
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

AN ASYNCHRONOUS BUNDLE METHOD FOR
DISTRIBUTED LEARNING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel asynchronous bundle method to solve distributed learning
problems. Compared to existing asynchronous methods, our algorithm computes
the next iterate based on a more accurate approximation of the objective function
and does not require any prior information about the maximal information delay in
the system. This makes the proposed method fast and easy to tune. We prove that
the algorithm converges in both deterministic and stochastic (mini-batch) settings,
and quantify how the convergence times depend on the level of asynchrony. The
practical advantages of our method are illustrated through numerical experiments
on classification problems of varying complexities and scales.

1 INTRODUCTION

We consider a setting where data is distributed among n workers, each with its own smooth convex
loss function fi : Rd → R. Our goal is to compute a solution x⋆ of

minimize F (x) ≜ f(x) +R(x), (1)

where f(x) ≜
∑n

i=1 fi(x) and R : Rd → R is a (possibly non-smooth) proper closed and convex
regularizer. This problem template is ubiquitous in machine learning and includes lasso (Tibshirani,
1996), logistic regression (Koh et al., 2007) and many other important problem classes.

When data is distributed among multiple workers, algorithms that require the workers to synchronize
in every iteration are bottlenecked by the slowest worker. Asynchronous algorithms (Bertsekas &
Tsitsiklis, 1989; Assran et al., 2020) mitigate this issue by imposing less restrictive synchronization
requirements, potentially resulting in machine learning systems that are both faster and easier to
implement than their synchronous counterparts (Hannah & Yin, 2017). However, the design of
asynchronous algorithms is challenging, since information such as function values and gradients
computed by workers may be obsolete when received by the coordinating mechanism like a central
server. Consequently, existing convergence results for asynchronous algorithms often depend on a
typically large and unknown upper bound on the information delay from the workers. Furthermore,
the admissible stepsizes often decay rapidly as the upper delay bound increases. In practice this
complicates the implementation of an asynchronous algorithm: if the estimated upper bound on the
delays is too small, then the bound may not be valid. On the other hand, an excessively large upper
bound will lead to small step sizes and slow practical convergence.

The design of most optimization algorithms is based on a simple approximation of the objective
function (in the optimization literature, this is sometimes called a model of the objective). Examples
include the quadratic upper bound of an L-smooth convex function that is used in the design of
the gradient descent algorithm, or the piecewise linear lower bound on a convex function with a
known optimal value that is the basis of the Polyak step-size (Polyak, 1964). However, a string
of recent papers on synchronous algorithms (Davis & Drusvyatskiy, 2019; Asi & Duchi, 2019;
Nesterov & Florea, 2021) suggests that it can be beneficial to compute the next iterate based on a
more accurate approximation of the objective. This raises the question of whether asynchronous
algorithms could also be improved by more accurate approximations of the objective, potentially
resulting in asynchronous algorithms with faster practical convergence and simpler tuning.

Contributions. We propose a method for parallel and asynchronous optimization that uses a more
accurate approximation of the objective function to compute the next iterate. The method is suit-
able for a parameter server architecture (Li et al., 2013) and decouples gradient evaluations at the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

workers from decision vector updates at the coordinating master, and thereby becomes robust to the
amount of asynchrony in the system. On the theoretical side, we prove that our algorithm converges
for all bounded delays and can be implemented without knowledge of the maximum delay (we are
only aware of two other asynchronous algorithms (Mishchenko et al., 2018; Wu et al., 2022) that 1)
require no upper bound on the delays, 2) explicitly take the regularizer R(x) into account, and 3)
are designed for a parameter server). On the practical side, we present an algorithm that converges
quickly with essentially no tuning. Our method supports stochastic function and gradient evalua-
tions, and can be seen as an asynchronous bundle method, generalizing the algorithms in (Nesterov
& Florea, 2021; Asi & Duchi, 2019) to an asynchronous setting.

Outline. The paper is structured as follows. In §2 we relate our contribution to existing work. In
§3, we introduce a new asynchronous model-based algorithm, followed by a convergence analysis in
§4. We discuss implementation details and present numerical experiments in §5 and §6, respectively.
Finally, in §7 we summarize and conclude our work.

2 RELATED WORK

Model-based optimization. Model-based optimization is a general framework in which an approx-
imation, or model, of the objective function is maintained and used to compute the next iterate. This
framework encompasses several well-known algorithms and principles, including the expectation-
maximization algorithm (Neal & Hinton, 1998), quasi-Newton methods (Dennis & Moré, 1977),
bundle methods (Mäkelä, 2002), the majorization-minimization principle (Mairal, 2015; Lange,
2016), and acceleration (d’Aspremont et al., 2021). In the context of stochastic optimization, re-
cent work has demonstrated the benefits of using more accurate approximations of the objective
function to compute the next iterate, yielding algorithms that are faster and more robust to step size
selection (Duchi & Ruan, 2018; Davis & Drusvyatskiy, 2019; Asi & Duchi, 2019). Furthermore, for
composite non-stochastic optimization, Nesterov & Florea (2021) recently demonstrated that build-
ing up a piecewise linear model of the smooth part of the objective, instead of only using the most
recent gradient to approximate the objective, can lead to improved performance.

Our work aims to extend the idea of more accurate objective function models to asynchronous
optimization.

Parallel and asynchronous optimization. For parallel optimization with a parameter server archi-
tecture, asynchronous algorithms can be much faster than their synchronous counterparts (Hannah &
Yin, 2017). Asynchronous methods have also demonstrated promising results for other architectures
(Recht et al., 2011; Chaturapruek et al., 2015). The stepsizes in many asynchronous methods are ei-
ther diminishing (Duchi et al., 2015; Assran & Rabbat, 2020) or rely on a predetermined maximum
iteration number (Koloskova et al., 2022; Mishchenko et al., 2022; Recht et al., 2011). Exceptions
that are well-suited for a parameter server can be broadly categorized into two groups: methods that
require the knowledge of an upper bound on the information delays (Zhang & Kwok, 2014; Peng
et al., 2016; Gürbüzbalaban et al., 2017; Vanli et al., 2018; Wai et al., 2020; Sun et al., 2019), and
algorithms that do not rely on such a bound (Feyzmahdavian et al., 2014; Mishchenko et al., 2018;
Wu et al., 2022; 2023). In practice, however, an upper bound on the information delay is often un-
known a priori, and since the admissible stepsizes are reduced as the upper delay bound increases,
it is often difficult to guarantee that the algorithms in the first group converge in practice.

Most of the asynchronous methods mentioned above employ cheap closed-form updates at the cen-
tral server, while the bulk of the computational work, such as gradient and function evaluations, is
offloaded to the workers. The reason for the cheap update at the central server is, in the terminol-
ogy of model-based optimization, that the central server maintains a simple model of the objective
function based only on the most recent information from each worker. Our method is different in
the sense that we propose to use a more accurate model of the objective function that incorporates
more than just the latest information from each worker. The fact that the computationally intensive
tasks are handled by the workers suggests an opportunity to investigate algorithms that are slightly
more complex at the server, like the one we propose, to potentially improve the overall system
performance.

