
AN ASYNCHRONOUS BUNDLE METHOD FOR
DISTRIBUTED LEARNING PROBLEMS

Daniel Cederberg
Stanford University, USA

Xuyang Wu
SUSTech, China

Stephen Boyd
Stanford University, USA

Mikael Johansson
KTH, Sweden

ABSTRACT

We propose a novel asynchronous bundle method for solving distributed learning
problems. Compared to several existing asynchronous optimization algorithms,
our method computes the next iterate based on a more accurate approximation
of the objective function, and does not require any prior information about the
maximal information delay in the system. This makes the proposed method fast
and easy to tune. We prove that the algorithm converges in both deterministic and
stochastic (mini-batch) settings, and quantify how the convergence rates depend
on the level of asynchrony. The practical advantages of our method are illustrated
through numerical experiments on classification problems of varying complexities
and scales.

1 INTRODUCTION

We consider a setting where data is distributed among n workers, each with its own smooth convex
loss function fi : Rd → R. Our goal is to compute a solution x⋆ of

minimize F (x) ≜ f(x) +R(x), (1)

where f(x) ≜
∑n

i=1 fi(x) and R : Rd → R is a (possibly non-smooth) proper closed and convex
regularizer. This problem template is ubiquitous in machine learning and includes lasso (Tibshirani,
1996), logistic regression (Koh et al., 2007), and many other important problem classes.

When data is distributed among multiple workers, algorithms that require synchronization at every
iteration are limited by the slowest worker, creating a bottleneck. Asynchronous algorithms (Bert-
sekas & Tsitsiklis, 1989; Assran et al., 2020) address this issue by relaxing synchronization con-
straints, potentially resulting in machine learning systems that are both faster and easier to imple-
ment than their synchronous counterparts (Hannah & Yin, 2017). However, designing asynchronous
algorithms is challenging because information computed at the workers — such as function values
and gradients — may be obsolete by the time it reaches some coordinating mechanism like a cen-
tral server. As a result, convergence guarantees for asynchronous algorithms often rely on an upper
bound on the information delay from the workers, which is typically large and difficult to determine.
Moreover, the step sizes permitted by these guarantees tend to shrink quickly as the delay bound
increases. This complicates the implementation of asynchronous algorithms: if the estimated delay
bound is too small, it may not hold, invalidating the theoretical convergence guarantees. Conversely,
setting the bound too large results in overly conservative step sizes and slow practical convergence.

The design of most optimization algorithms relies on a simple approximation of the objective func-
tion — often referred to as a model in the optimization literature. For example, gradient descent
is based on the quadratic upper bound of an L-smooth convex function, while the Polyak step
size (Polyak, 1964) relies on a piecewise linear lower bound for a convex function with a known
optimal value. However, a string of recent papers on synchronous algorithms (Davis & Drusvy-
atskiy, 2019; Asi & Duchi, 2019; Nesterov & Florea, 2021) suggests that using a more accurate
approximation of the objective to compute the next iterate can improve performance. This naturally
leads to the question of whether asynchronous algorithms could also benefit from more accurate ap-
proximations of the objective, potentially resulting in asynchronous algorithms with faster practical
convergence and simpler tuning.

Contributions. We propose a parallel and asynchronous optimization method that leverages a more
accurate approximation of the objective function to compute the next iterate. The method is de-

1

signed for a parameter server architecture (Li et al., 2013) and decouples gradient evaluations at
the workers from decision vector updates at the master, making it robust to system asynchrony. On
the theoretical side, we prove that our algorithm converges for all bounded delays and can be im-
plemented without knowledge of the maximum delay. (We only know of two other asynchronous
algorithms (Mishchenko et al., 2018; Wu et al., 2022) that are designed for a parameter server and
share these properties while also explicitly taking the regularizer R(x) into account.) On the practi-
cal side, we present an algorithm that converges quickly with minimal tuning. Our method supports
stochastic function and gradient evaluations and can be viewed as an asynchronous bundle method,
generalizing the algorithms in (Nesterov & Florea, 2021; Asi & Duchi, 2019) to an asynchronous
setting.

Outline. The paper is structured as follows. In §2, we relate our contribution to existing work.
In §3, we introduce our asynchronous model-based algorithm, followed by a convergence analysis
in §4. Implementation details and numerical experiments are presented in §5 and §6, respectively.
Finally, we summarize our findings and conclude in §7.

2 RELATED WORK

Model-based optimization. Model-based optimization is a general framework in which an ap-
proximation, or model, of the objective function is maintained and used to compute the next it-
erate. This framework encompasses several well-known methods and principles, including the
expectation-maximization algorithm (Dempster et al., 1977; Neal & Hinton, 1998), quasi-Newton
methods (Dennis & Moré, 1977), bundle methods (Mäkelä, 2002), the majorization-minimization
principle (Mairal, 2015; Lange, 2016), and acceleration techniques (d’Aspremont et al., 2021). In
stochastic optimization, recent research has shown that using more accurate approximations of the
objective function can improve both speed and robustness to step size selection (Duchi & Ruan,
2018; Davis & Drusvyatskiy, 2019; Asi & Duchi, 2019). For composite non-stochastic optimiza-
tion, Nesterov & Florea (2021) recently demonstrated that constructing a piecewise linear model of
the smooth part of the objective — rather than relying solely on the most recent gradient to approx-
imate the smooth part — can lead to better performance. Our work aims to extend the idea of more
accurate objective function models to asynchronous optimization.

Parallel and asynchronous optimization. For parallel optimization with a parameter server archi-
tecture, asynchronous algorithms can significantly outperform their synchronous counterparts (Han-
nah & Yin, 2017). They have also shown promising results for other architectures (Recht et al., 2011;
Chaturapruek et al., 2015). Many asynchronous methods use diminishing step sizes (Duchi et al.,
2015; Assran & Rabbat, 2020) or rely on a predetermined maximum iteration number (Koloskova
et al., 2022; Mishchenko et al., 2022; Recht et al., 2011). Exceptions that are well-suited for a pa-
rameter server generally fall into two categories: (1) methods that require knowledge of an upper
bound on information delays (Zhang & Kwok, 2014; Peng et al., 2016; Gürbüzbalaban et al., 2017;
Vanli et al., 2018; Wai et al., 2020; Sun et al., 2019), and (2) algorithms that do not rely on such
a bound (Feyzmahdavian et al., 2014; Mishchenko et al., 2018; 2020; Wu et al., 2022; 2023). In
practice, however, an upper bound on the information delay is often unknown in advance. Since the
admissible step sizes shrink as the upper delay bound increases, it is often difficult to guarantee that
the algorithms in the first group converge in practice.

Most of the asynchronous methods above perform simple, closed-form updates at the central server,
while the bulk of the computational work (such as gradient and function evaluations) is offloaded
to the workers. The reason for the cheap update at the central server is, using the terminology of
model-based optimization, that the server maintains a simple model of the objective function based
only on the most recent information from each worker. Our approach differs in that we propose
using a more accurate model of the objective function — one that incorporates more than just the
latest information from each worker. The fact that computationally intensive tasks are handled by
the workers suggests an opportunity to investigate algorithms that are slightly more complex at the
server, like the one we propose, to potentially improve the overall system performance.

Bundle methods. A key challenge in asynchronous optimization is that gradients provide local
descent directions, making it challenging to combine gradients from different workers computed
at different iterates into a meaningful search direction that ensures descent. In contrast, gradients
(together with function values and convexity) provide global lower bounds on the objective func-

2

tion, making it easier to combine gradients evaluated at widely different points into a valid lower
bound of the objective function. This observation motivates our method, which can be viewed as an
asynchronous bundle method.

In the non-smooth optimization literature, several versions of asynchronous bundle methods have
been proposed (Emiel & Sagastizábal, 2010; Iutzeler et al., 2020; van Ackooij & Frangioni, 2018;
de Oliveira & Eckstein, 2015). Since non-smooth optimization covers a wide range of problems,
the convergence results for existing asynchronous bundle methods are generally weak. (For ex-
ample, a typical convergence result is that any cluster point of the iteration sequence solves the
problem (Emiel & Sagastizábal, 2010, Proposition 4).) However, our setting in this paper is differ-
ent. While the aforementioned works assume that the non-smoothness of the objective is present
in the finite-sum structure, we assume that the finite-sum structure arises in a smooth part of the
objective, and the non-smoothness of the objective is caused by a regularizer. This key distinction
allows us to derive much stronger convergence guarantees — not only do we prove convergence, but
we also derive convergence rates (see Theorem 4.5 and Theorem 4.9).

Bundle methods have also received direct attention from the machine learning community (Teo
et al., 2007; Franc & Sönnenburg, 2009; Teo et al., 2010; Chu et al., 2017; Paren et al., 2022). The
first three works design variants of bundle methods for general empirical risk minimization, but they
differ from our method in several ways. (For example, these methods maintain a piecewise linear
model of the sum f =

∑n
i=1 fi, whereas our algorithm maintains separate piecewise linear models

for each fi. Furthermore, unlike our method, these methods require the workers to synchronize in
every iteration.) Bundle methods have also been successfully applied to non-convex problems (see,
for example, Hare & Sagastizábal (2010)). In particular, the special case of the Polyak step size,
where the bundle only consists of the current cut and a lower bound on the objective, has proven to
yield strong performance in deep neural network training (Loizou et al., 2021; Wang et al., 2023a).

3 ALGORITHM

In this section we present a model-based algorithm for solving (1) asynchronously. We use a param-
eter server architecture (Li et al., 2013) with one central server and n workers. The central server
maintains a copy of the global decision variable and can query each worker for its function value
and gradient. Based on this information, the central server builds up a piecewise linear model of
each worker’s loss function, and then uses this model to compute the next iterate. A notable feature
of the algorithm is that its implementation does not require knowledge of an upper bound on the
information delay.

