capture
common attention patterns as the numbers of nighboring nodes and atom species are much smaller
than those in OC20. However, MLP attention is roughly 8% faster as it directly generates scalar
features and attention weights from fij instead of producing additional key and query irreps features
for attention weights.
Result on OC20. We consider the setting of training without auxiliary task and summarize the
comparison in Table 7. Compared with models in Table 15, Equiformer with dot product attention
and linear message passing (Index 3) has already outperformed all previous models. Non-linear
messages consistently improve upon linear messages. In contrast to the results on QM9, MLP
attention achieves better performance than DP attention and is 8% faster. We surmise this is because
OC20 contains larger atomistic graphs with more diverse atom species and therefore requires more
expressive attention mechanisms. Note that Equiformer can potentially improve upon previous
equivariant Transformers (Fuchs et al., 2020; Thölke & Fabritiis, 2022; Le et al., 2022) since they use
less expressive attention mechanisms similar to Index 3 in Table 7.
6 CONCLUSION
In this work, we propose Equiformer, a graph neural network (GNN) combining the strengths
of Transformers and equivariant features based on irreducible representations (irreps). With irreps
features, we build upon existing generic GNNs and Transformer networks by incorporating equivariant
operations like tensor products. We further propose equivariant graph attention, which incorporates
multi-layer perceptron attention and non-linear messages. Experiments on QM9, MD17 and OC20
demonstrate the effectiveness of Equiformer and ablation studies show the improvement of the
proposed equivariant graph attention over typical attention in Transformers.
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7 ETHICS STATEMENT

Equiformer achieves more accurate approximations of quantum properties calculation. We believe
there is much more to be gained by harnessing these abilities for productive investigation of molecules
and materials relevant to application such as energy, electronics, and pharmaceuticals, than to be lost
by applying these methods for adversarial purposes like creating hazardous chemicals. Additionally,
there are still substantial hurdles to go from the identification of a useful or harmful molecule to its
large-scale deployment.

Moreover, we discuss several limitations of Equiformer and the proposed equivariant graph attention
in Sec. G in appendix.

8 REPRODUCIBILITY STATEMENT

We include details on architectures, hyper-parameters and training time in Sec. D.1 (QM9), Sec. E.1
(MD17) and Sec. F.2 (OC20).

The code for reproducing the results of Equiformer on QM9, MD17 and OC20 datasets is available at
https://github.com/atomicarchitects/equiformer.
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A ADDITIONAL BACKGROUND

In this section, we provide additional mathematical background helpful for the discussion of the
proposed method. Other works (Thomas et al., 2018; Weiler et al., 2018; Kondor et al., 2018;
Anderson et al., 2019; Fuchs et al., 2020; Brandstetter et al., 2022) also provide similar background.
We encourage interested readers to see these works (Zee, 2016; Dresselhaus et al., 2007) for more
in-depth and pedagogical presentations.

A.1 GROUP THEORY

Definition of Groups. A group is an algebraic structure that consists of a set G and a binary
operator ◦ : G×G → G and is typically denoted as G. Groups satisfy the following four axioms:

1. Closure: g ◦ h ∈ G for all g, h ∈ G.

2. Identity: There exists an identity element e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G.

17



Published as a conference paper at ICLR 2023

3. Inverse: For each g ∈ G, there exists an inverse element g−1 ∈ G such that g ◦ g−1 =
g−1 ◦ g = e.

4. Associativity: f ◦ g ◦ h = (f ◦ g) ◦ h = f ◦ (g ◦ h) for all f, g, h ∈ G.

In this work, we focus on 3D rotation, translation and inversion. Relevant groups include:

1. The Euclidean group in three dimensions E(3): 3D rotation, translation and inversion.

2. The special Euclidean group in three dimensions SE(3): 3D rotation and translation.

3. The orthogonal group in three dimensions O(3): 3D rotation and inversion.

4. The special orthogonal group in three dimensions SO(3): 3D rotation.

Group Representations. The actions of groups define transformations. Formally, a transformation
acting on vector space X parametrized by group element g ∈ G is an injective function Tg : X → X .
A powerful result of group representation theory is that these transformations can be expressed as
matrices which act on vector spaces via matrix multiplication. These matrices are called the group
representations. Formally, a group representation D : G → GL(N) is a mapping between a group
G and a set of N × N invertible matrices. The group representation D(g) : X → X maps an
N -dimensional vector space X onto itself and satisfies D(g)D(h) = D(g ◦ h) for all g, h ∈ G.

How a group is represented depends on the vector space it acts on. If there exists a change of basis
P in the form of an N × N matrix such that P−1D(g)P = D′(g) for all g ∈ G, then we say the
two group representations are equivalent. If D′(g) is block diagonal, which means that g acts on
independent subspaces of the vector space, the representation D(g) is reducible. A particular class
of representations that are convenient for composable functions are irreducible representations or
“irreps”, which cannot be further reduced. We can express any group representation of SO(3) as a
direct sum (concatentation) of irreps (Zee, 2016; Dresselhaus et al., 2007; Geiger et al., 2022):

D(g) = P−1

(⊕
i

Dli(g)

)
P = P−1

(
Dl0(g)

Dl1(g)
......

)
P (6)

where Dli(g) are Wigner-D matrices with degree li as metnioned in Sec. 3.2.

A.2 EQUIVARIANCE

Definition of Equivariance and Invariance. Equivariance is a property of a function f : X → Y
mapping between vector spaces X and Y . Given a group G and group representations DX(g) and
DY (g) in input and output spaces X and Y , f is equivariant to G if DY (g)f(x) = f(DX(g)x) for
all x ∈ X and g ∈ G. Invariance corresponds to the case where DY (g) is the identity I for all g ∈ G.

Equivariance in Neural Networks. Group equivariant neural networks are guaranteed to to make
equivariant predictions on data transformed by a group. Additionally, they are found to be data-
efficient and generalize better than non-symmetry-aware and invariant methods (Batzner et al., 2022;
Rackers et al., 2023; Frey et al., 2022). For 3D atomistic graphs, we consider equivariance to the
Euclidean group E(3), which consists of 3D rotation, translation and inversion. For translation,
we operate on relative positions and therefore our networks are invariant to 3D translation. We
achieve equivariance to rotation and inversion by representing our input data, intermediate features
and outputs in vector spaces of O(3) irreps and acting on them with only equivariant operations.