Bundle methods. A key challenge in asynchronous optimization is that gradients provide local
descent directions, making it challenging to combine gradients from different workers computed

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

at different iterates into a meaningful search direction that ensures descent. In contrast, gradients
(together with function values and convexity) provide global lower bounds on the objective func-
tion, making it easier to combine gradients evaluated at widely different points into a valid lower
bound of the objective function. This observation motivates our method, which can be seen as an
asynchronous bundle method.

In the non-smooth optimization literature, several versions of asynchronous bundle methods have
been proposed (Emiel & Sagastizábal, 2010; Iutzeler et al., 2020; van Ackooij & Frangioni, 2018;
de Oliveira & Eckstein, 2015). Non-smooth optimization encompasses a wide range of problems,
thus leading to quite weak convergence results for the existing asynchronous bundle methods. (A
typical convergence result is that cluster points of the sequence of iterates solve the problem; see, for
example, (Emiel & Sagastizábal, 2010, Proposition 4) or (de Oliveira & Eckstein, 2015, Theorem
3.6).) Our setting in this paper is different. While the aforementioned works assume that the non-
smoothness of the objective is present in the finite-sum structure, we assume that the finite-sum
structure arises in a smooth part of the objective, and the non-smoothness of the objective is caused
by a regularizer. This key distinction allows us to derive much stronger convergence guarantees
under a quadratic functional growth assumption: not only do we prove convergence, but we also
show that our method converges linearly (see Theorem 4.5 for a precise statement).

Bundle methods have also received direct attention from the machine learning community (Teo
et al., 2007; Franc & Sönnenburg, 2009; Teo et al., 2010; Chu et al., 2017; Paren et al., 2022). The
first three works design variants of bundle methods for general empirical risk minimization, but they
differ from our method in several ways. For example, these methods maintain a piecewise linear
model of the sum f =

∑n
i=1 fi, whereas our algorithm maintains separate piecewise linear models

for each fi. Furthermore, unlike our method, these methods require the workers to synchronize in
every iteration.

Bundle methods have also been successfully applied to non-convex problems (see, for example, Hare
& Sagastizábal (2010)). In particular, the special case of the Polyak step-size, where the bundle only
consists of the current cut and a lower bound on the objective, has proven to yield strong performance
in deep neural network training (Loizou et al., 2021; Wang et al., 2023a).

3 ALGORITHM

In this section we present a model-based algorithm for solving (1) asynchronously. We use a param-
eter server architecture (Li et al., 2013) with one central server and n workers. The central server
maintains a copy of the global decision variable and can query each worker for its function value
and gradient. Based on this information, the central server builds up a piecewise linear model of
each worker’s loss function, and then uses this model to compute the next iterate. A notable feature
of the algorithm is that its implementation does not require knowledge of an upper bound on the
information delay.

3.1 MAIN IDEA

To simplify the presentation of the method we consider a fixed iteration and drop the iteration index.
We assume that the iteration number is sufficiently large to ensure that the central server has received
information from each worker in at least m previous iterates. The parameter m is referred to as the
bundle size. For i ∈ {1, . . . , n} we introduce an algorithmic parameter Mi > 0 which, roughly
speaking, represents the smoothness parameter of worker i, and we let M ≜

∑n
i=1 Mi. (An exact

definition of Mi is given in §4.) We will later show that in a practical implementation of our method,
the parameters Mi, i = 1, . . . , n are estimated adaptively and require no tuning.

Let zij for j = 1, . . . ,m denote the m previous iterates in which the central server has received
information from worker i. We label the iterates so that zim is the most recent iterate for which
the central server has received information from worker i, and let z̄ ≜ 1

M

∑n
i=1 Miz

i
m denote a

weighted average of these points. The central server maintains the following piecewise linear model
of fi:

f̌i(x) = max
1≤j≤m

{
fi(z

i
j) + ⟨∇fi(z

i
j), x− zij⟩

}
. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

When the central server receives information from one or several workers, it replaces the oldest
iterate in the bundle for those workers. The next iterate is then computed as an approximate solution
of

min
x∈Rd

{ n∑
i=1

f̌i(x) +R(x) +
M

2
∥x− z̄∥22

}
. (3)

(We will later specify what we mean by an approximate solution.) Note in particular that the bundle
center in (3) is chosen as a weighted average of the most recent iterates for the workers; this is
essential for the convergence analysis in §4.

In our method, the central server must store m gradients of size d for all n workers, resulting in
a total memory complexity of order O(mnd). This is more than the O(nd) memory required by
methods that only store the most recent gradient of each worker, but often substantially less than
the O(d2) requirement of methods such as (Soori et al., 2020) that store an approximation of the
Hessian at the central server.

3.2 SOLVING THE MASTER PROBLEM

In every iteration the central server must solve the master problem (3), which for common regu-
larizers such as R(x) = λ∥x∥1 can be formulated as a quadratic program with linear inequality
constraints. If the dimension d is large, solving (3) can become a computational bottleneck. How-
ever, when an aggregated piecewise linear model of the objective function is used and R(x) = 0,
it is well known that the dual of (3) is a low-dimensional quadratic program over the probability
simplex (see, for example, (Hiriart-Urruty & Lemarechal, 1993, p. 296)). As the following lemma
shows, a similar observation can be made when a disaggregated piecewise linear model of f is used
and when R(x) ̸= 0. To state the lemma we define matrices Gi ∈ Rd×m containing old gradient
information of fi by

Gi =
[
∇fi(z

i
1) . . . ∇fi(z

i
m)

]
.

For i = 1, . . . , n, let vi ∈ Rm be defined componentwise by (vi)j = ⟨∇fi(z
i
j), z

i
j⟩ − fi(z

i
j) and

let v = (v1, . . . , vn) ∈ Rmn. Recall that for γ > 0, the Moreau envelope of R and the proximal
operator of R are defined by

Hγ
R(y) = min

x

{
R(x) +

1

2γ
∥x− y∥22

}
, proxγR(y) = argmin

x

{
R(x) +

1

2γ
∥x− y∥22

}
.

Lemma 3.1. Let λi ∈ Rm, i = 1, . . . , n and λ = (λ1, . . . , λn) ∈ Rmn. Define g : Rmn → R by

g(λ) =
M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+ ⟨v, λ⟩.

The Lagrange dual of (3) is given by

minimize g(λ)
subject to 1Tλi = 1, λi ≥ 0, i = 1, . . . , n.

(4)

Furthermore, if λ⋆ is optimal in (4), then the unique solution of (3), denoted by xexact, is given by

xexact = prox 1
M R

(
z̄ − 1

M

n∑
i=1

Giλ
⋆
i

)
. (5)

Proof. The proofs of this and all forthcoming results are given in the appendix.