3.1 MAIN IDEA

To simplify the presentation of the method we consider a fixed iteration and drop the iteration index.
We assume that the iteration number is sufficiently large to ensure that the central server has received
information from each worker in at least m previous iterates. The parameter m is referred to as the
bundle size. For i ∈ {1, . . . , n} we introduce an algorithmic parameter Mi > 0 which, roughly
speaking, represents the smoothness parameter of worker i, and we let M ≜

∑n
i=1 Mi. (An exact

definition of Mi is given in §4.) We will later show that in a practical implementation of our method,
the parameters Mi, i = 1, . . . , n are estimated adaptively and require no tuning.

Let zij for j = 1, . . . ,m denote the m previous iterates in which the central server has received
information from worker i. We label the iterates so that zim is the most recent iterate for which
the central server has received information from worker i, and let z̄ ≜ 1

M

∑n
i=1 Miz

i
m denote a

weighted average of these points. The server maintains the following piecewise linear model of fi:

f̌i(x) = max
1≤j≤m

{
fi(z

i
j) + ⟨∇fi(z

i
j), x− zij⟩

}
. (2)

When the server receives information from one or several workers, it replaces the oldest iterate in
the bundle for those workers. The next iterate is then computed as an approximate solution of

min
x∈Rd

{ n∑
i=1

f̌i(x) +R(x) +
M

2
∥x− z̄∥22

}
. (3)

3

(We will later specify what we mean by an approximate solution.) Note in particular that the bundle
center in (3) is chosen as a weighted average of the most recent iterates for the workers; this is
essential for the convergence analysis in §4.

In our method, the central server must store m gradients of size d for all n workers, resulting in
a total memory complexity of order O(mnd). This is more than the O(nd) memory required by
methods that only store the most recent gradient of each worker, but often substantially less than
the O(d2) requirement of methods such as (Soori et al., 2020) that store an approximation of the
Hessian at the central server.

3.2 SOLVING THE MASTER PROBLEM

In every iteration the central server must solve the master problem (3), which for common regu-
larizers such as R(x) = λ∥x∥1 can be formulated as a quadratic program with linear inequality
constraints. If the dimension d is large, solving (3) can become a computational bottleneck. How-
ever, when an aggregated piecewise linear model of the objective function is used and R(x) = 0,
it is well known that the dual of (3) is a low-dimensional quadratic program over the probability
simplex (see, for example, (Hiriart-Urruty & Lemarechal, 1993, p. 296)). As the following lemma
shows, a similar observation can be made when a disaggregated piecewise linear model of f is used
and when R(x) ̸= 0. To state the lemma we define matrices Gi ∈ Rd×m containing old gradient
information of fi by

Gi =
[
∇fi(z

i
1) . . . ∇fi(z

i
m)

]
.

For i = 1, . . . , n, let vi ∈ Rm be defined componentwise by (vi)j = ⟨∇fi(z
i
j), z

i
j⟩ − fi(z

i
j) and

let v = (v1, . . . , vn) ∈ Rmn. Recall that for γ > 0, the Moreau envelope of R and the proximal
operator of R are defined by

Hγ
R(y) = min

x

{
R(x) +

1

2γ
∥x− y∥22

}
, proxγR(y) = argmin

x

{
R(x) +

1

2γ
∥x− y∥22

}
.

Lemma 3.1. Let λi ∈ Rm, i = 1, . . . , n and λ = (λ1, . . . , λn) ∈ Rmn. Define g : Rmn → R by

g(λ) =
M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+ ⟨v, λ⟩.

The Lagrange dual of (3) is given by

minimize g(λ)
subject to 1Tλi = 1, λi ≥ 0, i = 1, . . . , n.

(4)

Furthermore, if λ⋆ is optimal in (4), then the unique solution of (3), denoted by xexact, is given by

xexact = prox 1
M R

(
z̄ − 1

M

n∑
i=1

Giλ
⋆
i

)
. (5)

Proof. The proofs of this and all forthcoming results are given in the appendix.

3.3 AN EFFICIENT APPROXIMATE MASTER PROBLEM SOLVER

According to Lemma 3.1, we can solve the master problem (3) by solving its low-dimensional dual
(4). However, even if the dual is low-dimensional, it can be too expensive to solve it to high accuracy
since the second term in the definition of the dual objective function itself involves a minimization
problem in x. Therefore, in our algorithm, we only generate approximate solutions to (3) using
inexact solutions to (4). The goal of this subsection is to introduce equation (6) below, which defines
a termination criterion that we use to specify what we mean by an inexact solution.

Denote the feasible set of (4) by ∆ ⊆ Rmn. The dual objective function g is differentiable since the
Moreau envelope is differentiable. Hence, from optimality conditions for convex optimization (see,
for example, (Nesterov, 2018, p. 177)), λ⋆ solves (4) if and only if

⟨∇g(λ⋆), λ⋆ − λ⟩ ≤ 0 for all λ ∈ ∆.

4

Algorithm 1
Setup: x0, parameters Mi, bundle size m, tolerance δ > 0
Initialization: the central server receives fi(x0) and ∇fi(x0), i = 1, . . . , n
while not interrupted by central server: each worker i do

receive x from the server, compute fi(x) and ∇fi(x), and send them back to the server
end while
while not converged: central server do

for i = 1, . . . , n do
if received information from worker i then

update the bundle of worker i by throwing out the oldest information
end if

end for
compute λ̄ satisfying (6) and then update x according to (7)
send back x to all workers that the server received information from

end while

As in (Nesterov & Florea, 2021), we allow for inexact solution of (4) by introducing a parameter
δ > 0 together with the requirement that we compute a point λ̄ satisfying

⟨∇g(λ̄), λ̄− λ⟩ ≤ δ for all λ ∈ ∆. (6)

The next iterate, denoted by x+, is then computed as (cf. (5))

x+ = prox 1
M R(z̄ −

1

M

n∑
i=1

Giλ̄i). (7)

A summary of the algorithm we propose is given in Algorithm 1. Implementation details, including
how to find λ̄ satisfying (6), are given in §5.

3.4 EXTENSION TO STOCHASTIC FUNCTION VALUES AND GRADIENTS

While the main focus of this paper is the setting where exact (full batch) function and gradient eval-
uations are used, we will also analyze a variant that uses stochastic (mini-batch) function values and
gradients. For this setting we assume that each worker i ∈ {1, . . . , n} has access to an oracle that
when queried at a point x, draws a random variable ξ from some distribution and outputs both a
stochastic function value Fi(x; ξ) approximating fi(x), and a stochastic gradient Gi(x; ξ) approxi-
mating ∇fi(x). In this stochastic setting, the central server replaces the piecewise linear model (2)
of fi with the following stochastic piecewise linear model:

f̌i(x, ξ) = max
1≤j≤m

{
Fi(z

i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩

}
.

Here ξij is the random variable from the query of the oracle of worker i in the point zij , and the bold
ξ represents all randomness used to construct the current bundle.

4 CONVERGENCE ANALYSIS

In this section we study the convergence of Algorithm 1 and its stochastic extension. Our main
results are Theorem 4.5 and Theorem 4.9 showing that the algorithm converges to a neighborhood
of an optimal solution whose size depends on the accuracy used to solve the master problem. They
also characterize how the information delay affects the convergence rate. The convergence analysis
uses two sequences of points: the sequence of iterates xk for k ∈ Z+ ≜ {0, 1, 2, . . . } and the
sequence of points zik,j for k ∈ Z+, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} used to construct the
piecewise linear model of fi in iteration k. (These points are previous iterates, i.e., for (k, i, j) ∈
Z+ × {1, . . . , n} × {1, . . . ,m} there exists a non-negative integer sik,j ≤ k such that zik,j = xsik,j

.)

We will assume that the points are labeled such that zik,m denotes the most recent iterate in which
the central server has received information from worker i in iteration k. With this convention, the

5

quantity k− sik,m ≥ 0 is called the delay of worker i in iteration k. Our first assumption is standard
(see, for example, Feyzmahdavian et al. (2014); Gürbüzbalaban et al. (2017); Vanli et al. (2018);
Mishchenko et al. (2018)) and states that the maximum delay is bounded by an integer τ ≥ 0.
Assumption 4.1. In every iteration k the delay of worker i is bounded by τ . In other words, for
(k, i) ∈ Z+ × {1, . . . , n} it holds that k − sik,m ≤ τ .

We will also make the following standard assumption on the objective function.
Assumption 4.2. The loss function of worker i ∈ {1, . . . , n} is smooth with parameter Li.

Occasionally we will further make the following common growth assumption that is similar to, but
weaker, than strong convexity (see, for example, Necoara et al. (2019)).
Assumption 4.3. The full objective function F has a quadratic functional growth with parameter
µ > 0, meaning that F (x)− F (x⋆) ≥ (µ/2)∥x− x⋆∥22 for all x ∈ Rd.

4.1 ANALYSIS FOR EXACT FUNCTION VALUES AND GRADIENTS

We now present a convergence analysis when exact (non-stochastic) function values and gradients
are used. First we need an additional assumption.
Assumption 4.4. The loss function fi of worker i ∈ {1, . . . , n} is star-convex, meaning that
fi(x

⋆) ≥ fi(x) + ⟨∇fi(x), x
⋆ − x⟩ for all x ∈ Rd.