A.3 EQUIVARIANT FEATURES BASED ON VECTOR SPACES OF IRREDUCIBLE
REPRESENTATIONS

Irreducible Representations of Inversion. The group of inversion Z2 only has two elements,
identity and inversion, and two irreps, even e and odd o. Vectors transformed by irrep e do not change
sign under inversion while those by irrep o do. We create irreps of O(3) by simply multiplying
those of SO(3) and Z2 and introduce parity p to type-L vectors to denote how they transform under
inversion. Thus, type-L vectors in SO(3) become type-(L, p) vectors in O(3), where p is e or o.
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Irreps Features. As discussed in Sec. 3.2 in the main text, we use type-L vectors for SE(3)-
equivariant irreps features1 and type-(L, p) vectors for E(3)-equivariant irreps features. Parity p
denotes whether vectors change sign under inversion and can be either e (even) or o (odd). Vectors
with p = o change sign under inversion while those with p = e do not. Scalar features correspond
to type-0 vectors in the case of SE(3)-equivariance and correspond to type-(0, e) in the case of
E(3)-equivariance whereas type-(0, o) vectors correspond to pseudo-scalars. Euclidean vectors
in R3 correspond to type-1 vectors and type-(1, o) vectors whereas type-(1, e) vectors correspond
to pseudo-vectors. Note that type-(L, e) vectors and type-(L, o) vectors are considered vectors of
different types in equivariant linear layers and layer normalizations.

Spherical Harmonics. Euclidean vectors r⃗ in R3 can be projected into type-L vectors f (L) by
using spherical harmonics Y (L): f (L) = Y (L)( r⃗

||r⃗|| ) (Smidt et al., 2021). This is equivalent to the

Fourier transform of the angular degree of freedom r⃗
||r⃗|| , which can be optionally weighted by ||r⃗||.

In the case of SE(3)-equivariance, f (L) transforms in the same manner as type-L vectors. For
E(3)-equivariance, f (L) behaves as type-(L, p) vectors, where p = e if L is even and p = o if L is
odd. Visualization of spherical harmonics can be found in this website.

Vectors of Higher L and Other Parities. Although previously we have restricted concrete ex-
amples of vector spaces of O(3) irreps to commonly encountered scalars (type-(0, e) vectors) and
Euclidean vectors (type-(1, o) vectors), vector of higher L and other parities are equally physical. For
example, the moment of inertia (how an object rotates under torque) transforms as a 3× 3 symmetric
matrix, which has symmetric-traceless components behaving as type-(2, e) vectors. Elasticity (how
an object deforms under loading) transforms as a rank-4 or 3× 3× 3× 3 symmetric tensor, which
includes components acting as type-(4, e) vectors.

A.4 TENSOR PRODUCT

Tensor Product for O(3). We use tensor products to interact different type-(L, p) vectors. We
extend our discussion in Sec. 3.3 in the main text to include inversion and type-(L, p) vectors. The
tensor product denoted as ⊗ uses Clebsch-Gordan coefficients to combine type-(L1, p1) vector
f (L1,p1) and type-(L2, p2) vector g(L2,p2) and produces type-(L3, p3) vector h(L3,p3) as follows:

h(L3,p3)
m3

= (f (L1,p1) ⊗ g(L2,p2))m3
=

L1∑
m1=−L1

L2∑
m2=−L2

C
(L3,m3)
(L1,m1)(L2,m2)

f (L1,p1)
m1

g(L2,p2)
m2

(7)

p3 = p1 × p2 (8)

The only difference of tensor products for O(3) as described in Eq. 7 from those for SO(3) described
in Eq. 1 is that we additionally keep track of the output parity p3 as in Eq. 8 and use the following
multiplication rules: e× e = e, o× o = e, and e× o = o× e = o. For example, the tensor product
of a type-(1, o) vector and a type-(1, e) vector can result in one type-(0, o) vector, one type-(1, o)
vector, and one type-(2, o) vector.

Clebsch-Gordan Coefficients. The Clebsch-Gordan coefficients for SO(3) are computed from
integrals over the basis functions of a given irreducible representation, e.g., the real spherical
harmonics, as shown below and are tabulated to avoid unnecessary computation.

C
(L3,m3)
(L1,m1)(L2,m2)

= |L1m1;L2m2⟩ ⟨L3m3| =
∫

dΩY (L1)∗
m1

(Ω)Y (L2)∗
m2

(Ω)Y (L3)
m3

(Ω) (9)

For many combinations of L1, L2, and L3, the Clebsch-Gordan coefficients are zero. The gives rise
to the following selection rule for non-trivial coefficients: −|L1 + L2| ≤ L3 ≤ |L1 + L2|.

1In SEGNN (Brandstetter et al., 2022), they are also referred to as steerable features. We use the term “irreps
features” to remain consistent with e3nn (Geiger et al., 2022) library.
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Examples of Tensor Products. Tensor products generally define the interaction between different
type-(L, p) vectors in a symmetry-preserving manner and consist of common operations as follows:

1. Scalar-scalar multiplication: scalar (L = 0, p = e) ⊗ scalar (L = 0, p = e) → scalar
(L = 0, p = e).

2. Scalar-vector multiplication: scalar (L = 0, p = e) ⊗ vector (L = 1, p = o) → vector
(L = 1, p = o).

3. Vector dot product: vector (L = 1, p = o) ⊗ vector (L = 1, p = o) → scalar (L = 0, p =
e).

4. Vector cross product: vector (L = 1, p = o) ⊗ vector (L = 1, p = o) → pseudo-vector
(L = 1, p = e).

B RELATED WORKS

B.1 GRAPH NEURAL NETWORKS FOR 3D ATOMISTIC GRAPHS

Graph neural networks (GNNs) are well adapted to perform property prediction of atomic systems
because they can handle discrete and topological structures. There are two main ways to represent
atomistic graphs (Townshend et al., 2021), which are chemical bond graphs, sometimes denoted as 2D
graphs, and 3D spatial graphs. Chemical bond graphs use edges to represent covalent bonds without
considering 3D geometry. Due to their similarity to graph structures in other applications, generic
GNNs (Hamilton et al., 2017; Gilmer et al., 2017; Kipf & Welling, 2017; Xu et al., 2019; Veličković
et al., 2018; Brody et al., 2022) can be directly applied to predict their properties (Ruddigkeit et al.,
2012; Ramakrishnan et al., 2014; Ramsundar et al., 2019; Hu et al., 2020; 2021). On the other hand,
3D spatial graphs consider positions of atoms in 3D spaces and therefore 3D geometry. Although
3D graphs can faithfully represent atomistic systems, one challenge of moving from chemical bond
graphs to 3D spatial graphs is to remain invariant or equivariant to geometric transformation acting
on atom positions. Therefore, invariant neural networks and equivariant neural networks have been
proposed for 3D atomistic graphs, with the former leveraging invariant information like distances and
angles and the latter operating on geometric tensors like type-L vectors.