3.3 AN EFFICIENT APPROXIMATE MASTER PROBLEM SOLVER

According to Lemma 3.1, we can solve the master problem (3) by solving its low-dimensional dual
(4). However, even if the dual is low-dimensional, it can be too expensive to solve it to high accuracy
since the second term in the definition of the dual objective function itself involves a minimization
problem in x. Therefore, in our algorithm, we only generate approximate solutions to (3) using
inexact solutions to (4). The goal of this subsection is to introduce equation (6) below, which defines
a termination criterion that we use to specify what we mean by an inexact solution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1
Setup: x0, parameters Mi, bundle size m, tolerance δ > 0
Initialization: the central server receives fi(x0) and ∇fi(x0), i = 1, . . . , n
while not interrupted by central server: each worker i do

receive x from the server, compute fi(x) and ∇fi(x), and send them back to the server
end while
while not converged: central server do

for i = 1, . . . , n do
if received information from worker i then

update the bundle of worker i by throwing out the oldest information
end if

end for
compute λ̄ satisfying (6) and then update x according to (7)
send back x to all workers that the server received information from

end while

Denote the feasible set of (4) by ∆ ⊆ Rmn. The dual objective function g is differentiable since the
Moreau envelope is differentiable. Hence, from optimality conditions for convex optimization (see,
for example, (Nesterov, 2018, p. 177)), λ⋆ solves (4) if and only if

⟨∇g(λ⋆), λ⋆ − λ⟩ ≤ 0 for all λ ∈ ∆.

As in (Nesterov & Florea, 2021), we allow for inexact solution of (4) by introducing a parameter
δ > 0 together with the requirement that we compute a point λ̄ satisfying

⟨∇g(λ̄), λ̄− λ⟩ ≤ δ for all λ ∈ ∆. (6)

The next iterate, denoted by x+, is then computed as (cf. (5))

x+ = prox 1
M R(z̄ −

1

M

n∑
i=1

Giλ̄i). (7)

A summary of the algorithm we propose is given in Algorithm 1. Implementation details, including
how to find λ̄ satisfying (6), are given in §5.

3.4 EXTENSION TO STOCHASTIC FUNCTION VALUES AND GRADIENTS

While the main focus of this paper is the setting where exact (full batch) function and gradient eval-
uations are used, we will also analyze a variant that uses stochastic (mini-batch) function values and
gradients. For this setting we assume that each worker i ∈ {1, . . . , n} has access to an oracle that
when queried at a point x, draws a random variable ξ from some distribution and outputs both a
stochastic function value Fi(x; ξ) approximating fi(x), and a stochastic gradient Gi(x; ξ) approxi-
mating ∇fi(x). In this stochastic setting, the central server replaces the piecewise linear model (2)
of fi with the following stochastic piecewise linear model:

f̌i(x, ξ) = max
1≤j≤m

{
Fi(z

i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩

}
.

Here ξij is the random variable from the query of the oracle of worker i in the point zij , and the bold
ξ represents all randomness used to construct the current bundle.

4 CONVERGENCE ANALYSIS

In this section we study the convergence of Algorithm 1 and its stochastic extension. Our main result
is Theorem 4.5 which shows that under standard assumptions, the algorithm converges linearly to a
neighborhood of x⋆ whose size depends on the accuracy used to solve the master problem. Theorem
4.5 also characterizes how the information delays affect the convergence rate. The convergence
analysis uses two sequences of points: the sequence of iterates xk for k ∈ Z+ ≜ {0, 1, 2, . . . } and
the sequence of points zik,j for k ∈ Z+, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} used to construct the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

piecewise linear model of fi in iteration k. (These points are previous iterates, i.e., for (k, i, j) ∈
Z+ × {1, . . . , n} × {1, . . . ,m} there exists a non-negative integer sik,j ≤ k such that zik,j = xsik,j

.)

We will assume that the points are labeled such that zik,m denotes the most recent iterate in which
the central server has received information from worker i in iteration k. With this convention, the
quantity k− sik,m ≥ 0 is called the delay of worker i in iteration k. Our first assumption is standard
(see, for example, Feyzmahdavian et al. (2014); Gürbüzbalaban et al. (2017); Vanli et al. (2018);
Mishchenko et al. (2018)) and states that the maximum delay is bounded by an integer τ ≥ 0.
Assumption 4.1. In every iteration k the delay of worker i is bounded by τ . In other words, for
(k, i) ∈ Z+ × {1, . . . , n} it holds that k − sik,m ≤ τ .

We will also make the following standard assumption on the objective function.
Assumption 4.2. The loss function of worker i ∈ {1, . . . , n} is smooth with parameter Li.

Occasionally we will further make the following common growth assumption that is similar to, but
weaker, than strong convexity (see, for example, Necoara et al. (2019)).
Assumption 4.3. The full objective function F has a quadratic functional growth with parameter
µ > 0, meaning that F (x)− F (x⋆) ≥ (µ/2)∥x− x⋆∥22 for all x ∈ Rd.

4.1 ANALYSIS FOR EXACT FUNCTION VALUES AND GRADIENTS

We now present a convergence analysis when exact (non-stochastic) function values and gradients
are used. First we need an additional assumption.
Assumption 4.4. The loss function fi of worker i ∈ {1, . . . , n} is star-convex, meaning that
fi(x

⋆) ≥ fi(x) + ⟨∇fi(x), x
⋆ − x⟩ for all x ∈ Rd.

Under the growth assumption we can show linear convergence to a neighborhood of the solution.
Theorem 4.5. Under Assumptions 4.1, 4.2, 4.3 and 4.4 the iterates of Algorithm 1 using Mi =
Li, i = 1, . . . , n satisfy

∥xk − x⋆∥22 ≤ ρk∥x0 − x⋆∥22 + ϵδ, (8)

where ρ = (L/(L+ µ))1/(1+τ) and ϵδ = 2δ/µ.
Remark 4.6. A notable feature of our algorithm is that neither its implementation nor its tuning
requires any information about the level of asynchrony in the system. The method converges with
default parameters as long as the information delay from all workers are finite, and under Assump-
tion 4.3, the convergence rate decreases as the level of asynchrony in the system increases.
Remark 4.7. Rather than relying on the common yet unrealistic assumption of solving the sub-
problem (3) exactly, our analysis explicitly accounts for and characterizes the impact of inexact
subproblem solutions. As a result, an error term depending on δ naturally appears in the conver-
gence result. However, we should point out that in practice, the algorithm we propose has no issues
with finding highly accurate solutions (see §6).

For the analysis without the growth assumption we will use the following new sequence result that
might be of independent interest.
Lemma 4.8. Suppose that (Vk)

∞
k=0 and (Wk)

∞
k=0 are non-negative sequences satisfying

Vk+1 ≤ max
(k−τ)+≤ℓ≤k

Vℓ −Wk+1 + r, k = 0, 1, 2,

for a non-negative constant r. Then, for any k ≥ 1,

min
t≤k

Wt ≤
(τ + 1)V0

k
+ r.

Using Lemma 4.8 we can prove sublinear convergence in terms of the function value gap.
Theorem 4.9. Under Assumptions 4.1, 4.2, and 4.4, the iterates of Algorithm 1 using Mi = Li, i =
1, . . . , n, satisfy that for any k ≥ 1,

min
t≤k

F (xt)− F (x⋆) ≤ (τ + 1)L∥x0 − x⋆∥22
2k

+ δ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.2 ANALYSIS FOR STOCHASTIC FUNCTION VALUES AND GRADIENTS

When stochastic function values and gradients are used we will make the following assumptions.
Assumption 4.10. For each worker i ∈ {1, . . . , n}:

1. The oracle is star-convex, i.e., Fi(x
⋆; ξ) ≥ Fi(x; ξ) + ⟨Gi(x; ξ), x

⋆ − x⟩ for all x ∈ Rd.
Furthermore, E[Fi(x, ξ)] = fi(x) and E[Gi(x, ξ)] = ∇fi(x) for all x ∈ Rd.