Under the growth assumption we can show linear convergence to a neighborhood of the solution.
Theorem 4.5. Under Assumptions 4.1, 4.2, 4.3 and 4.4 the iterates of Algorithm 1 using Mi =
Li, i = 1, . . . , n satisfy

∥xk − x⋆∥22 ≤ ρk∥x0 − x⋆∥22 + ϵδ, (8)

where ρ = (L/(L+ µ))1/(1+τ) and ϵδ = 2δ/µ.
Remark 4.6. A notable feature of our algorithm is that neither its implementation nor its tuning
requires any information about the level of asynchrony in the system. The method converges with
default parameters as long as the information delay from all workers are finite, and under Assump-
tion 4.3, the convergence rate decreases as the level of asynchrony in the system increases.
Remark 4.7. Rather than relying on the common yet unrealistic assumption of solving the sub-
problem (3) exactly, our analysis explicitly accounts for and characterizes the impact of inexact
subproblem solutions. As a result, an error term depending on δ naturally appears in the conver-
gence result. However, we should point out that in practice, the algorithm we propose has no issues
with finding highly accurate solutions (see §6).

For the analysis without the growth assumption we will use the following new sequence result that
might be of independent interest.
Lemma 4.8. Suppose that (Vk)

∞
k=0 and (Wk)

∞
k=0 are non-negative sequences satisfying

Vk+1 ≤ max
(k−τ)+≤ℓ≤k

Vℓ −Wk+1 + r, k = 0, 1, 2,

for a non-negative constant r. Then, for any k ≥ 1,

min
t≤k

Wt ≤
(τ + 1)V0

k
+ r.

Using Lemma 4.8 we can prove sublinear convergence in terms of the function value gap.
Theorem 4.9. Under Assumptions 4.1, 4.2, and 4.4, the iterates of Algorithm 1 using Mi = Li, i =
1, . . . , n, satisfy that for any k ≥ 1,

min
t≤k

F (xt)− F (x⋆) ≤ (τ + 1)L∥x0 − x⋆∥22
2k

+ δ.

Table 1 compares the convergence rates of our method (with δ = 0) against two asynchronous prox-
imal gradient methods: DAve-RPG (Mishchenko et al., 2018; 2020) and PIAG with delay-tracking

6

(Wu et al., 2022), under the assumptions used in this paper. These methods operate under the same
conditions as ours in that they rely on a parameter server, do not require explicit maximum delay in-
formation in their parameters, and explicitly incorporate the regularizer. The comparison shows that
all three methods achieve similar convergence rates under standard convexity assumptions. How-
ever, in the strong convexity-like setting, DAve-RPG exhibits the fastest rate. This is expected as
our method is more complex, making the analysis more challenging and leading to a looser bound.

Assumptions DAve-RPG Delay-tracking PIAG Algorithm 1

General convexity mint≤k ∥gt∥2 ≤ O(1/k) F (xk)− F (x⋆) ≤ O(1/k) mint≤k F (xt)− F (x⋆) ≤ O(1/k)

Strong convexity-like ∥xk − x⋆∥22 ≤ ρk1∥x0 − x⋆∥22 F (xk)− F (x⋆) ≤ ρk2(F (x0)− F (x⋆)) ∥xk − x⋆∥22 ≤ ρk3∥x0 − x⋆∥22

Table 1: Comparison of convergence guarantees under different assumptions. Here ρ1 = ((L −
µ)/(L+ µ))2/(τ+1), ρ2 = e−µ/(9L(τ+1) ≈ 1− µ

9L(τ+1) , and ρ3 = (L/(L+ µ))1/(τ+1).

4.2 ANALYSIS FOR STOCHASTIC FUNCTION VALUES AND GRADIENTS

When stochastic function values and gradients are used we will make the following assumptions.

Assumption 4.10. For each worker i ∈ {1, . . . , n}:

1. The oracle is star-convex, i.e., Fi(x
⋆; ξ) ≥ Fi(x; ξ) + ⟨Gi(x; ξ), x

⋆ − x⟩ for all x ∈ Rd.
Furthermore, E[Fi(x, ξ)] = fi(x) and E[Gi(x, ξ)] = ∇fi(x) for all x ∈ Rd.

2. The variance of the stochastic gradients is bounded by some finite constant σ2
2 > 0, mean-

ing that E[∥Gi(x, ξ)−∇fi(x)∥22] ≤ σ2
2 for all x ∈ Rd.

3. The function value noise at the optimal solution x⋆ is bounded by some finite constant
σ2
1 > 0, meaning that E[(Fi(x

⋆; ξ)− fi(x
⋆))2] ≤ σ2

1 .

Relation to previous assumptions in the literature. The second assumption bounding the noise of
the gradients is common in the analysis of stochastic algorithms (see, for example, Koloskova et al.
(2022); Mishchenko et al. (2022)). The third assumption is less common, since most algorithms
often only use stochastic gradients and not function values. However, recent analysis of stochastic
algorithms that use stochastic function values in addition to stochastic gradients make a similar
assumption (see, for example, Loizou et al. (2021); Wang et al. (2023b)).

Theorem 4.11. Consider Algorithm 1 with Mi = αLi, i = 1, . . . , n where α > 1. Assume that
stochastic function values and gradients are used. Under Assumptions 4.1, 4.2, and 4.10, the iterates
of Algorithm 1 satisfy that for any k ≥ 1,

min
t≤k

E[F (xt)]− F (x⋆) ≤ α(τ + 1)L∥x− x0∥22
2k

+ ϵ, (9)

where ϵ = ϵδ + ϵσ1 + ϵσ2 with

ϵδ = δ, ϵσ1
= nσ1

√
m, ϵσ2

=
σ2
2

2(α− 1)
·

n∑
i=1

1

Li
.

If, in addition, Assumption 4.3 holds, then

E[∥xk − x⋆∥22] ≤ ρk∥x0 − x⋆∥22 + 2ϵ/µ,

where ρ = (αL/(αL+ µ))1/(1+τ).

Remark 4.12. Compared to algorithms with a simple explicit update rule of the form xk+1 =
proxγg(xk + γdk) where dk is a direction and γ is a step size, the update mechanism of Algorithm
1 is more implicit since it involves solving the dual subproblem (4) approximately. This makes the
analysis challenging. One of the main technical challenges in the proof in the stochastic setting is to
carefully manage correlations between recently queried gradients Gi(z

i
m), the dual variable λ̄, and

the next iterate xk+1, all of which are correlated random variables.

7

Remark 4.13. The size of the neighborhood of the solution that xk converges to in expectation
depends on three terms: one term ϵδ which depends on the accuracy δ, and two other terms ϵσ1

and
ϵσ2

which depend on the strength of the noise. The noise terms ϵσ1
and ϵσ2

depend on n, which
may seem uncommon. This dependency arises because we analyze the canonical form f(x) =∑n

i=1 fi(x) instead of the more common form f(x) = (1/n)
∑n

i=1 fi(x). Under the latter form,
the noise terms would not depend on n.

5 IMPLEMENTATION

When implementing Algorithm 1, two issues must be addressed.

Solving the subproblem. First, we must find an approximate solution to (4) by finding λ̄ ∈ Rmn

satisfying (6). Since ∆ is a Cartesian product of simplices, it is cheap to verify condition (6) by
noting that

sup
λ∈∆

⟨∇g(λ̄), λ̄− λ⟩ = ⟨∇g(λ̄), λ̄⟩ − inf
λ∈∆

⟨∇g(λ̄), λ⟩ = ⟨∇g(λ̄), λ̄⟩ −
n∑

i=1

min∇ig(λ̄),

where min∇ig(λ̄) is the smallest element of ∇ig(λ̄). (Here ∇ig(λ̄) is the gradient of g with respect
to λi.) To find λ̄ we have implemented an accelerated projected gradient method for solving (4)
(Beck, 2017, page 291). Each iteration requires the gradient of g and projecting onto the feasible
set ∆. Since ∆ is a Cartesian product of low-dimensional simplices, the projection can be done
efficiently (see, for example, (Condat, 2016)). Furthermore, from properties of the Moreau-envelope
(Beck, 2017, p. 166) it follows that the gradient of g with respect to λi is

∇ig(λ) = GT
i (u− prox 1

M R(u))−GT
i u+ vi = vi −GT

i prox 1
M R(u), (10)

where u ≜ z̄ − 1
M

∑n
i=1 Giλi.

In the appendix we compare the cost of solving the subproblem using this specialized method versus
a high-performance interior-point solver. The main conclusion is that this specialized approach is
more than an order of magnitude faster and that the complexity for solving the subproblem is of
order O(nmd).

Adaptive estimation of smoothness parameters. First-order methods for solving (1) typically require
knowledge of smoothness parameters. These parameters are often unknown or expensive to compute
in practice. To eliminate the need for choosing a suitable value on Li in Algorithm 1 we propose to
estimate it adaptively using similar ideas to (Malitsky & Mishchenko, 2020).

Recall that ∇fi(z
i
m) is the most recent gradient that the central server has received from worker

i, and let ∇fi(z
i
m−1) denote the next most recent gradient. Given zim, ∇fi(z

i
m), zim−1 and

∇fi(z
i
m−1), a natural estimate of the local smoothness of fi is the quantity L̂i = ∥∇fi(z

i
m) −

∇fi(z
i
m−1)∥2/∥zim − zim−1∥2. Every time the central server receives a new gradient from worker i,

we propose to update the smoothness parameter Li using this estimate.

6 EXPERIMENTS

We consider binary and multiclass classification problems based on a logistic model. For the binary
classification, we use the objective function f(x) = (1/N)

∑N
j=1

(
log(1 + e−yj(a

T
j x)) + λ2

2 ∥x∥22
)

and the regularizer R(x) = λ1∥x∥1, where a1, . . . , aN ∈ Rp are the feature vectors and
y1, . . . , yN ∈ {−1, 1} are the corresponding labels. Due to the space limitations, we defer the
results for multiclass classification to the appendix.