B.2 DETAILED COMPARISON BETWEEN EQUIVARIANT TRANSFORMERS

First, we compare the impact of previous equivariant Transformers (Fuchs et al., 2020; Thölke &
Fabritiis, 2022; Le et al., 2022) in the following four aspects:

1. Previous equivariant Transformers do not perform well across datasets. For instance, SE(3)-
Transformer (Fuchs et al., 2020) is not as performant as other equivariant networks on
QM9 as shown in Table 1. TorchMD-NET (Thölke & Fabritiis, 2022) does not achieve
comparable results to NequIP (Batzner et al., 2022) on MD17 as shown in Table 2 although
it is competitive on QM9 in Table 1.

2. Equiformer simultaneously achieves the best results for MD17, QM9 and OC20 datasets, in-
dicating that the Transformer architecture is generally effective in the literature of equivariant
neural networks and 3D atomistic graphs.

3. Extensive ablation studies have been conducted to justify a better attention mechanism in
this literature.

4. To the best of our knowledge, we are the first to apply equivariant Transformers to large and
complicated datasets like OC20 and demonstrate that equivariant Transformers can achieve
competitive results to large models like GNS (Godwin et al., 2022) and Graphormer (Shi
et al., 2022) while saving 2.3× to 15.5× training time as summarized in Table 5.

Second, we compare the technical differences of architectures of equivariant Transformers. The
proposed Equiformer consists of equivariant graph attention and an equivariant Transformer archi-
tecture. The latter is obtained by simply replacing orginal operations in Transformers with their
equivariant counterparts and including tensor product operations and corresponds to “Equiformer
with dot product attention and linear message passing” as indicated by Index 3 in Table 6 and 7.
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Although with minimal modifications to original Transformers, we note that this architecture has not
been explored in previous equivariant Transformers and achieves competitive results on QM9 and
OC20 datasets. Below we discuss the advantages of the architecture, Equiformer with dot product
attention and linear message passing, over other equivariant Transformers:

1. Simpler. We simply replace original operations with their equivariant counterparts
and include tensor products without making further modifications. In contrast, SE(3)-
Transformer (Fuchs et al., 2020) merges normalization and activation to form norm nonlin-
earities, which does not exist in original Transformers. We empirically find that the norm
nonlinearities (Fuchs et al., 2020) leads to higher errors compared to the equivariant layer
norm used by our work.

2. More general. SE(3)-Transformer (Fuchs et al., 2020) and our proposed architecture can
support vectors of any degree L while other equivariant Transformers (Thölke & Fabritiis,
2022; Le et al., 2022) are limited to L = 0 and 1. It has been shown that higher L (e.g., L
up to 2 and 3) can improve the performance of networks on QM9 (Brandstetter et al., 2022)
and MD17 (Batzner et al., 2022). Thus, the incapability to use L higher than 1 can limit
their performance.

3. More efficient tensor products. Compared to SE(3)-Transformer (Fuchs et al., 2020), we
use more efficient depth-wise tensor products instead of fully connected tensor products.
Since the proposed architecture and SE(3)-Transformer (Fuchs et al., 2020) use relative
distances to parametrize the weights of tensor products, depth-wise tensor products enalbe
using more channels without incurring out-of-memory errors. Specifically, for QM9, SE(3)-
Transformer (Fuchs et al., 2020) only uses 16 channels for vectors of each degree L while
the proposed architecture can use 128, 64, and 32 channels for vectors of degree 0, 1, and 2.
Using a very small number of channels can potentially lead to insufficient model capacity.

We note that the novelty of the proposed architecture, Equiformer with dot product attention and linear
message passing, lies in how we choose the right operations as well as internal representations (i.e.,
vectors of any degree L) and combine them in an effective manner that achieves the three advantages
mentioned above. We further improve this simple architecture with our proposed equivariant graph
attention, which consists of MLP attention and non-linear message passing.

B.3 INVARIANT GNNS

Previous works (Schütt et al., 2017; Xie & Grossman, 2018; Unke & Meuwly, 2019; Gasteiger
et al., 2020b;a; Qiao et al., 2020; Liu et al., 2022; Shuaibi et al., 2021; Klicpera et al., 2021) extract
invariant information from 3D atomistic graphs and operate on the resulting invariant graphs. They
mainly differ in leveraging different geometric information such as distances, bond angles (3 atom
features) or dihedral angles (4 atom features). SchNet (Schütt et al., 2017) uses relative distances
and proposes continuous-filter convolutional layers to learn local interaction between atom pairs.
DimeNet series (Gasteiger et al., 2020b;a) incorporate bond angles by using triplet representations of
atoms. SphereNet (Liu et al., 2022) and GemNet (Klicpera et al., 2021; Gasteiger et al., 2022) further
extend to consider dihedral angles for better performance. In order to consider directional information
contained in angles, they rely on triplet or quadruplet representations of atoms. In addition to being
memory-intensive (Sriram et al., 2022), they also change graph structures by introducing higher-order
interaction terms (Chen et al., 2019), which would require non-trivial modifications to generic GNNs
in order to apply them to 3D graphs. In contrast, the proposed Equiformer uses equivariant irreps
features to consider directional information without complicating graph structures and therefore can
directly inherit the design of generic GNNs.