2. The variance of the stochastic gradients is bounded by some finite constant σ2
2 > 0, mean-

ing that E[∥Gi(x, ξ)−∇fi(x)∥22] ≤ σ2
2 for all x ∈ Rd.

3. The function value noise at the optimal solution x⋆ is bounded by some finite constant
σ2
1 > 0, meaning that E[(Fi(x

⋆; ξ)− fi(x
⋆))2] ≤ σ2

1 .

Relation to previous assumptions in the literature. The second assumption bounding the noise of
the gradients is common in the analysis of stochastic algorithms (see, for example, Koloskova et al.
(2022); Mishchenko et al. (2022)). The third assumption is less common, since most algorithms
often only use stochastic gradients and not function values. However, recent analysis of stochastic
algorithms that use stochastic function values in addition to stochastic gradients make a similar
assumption (see, for example, Loizou et al. (2021); Wang et al. (2023b)).
Theorem 4.11. Consider Algorithm 1 with Mi = αLi, i = 1, . . . , n where α > 1. Assume that
stochastic function values and gradients are used. Under Assumptions 4.1, 4.2, and 4.10, the iterates
of Algorithm 1 satisfy that for any k ≥ 1,

min
t≤k

E[F (xt)]− F (x⋆) ≤ α(τ + 1)L∥x− x0∥22
2k

+ ϵ, (9)

where ϵ = ϵδ + ϵσ1
+ ϵσ2

with

ϵδ = δ, ϵσ1 = nσ1

√
m, ϵσ2 =

σ2
2

2(α− 1)
·

n∑
i=1

1

Li
.

If, in addition, Assumption 4.3 holds, then

E[∥xk − x⋆∥22] ≤ ρk∥x0 − x⋆∥22 + 2ϵ/µ,

where ρ = (αL/(αL+ µ))1/(1+τ).
Remark 4.12. Compared to algorithms with a simple explicit update rule of the form xk+1 =
proxγg(xk + γdk) where dk is a direction and γ is a step size, the update mechanism of Algorithm
1 is more implicit since it involves solving the dual subproblem (4) approximately. This makes the
analysis challenging. One of the main technical challenges in the proof in the stochastic setting is to
carefully manage correlations between recently queried gradients Gi(z

i
m), the dual variable λ̄, and

the next iterate xk+1, all of which are correlated random variables.
Remark 4.13. The size of the neighborhood of the solution that xk converges to in expectation
depends on three terms: one term ϵδ which depends on the accuracy δ, and two other terms ϵσ1 and
ϵσ2 which depend on the strength of the noise. The noise terms ϵσ1 and ϵσ2 depend on n, which
may seem uncommon. This dependency arises because we analyze the canonical form f(x) =∑n

i=1 fi(x) instead of the more common form f(x) = (1/n)
∑n

i=1 fi(x). Under the latter form,
the noise terms would not depend on n.

5 IMPLEMENTATION

When implementing Algorithm 1, two issues must be addressed.

Solving the subproblem. First, we must find an approximate solution to (4) by finding λ̄ ∈ Rmn

satisfying (6). Since ∆ is a Cartesian product of simplices, it is cheap to verify condition (6) by
noting that

sup
λ∈∆

⟨∇g(λ̄), λ̄− λ⟩ = ⟨∇g(λ̄), λ̄⟩ − inf
λ∈∆

⟨∇g(λ̄), λ⟩ = ⟨∇g(λ̄), λ̄⟩ −
n∑

i=1

min∇ig(λ̄),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

where min∇ig(λ̄) is the smallest element of ∇ig(λ̄). (Here ∇ig(λ̄) is the gradient of g with respect
to λi.) To find λ̄ we have implemented an accelerated projected gradient method for solving (4)
(Beck, 2017, page 291). Each iteration requires the gradient of g and projecting onto the feasible
set ∆. Since ∆ is a Cartesian product of low-dimensional simplices, the projection can be done
efficiently (see, for example, (Condat, 2016)). Furthermore, from properties of the Moreau-envelope
(Beck, 2017, p. 166) it follows that the gradient of g with respect to λi is

∇ig(λ) = GT
i (u− prox 1

M R(u))−GT
i u+ vi = vi −GT

i prox 1
M R(u), (10)

where u ≜ z̄ − 1
M

∑n
i=1 Giλi.

In the appendix we compare the cost of solving the subproblem using this specialized method versus
a high-performance interior-point solver. The main conclusion is that this specialized approach is
more than an order of magnitude faster and that the complexity for solving the subproblem is of
order O(nmd).

Adaptive estimation of smoothness parameters. First-order methods for solving (1) typically require
knowledge of smoothness parameters. These parameters are often unknown or expensive to compute
in practice. To eliminate the need for choosing a suitable value on Li in Algorithm 1 we propose to
estimate it adaptively using similar ideas to (Malitsky & Mishchenko, 2020).

Recall that ∇fi(z
i
m) is the most recent gradient that the central server has received from worker i,

and let ∇fi(z
i
m−1) denote the next most recent gradient that the central server has received from

worker i. Given zim, ∇fi(z
i
m), zim−1 and ∇fi(z

i
m−1), a natural estimate of the local smoothness of

fi is the quantity

L̂i =
∥∇fi(z

i
m)−∇fi(z

i
m−1)∥2

∥zim − zim−1∥2
.

Every time the central server receives a new gradient from worker i, we propose to update the
smoothness parameter Li using this estimate.

6 EXPERIMENTS

We consider binary and multiclass classification problems based on a logistic model. For the binary
classification, we use the objective function

f(x) =
1

N

N∑
j=1

(
log(1 + e−yj(a

T
j x)) +

λ2

2
∥x∥22

)
and the regularizer R(x) = λ1∥x∥1, where a1, . . . , aN ∈ Rp are the feature vectors and
y1, . . . , yN ∈ {−1, 1} are the corresponding labels. Due to the space limitations, we defer the
results for multiclass classification to the appendix.

We conduct experiments on three datasets (mnist8m/infimnist, epsilon, rcv1) from the
LIBSVM library (Chang & Lin, 2011) and on the SVHN dataset (Netzer et al., 2011). We pick
λ2 = 1/N , and tune λ1 for each dataset to obtain a classifier x⋆ with 10-20% non-zero entries. The
dataset mnist8m corresponds to a multiclass problem with 10 different labels. To use it for binary
classification, we select data corresponding to the digits 7 and 9 and discard the rest. Table 1 shows
the dimensions of each problem and the value of λ1.

All methods are evaluated on a workstation using 10 cores. One core is assigned the role as the
central server and the remaining n = 9 cores are workers. The data is distributed evenly among
the workers. The code is written in Python using MPI4PY (Dalcin & Fang, 2021) and will be made
publicly available. To evaluate the objective value and the gradients we use PyTorch (Paszke et al.,
2019) for the dense datasets, and sparse linear algebra for rcv1.