We conduct experiments on three datasets (mnist8m/infimnist, epsilon, rcv1) from the
LIBSVM library (Chang & Lin, 2011) and on the SVHN dataset (Netzer et al., 2011). We pick
λ2 = 1/N , and tune λ1 for each dataset to obtain a classifier x⋆ with 10-20% non-zero entries. The
dataset mnist8m corresponds to a multiclass problem with 10 different labels. To use it for binary
classification, we select data corresponding to the digits 7 and 9 and discard the rest. Table 2 in
Appendix A.4 shows the dimensions of each problem and the value of λ1.

8

All methods are evaluated on a workstation using 10 cores. One core is assigned the role as the
central server and the remaining n = 9 cores are workers. The data is distributed evenly among the
workers. The code is written in Python using MPI4PY (Dalcin & Fang, 2021) and is available at
https://github.com/dance858/Asynchronous-bundle-method. To evaluate the
objective value and the gradients we use PyTorch (Paszke et al., 2019) for the dense datasets, and
sparse linear algebra for rcv1.

6.1 BENCHMARKING

To benchmark our asynchronous bundle method (ABM) we compare it with two asynchronous proxi-
mal gradient methods, namely DAve-RPG (Mishchenko et al., 2018) and PIAG with delay-tracking
(Wu et al., 2022). We selected these methods since they operate under the same conditions as ABM
in the sense that they use a parameter server, require no maximum delay information in parameters,
and explicitly incorporate the regularizer. Both DAve-RPG and PIAG use exact gradients so we
also use exact function values and gradients for ABM.

For ABM we use bundle size m = 10, master problem tolerance δ = 10−7, and adaptive smoothness
estimation. DAve-RPG has two hyperparameters: the step size γ and the number of inner prox-
steps p. We use step size γ = 1/Laverage where Laverage is the average smoothness parameter of the
workers, and p = 1 inner prox-steps (as in (Mishchenko et al., 2018)). For PIAGwith delay-tracking
we implemented the first adaptive step size strategy described in (Wu et al., 2022).

The first row of Figure 1 shows the relative suboptimality (f(xk)− f⋆)/f⋆ versus the runtime. We
see that ABM clearly outperforms the other two methods. The second row shows the suboptimality
versus the number of gradients received by the server. We see that ABM achieves much higher
accuracy with fewer gradients received by the server. For rcv1 the difference is striking: in 300
seconds the central server in ABM receives about 4000 gradients, while the servers of DAve-RPG
and PIAG receive more than 70000 gradients in the same amount of time. This is in contrast to
mnist8m and epsilon where all servers receive roughly the same number of gradients in the
same amount of time. The reason underlying this observation is that the gradients are cheap to
compute for the sparse data set rcv1 and more expensive to compute for the dense datasets (cf.
Table 2). Consequently, for rcv1, the time required to solve the subproblem at the central server is
non-negligible compared to the time needed to evaluate gradients. In contrast, for the dense datasets,
this computation time is almost negligible.

0 50 100 150 200 250 300
Runtime (s)

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DA(e-RPG
PIAG

0 2000 4000 6000 8000 10000
Number of gradients

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DA(e-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1 ABM

DA(e-RPG
PIAG

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of gradients

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1 ABM

DAve-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DA(e-RPG
PIAG

0 2000 4000 6000 8000 10000 12000 14000
Number of gradients

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

Figure 1: The progress of ABM, DAve-RPG and PIAG on the binary classification problems. The
datasets are arranged in the order mnist8m, rcv1 and epsilon from the left.

6.2 SENSITIVITY TO HYPERPARAMETERS

Strictly speaking, ABM has two hyperparameters: the tolerance δ and the bundle size m. We will
now investigate the sensitivity of the algorithm’s performance to these parameters. The first row of
Figure 2 shows the progress of ABM for fixed δ = 10−7 and bundle size m ∈ {2, 5, 10}. Increasing

9

https://github.com/dance858/Asynchronous-bundle-method

the bundle size from m = 2 to m ∈ {5, 10} results in much faster convergence for mnist8m.
Furthermore, ABM makes no progress with bundle size m = 2 for rcv1 and epsilon, but with
bundle size m ∈ {5, 10} the convergence is fast. This indicates the advantage of using a more
accurate approximation of the objective function for computing the next iterate. Next, we run ABM
with fixed bundle size m = 10 and tolerance δ ∈ {10−5, 10−7, 10−9}. The result is shown in
the second row of Figure 2. We see that ABM has good performance for all three values on δ. This
experiment suggests that ABM essentially requires no tuning in these experiments: the values m = 10
and δ = 10−7 seem to work well. In particular, the performance of ABM is not as sensitive to its
hyperparameters as, for example, stochastic gradient descent is to its step size.

0 50 100 150 200 250 300

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

m=2
m=5
m=10

0 50 100 150 200 250 300

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1

m=2
m=5
m=10

0 50 100 150 200 250 300

10−7

10−6

10−5

10−4

10−3

10−2

10−1

m=2
m=5
m=10

0 50 100 150 200 250 300
Runtime (s)

10−5

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

δ = 1e-05
δ = 1e-07
δ = 1e-09

0 50 100 150 200 250 300
Runtime (s)

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1 δ = 1e-05

δ = 1e-07
δ = 1e-09

0 50 100 150 200 250 300
Runtime (s)

10−7

10−6

10−5

10−4

10−3

10−2

10−1
δ = 1e-05
δ = 1e-07
δ = 1e-09

Figure 2: Sensitivity of ABM’s performance with respect to hyperparameters. The first row shows
the performance for different bundle sizes m and fixed tolerance δ. The second row shows the per-
formance for different tolerances δ and fixed bundle size. Each column corresponds to one dataset,
and the columns are arranged in the order mnist8m, rcv1, epsilon.

6.3 FURTHER EXPERIMENTS

In the appendix we conduct further experiments when λ2 = 0, i.e., when the objective function is
convex but not strongly convex, and we also conduct experiments on multiclass classification. The
main conclusion is that ABM outperforms DAve-RPG and PIAG with delay tracking (see Figure 3
and 4 in the appendix). We also test the stochastic version of ABM using mini-batches for multiclas-
sification on the biggest data set mnist8m. The experiment indicates that mini-batching can speed
up ABM if only a modest accuracy is required (see Figure 5 in the appendix).

7 DISCUSSION

We have presented an asynchronous bundle method that is suitable for distributed learning problems.
The algorithm constructs a piecewise linear model to approximate the local loss of each worker and
uses this model to compute the next iterate. Compared to other first-order asynchronous algorithms,
our proposed method employs a more refined model of the objective function. This allows it to
converge quickly in practice with minimal tuning or specification of unknown constants.

Our method uses a fixed bundle size. An interesting extension would be to design a scheme that dy-
namically adjusts the bundle size based on the actual delays, potentially discarding outdated function
value information that hasn’t been used recently in the server subproblem. (The jth linear approxi-
mation of fi is not used in the server subproblem if λ⋆

ij = 0, where λ⋆ is the solution of (4).) Another
extension could be to let the central server maintain a low-rank approximation of the Hessian for
each worker, enabling a better approximation of the curvature of the loss function, and possibly
faster convergence. We leave these extensions for future work.

10

REFERENCES

Martin Skovgaard Andersen, Joachim Dahl, Zhang Liu, and Lieven Vandenberghe. Interior-point
methods for large-scale cone programming. MIT Press, 2011. ISBN 9780262016469.

Hilal Asi and John C. Duchi. The importance of better models in stochastic optimization.
Proceedings of the National Academy of Sciences, 116(46):22924–22930, 2019. doi: 10.
1073/pnas.1908018116. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1908018116.

By Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and
Michael G. Rabbat. Advances in Asynchronous Parallel and Distributed Optimization. Pro-
ceedings of the IEEE, 108(11):2013–2031, 2020. doi: 10.1109/JPROC.2020.3026619.

Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. IEEE Transactions on
Automatic Control, 66(1):168–183, 2020.

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997. URL https://epubs.siam.org/
doi/abs/10.1137/1.9781611974997.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., USA, 1989. ISBN 0136487009.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, March
2004. ISBN 0521833787.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol., 2(3), may 2011. ISSN 2157-6904. doi: 10.1145/1961189.1961199.
URL https://doi.org/10.1145/1961189.1961199.

Sorathan Chaturapruek, John C Duchi, and Christopher Ré. Asynchronous stochastic convex op-
timization: the noise is in the noise and SGD don’t care. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf.

Dejun Chu, Changshui Zhang, and Qing Tao. A Faster Cutting Plane Algorithm with Ac-
celerated Line Search for Linear SVM. Pattern Recogn., 67(C):127–138, jul 2017. ISSN
0031-3203. doi: 10.1016/j.patcog.2017.02.006. URL https://doi.org/10.1016/j.
patcog.2017.02.006.

Laurent Condat. Fast projection onto the simplex and the lll1 ball. Mathematical Programming,
158(1):575–585, 07 2016. ISSN 1436-4646. doi: 10.1007/s10107-015-0946-6. URL https:
//doi.org/10.1007/s10107-015-0946-6.

Lisandro Dalcin and Yao-Lung L. Fang. mpi4py: Status Update After 12 Years of Development.
Computing in Science & Engineering, 23(4):47–54, 2021. doi: 10.1109/MCSE.2021.3083216.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic Model-Based Minimization of Weakly Convex
Functions. SIAM Journal on Optimization, 29(1):207–239, 2019. doi: 10.1137/18M1178244.
URL https://doi.org/10.1137/18M1178244.

Welington de Oliveira and Jonathan Eckstein. Bundle method for exploiting additive structure in
difficult optimization problems. Optimization Online,, 2015.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,
1977. URL http://www.jstor.org/stable/2984875.