B.4 ATTENTION AND TRANSFORMER

Graph Attention. Graph attention networks (GAT) (Veličković et al., 2018; Brody et al., 2022)
use multi-layer perceptrons (MLP) to calculate attention weights in a similar manner to message
passing networks. Subsequent works using graph attention mechanisms follow either GAT-like MLP
attention (Busbridge et al., 2019; Kim & Oh, 2021) or Transformer-like dot product attention (Zhang
et al., 2018a; Gao & Ji, 2019; Shi et al., 2020; Dwivedi & Bresson, 2020; Kim & Oh, 2021; Kreuzer
et al., 2021). In particular, Kim et al. (Kim & Oh, 2021) compares these two types of attention
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Figure 3: An alternative visualization of the depth-wise tensor product. We follow the visual-
ization of tensor products in e3nn (Geiger et al., 2022) and separate paths into three parts based on
the types of output vectors. We note that one vector in the output irreps feature depends only on one
vector in each input irreps feature.

mechanisms empirically under a self-supervised setting. Brody et al. (Brody et al., 2022) analyzes
their theoretical differences and compares their performance in general settings.

Graph Transformer. A different line of research focuses on adapting standard Transformer net-
works to graph problems (Dwivedi & Bresson, 2020; Rong et al., 2020; Kreuzer et al., 2021; Ying
et al., 2021; Shi et al., 2022). They adopt dot product attention in Transformers (Vaswani et al., 2017)
and propose different approaches to incorporate graph-related inductive biases into their networks.
GROVE (Rong et al., 2020) includes additional message passing layers or graph convolutional layers
to incorporate local graph structures when calculating attention weights. SAN (Kreuzer et al., 2021)
proposes to learn position embeddings of nodes with full Laplacian spectrum. Graphormer (Ying
et al., 2021) proposes to encode degree information in centrality embeddings and encode distances
and edge features in attention biases. The proposed Equiformer belongs to one of these attempts to
generalize standard Transformers to graphs and is dedicated to 3D graphs. To incorporate 3D-related
inductive biases, we adopt an equivariant version of Transformers with irreps features and propose
novel equivariant graph attention.

C DETAILS OF ARCHITECTURE

C.1 EQUIVARIANT OPERATION USED IN EQUIFORMER

We illustrate the equivariant operations used in Equiformer in Fig. 2 and provide an alternative
visualization of depth-wise tensor products in Fig. 3.

Besides, we analyze how each equivariant operation remains equivariant and satisfies that
f(DX(g)x) = DY (g)f(x), where f is a function mapping between vector spaces X and Y , and
DX(g) and DY (g) are transformation matrices parametrized by g in X and Y .

1. Linear. Since for each degree L, one output type-L vector is a linear combination of other
input type-L vectors, which are transformed by the same matrix DX(g), the output type-L
vector is transformed by the same matrix, meaning that DX(g) = DY (g).

2. Layer normalization. For scalar parts (L = 0), they are always the same regardless of
E(3) transformations, and thus we can apply any function to them. For non-scalar parts
(L > 0), the L2-norm of any type-L vector is invariant to E(3) transformations. Therefore,
the scaling of dividing by the root mean square value (RMS) of L2-norm and multiplying
by a learnable parameter γ remains the same under E(3) transformations. Multiplying an
equivariant feature with an invariant number results in an equivariant feature, and therefore
the operation is equivariant.

3. Gate. Similar to layer normalization, we can apply any function to the scalar part (L = 0).
We apply SiLU to the first C0 channels of the scalar part and sigmoid to other channels
to obtain non-linear weights. For the non-scalar part (L > 0), we multiply each type-L
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Figure 4: Architecture of equivariant dot product attention without non-linear message passing.
In this figure, “⊗” denotes multiplication, “⊕” denotes addition, and “DTP” stands for depth-wise
tensor product.

∑
within a circle denotes summation over all neighbors. Gray cells indicate

intermediate irreps features. We highlight the difference of dot product attention from multi-layer
perceptron attention in red. Note that key kij and value vij are irreps features and therefore fij in dot
product attention typically has more channels than that in multi-layer perceptron attention.

vector with its corresponding non-linear weight. Since the non-linear weights are invariant,
multiplying equivariant features with those non-linear weights results in equivariant features.

4. Depth-wise tensor product. This operation is based on equivariant tensor product opera-
tions and restricts that one channel in output irreps feature depends on one channel in input
irreps features. The one-to-one dependence of channels does not change the interaction of
different type-L vectors, and therefore, the operation is equivariant.

C.2 EQUIFORMER ARCHITECTURE

For simplicity and because most works we compare with do not include equivariance to inversion,
we adopt SE(3)-equivariant irreps features in Equiformer for experiments in the main text and note
that E(3)-equivariant irreps features can be easily incorporated into Equiformer.

We define architectural hyper-parameters like the number of channels in some layers in Equiformer,
which are used to specify the detailed architectures in Sec. D.1, Sec. E.1 and Sec. F.2.

We use dembed to denote embedding dimension, which defines the dimension of most irreps features.
Specifically, all irreps features xi, yi in Fig. 1 have dimension dembed unless otherwise stated. Besides,
we use dsh to represent the dimension of spherical harmonics embeddings of relative positions in all
depth-wise tensor products.

For equivariant graph attention in Fig. 1(b), the first two linear layers have the same output dimension
dembed. The output dimension of depth-wise tensor products (DTP) are determined by that of input
irreps features. Equivariant graph attention consists of h parallel attention functions, and the value
vector in each attention function has dimension dhead. We refer to h and dhead as the number of
heads and head dimension, respectively. By default, we set the number of channels in scalar feature
f
(0)
ij to be the same as the number of channels of type-0 or type-(0, e) vectors in vij . When non-linear
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messages are adopted in vij , we set the dimension of output irreps features in gate activation to
be h × dhead. Therefore, we can use two hyper-parameters h and dhead to specify the detailed
architecture of equivariant graph attention.

As for feed forward networks (FFNs), we denote the dimension of output irreps features in gate
activation as dffn. The FFN in the last Transformer block has output dimension dfeature, and we
set dffn of the last FFN, which is followed by output head, to be dfeature as well. Thus, two hyper-
parameters dffn and dfeature are used to specify architectures of FFNs and the output dimension
after Transformer blocks.

Irreps features contain channels of vectors with degrees up to Lmax. We denote CL type-L vectors as
(CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations
of vectors. For example, the dimension of irreps features containing 256 type-0 vectors and 128
type-1 vectors can be represented as [(256, 0), (128, 1)].