6.1 BENCHMARKING

To benchmark our asynchronous bundle method (ABM) we compare it with two asynchronous proxi-
mal gradient methods, namely DAve-RPG (Mishchenko et al., 2018) and PIAG with delay-tracking
(Wu et al., 2022). We selected these methods since they operate under the same conditions as ABM in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 1: Properties of the datasets that we use. The total number of data points is denoted by N and
d is the dimension of the decision variable. The column labeled DENSITY shows the percentage of
non-zero entries. The label DENSE means that the data matrix is stored as a dense matrix.

DATASET N d DENSITY λ1

MNIST8M (BINARY) 164 8890 784 DENSE 3e-3
RCV1 (BINARY) 677 399 47236 0.15% 3e-6
EPSILON (BINARY) 500 000 2000 DENSE 5e-5
SVHN (MULTICLASS) 630 420 10240 DENSE 1e-3
MNIST8M (MULTICLASS) 8100 000 7840 DENSE 8e-3

the sense that they use a parameter server, require no delay information in parameters, and explicitly
incorporate the regularizer. Both DAve-RPG and PIAG use exact gradients so we also use exact
function values and gradients for ABM.

For ABM we use bundle size m = 10, master problem tolerance δ = 10−7, and adaptive smoothness
estimation. DAve-RPG has two hyperparameters: the step size γ and the number of inner prox-
steps p. We use step size γ = 1/Laverage where Laverage is the average smoothness parameter of the
workers, and p = 1 inner prox-steps (as in (Mishchenko et al., 2018)). For PIAGwith delay-tracking
we implemented the first adaptive step size strategy described in (Wu et al., 2022).

The first row of Figure 1 shows the relative suboptimality (f(xk)− f⋆)/f⋆ versus the runtime. We
see that ABM clearly outperforms the other two methods. The second row shows the suboptimality
versus the number of gradients received by the server. We see that ABM achieves much higher
accuracy with fewer gradients received by the server. For rcv1 the difference is striking: in 300
seconds the central server in ABM receives about 4000 gradients, while the servers of DAve-RPG
and PIAG receive more than 70000 gradients in the same amount of time. This is in contrast to
mnist8m and epsilon where all servers receive roughly the same number of gradients in the
same amount of time. The reason underlying this observation is that the gradients are cheap to
compute for the sparse data set rcv1 and more expensive to compute for the dense datasets (cf.
Table 1). Consequently, for rcv1, the time required to solve the subproblem at the central server is
non-negligible compared to the time needed to evaluate gradients. In contrast, for the dense datasets,
this computation time is almost negligible.

0 50 100 150 200 250 300
Runtime (s)

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DA(e-RPG
PIAG

0 2000 4000 6000 8000 10000
Number of gradients

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DA(e-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1 ABM

DA(e-RPG
PIAG

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of gradients

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1 ABM

DAve-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DA(e-RPG
PIAG

0 2000 4000 6000 8000 10000 12000 14000
Number of gradients

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

Figure 1: The progress of ABM, DAve-RPG and PIAG on the binary classification problems. The
datasets are arranged in the order mnist8m, rcv1 and epsilon from the left.

6.2 SENSITIVITY TO HYPERPARAMETERS

Strictly speaking, ABM has two hyperparameters: the tolerance δ and the bundle size m. We will
now investigate the sensitivity of the algorithm’s performance to these parameters. The first row of
Figure 2 shows the progress of ABM for fixed δ = 10−7 and bundle size m ∈ {2, 5, 10}. Increasing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

the bundle size from m = 2 to m ∈ {5, 10} results in much faster convergence for mnist8m.
Furthermore, ABM makes no progress with bundle size m = 2 for rcv1 and epsilon, but with
bundle size m ∈ {5, 10} the convergence is fast. This indicates the advantage of using a more
accurate approximation of the objective function for computing the next iterate.

Next we run ABM with fixed bundle size m = 10 and tolerance δ ∈ {10−5, 10−7, 10−9}. The result
is shown in the second row of Figure 2. We see that ABM has good performance for all three values
on δ.

This experiment suggests that ABM essentially requires no tuning in these experiments: the values
m = 10 and δ = 10−7 seem to work well. In particular, the performance of ABM is not as sensitive
to its hyperparameters as, for example, stochastic gradient descent is to its step size.

0 50 100 150 200 250 300

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

m=2
m=5
m=10

0 50 100 150 200 250 300

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1

m=2
m=5
m=10

0 50 100 150 200 250 300

10−7

10−6

10−5

10−4

10−3

10−2

10−1

m=2
m=5
m=10

0 50 100 150 200 250 300
Runtime (s)

10−5

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

δ = 1e-05
δ = 1e-07
δ = 1e-09

0 50 100 150 200 250 300
Runtime (s)

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1 δ = 1e-05

δ = 1e-07
δ = 1e-09

0 50 100 150 200 250 300
Runtime (s)

10−7

10−6

10−5

10−4

10−3

10−2

10−1
δ = 1e-05
δ = 1e-07
δ = 1e-09

Figure 2: Sensitivity of ABM’s performance with respect to hyperparameters. The first row shows
the performance for different bundle sizes m and fixed tolerance δ. The second row shows the per-
formance for different tolerances δ and fixed bundle size. Each column corresponds to one dataset,
and the columns are arranged in the order mnist8m, rcv1, epsilon.

6.3 FURTHER EXPERIMENTS

In the appendix we conduct further experiments when λ2 = 0, i.e., when the objective function is
convex but not strongly convex, and we also conduct experiments on multiclass classification. The
main conclusion is that ABM outperforms DAve-RPG and PIAG with delay tracking (see Figure 3
and 4 in the appendix). We also test the stochastic version of ABM using mini-batches for multiclas-
sification on the biggest data set mnist8m. The experiment indicates that mini-batching can speed
up ABM if only a modest accuracy is required (see Figure 5 in the appendix).

7 DISCUSSION

We have presented an asynchronous bundle method that is suitable for distributed learning problems.
The algorithm constructs a piecewise linear model to approximate the local loss of each worker and
uses this model to compute the next iterate. Compared to other first-order asynchronous algorithms,
our proposed method employs a more refined model of the objective function. This allows it to
converge quickly in practice with minimal tuning or specification of unknown constants.

Our method uses a fixed bundle size. An interesting extension would be to design a scheme that dy-
namically adjusts the bundle size based on the actual delays, potentially discarding outdated function
value information that hasn’t been used recently in the server subproblem. (The jth linear approxi-
mation of fi is not used in the server subproblem if λ⋆

ij = 0, where λ⋆ is the solution of (4).) Another
extension could be to let the central server maintain a low-rank approximation of the Hessian for
each worker, enabling a better approximation of the curvature of the loss function, and possibly
faster convergence. We leave these extensions for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Martin Skovgaard Andersen, Joachim Dahl, Zhang Liu, and Lieven Vandenberghe. Interior-point
methods for large-scale cone programming. MIT Press, 2011. ISBN 9780262016469.

Hilal Asi and John C. Duchi. The importance of better models in stochastic optimization.
Proceedings of the National Academy of Sciences, 116(46):22924–22930, 2019. doi: 10.
1073/pnas.1908018116. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1908018116.

By Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and
Michael G. Rabbat. Advances in Asynchronous Parallel and Distributed Optimization. Pro-
ceedings of the IEEE, 108(11):2013–2031, 2020. doi: 10.1109/JPROC.2020.3026619.

Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. IEEE Transactions on
Automatic Control, 66(1):168–183, 2020.

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997. URL https://epubs.siam.org/
doi/abs/10.1137/1.9781611974997.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., USA, 1989. ISBN 0136487009.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, March
2004. ISBN 0521833787.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol., 2(3), may 2011. ISSN 2157-6904. doi: 10.1145/1961189.1961199.
URL https://doi.org/10.1145/1961189.1961199.

Sorathan Chaturapruek, John C Duchi, and Christopher Ré. Asynchronous stochastic convex op-
timization: the noise is in the noise and SGD don’t care. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf.

Dejun Chu, Changshui Zhang, and Qing Tao. A Faster Cutting Plane Algorithm with Ac-
celerated Line Search for Linear SVM. Pattern Recogn., 67(C):127–138, jul 2017. ISSN
0031-3203. doi: 10.1016/j.patcog.2017.02.006. URL https://doi.org/10.1016/j.
patcog.2017.02.006.

Laurent Condat. Fast projection onto the simplex and the lll1 ball. Mathematical Programming,
158(1):575–585, 07 2016. ISSN 1436-4646. doi: 10.1007/s10107-015-0946-6. URL https:
//doi.org/10.1007/s10107-015-0946-6.

Lisandro Dalcin and Yao-Lung L. Fang. mpi4py: Status Update After 12 Years of Development.
Computing in Science & Engineering, 23(4):47–54, 2021. doi: 10.1109/MCSE.2021.3083216.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic Model-Based Minimization of Weakly Convex
Functions. SIAM Journal on Optimization, 29(1):207–239, 2019. doi: 10.1137/18M1178244.
URL https://doi.org/10.1137/18M1178244.

Welington de Oliveira and Jonathan Eckstein. Bundle method for exploiting additive structure in
difficult optimization problems. Optimization Online,, 2015.

J. E. Dennis, Jr. and Jorge J. Moré. Quasi-Newton Methods, Motivation and Theory. SIAM Review,
19(1):46–89, 1977. doi: 10.1137/1019005. URL https://doi.org/10.1137/1019005.

John C. Duchi and Feng Ruan. Stochastic Methods for Composite and Weakly Convex Optimization
Problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018. doi: 10.1137/17M1135086.
URL https://doi.org/10.1137/17M1135086.

11

https://www.pnas.org/doi/abs/10.1073/pnas.1908018116
https://www.pnas.org/doi/abs/10.1073/pnas.1908018116
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://doi.org/10.1145/1961189.1961199
https://proceedings.neurips.cc/paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/c8c41c4a18675a74e01c8a20e8a0f662-Paper.pdf
https://doi.org/10.1016/j.patcog.2017.02.006
https://doi.org/10.1016/j.patcog.2017.02.006
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1137/18M1178244
https://doi.org/10.1137/1019005
https://doi.org/10.1137/17M1135086

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex opti-
mization. arXiv preprint arXiv:1508.00882, 2015.

Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. Foundations
and Trends® in Optimization, 5(1-2):1–245, 2021. ISSN 2167-3888. doi: 10.1561/2400000036.
URL http://dx.doi.org/10.1561/2400000036.

Grégory Emiel and Claudia A. Sagastizábal. Incremental-like bundle methods with application to
energy planning. Comput. Optim. Appl., 46(2):305–332, 2010.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. A delayed proximal gradient
method with linear convergence rate. In 2014 IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6, 2014. doi: 10.1109/MLSP.2014.6958872.

V. Franc and S. Sönnenburg. Optimized Cutting Plane Algorithm for Large-Scale Risk Mini-
mization. Journal of Machine Learning Research, 10(76):2157–2192, 2009. URL http:
//jmlr.org/papers/v10/franc09a.html.

Paul Goulart and Yuwen Chen. Clarabel: A library for optimization and control, 2021. URL
https://oxfordcontrol.github.io/ClarabelDocs/stable/.

M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. On the Convergence Rate of Incremental Ag-
gregated Gradient Algorithms. SIAM Journal on Optimization, 27(2):1035–1048, 2017. doi:
10.1137/15M1049695. URL https://doi.org/10.1137/15M1049695.

Robert Hannah and Wotao Yin. More Iterations per Second, Same Quality – Why Asynchronous
Algorithms may Drastically Outperform Traditional Ones, 2017. URL https://arxiv.org/
abs/1708.05136.

Warren Hare and Claudia Sagastizábal. A redistributed proximal bundle method for nonconvex
optimization. SIAM Journal on Optimization, 20(5):2442–2473, 2010. doi: 10.1137/090754595.
URL https://doi.org/10.1137/090754595.

J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms II: Advanced
Theory and Bundle Methods. Grundlehren der mathematischen Wissenschaften. Springer Berlin
Heidelberg, 1993. ISBN 9783662064092. URL https://books.google.se/books?
id=QinsCAAAQBAJ.

Franck Iutzeler, Jérôme Malick, and Welington de Oliveira. Asynchronous level bundle methods.
Mathematical Programming, 184:319–348, November 2020. doi: 10.1007/s10107-019-01414-y.
URL https://hal.archives-ouvertes.fr/hal-02182996.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An Interior-Point Method for Large-Scale
l1-Regularized Logistic Regression. Journal of Machine Learning Research, 8(54):1519–1555,
2007. URL http://jmlr.org/papers/v8/koh07a.html.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guaran-
tees for asynchronous sgd for distributed and federated learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 17202–17215. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf.

Kenneth Lange. MM Optimization Algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2016. doi: 10.1137/1.9781611974409. URL https://epubs.siam.org/
doi/abs/10.1137/1.9781611974409.

Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander Smola. Param-
eter server for distributed machine learning. In Big Learning NIPS Workshop, volume 6, pp. 2,
2013.

12

http://dx.doi.org/10.1561/2400000036
http://jmlr.org/papers/v10/franc09a.html
http://jmlr.org/papers/v10/franc09a.html
https://oxfordcontrol.github.io/ClarabelDocs/stable/
https://doi.org/10.1137/15M1049695
https://arxiv.org/abs/1708.05136
https://arxiv.org/abs/1708.05136
https://doi.org/10.1137/090754595
https://books.google.se/books?id=QinsCAAAQBAJ
https://books.google.se/books?id=QinsCAAAQBAJ
https://hal.archives-ouvertes.fr/hal-02182996
http://jmlr.org/papers/v8/koh07a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611974409
https://epubs.siam.org/doi/abs/10.1137/1.9781611974409

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak
Step-size for SGD: An Adaptive Learning Rate for Fast Convergence. In Arindam Baner-
jee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on Artifi-
cial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp.
1306–1314. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/
loizou21a.html.

Julien Mairal. Incremental Majorization-Minimization Optimization with Application to Large-
Scale Machine Learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

Yura Malitsky and Konstantin Mishchenko. Adaptive Gradient Descent without Descent. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 6702–
6712. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
malitsky20a.html.

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-tolerant
Proximal-Gradient Algorithm for Distributed Learning. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 3587–3595. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/mishchenko18a.html.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. Asyn-
chronous sgd beats minibatch sgd under arbitrary delays. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 420–433. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf.