J. E. Dennis, Jr. and Jorge J. Moré. Quasi-Newton Methods, Motivation and Theory. SIAM Review,
19(1):46–89, 1977. doi: 10.1137/1019005. URL https://doi.org/10.1137/1019005.

11

https://www.pnas.org/doi/abs/10.1073/pnas.1908018116
https://www.pnas.org/doi/abs/10.1073/pnas.1908018116
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://doi.org/10.1145/1961189.1961199
https://proceedings.neurips.cc/paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf
https://doi.org/10.1016/j.patcog.2017.02.006
https://doi.org/10.1016/j.patcog.2017.02.006
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1137/18M1178244
http://www.jstor.org/stable/2984875
https://doi.org/10.1137/1019005

John C. Duchi and Feng Ruan. Stochastic Methods for Composite and Weakly Convex Optimization
Problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018. doi: 10.1137/17M1135086.
URL https://doi.org/10.1137/17M1135086.

John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex opti-
mization. arXiv preprint arXiv:1508.00882, 2015.

Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. Foundations
and Trends® in Optimization, 5(1-2):1–245, 2021. ISSN 2167-3888. doi: 10.1561/2400000036.
URL http://dx.doi.org/10.1561/2400000036.

Grégory Emiel and Claudia A. Sagastizábal. Incremental-like bundle methods with application to
energy planning. Comput. Optim. Appl., 46(2):305–332, 2010.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. A delayed proximal gradient
method with linear convergence rate. In 2014 IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6, 2014. doi: 10.1109/MLSP.2014.6958872.

V. Franc and S. Sönnenburg. Optimized Cutting Plane Algorithm for Large-Scale Risk Mini-
mization. Journal of Machine Learning Research, 10(76):2157–2192, 2009. URL http:
//jmlr.org/papers/v10/franc09a.html.

Paul Goulart and Yuwen Chen. Clarabel: A library for optimization and control, 2021. URL
https://oxfordcontrol.github.io/ClarabelDocs/stable/.

M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. On the Convergence Rate of Incremental Ag-
gregated Gradient Algorithms. SIAM Journal on Optimization, 27(2):1035–1048, 2017. doi:
10.1137/15M1049695. URL https://doi.org/10.1137/15M1049695.

Robert Hannah and Wotao Yin. More Iterations per Second, Same Quality – Why Asynchronous
Algorithms may Drastically Outperform Traditional Ones, 2017. URL https://arxiv.org/
abs/1708.05136.

Warren Hare and Claudia Sagastizábal. A redistributed proximal bundle method for nonconvex
optimization. SIAM Journal on Optimization, 20(5):2442–2473, 2010. doi: 10.1137/090754595.
URL https://doi.org/10.1137/090754595.

J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms II: Advanced
Theory and Bundle Methods. Grundlehren der mathematischen Wissenschaften. Springer Berlin
Heidelberg, 1993. ISBN 9783662064092. URL https://books.google.se/books?
id=QinsCAAAQBAJ.

Franck Iutzeler, Jérôme Malick, and Welington de Oliveira. Asynchronous level bundle methods.
Mathematical Programming, 184:319–348, November 2020. doi: 10.1007/s10107-019-01414-y.
URL https://hal.archives-ouvertes.fr/hal-02182996.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An Interior-Point Method for Large-Scale
l1-Regularized Logistic Regression. Journal of Machine Learning Research, 8(54):1519–1555,
2007. URL http://jmlr.org/papers/v8/koh07a.html.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guaran-
tees for asynchronous sgd for distributed and federated learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 17202–17215. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf.

Kenneth Lange. MM Optimization Algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2016. doi: 10.1137/1.9781611974409. URL https://epubs.siam.org/
doi/abs/10.1137/1.9781611974409.

Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander Smola. Param-
eter server for distributed machine learning. In Big Learning NIPS Workshop, volume 6, pp. 2,
2013.

12

https://doi.org/10.1137/17M1135086
http://dx.doi.org/10.1561/2400000036
http://jmlr.org/papers/v10/franc09a.html
http://jmlr.org/papers/v10/franc09a.html
https://oxfordcontrol.github.io/ClarabelDocs/stable/
https://doi.org/10.1137/15M1049695
https://arxiv.org/abs/1708.05136
https://arxiv.org/abs/1708.05136
https://doi.org/10.1137/090754595
https://books.google.se/books?id=QinsCAAAQBAJ
https://books.google.se/books?id=QinsCAAAQBAJ
https://hal.archives-ouvertes.fr/hal-02182996
http://jmlr.org/papers/v8/koh07a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611974409
https://epubs.siam.org/doi/abs/10.1137/1.9781611974409

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak
Step-size for SGD: An Adaptive Learning Rate for Fast Convergence. In Arindam Baner-
jee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on Artifi-
cial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp.
1306–1314. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/
loizou21a.html.

Julien Mairal. Incremental Majorization-Minimization Optimization with Application to Large-
Scale Machine Learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

Yura Malitsky and Konstantin Mishchenko. Adaptive Gradient Descent without Descent. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 6702–
6712. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
malitsky20a.html.

K. Mishchenko, F. Iutzeler, and J. Malick. A Distributed Flexible Delay-Tolerant Proximal Gradient
Algorithm. SIAM Journal on Optimization, 30(1):933–959, 2020. doi: 10.1137/18M1194699.
URL https://doi.org/10.1137/18M1194699.

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-tolerant
Proximal-Gradient Algorithm for Distributed Learning. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 3587–3595. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/mishchenko18a.html.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. Asyn-
chronous sgd beats minibatch sgd under arbitrary delays. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 420–433. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf.

Marko Mäkelä. Survey of Bundle Methods for Nonsmooth Optimization. Optimization Methods
and Software, 17(1):1–29, 2002. doi: 10.1080/10556780290027828. URL https://doi.
org/10.1080/10556780290027828.

Radford M. Neal and Geoffrey E. Hinton. A View of the Em Algorithm that Justifies Incremental,
Sparse, and other Variants, pp. 355–368. Springer Netherlands, Dordrecht, 1998.

Ion Necoara, Yurii Nesterov, and François Glineur. Linear convergence of first order methods
for non-strongly convex optimization. Mathematical Programming, 175(1):69–107, May 2019.
ISSN 1436-4646. doi: 10.1007/s10107-018-1232-1. URL https://doi.org/10.1007/
s10107-018-1232-1.

Y. Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2018. ISBN 3319915770.

Yurii Nesterov and Mihai I. Florea. Gradient methods with memory. Optimization Methods and
Software, 0(0):1–18, 2021. doi: 10.1080/10556788.2020.1858831. URL https://doi.org/
10.1080/10556788.2020.1858831.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Read-
ing Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf.

Alasdair Paren, Leonard Berrada, Rudra PK Poudel, and M Pawan Kumar. A Stochastic Bundle
Method for Interpolating Networks. Journal of Machine Learning Research, 23:1–57, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

13

https://proceedings.mlr.press/v130/loizou21a.html
https://proceedings.mlr.press/v130/loizou21a.html
https://proceedings.mlr.press/v119/malitsky20a.html
https://proceedings.mlr.press/v119/malitsky20a.html
https://doi.org/10.1137/18M1194699
https://proceedings.mlr.press/v80/mishchenko18a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf
https://doi.org/10.1080/10556780290027828
https://doi.org/10.1080/10556780290027828
https://doi.org/10.1007/s10107-018-1232-1
https://doi.org/10.1007/s10107-018-1232-1
https://doi.org/10.1080/10556788.2020.1858831
https://doi.org/10.1080/10556788.2020.1858831
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep
learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. ARock: An Algorithmic Framework
for Asynchronous Parallel Coordinate Updates. SIAM Journal on Scientific Computing, 38(5):
A2851–A2879, 2016. doi: 10.1137/15M1024950. URL https://doi.org/10.1137/
15M1024950.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A Lock-Free Ap-
proach to Parallelizing Stochastic Gradient Descent. Advances in Neural Information Processing
Systems, 24:693–701, 2011.

Saeed Soori, Konstantin Mishchenko, Aryan Mokhtari, Maryam Mehri Dehnavi, and Mert Gur-
buzbalaban. DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlin-
ear Convergence Rate. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 1965–1976. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/soori20a.html.

Tao Sun, Yuejiao Sun, Dongsheng Li, and Qing Liao. General proximal incremental aggregated
gradient algorithms: better and novel results under general scheme. Curran Associates Inc., Red
Hook, NY, USA, 2019.

Choon Hui Teo, Alex Smola, S. V.N. Vishwanathan, and Quoc Viet Le. A Scalable Modular
Convex Solver for Regularized Risk Minimization. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’07, pp. 727–736,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595936097. doi:
10.1145/1281192.1281270. URL https://doi.org/10.1145/1281192.1281270.

Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, and Quoc V. Le. Bundle methods for regular-
ized risk minimization. J. Mach. Learn. Res., 11:311–365, mar 2010. ISSN 1532-4435.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. URL http://www.
jstor.org/stable/2346178.

Wim van Ackooij and Antonio Frangioni. Incremental Bundle Methods using Upper Models. SIAM
Journal on Optimization, 28(1):379–410, 2018. doi: 10.1137/16M1089897. URL https://
doi.org/10.1137/16M1089897.

N. D. Vanli, M. Gürbüzbalaban, and A. Ozdaglar. Global Convergence Rate of Proximal Incremental
Aggregated Gradient Methods. SIAM Journal on Optimization, 28(2):1282–1300, 2018. doi:
10.1137/16M1094415. URL https://doi.org/10.1137/16M1094415.

Hoi-To Wai, Wei Shi, César A. Uribe, Angelia Nedić, and Anna Scaglione. Accelerating
incremental gradient optimization with curvature information. Computational Optimiza-
tion and Applications, 76(2):347–380, June 2020. doi: 10.1007/s10589-020-00183-.
URL https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_
s10589-020-00183-1.html.