C.3 DOT PRODUCT ATTENTION

We illustrate the dot product attention without non-linear message passing used in ablation study
in Fig. 4. The architecture is adapted from SE(3)-Transformer (Fuchs et al., 2020). The difference
from multi-layer perceptron attention lies in how we obtain attention weights aij from fij . We split
fij into two irreps features, key kij and value vij , and obtain query qi with a linear layer. Then, we
perform scaled dot product (Vaswani et al., 2017) between qi and kij for attention weights.

C.4 INCORPORATING E(3)-EQUIVARIANCE

To incorporate E(3)-equivariance to Equiformer, we can directly use the same architecture described
in Fig. 1 with the following two modifications:

1. We change internal representations from type-L vectors to type-(L, p) vectors as mentioned
in Sec. A.3. Note that type-(L, e) vectors and type-(L, o) vectors are considered different
types by equivariant operations and that scalars correspond to only type-(0, e) vectors and
do not include type-(0, o) vectors.

2. The behaviors of equivariant operations are changed accordingly since parities p are included
in internal representations. The operations of linear and layer normalization will treat type-
(L, e) vectors and type-(L, o) vectors as different types. This means that we linearly combine
or normalize these two types of vectors in a separate manner. In Sec. A.4, we discuss how
tensor products behave when E(3) equivariance is considered. For the operation of gate,
we apply activation functions to type-(0, e) vectors (scalars) and treat type-(0, o) vectors
(pseudo-scalars) in the same manner as vectors of higher L. Specifically, given input x
containing non-scalar C(L,p) type-(L, p) vectors with 0 < L ≤ Lmax and p ∈ {e, o}, C(0,o)

type-(0, o) vectors and (C(0,e) + C(0,o) +
∑Lmax

L=1

∑
p∈{e,o} C(L,p)) type-(0, e) vectors,

we apply SiLU to the first C(0,e) type-(0, e) vectors and sigmoid function to the other
(C(0,o) +

∑Lmax

L=1

∑
p∈{e,o} C(L,p)) type-(0, e) vectors to obtain non-linear weights and

multiply each pseudo-scalar or type-(L, p) vector with corresponding non-linear weights.
After the gate activation, the number of channels for type-(0, e) vectors is reduced to C(0,e).

C.5 DISCUSSION ON COMPUTATIONAL COMPLEXITY

We discuss the computational complexity of the proposed equivariant graph attention here.

First, we compare dot product attention with MLP attention when linear messages are used for value
vij . Dot product attention requires taking the dot product of two irreps features, query qi and key
kij , for attention weights, and both qi and kij have the same dimension as value vij . In contrast,
MLP attention uses only scalar features f (0)

ij for attention weights. The dimension of scalar features

f
(0)
ij is the same as that of the scalar part of vij . Therefore, MLP attention generates less and smaller

intermediate features for attention weights and is faster than dot product attention.
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Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 5
Maximum learning rate 1.5× 10−4, 5× 10−4

Batch size 64, 128
Number of epochs 300, 600
Weight decay 0, 5× 10−3

Dropout rate 0.0, 0.1, 0.2

Cutoff radius (Å) 5
Number of radial bases 128 for Gaussian radial basis, 8 for radial bessel basis
Hidden sizes of radial functions 64
Number of hidden layers in radial functions 2

Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0), (64, 1), (32, 2)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1), (1, 2)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0), (16, 1), (8, 2)]
Hidden dimension in feed forward networks dffn [(384, 0), (192, 1), (96, 2)]
Output feature dimension dfeature [(512, 0)]

E(3)-Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0, e), (32, 0, o), (32, 1, e), (32, 1, o), (16, 2, e), (16, 2, o)]
Spherical harmonics embedding dimension dsh [(1, 0, e), (1, 1, o), (1, 2, e)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0, e), (8, 0, o), (8, 1, e), (8, 1, o), (4, 2, e), (4, 2, o)]
Hidden dimension in feed forward networks dffn [(384, 0, e), (96, 0, o), (96, 1, e), (96, 1, o), (48, 2, e), (48, 2, o)]
Output feature dimension dfeature [(512, 0, e)]

Table 8: Hyper-parameters for QM9 dataset. We denote CL type-L vectors as (CL, L) and C(L,p)

type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations of vectors.

Second, compared to linear messages, using non-linear messages increases the number of tensor
product operations from 1 to 2. Since tensor products are compute-intensive, this inevitably increases
training and inference time.

Please refer to Sec. D.1 and Sec. F.2 for the exact numbers of training time on QM9 and OC20.

D DETAILS OF EXPERIMENTS ON QM9

D.1 TRAINING DETAILS

We use the same data partition as TorchMD-NET (Thölke & Fabritiis, 2022). For the task of U ,
U0, G, and H , where single-atom reference values are available, we subtract those reference values
from ground truth. For other tasks, we normalize ground truth by subtracting mean and dividing by
standard deviation.

We train Equiformer with 6 blocks with Lmax = 2. We choose Gaussian radial basis (Schütt et al.,
2017; Shuaibi et al., 2021; Klicpera et al., 2021; Shi et al., 2022) for the first six tasks in Table 1
and radial Bessel basis (Gasteiger et al., 2020b;a) for the others. We apply dropout (Srivastava et al.,
2014) to attention weights aij . The dropout rate is 0.0 for the tasks of G, H , U and U0, is 0.1 for
the task of R2 and is 0.2 for others. Since the tasks of G, H , U , and U0 require longer training, we
use slightly different hyper-parameters. The number of epochs is 600 for the tasks of G, H , U , and
U0 and is 300 for others. The learning rate is 1.5 × 10−4 for the tasks of G, H , U , and U0 and is
5× 10−4 for others. The batch size is 64 for the tasks of G, H , U , and U0 and is 128 for others. The
weight decay is 0 for the tasks of G, H , U , and U0 and is 5× 10−3 for others. Table 8 summarizes
the hyper-parameters for the QM9 dataset. The detailed description of architectural hyper-parameters
can be found in Sec. C.2.
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We use one A6000 GPU with 48GB to train each model and summarize the computational cost of
training for one epoch as follows. Training E(3)-Equiformer in Table 9 for one epoch takes about
16.3 minutes. The time of training Equiformer, Equiformer with linear messages (indicated by Index
2 in Table 6), and Equiformer with linear messages and dot product attention (indicated by Index 3 in
Table 6) for one epoch is 12.1 minutes, 7.2 minutes and 7.8 minutes, respectively.