Marko Mäkelä. Survey of Bundle Methods for Nonsmooth Optimization. Optimization Methods
and Software, 17(1):1–29, 2002. doi: 10.1080/10556780290027828. URL https://doi.
org/10.1080/10556780290027828.

Radford M. Neal and Geoffrey E. Hinton. A View of the Em Algorithm that Justifies Incremental,
Sparse, and other Variants, pp. 355–368. Springer Netherlands, Dordrecht, 1998.

Ion Necoara, Yurii Nesterov, and François Glineur. Linear convergence of first order methods
for non-strongly convex optimization. Mathematical Programming, 175(1):69–107, May 2019.
ISSN 1436-4646. doi: 10.1007/s10107-018-1232-1. URL https://doi.org/10.1007/
s10107-018-1232-1.

Y. Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2018. ISBN 3319915770.

Yurii Nesterov and Mihai I. Florea. Gradient methods with memory. Optimization Methods and
Software, 0(0):1–18, 2021. doi: 10.1080/10556788.2020.1858831. URL https://doi.org/
10.1080/10556788.2020.1858831.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Read-
ing Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf.

Alasdair Paren, Leonard Berrada, Rudra PK Poudel, and M Pawan Kumar. A Stochastic Bundle
Method for Interpolating Networks. Journal of Machine Learning Research, 23:1–57, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep
learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

13

https://proceedings.mlr.press/v130/loizou21a.html
https://proceedings.mlr.press/v130/loizou21a.html
https://proceedings.mlr.press/v119/malitsky20a.html
https://proceedings.mlr.press/v119/malitsky20a.html
https://proceedings.mlr.press/v80/mishchenko18a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/029df12a9363313c3e41047844ecad94-Paper-Conference.pdf
https://doi.org/10.1080/10556780290027828
https://doi.org/10.1080/10556780290027828
https://doi.org/10.1007/s10107-018-1232-1
https://doi.org/10.1007/s10107-018-1232-1
https://doi.org/10.1080/10556788.2020.1858831
https://doi.org/10.1080/10556788.2020.1858831
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. ARock: An Algorithmic Framework
for Asynchronous Parallel Coordinate Updates. SIAM Journal on Scientific Computing, 38(5):
A2851–A2879, 2016. doi: 10.1137/15M1024950. URL https://doi.org/10.1137/
15M1024950.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A Lock-Free Ap-
proach to Parallelizing Stochastic Gradient Descent. Advances in Neural Information Processing
Systems, 24:693–701, 2011.

Saeed Soori, Konstantin Mishchenko, Aryan Mokhtari, Maryam Mehri Dehnavi, and Mert Gur-
buzbalaban. DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlin-
ear Convergence Rate. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 1965–1976. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/soori20a.html.

Tao Sun, Yuejiao Sun, Dongsheng Li, and Qing Liao. General proximal incremental aggregated
gradient algorithms: better and novel results under general scheme. Curran Associates Inc., Red
Hook, NY, USA, 2019.

Choon Hui Teo, Alex Smola, S. V.N. Vishwanathan, and Quoc Viet Le. A Scalable Modular
Convex Solver for Regularized Risk Minimization. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’07, pp. 727–736,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595936097. doi:
10.1145/1281192.1281270. URL https://doi.org/10.1145/1281192.1281270.

Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, and Quoc V. Le. Bundle methods for regular-
ized risk minimization. J. Mach. Learn. Res., 11:311–365, mar 2010. ISSN 1532-4435.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. URL http://www.
jstor.org/stable/2346178.

Wim van Ackooij and Antonio Frangioni. Incremental Bundle Methods using Upper Models. SIAM
Journal on Optimization, 28(1):379–410, 2018. doi: 10.1137/16M1089897. URL https://
doi.org/10.1137/16M1089897.

N. D. Vanli, M. Gürbüzbalaban, and A. Ozdaglar. Global Convergence Rate of Proximal Incremental
Aggregated Gradient Methods. SIAM Journal on Optimization, 28(2):1282–1300, 2018. doi:
10.1137/16M1094415. URL https://doi.org/10.1137/16M1094415.

Hoi-To Wai, Wei Shi, César A. Uribe, Angelia Nedić, and Anna Scaglione. Accelerating
incremental gradient optimization with curvature information. Computational Optimiza-
tion and Applications, 76(2):347–380, June 2020. doi: 10.1007/s10589-020-00183-.
URL https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_
s10589-020-00183-1.html.

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized polyak step size for first order
optimization with momentum. In International Conference on Machine Learning, pp. 35836–
35863. PMLR, 2023a.

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized Polyak Step Size for First Order
Optimization with Momentum. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023b.

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-
Adaptive Step-sizes for Asynchronous Learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 24093–24113. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/wu22g.html.

14

https://doi.org/10.1137/15M1024950
https://doi.org/10.1137/15M1024950
https://proceedings.mlr.press/v108/soori20a.html
https://doi.org/10.1145/1281192.1281270
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://doi.org/10.1137/16M1089897
https://doi.org/10.1137/16M1089897
https://doi.org/10.1137/16M1094415
https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_s10589-020-00183-1.html
https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_s10589-020-00183-1.html
https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlr.press/v162/wu22g.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Xuyang Wu, Changxin Liu, Sindri Magnússon, and Mikael Johansson. Delay-agnostic asyn-
chronous coordinate update algorithm. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 37582–37606.
PMLR, 23–29 Jul 2023.

Ruiliang Zhang and James Kwok. Asynchronous Distributed ADMM for Consensus Optimization.
In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 1701–1709,
Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/
zhange14.html.

15

https://proceedings.mlr.press/v32/zhange14.html
https://proceedings.mlr.press/v32/zhange14.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A APPENDIX

In this appendix we present proofs and additional numerical experiments.

A.1 DUAL SUBPROBLEM

Lemma A.1. Let λi ∈ Rm, i = 1, . . . , n and λ = (λ1, . . . , λn) ∈ Rmn. Define g : Rmn → R by

g(λ) =
M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+ ⟨v, λ⟩.

The Lagrange dual of (3) is given by

minimize g(λ)
subject to 1Tλi = 1, λi ≥ 0, i = 1, . . . , n.

(11)

Furthermore, if λ⋆ is optimal in (4), then the unique solution of (3), denoted by xexact, is given by

xexact = prox 1
M R

(
z̄ − 1

M

n∑
i=1

Giλ
⋆
i

)
. (12)

Proof. In the proof we use the notation of stochastic function values and gradients. The setting
with exact function evaluations can be recovered by doing the substitutions Fi(x; ξ) = fi(x) and
Gi(x; ξ) = ∇fi(x).