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized polyak step size for first order
optimization with momentum. In International Conference on Machine Learning, pp. 35836–
35863. PMLR, 2023a.

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized Polyak Step Size for First Order
Optimization with Momentum. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023b.

14

https://doi.org/10.1137/15M1024950
https://doi.org/10.1137/15M1024950
https://proceedings.mlr.press/v108/soori20a.html
https://doi.org/10.1145/1281192.1281270
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://doi.org/10.1137/16M1089897
https://doi.org/10.1137/16M1089897
https://doi.org/10.1137/16M1094415
https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_s10589-020-00183-1.html
https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_s10589-020-00183-1.html

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-
Adaptive Step-sizes for Asynchronous Learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 24093–24113. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/wu22g.html.

Xuyang Wu, Changxin Liu, Sindri Magnússon, and Mikael Johansson. Delay-agnostic asyn-
chronous coordinate update algorithm. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 37582–37606.
PMLR, 23–29 Jul 2023.

Ruiliang Zhang and James Kwok. Asynchronous Distributed ADMM for Consensus Optimization.
In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 1701–1709,
Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/
zhange14.html.

15

https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlr.press/v32/zhange14.html
https://proceedings.mlr.press/v32/zhange14.html

A APPENDIX

In this appendix we present proofs and additional numerical experiments.

A.1 DUAL SUBPROBLEM

Lemma A.1. Let λi ∈ Rm, i = 1, . . . , n and λ = (λ1, . . . , λn) ∈ Rmn. Define g : Rmn → R by

g(λ) =
M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+ ⟨v, λ⟩.

The Lagrange dual of (3) is given by

minimize g(λ)
subject to 1Tλi = 1, λi ≥ 0, i = 1, . . . , n.

(11)

Furthermore, if λ⋆ is optimal in (4), then the unique solution of (3), denoted by xexact, is given by

xexact = prox 1
M R

(
z̄ − 1

M

n∑
i=1

Giλ
⋆
i

)
. (12)

Proof. In the proof we use the notation of stochastic function values and gradients. The setting
with exact function evaluations can be recovered by doing the substitutions Fi(x; ξ) = fi(x) and
Gi(x; ξ) = ∇fi(x).

Problem (3) can be formulated as

minimize
n∑

i=1

ri +
M

2
∥x− z̄∥22 +R(x)

subject to ri ≥ Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩, j = 1, . . . ,m, i = 1, . . . , n,

(13)

with variables r ∈ Rn and x ∈ Rd. For i = 1, . . . , n, introduce a Lagrange multiplier vector
λi ∈ Rm. The Lagrangian is given by

L(x, r, λ1, . . . , λn) =

n∑
i=1

ri +
M

2
∥x− z̄∥22 +

n∑
i=1

m∑
j=1

λij(Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩ − ri) +R(x)

=

n∑
i=1

(
1− 1Tλi

)
ri +

M

2
∥x− z̄∥22 +

n∑
i=1

⟨λi,G
T
i x− vi⟩+R(x),

where

Gi =
[
Gi(z

i
1; ξ

i
1) . . . Gi(z

i
m; ξim)

]
∈ Rd×m

and vi ∈ Rm is defined componentwise by

(vi)j = ⟨Gi(z
i
j ; ξ

i
j), z

i
j⟩ − Fi(z

i
j ; ξ

i
j).

The Lagrangian is unbounded in r unless 1Tλi = 1, i = 1, . . . , n. Furthermore, for such λ mini-
mizing the Lagrangian over x yields

inf
x

L(x, r, λ1, . . . , λn) = inf
x

{
R(x) +

M

2
∥x− z̄∥22 +

n∑
i=1

⟨Giλi, x⟩
}
−

n∑
i=1

⟨λi, vi⟩

= inf
x

{
R(x) +

M

2
∥x− (z̄ − 1

M

n∑
i=1

Giλi)∥22
}
− M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
M

2
∥z̄∥22 −

n∑
i=1

⟨λi, vi⟩

= H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
− M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
M

2
∥z̄∥22 −

n∑
i=1

⟨λi, vi⟩.

16

By dropping the term M
2 ∥z̄∥22 it follows that a dual problem is given by

minimize g(λ) := −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+

M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
n∑

i=1

⟨λi, vi⟩

subject to λ ∈ ∆.

Since Slater’s constraint qualification (Boyd & Vandenberghe, 2004, page 226) is satisfied, strong
duality holds and the point xexact defined by (12) minimizes L(x, r, λ⋆

1, . . . , λ
⋆
n) over x (here the

value of r is arbitrary since the Lagrangian is independent of r for any value of λ that is dual
feasible). The function x 7→ L(x, r, λ⋆

1, . . . , λ
⋆
n) has a unique minimizer, so it follows that xexact

given by (12) indeed solves (3).

A.2 CONVERGENCE ANALYSIS

In the analysis below we analyze the progress Algorithm 1 makes in iteration k. To simplify the
notation we drop the iteration index. In other words, the notation zij , j = 1, . . . ,m below refers to
the points used to construct the piecewise linear model of fi in iteration k.

In the first few results we will stick with the convention of using stochastic function values and
gradients. The setting with exact function evaluations can be recovered by doing the substitutions
Fi(x; ξ) = fi(x) and Gi(x; ξ) = ∇fi(x).

We will analyze Algorithm 1 by using (7). This will make the analysis depend on the dual variable
λ̄. The following result (inspired by (Nesterov & Florea, 2021)) will be useful to partly remove the
dependence on λ̄ from the analysis.
Lemma A.2. Assume λ̄ satisfies (6) and let xk+1 be given by (7). Then

n∑
i=1

m∑
j=1

λ̄ij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩] ≥

n∑
i=1

f̌i(xk+1; ξ)− δ.

Proof. Since (6) is satisfied we have ⟨λ̄,−∇g(λ̄)⟩ ≥ supλ∈∆⟨λ,−∇g(λ̄)⟩ − δ. Note that

⟨λ̄,−∇g(λ̄)⟩ = −
n∑

i=1

⟨λ̄i,∇gi(λ̄)⟩ =
n∑

i=1

m∑
j=1

λ̄ij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩]

sup
λ∈∆

⟨λ,−∇g(λ̄)⟩ = sup
λ∈∆

n∑
i=1

m∑
j=1

λij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩] =

n∑
i=1

f̌i(xk+1, ξ).

Lemma A.3. The next iterate xk+1 satisfies

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1))−

1

2M

n∑
i=1

Mi∥xk+1 − zim∥22

+
1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

(14)

Proof. In the proof we will apply the identity
n∑

i=1

Mi

2
∥y − zim∥22 =

M

2
∥y − 1

M

n∑
i=1

Miz
i
m∥22 −

1

2M
∥

n∑
i=1

Miz
i
m∥22 +

n∑
i=1

Mi

2
∥zim∥22

twice; once with y = x⋆ and once with y = xk+1.

Using the three-points lemma 1
2∥b− c∥22 − 1

2∥a− c∥22 = ⟨a− b, c− b⟩ − 1
2∥a− b∥22 we get

1

2
∥xk+1 − x⋆∥22 −

1

2
∥z̄ − x⋆∥22 = ⟨z̄ − xk+1, x

⋆ − xk+1⟩ −
1

2
∥xk+1 − z̄∥22. (15)

17

Since xk+1 = prox 1
M R(z̄ − 1

M

∑n
i=1

∑m
j=1 λ̄ijGi(z

i
j ; ξ

i
j)) it follows from optimality conditions

for convex optimization that (Nesterov, 2018, Thm 3.1.23)

R(xk+1) ≤ R(y) +M⟨xk+1 − (z̄ − 1

M

n∑
i=1

m∑
j=1

λ̄ijGi(z
i
j ; ξ

i
j)), y − xk+1⟩ for all y ∈ Rd.

If we let y = x⋆ and rearrange we get

⟨z̄ − xk+1, x
⋆ − xk+1⟩ ≤

1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

Using this bound in (15) shows that

1

2
∥xk+1 − x⋆∥22 −

1

2
∥z̄ − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩

− 1

2
∥xk+1 − z̄∥22

=
1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩

− 1

M

(n∑
i=1

Mi

2
∥xk+1 − zim∥22 +

1

2M
∥

n∑
i=1

Miz
i
m∥22 −

n∑
i=1

Mi

2
∥zim∥22

)
.

We can rearrange to obtain

1

2
∥xk+1 − x⋆∥22 −

1

2

(
∥ 1

M

n∑
i=1

Miz
i
m − x⋆∥22 −

1

M2
∥

n∑
i=1

Miz
i
m∥22 +

1

M

n∑
i=1

Mi∥zim∥22
)

≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩ −
1

2M

n∑
i=1

Mi∥xk+1 − zim∥22.

Note that

∥ 1

M

n∑
i=1

Miz
i
m − x⋆∥22 −

1

M2
∥

n∑
i=1

Miz
i
m∥22 +

1

M

n∑
i=1

Mi∥zim∥22

=
2

M

(
M

2
∥x⋆ − 1

M

n∑
i=1

Miz
i
m∥22 −

1

2M
∥

n∑
i=1

Miz
i
m∥22 +

n∑
i=1

Mi

2
∥zim∥22

)

=
2

M

n∑
i=1

Mi

2
∥x⋆ − zim∥22 =

1

M

n∑
i=1

Mi∥x⋆ − zim∥22.