D.2 COMPARISON BETWEEN SE(3) AND E(3) EQUIVARIANCE

We train two versions of Equiformers, one with SE(3)-equivariant features denoted as “Equiformer”
and the other with E(3)-equivariant features denoted as “E(3)-Equiformer”, and we compare them
in Table 9. As for Table 1, we compare “Equiformer” with other works since most of them do not
include equivariance to inversion.

Task α ∆ε εHOMO εLUMO µ Cν Training time Number of
Methods Units a30 meV meV meV D cal/mol K (minutes/epoch) parameters

Equiformer .046 30 15 14 .011 .023 12.1 3.53M
E(3)-Equiformer .045 30 15 14 .012 .023 16.3 3.28M

Table 9: Ablation study of SE(3)/E(3) equivariance on QM9 testing set. “Equiformer” operates
on SE(3)-equivariant features while “E(3)-Equiformer” uses E(3)-equivariant features. Including
inversion achieves similar performance.

D.3 COMPARISON OF TRAINING TIME AND NUMBERS OF PARAMETERS

We compare training time and numbers of parameters between SEGNN (Brandstetter et al., 2022),
TorchMD-NET (Thölke & Fabritiis, 2022) and Equiformer and summarize the results in Table 10.
Training Equiformer for 300 epochs and for 600 epochs takes 61 and 122 GPU-hours, respectively.

Compared to SEGNN, which is written with the same e3nn library (Geiger et al., 2022), Equiformer
with MLP attention and non-linear message is faster. Although Equiformer has more channels and
more parameters, the training time is comparable. The reasons are as follows. Equiformer uses more
efficient depth-wise tensor products (DTP), where one output channel depends on only one input
channel. SEGNN uses more compute-intensive fully connected tensor products (FCTP), where one
output channel depends on all input channels. Besides, SEGNN uses 4 FCTPs in each message
passing block while Equiformer uses only 2 DTPs in each block.

Compared to TorchMD-NET, which is trained for 3000 epochs, Equiformer achieves competitve
results after trained for 300 or 600 epochs. Equiformer takes more time for each epoch since
Equiformer uses more expressive non-linear messages, which compared to linear messages used in
other equivariant Transformers, doubles the number of tensor products and therefore almost doubles
the training time. Moreover, Equiformer incorporates tensors of higher degrees (e.g., Lmax = 2),
which improves performance but slows down the training.

E DETAILS OF EXPERIMENTS ON MD17

E.1 TRAINING DETAILS

We use the same data partition as TorchMD-NET (Thölke & Fabritiis, 2022). For energy prediction,
we normalize ground truth by subtracting mean and dividing by standard deviation. For force
prediction, we normalize ground truth by dividing by standard deviation of ground truth energy.

We train Equiformer with 6 blocks with Lmax = 2 and 3. We choose the radial basis function used by
PhysNet (Unke & Meuwly, 2019). We do not apply dropout to attention weights aij . For Equiformer
with Lmax = 2, the learning rate is 1× 10−4 for benzene and is 5× 10−4 for others. The batch size
is 8, and the number of epochs is 1500. The model has about 3.50M parameters. For Equiformer with
Lmax = 3, the learning rate is 1× 10−4 for benzene and is 2× 10−4 for others. The batch size is 5,
and the number of epochs is 2000. The model has about 5.50M parameters. Table 11 summarizes the
hyper-parameters for the MD17 dataset. The detailed description of architectural hyper-parameters
can be found in Sec. C.2.
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Methods Number of parameters Training time (GPU-hours)

SEGNN (Brandstetter et al., 2022) 1.03M 81
TorchMD-NET (Thölke & Fabritiis, 2022) 6.86M 92

Equiformer 3.53M 61

Table 10: Comparison of training time and numbers of parameters for QM9 dataset.

Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 10
Maximum learning rate 1× 10−4, 2× 10−4, 5× 10−4

Batch size 5, 8
Number of epochs 1500, 2000
Weight decay 1× 10−6

Dropout rate 0.0

Weight for energy loss 1
Weight for force loss 80

Cutoff radius (Å) 5
Number of radial bases 32
Hidden sizes of radial functions 64
Number of hidden layers in radial functions 2

Equiformer (Lmax = 2)

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0), (64, 1), (32, 2)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1), (1, 2)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0), (16, 1), (8, 2)]
Hidden dimension in feed forward networks dffn [(384, 0), (192, 1), (96, 2)]
Output feature dimension dfeature [(512, 0)]

Equiformer (Lmax = 3)

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0), (64, 1), (64, 2), (32, 3)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1), (1, 2), (1, 3)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0), (16, 1), (16, 2), (8, 3)]
Hidden dimension in feed forward networks dffn [(384, 0), (192, 1), (192, 2), (96, 3)]
Output feature dimension dfeature [(512, 0)]

Table 11: Hyper-parameters for MD17 dataset. We denote CL type-L vectors as (CL, L) and
C(L,p) type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations of vectors.

We use one A5000 GPU with 24GB to train different models for each molecule. Training Equiformer
with Lmax = 2 takes about 15.4 hours, and training Equiformer with Lmax = 3 takes about 54.4
hours.

E.2 ADDITIONAL COMPARISON TO TORCHMD-NET

Since TorchMD-NET (Thölke & Fabritiis, 2022) is also an equivariant Transformer but uses dot prod-
uct attention instead of the proposed equivariant graph attention, we provide additional comparisons
in Table 12. For each molecule, we adjust the ratio of the weight for force loss to the weight for
energy loss so that Equiformer with Lmax = 2 can achieve lower MAE for both energy and forces.

E.3 COMPARISON OF TRAINING TIME AND NUMBERS OF PARAMETERS

We compare training time and number of parameters between NequIP (Batzner et al., 2022) and
Equiformer and summarize the results in Table 13. Since NequIP does not report the number of
epochs, we compare the time spent for each epoch and note that NequIP is trained for more than
1000 epochs. Equiformer with Lmax = 2 is faster than NequIP with Lmax = 3 since smaller Lmax

is used. Moreover, Equiformer with Lmax = 2 achieves overall better results as we use equivariant
graph attention instead of linear convolution used by NequIP. When increasing Lmax from 2 to 3,
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Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Methods energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces

TorchMD-NET 5.3 11.0 2.5 8.5 2.3 4.7 3.3 7.3 3.7 2.6 4.0 5.6 3.2 2.9 4.1 4.1

Equiformer (Lmax = 2) 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.0 5.3 3.2 2.4 4.2 3.7

Table 12: Additional comparison to TorchMD-Net (Thölke & Fabritiis, 2022) on MD17 dataset.
Energy and force are in units of meV and meV/Å.

Methods Number of parameters Training time (secs/epoch)

NequIP (Lmax = 3) (Batzner et al., 2022) 2.97M 48.7

Equiformer (Lmax = 2) 3.50M 36.9
Equiformer (Lmax = 3) 5.50M 98.0

Table 13: Comparison of training time and numbers of parameters for MD17 dataset.

Equiformer achieves better results than NequIP for most molecules. However, the training time is
longer than NequIP since we use 2 tensor product operations in each equivariant graph attention
instead of 1 tensor product in each linear convolution.

F DETAILS OF EXPERIMENTS ON OC20

F.1 DETAILED DESCRIPTION OF OC20 DATASET

The dataset consists of larger atomic systems, each composed of a molecule called adsorbate placed
on a slab called catalyst. Each input contains more atoms and more diverse atom types than QM9
and MD17. The average number of atoms in a system is more than 70, and there are over 50 atom
species. The goal is to understand interaction between adsorbates and catalysts through relaxation.
An adsorbate is first placed on top of a catalyst to form initial structure (IS). The positions of atoms
are updated with forces calculated by density function theory until the system is stable and becomes
relaxed structure (RS). The energy of RS, or relaxed energy (RE), is correlated with catalyst activity
and therefore a metric for understanding their interaction. We focus on the task of initial structure to
relaxed energy (IS2RE), which predicts relaxed energy (RE) given an initial structure (IS). There are
460k, 100k and 100k structures in training, validation, and testing sets, respectively.

F.2 TRAINING DETAILS

IS2RE without Node-Level Auxiliary Task. We use hyper-parameters similar to those for QM9
dataset and summarize in Table 14. For ablation study in Sec. 5.4, we use a smaller learning rate
1.5×10−4 for DP attention as this improves the performance. The detailed description of architectural
hyper-parameters can be found in Sec. C.2.

IS2RE with IS2RS Node-Level Auxiliary Task. We increase the number of Transformer blocks to
18 as deeper networks can benefit more from IS2RS node-level auxiliary task (Godwin et al., 2022).
We follow the same hyper-parameters in Table 14 except that we increase maximum learning rate to
5×10−4 and set dfeature to [(512, 0), (256, 1)]. Inspired by Graphormer (Shi et al., 2022), we add an
extra equivariant graph attention module after the last layer normalization to predict relaxed structures
and use a linearly decayed weight for loss associated with IS2RS, which starts at 15 and decays to
1. For Noisy Nodes (Godwin et al., 2022) data augmentation, we first interpolate between initial
structure and relaxed structure and then add Gaussian noise as described by Noisy Nodes (Godwin
et al., 2022). When Noisy Nodes data augmentation is used, we increase the number of epochs to 40.

We use two A6000 GPUs, each with 48GB, to train models when IS2RS is not included during
training. Training Equiformer and E(3)-Equiformer in Table 16 takes about 43.6 and 58.3 hours.
Training Equiformer with linear messages (indicated by Index 2 in Table 7) and Equiformer with linear
messages and dot product attention (indicated by Index 3 in Table 7) takes 30.4 hours and 33.1 hours,
respectively. We use four A6000 GPUs to train Equiformer models when IS2RS node-level auxiliary
task is adopted during training. Training Equiformer without Noisy Nodes data augmentation takes
about 3 days and training with Noisy Nodes takes 6 days. We note that the proposed Equiformer
in Table 5 achieves competitive results even with much less computation. Specifically, training
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Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 2
Maximum learning rate 2× 10−4

Batch size 32
Number of epochs 20
Weight decay 1× 10−3

Dropout rate 0.2

Cutoff radius (Å) 5
Number of radial basis 128
Hidden size of radial function 64
Number of hidden layers in radial function 2

Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(256, 0), (128, 1)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1)]
Number of attention heads h 8
Attention head dimension dhead [(32, 0), (16, 1)]
Hidden dimension in feed forward networks dffn [(768, 0), (384, 1)]
Output feature dimension dfeature [(512, 0)]

E(3)-Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(256, 0, e), (64, 0, o), (64, 1, e), (64, 1, o)]
Spherical harmonics embedding dimension dsh [(1, 0, e), (1, 1, o)]
Number of attention heads h 8
Attention head dimension dhead [(32, 0, e), (8, 0, o), (8, 1, e), (8, 1, o)]
Hidden dimension in feed forward networks dffn [(768, 0, e), (192, 0, o), (192, 1, e), (192, 1, o)]
Output feature dimension dfeature [(512, 0, e)]

Table 14: Hyper-parameters for OC20 dataset under the setting of training without IS2RS aux-
iliary task. We denote CL type-L vectors as (CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p)
and use brackets to represent concatenations of vectors.

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

SchNet (Schütt et al., 2017)† 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 2.22 3.03 2.38 2.65
DimeNet++ (Gasteiger et al., 2020a)† 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.40 2.56 3.42
GemNet-T (Klicpera et al., 2021)† 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 2.24 4.37 2.38 3.38
SphereNet (Liu et al., 2022) 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
(S)EGNN (Brandstetter et al., 2022) 0.5497 0.6851 0.5519 0.6102 0.5992 4.99 2.50 4.71 2.88 3.77
SEGNN (Brandstetter et al., 2022) 0.5310 0.6432 0.5341 0.5777 0.5715 5.32 2.80 4.89 3.09 4.03

Equiformer 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93

Table 15: Results on OC20 IS2RE validation set. † denotes results reported by Liu et al. (2022).

“Equiformer + Noisy Nodes” takes about 24 GPU-days when A6000 GPUs are used. The training
time of “GNS + Noisy Nodes” (Godwin et al., 2022) is 56 TPU-days. “Graphormer” (Shi et al., 2022)
uses ensemble of 31 models and requires 372 GPU-days to train all models when A100 GPUs are
used.