Hence, we conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1))−

1

2M

n∑
i=1

Mi∥xk+1 − zim∥22

+
1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

Lemma A.4. The next iterate xk+1 satisfies

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

(Fi(z
i
m; ξim) + ⟨Gi(z

i
m; ξim), xk+1 − zim⟩+ Mi

2
∥xk+1 − zim∥22)

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

18

Proof. Note that
m∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩ =
m∑
i=1

m∑
j=1

λ̄ij(⟨Gi(z
i
j ; ξ

i
j), x

⋆ − zij⟩+ ⟨Gi(z
i
j ; ξ

i
j), z

i
j − xk+1⟩)

≤
n∑

i=1

m∑
j=1

λ̄ij

(
Fi(x

⋆; ξij)− Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), z

i
j − xk+1⟩

)
=

n∑
i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)−

m∑
j=1

λ̄ij(Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩)

≤
n∑

i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)−

n∑
i=1

f̌i(xk+1; ξ) + δ.

In the first inequality above we used the star-convexity of the oracle (see Assumption 4.10 for the
stochastic case and Assumption 4.4 for the deterministic case). In the second inequality we used
Lemma A.2.

Inserting this into Lemma A.3 yields

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)

− 1

M

n∑
i=1

(
f̌i(xk+1; ξ) +

Mi

2
∥xk+1 − zim∥22

)
+

δ

M
.

The result now follows from adding and subtracting (1/L)f(x⋆) from the right side of the inequality
and dropping all but the most recent cut for every piecewise linear model.

We now distinguish between the deterministic and stochastic case. The following result from
(Feyzmahdavian et al., 2014) will be useful.
Lemma A.5. Let (Vk)

∞
k=0 be a non-negative sequence satisfying

Vk+1 ≤ qVk + p max
(k−τ)+≤ℓ≤k

Vℓ + r, k = 0, 1, 2, . . .

for some non-negative constants p, q and r. If q + p < 1, then

Vk ≤ ρkV0 + ϵ, k = 0, 1, 2, . . . ,

where ρ = (p+ q)1/(1+τ), ϵ = r/(1− p− q) and (k − τ)+ = max{k − τ, 0}.

Lemma A.5 will be used to analyze the algorithm under the quadratic functional growth assumption.
For the analysis of the convex case, we present a new sequence result that may be of independent
interest.
Lemma A.6. Suppose that (Vk)

∞
k=0 and (Wk)

∞
k=0 are non-negative sequences satisfying

Vk+1 ≤ max
(k−τ)+≤ℓ≤k

Vℓ −Wk+1 + r, k = 0, 1, 2, . . . (16)

for a non-negative constant r. Then, for any k ≥ 1,

min
t≤k

Wt ≤
(τ + 1)V0

k
+ r. (17)

Proof. We prove (17) by contradiction. Suppose that for some K ≥ 1, (17) fails to hold. Then, for
all k ≤ K,

Wk >
(τ + 1)V0

K
+ r. (18)

Define I0 = {0} and for any t ≥ 1,

It = [(t− 1)(τ + 1) + 1, t(τ + 1)].

19

Substituting (18) into (16) gives that for all k ≤ K − 1,

Vk+1 < max
(k−τ)+≤ℓ≤k

Vℓ −
(τ + 1)V0

K
. (19)

Let t̃ = ⌊K/(τ + 1)⌋. For any t ≤ t̃, It ⊆ [0,K]. Then, using (19), we can derive that for all
t ≤ t̃− 1,

max
k∈It+1

Vk < max
k∈It

Vk − (τ + 1)V0

K
.

Summing the above equation over t ∈ [0, t̃− 1] and noting that maxk∈I0
Vk = V0 yields

max
k∈It̃

Vk < V0 −
t̃(τ + 1)V0

K
. (20)

Note that t̃ = ⌊K/(τ + 1)⌋. If t̃ = K/(τ + 1), then

t̃(τ + 1)V0

K
= V0,

substituting which into (20) yields maxk∈It̃
Vk < 0, which cannot be true because Vk ≥ 0 for all

k ≥ 0.

If t̃ < K/(τ + 1), then we have K > t̃(τ + 1). Then, by (19),

VK < max
k∈It̃

Vk − (τ + 1)V0

K
.

Moreover, since t̃ ≥ K/(τ + 1)− 1, from (20) we have

max
k∈It̃

Vk <
(τ + 1)V0

K
.

Combining the above two equations, we obtain

VK < 0,

which cannot hold.

Concluding the above, (17) holds for all k ≥ 1.

EXACT FUNCTION VALUES AND GRADIENTS

First we prove convergence for exact (full-batch) function values and gradients.
Theorem A.7. Under Assumptions 4.1, 4.2, 4.3, and 4.4 the iterates of Algorithm 1 using Mi =
Li, i = 1, . . . , n satisfy

∥xk − x⋆∥22 ≤ ρk∥x0 − x⋆∥22 + ϵδ, (21)

where ρ = (L/(L+ µ))1/(1+τ) and ϵδ = 2δ/µ.

Proof. We insert Mi = Li, M = L and Fi(x
⋆; ξij) = fi(x

⋆) into Lemma A.4 and use that fi is
smooth with parameter Li (see Assumption 4.2) to conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ 1

L
(R(x⋆)−R(xk+1)) +

1

L
f(x⋆) +

δ

L

− 1

L

n∑
i=1

(fi(z
i
m) + ⟨∇fi(z

i
m), xk+1 − zim⟩+ Li

2
∥xk+1 − zim∥22)

≤ 1

L
(R(x⋆)−R(xk+1)) +

1

L
f(x⋆) +

δ

L
− 1

L
f(xk+1)

=
1

L
(F (x⋆)− F (xk+1)) +

δ

L
.

20

Now suppose that the quadratic functional growth condition of F (see Assumption 4.3) holds. We
conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ − µ

2L
∥xk+1 − x⋆∥22 +

δ

L
.

After rearranging terms we get

∥xk+1 − x⋆∥22 ≤ 1

L+ µ

n∑
i=1

Li∥zim − x⋆∥22 +
2δ

L+ µ

≤ L

L+ µ
· max
(k−τ)+≤ℓ≤k

∥xℓ − x⋆∥22 +
2δ

L+ µ
.

Applying Lemma A.5 yields the desired result.

We now consider the case without the growth assumption.
Theorem A.8. Under Assumptions 4.1, 4.2, and 4.4, the iterates of Algorithm 1 using Mi = Li, i =
1, . . . , n, satisfy that for any k ≥ 1,

min
t≤k

F (xt)− F (x⋆) ≤ (τ + 1)L∥x0 − x⋆∥22
2k

+ δ. (22)

Proof. From the proof of Theorem A.7 we know that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ 1

L
(F (x⋆)− F (xk+1)) +

δ

L
.

Note that ∥zim − x⋆∥2 ≤ max(k−τ)+≤ℓ≤k ∥xℓ − x⋆∥2 for any i = 1, . . . , n. Equation (22) follows
by applying Lemma A.6 with Vℓ =

1
2∥xℓ − x⋆∥2, Wk+1 = 1

L (F (xk+1)− F (x⋆)) and r = δ
L .

STOCHASTIC FUNCTION VALUES AND GRADIENTS

Next we prove the convergence for stochastic function values and gradients.
Theorem A.9. Consider Algorithm 1 with Mi = αLi, i = 1, . . . , n where α > 1. Assume that
stochastic function values and gradients are used. Under Assumptions 4.1, 4.2, and 4.10, the iterates
of Algorithm 1 satisfy

min
t≤k

E[F (xt)]− F (x⋆) ≤ α(τ + 1)L∥x− x0∥22
2k

+ ϵ, (23)

where ϵ = ϵδ + ϵσ1 + ϵσ2 with

ϵδ = δ, ϵσ1 = nσ1

√
m, ϵσ2 =

σ2
2

2(α− 1)
·

n∑
i=1

1

Li
.

If, in addition, Assumption 4.3 holds, then

E[∥xk − x⋆∥22] ≤ ρk∥x0 − x⋆∥22 + 2ϵ/µ,

where ρ = (αL/(αL+ µ))1/(1+τ).

Proof. According to Lemma A.4 we have

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

Fi(z
i
m; ξim) + ⟨Gi(z

i
m; ξim), xk+1 − zim⟩+ Mi

2
∥xk+1 − zim∥22︸ ︷︷ ︸

≜T1

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

(24)

21

Using the Cauchy-Schwarz inequality together with Mi = αLi and the assumption that worker i is
smooth with parameter Li, we bound T1 according to (this holds for all i = 1, . . . , n)

T1 = fi(z
i
m) + ⟨∇fi(z

i
m), xk+1 − zim⟩+ Li

2
∥xk+1 − zim∥22

+ Fi(z
i
m; ξim)− fi(z

i
m) + ⟨Gi(z

i
m; ξim)−∇fi(z

i
m), xk+1 − zim⟩+ (α− 1)Li

2
∥xk+1 − zim∥22

≥ fi(xk+1) + Fi(z
i
m; ξim)− fi(z

i
m) +

(α− 1)Li

2
∥xk+1 − zim∥22

− ∥Gi(z
i
m; ξim)−∇fi(z

i
m)∥2∥xk+1 − zim∥2

≥ fi(xk+1) + Fi(z
i
m; ξim)− fi(z

i
m)− 1

2(α− 1)Li
∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22,

where we in the last inequality used that (b/2)t2 − at ≥ −a2/(2b) for all t ∈ R, a ∈ R and b > 0.
Inserting this bound into (24) allows us to conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

(
fi(xk+1) + Fi(z

i
m; ξim)− fi(z

i
m)− 1

2(α− 1)Li
∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22

)
+

1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

By taking expectations conditioned on all randomness up to the current iteration and using that
E[Fi(z

i
m; ξmi)] = fi(z

i
m) where the expectation is conditional, we get

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
1

M

n∑
i=1

1

2(α− 1)Li
E[∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22]︸ ︷︷ ︸

≜T2

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

From the assumption of bounded variance (see Assumption 4.10) we have T2 ≤ σ2
2 . Hence,

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

After taking expectations again and using the tower property of conditional expectations we get

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤
1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

1

M

n∑
i=1

E

[m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆))

]
︸ ︷︷ ︸

≜T3

.