F.3 RESULTS ON IS2RE VALIDATION SET

For completeness, we report the results of Equiformer on the validation set in Table 15.

F.4 COMPARISON BETWEEN SE(3) AND E(3) EQUIVARIANCE

We train two versions of Equiformers, one with SE(3)-equivariant features denoted as “Equiformer”
and the other with E(3)-equivariant features denoted as “E(3)-Equiformer”, and we compare them
in Table 16. Including inversion improves the MAE results on ID and OOD Cat sub-splits but
degrades the performance on the other sub-splits. Overall, using E(3)-equivariant features results in
slightly inferior performance. We surmise the reasons are as follows. First, inversion might not be the
key bottleneck. Second, including inversion would break type-1 vectors into two parts, type-(1, e)
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Energy MAE (eV) ↓ EwT (%) ↑ Training time
(minutes/epoch)

Number of
parametersMethods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

Equiformer 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93 130.8 9.12M
E(3)-Equiformer 0.5035 0.6385 0.5034 0.5658 0.5528 5.10 2.98 5.10 3.02 4.05 174.9 8.77M

Table 16: Ablation study of SE(3)/E(3) equivariance on OC20 IS2RE validation set.
“Equiformer” operates on SE(3)-equivariant features while “E(3)-Equiformer” uses E(3)-
equivariant features.

Methods Number of parameters Training time (GPU-hours)

SEGNN (Brandstetter et al., 2022) 4.21M 79

Equiformer 9.12M 87

Table 17: Comparison of training time and numbers of parameters for OC20 dataset.

and type-(1, o) vectors. They are regarded as different types in equivariant linear layers and layer
normalizations, and therefore, the directional information captured in these two types of vectors can
only exchange in depth-wise tensor products. Third, we mainly tune hyper-parameters for Equiformer
with SE(3)-equivariant features, and it is possible that using E(3)-equivariant features would favor
different hyper-parameters.

For Table 15, 3, 4, and 5, we compare “Equiformer” with other works since most of them do not
include equivariance to inversion.

F.5 COMPARISON OF TRAINING TIME AND NUMBERS OF PARAMETERS

We compare training time and numbers of parameters between SEGNN (Brandstetter et al., 2022) and
Equiformer when IS2RS auxiliary task is not adopted during training and summarize the results in
Table 17. Equiformer achieves better results with comparable training time. Please refer to Sec. D.3
for a detailed discussion.

The comparison of training time when IS2RS auxiliary task is adopted can be found in Table 5.

F.6 ERROR DISTRIBUTIONS

We plot the error distributions of different Equiformer models on different sub-splits of OC20 IS2RE
validation set in Fig. 5. For each curve, we sort the absolute errors in ascending order for better
visualization and have a few observations. First, for each sub-split, there are always easy examples,
for which all models achieve significantly low errors, and hard examples, for which all models have
high errors. Second, the performance gains brought by different models are non-uniform among
different sub-splits. For example, using MLP attention and non-linear messages improves the errors
on the ID sub-split but is not that helpful on the OOD Ads sub-split. Third, when IS2RS node-level
auxiliary task is not included during training, using stronger models mainly improves errors that are
beyond the threshold of 0.02 eV, which is used to calculate the metric of energy within threshold
(EwT). For instance, on the OOD Both sub-split, using non-linear messages, which corresponds
to red and purple curves, improves the absolute errors for the 15000th through 20000th examples.
However, the improvement in MAE does not translate to that in EwT as the errors are still higher than
the threshold of 0.02 eV. This explains why using non-linear messages in Table 7 improves MAE
from 0.5657 to 0.5545 but results in almost the same EwT.

G LIMITATIONS

We discuss several limitations of the proposed Equiformer and equivariant graph attention below.

First, Equiformer is based on irreducible representations (irreps) and therefore can inherit the
limitations common to all equivariant networks based on irreps and the library e3nn (Geiger et al.,
2022). For example, using higher degrees L can result in larger features and using tensor products
can be compute-intensive. Part of the reasons that tensor products can be computationally expensive
are that the kernels have not been heavily optimized and customized as other operations in common
libraries like PyTorch (Paszke et al., 2019). But this is the issue related to software, not the design of
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(a) ID sub-split.

0 5000 10000 15000 20000 25000
Examples Sorted by Absolute Error

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Ab
so

lu
te

 E
rro

r

0.02 eV Threshold

Equiformer with IS2RS and Noisy Nodes
Equiformer with IS2RS
Equiformer
Equiformer with linear messages
Equiformer with linear messages and dot product attention

(b) OOD Ads sub-split.
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(c) OOD Cat sub-split.
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(d) OOD Both sub-split.

Figure 5: Error distributions of different Equiformer models on different sub-splits of OC20
IS2RE validation set.

31



Published as a conference paper at ICLR 2023

networks. While tensor products of irreps naively do not scale well, if all possible interactions and
paths are considered, some paths in tensor products can also be pruned for computational efficiency.
We leave these potential efficiency gains to future work and in this work focus on general equivariant
attention if all possible paths up to Lmax in tensor products are allowed.

Second, the improvement of the proposed equivariant graph attention can depend on tasks and
datasets. For QM9, MLP attention improves not significantly upon dot product attention as shown in
Table 6. We surmise that this is because QM9 contains less atoms and less diverse atom types and
therefore linear attention is enough. For OC20, MLP attention clearly improves upon dot product
attention as shown in Table 7. Non-linear messages improve upon linear ones for the two datasets.

Third, equivariant graph attention requires more computation than typical graph convolution. It
includes one softmax operation and thus requires one additional sum aggregation compared to typical
message passing. For non-linear message passing, it increases the number of tensor products from
one to two and requires more computation. We note that if there is a constraint on training budget,
using stronger attention (i.e., MLP attention and non-linear messages) would not always be optimal
because for some tasks or datasets, the improvement is not that significant and using stronger attention
can slow down training.

Fourth, the proposed attention has complexity proportional to the products of numbers of channels
and numbers of edges since the the attention is restricted to local neighborhoods. In the context of 3D
atomistic graphs, the complexity is the same as that of messages and graph convolutions. However,
in other domains like computer vision, the memory complexity of convolution is proportional to the
number of pixels or nodes, not that of edges. Therefore, it would require further modifications in
order to use the proposed attention in other domains.
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