22

To bound T3 we note that for i = 1, . . . , n, by the Cauchy-Schwarz inequality, it holds that

T3 ≤ E

[m∑
j=1

λ̄ij · |Fi(x
⋆, ξij)− fi(x

⋆)|
]

≤
(
E

[m∑
j=1

λ̄2
ij

])1/2

·
(
E

[m∑
j=1

(Fi(x
⋆; ξij)− fi(x

⋆))2
])1/2

≤
(m∑

j=1

E[(Fi(x
⋆; ξij)− fi(x

⋆))2]

)1/2

≤ σ1

√
m.

Hence,

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤
1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

nσ1
√
m

M
.

Note that E[∥zim − x⋆∥2] ≤ max(k−τ)+≤ℓ≤k E[∥xℓ − x⋆∥2] for any i = 1, . . . , n. Then,
by Lemma A.6 with Vℓ = 1

2 E[∥xℓ − x⋆∥2], Wk+1 = 1
M (E[F (xk+1) − F (x⋆)]) and r =

δ
M +

σ2
2

2(α−1)M

∑n
i=1

1
Li

+ nσ1
√
m

M , we have (23)

Now further assume that the quadratic functional growth of F (see Assumption 4.3) holds. We have

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤ − µ

2M
E[∥xk+1 − x⋆∥22] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

nσ1
√
m

M
.

Rearranging the terms shows that

E[∥xk+1 − x⋆∥22] ≤
1

M + µ

n∑
i=1

Mi E[∥zim − x⋆∥22] +
2

M + µ

(
δ + nσ1

√
m+

σ2
2

2(α− 1)

n∑
i=1

1

Li

)

≤ M

M + µ
· max
(k−τ)+≤ℓ≤k

E[∥xℓ − x⋆∥22] +
2

M + µ

(
δ + nσ1

√
m+

σ2
2

2(α− 1)

n∑
i=1

1

Li

)
.

Applying Lemma A.5 yields the desired result.

A.3 SOLVING THE MASTER PROBLEM

Here we discuss the complexity of solving the master problem (3) approximately. We use an accel-
erated projected gradient method to solve the dual problem

minimize g(λ)
subject to λ ∈ ∆.

(25)

The objective function g(λ) is defined in Lemma 3.1 and ∆ ⊆ Rmn is the Cartesian product of n
probability simplices of dimension m. In each iteration we must project onto ∆, which can be done
at a cost of order O(nm logm). The cost for evaluating the gradient (10) of the objective function
g(λ) is dominated by a term of order O(nmd), in addition to the cost of evaluating the proximal
operator of R. (We recall that n is the number of workers, m is the bundle size, and d is the
dimension of x.) If, for example, R(x) = λ∥x∥1, then the cost of evaluating the proximal operator
is O(d), so in this case the total cost per iteration of the projected gradient method is dominated by
a term of order O(mnd). In practice we found that only a dozen of iterations was often sufficient to
satisfy the termination criteria (6).

23

Table 2: Properties of the datasets that we use. The total number of data points is denoted by N and
d is the dimension of the decision variable. The column labeled DENSITY shows the percentage of
non-zero entries. The label DENSE means that the data matrix is stored as a dense matrix.

DATASET N d DENSITY λ1

MNIST8M (BINARY) 164 8890 784 DENSE 3e-3
RCV1 (BINARY) 677 399 47236 0.15% 3e-6
EPSILON (BINARY) 500 000 2000 DENSE 5e-5
SVHN (MULTICLASS) 630 420 10240 DENSE 1e-3
MNIST8M (MULTICLASS) 8100 000 7840 DENSE 8e-3

Modern interior-point solvers are fast, easy-to-use, robust, and good at exploiting sparsity. It is
therefore natural to use an interior-point solver for solving the master problem (3). If R(x) = λ∥x∥1,
the master problem can be formulated as a quadratic program with a separable objective function
and a coefficient matrix that is quite sparse (see, for example, (Andersen et al., 2011)).

To investigate the impact of our specialized approach for solving the subproblem, we ran ABM twice
and solved the master problem with either the projected gradient method applied to the dual (25) us-
ing accuracy δ = 10−7, or the state-of-the-art interior-point solver Clarabel (Goulart & Chen, 2021)
applied to the quadratic programming formulation of (3). For mnist8m, rcv1 and epsilon,
the average time to solve the master problem was 0.017, 0.29, and 0.027 seconds for the gradient
method, versus 0.20, 13.4, and 0.66 seconds for Clarabel. In other words, the gradient method (im-
plemented in Python) is more than an order of magnitude faster. This comparison is not completely
fair, since Clarabel in general finds a solution with higher accuracy. However, as shown in Theorem
4.5, it is not necessary to solve the master problem exactly to maintain convergence guarantees.

A.4 ADDITIONAL NUMERICAL EXPERIMENTS

Dimension of data sets Table 2 shows the dimensions of the data sets and the value of the regular-
ization parameter λ1

CONVEX EXPERIMENTS

Figure 3 shows the performance of ABM, DAve-RPG and PIAG for binary logistic regression with
λ2 = 0, i.e., when the objective function is convex but not strongly convex. The optimization
trajectories are very similar to the progress in the strongly convex case for mnist8m and epsilon,
but removing the strong convexity degrades the performance on rcv1 for all three methods (see
Figure 1 in the main text). Nevertheless, ABM outperforms the two competitors.

0 50 100 150 200 250 300
Runtime (s)

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DAve-RPG
PIAG

0 2000 4000 6000 8000 10000
Number of gradients

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DAve-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of gradients

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

0 2000 4000 6000 8000 10000 12000 14000
Number of gradients

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

Figure 3: The progress of ABM, DAve-RPG and PIAG on the binary classification problems for
λ2 = 0. The datasets are arranged in the order mnist8m, rcv1 and epsilon from the left.

24

BENCHMARKING ON MULTINOMIAL LOGISTIC REGRESSION

For the multiclass classification problems the objective function is

f(x) = − 1

N

N∑
j=1

K∑
k=1

1{yj = k} log
(

ex
T
k aj∑K

ℓ=1 exp(x
T
ℓ aj)

)
+

λ2

2

K∑
k=1

∥xk∥22

R(x) = λ1

K∑
k=1

∥xk∥1,

where y1, . . . , yN ∈ {1, 2, . . . ,K} are the labels. Here the decision variable is x = (x1, . . . , xK)
where each xj , 1 ≤ j ≤ K is a vector with dimension equal to the number of features. Figure
4 shows the relative suboptimality of ABM, DAve-RPG and PIAG on the two multi class datasets
SVHN and mnist8m. (The dimension of the problems can be found in Table 2.)

0 100 200 300 400 500 600
Runtime (s)

10−3

10−2

(f(
x k
)−

f*
)/f

*

ABM
DAve-RPG
PIAG

0 100 200 300 400 500 600
Runtime (s)

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

Figure 4: The progress of ABM, DAve-RPG and PIAG on the multiclass classification problems.
The datasets are arranged in the order SVHN and mnist8m from the left.

STOCHASTIC FUNCTION VALUES AND SUBGRADIENTS

We test the stochastic extension of ABM using mini-batches for multiclass classification on the data
set mnist8m. We split each worker’s data set into 100 mini-batches. For ABM based on exact
function and gradient evaluations we estimate the smoothness parameters as described in §5. For
the stochastic variant using mini-batches we estimate the smoothness parameters as follows. Each
worker stores the last point, say zim−1, it was queried in, and when queried again in a point zim, the
worker draws ξ representing a mini-batch and then evaluates both Gi(z

i
m; ξ) and Gi(z

i
m−1; ξ). The

worker can then estimate the smoothness parameter Li with

L̂i =
∥Gi(z

i
m; ξ)−Gi(z

i
m−1; ξ)∥2

∥zim − zim−1∥2
.

The worker then sends back both the gradient Gi(z
i
m; ξ) and the smoothness estimate L̂i to the

central server.

For comparison we also implemented a synchronous proximal stochastic gradient method. The
step size parameter was carefully tuned. The left part of Figure 5 shows the progress of ABM, the
stochastic extension (ABMStoch), and the proximal stochastic gradient method (ProxSGD). The
right part of Figure 5 shows the progress in the presence of some struggling workers. (For the
right part we let one third of the workers have random delays uniformly distributed in the interval
[2tgrad, 4tgrad] every time they compute a gradient, where tgrad is the time required to compute the
gradient.) It is interesting to note that while ProxSGD performs much worse for simulated delays,
both ABM and ABMStoch are barely affected by the delays.

25

0 100 200 300 400 500 600
Runtime (s)

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
ABMStoch
ProxSGD (t ned)

(a)

0 100 200 300 400 500 600
Runtime (s)

10−4

10−3

10−2

10−1

ABM
ABMStoch
ProxSGD (tuned)

(b)

Figure 5: Left: The progress of ABM, the stochastic variant ABMStoch and a tuned synchronous
proximal stochastic gradient method ProxSGD. Right: The progress under simulated delays.

26

	Introduction
	Related work
	Algorithm
	Main idea
	Solving the master problem
	An efficient approximate master problem solver
	Extension to stochastic function values and gradients

	Convergence analysis
	Analysis for exact function values and gradients
	Analysis for stochastic function values and gradients

	Implementation
	Experiments
	Benchmarking
	Sensitivity to hyperparameters
	Further experiments

	Discussion
	Appendix
	Dual subproblem
	Convergence analysis
	Solving the master problem
	Additional numerical experiments