Problem (3) can be formulated as

minimize
n∑

i=1

ri +
M

2
∥x− z̄∥22 +R(x)

subject to ri ≥ Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩, j = 1, . . . ,m, i = 1, . . . , n,

(13)

with variables r ∈ Rn and x ∈ Rd. For i = 1, . . . , n, introduce a Lagrange multiplier vector
λi ∈ Rm. The Lagrangian is given by

L(x, r, λ1, . . . , λn) =

n∑
i=1

ri +
M

2
∥x− z̄∥22 +

n∑
i=1

m∑
j=1

λij(Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩ − ri) +R(x)

=

n∑
i=1

(
1− 1Tλi

)
ri +

M

2
∥x− z̄∥22 +

n∑
i=1

⟨λi,G
T
i x− vi⟩+R(x),

where

Gi =
[
Gi(z

i
1; ξ

i
1) . . . Gi(z

i
m; ξim)

]
∈ Rd×m

and vi ∈ Rm is defined componentwise by

(vi)j = ⟨Gi(z
i
j ; ξ

i
j), z

i
j⟩ − Fi(z

i
j ; ξ

i
j).

The Lagrangian is unbounded in r unless 1Tλi = 1, i = 1, . . . , n. Furthermore, for such λ mini-
mizing the Lagrangian over x yields

inf
x

L(x, r, λ1, . . . , λn) = inf
x

{
R(x) +

M

2
∥x− z̄∥22 +

n∑
i=1

⟨Giλi, x⟩
}
−

n∑
i=1

⟨λi, vi⟩

= inf
x

{
R(x) +

M

2
∥x− (z̄ − 1

M

n∑
i=1

Giλi)∥22
}
− M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
M

2
∥z̄∥22 −

n∑
i=1

⟨λi, vi⟩

= H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
− M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
M

2
∥z̄∥22 −

n∑
i=1

⟨λi, vi⟩.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

By dropping the term M
2 ∥z̄∥22 it follows that a dual problem is given by

minimize g(λ) := −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+

M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
n∑

i=1

⟨λi, vi⟩

subject to λ ∈ ∆.

Since Slater’s constraint qualification (Boyd & Vandenberghe, 2004, page 226) is satisfied, strong
duality holds and the point xexact defined by (12) minimizes L(x, r, λ⋆

1, . . . , λ
⋆
n) over x (here the

value of r is arbitrary since the Lagrangian is independent of r for any value of λ that is dual
feasible). The function x 7→ L(x, r, λ⋆

1, . . . , λ
⋆
n) has a unique minimizer, so it follows that xexact

given by (12) indeed solves (3).

A.2 CONVERGENCE ANALYSIS

In the analysis below we analyze the progress Algorithm 1 makes in iteration k. To simplify the
notation we drop the iteration index. In other words, the notation zij , j = 1, . . . ,m below refers to
the points used to construct the piecewise linear model of fi in iteration k.

In the first few results we will stick with the convention of using stochastic function values and
gradients. The setting with exact function evaluations can be recovered by doing the substitutions
Fi(x; ξ) = fi(x) and Gi(x; ξ) = ∇fi(x).

We will analyze Algorithm 1 by using (7). This will make the analysis depend on the dual variable
λ̄. The following result (inspired by (Nesterov & Florea, 2021)) will be useful to partly remove the
dependence on λ̄ from the analysis.
Lemma A.2. Assume λ̄ satisfies (6) and let xk+1 be given by (7). Then

n∑
i=1

m∑
j=1

λ̄ij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩] ≥

n∑
i=1

f̌i(xk+1; ξ)− δ.

Proof. Since (6) is satisfied we have ⟨λ̄,−∇g(λ̄)⟩ ≥ supλ∈∆⟨λ,−∇g(λ̄)⟩ − δ. Note that

⟨λ̄,−∇g(λ̄)⟩ = −
n∑

i=1

⟨λ̄i,∇gi(λ̄)⟩ =
n∑

i=1

m∑
j=1

λ̄ij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩]

sup
λ∈∆

⟨λ,−∇g(λ̄)⟩ = sup
λ∈∆

n∑
i=1

m∑
j=1

λij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩] =

n∑
i=1

f̌i(xk+1, ξ).

Lemma A.3. The next iterate xk+1 satisfies

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1))−

1

2M

n∑
i=1

Mi∥xk+1 − zim∥22

+
1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

(14)

Proof. In the proof we will apply the identity
n∑

i=1

Mi

2
∥y − zim∥22 =

M

2
∥y − 1

M

n∑
i=1

Miz
i
m∥22 −

1

2M
∥

n∑
i=1

Miz
i
m∥22 +

n∑
i=1

Mi

2
∥zim∥22

twice; once with y = x⋆ and once with y = xk+1.

Using the three-points lemma 1
2∥b− c∥22 − 1

2∥a− c∥22 = ⟨a− b, c− b⟩ − 1
2∥a− b∥22 we get

1

2
∥xk+1 − x⋆∥22 −

1

2
∥z̄ − x⋆∥22 = ⟨z̄ − xk+1, x

⋆ − xk+1⟩ −
1

2
∥xk+1 − z̄∥22. (15)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Since xk+1 = prox 1
M R(z̄ − 1

M

∑n
i=1

∑m
j=1 λ̄ijGi(z

i
j ; ξ

i
j)) it follows from optimality conditions

for convex optimization that (Nesterov, 2018, Thm 3.1.23)

R(xk+1) ≤ R(y) +M⟨xk+1 − (z̄ − 1

M

n∑
i=1

m∑
j=1

λ̄ijGi(z
i
j ; ξ

i
j)), y − xk+1⟩ for all y ∈ Rd.

If we let y = x⋆ and rearrange we get

⟨z̄ − xk+1, x
⋆ − xk+1⟩ ≤

1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

Using this bound in (15) shows that

1

2
∥xk+1 − x⋆∥22 −

1

2
∥z̄ − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩

− 1

2
∥xk+1 − z̄∥22

=
1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩

− 1

M

(n∑
i=1

Mi

2
∥xk+1 − zim∥22 +

1

2M
∥

n∑
i=1

Miz
i
m∥22 −

n∑
i=1

Mi

2
∥zim∥22

)
.

We can rearrange to obtain

1

2
∥xk+1 − x⋆∥22 −

1

2

(
∥ 1

M

n∑
i=1

Miz
i
m − x⋆∥22 −

1

M2
∥

n∑
i=1

Miz
i
m∥22 +

1

M

n∑
i=1

Mi∥zim∥22
)

≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩ −
1

2M

n∑
i=1

Mi∥xk+1 − zim∥22.

Note that

∥ 1

M

n∑
i=1

Miz
i
m − x⋆∥22 −

1

M2
∥

n∑
i=1

Miz
i
m∥22 +

1

M

n∑
i=1

Mi∥zim∥22

=
2

M

(
M

2
∥x⋆ − 1

M

n∑
i=1

Miz
i
m∥22 −

1

2M
∥

n∑
i=1

Miz
i
m∥22 +

n∑
i=1

Mi

2
∥zim∥22

)

=
2

M

n∑
i=1

Mi

2
∥x⋆ − zim∥22 =

1

M

n∑
i=1

Mi∥x⋆ − zim∥22.

Hence, we conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1))−

1

2M

n∑
i=1

Mi∥xk+1 − zim∥22

+
1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

Lemma A.4. The next iterate xk+1 satisfies

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

(Fi(z
i
m; ξim) + ⟨Gi(z

i
m; ξim), xk+1 − zim⟩+ Mi

2
∥xk+1 − zim∥22)

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Proof. Note that
m∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩ =
m∑
i=1

m∑
j=1

λ̄ij(⟨Gi(z
i
j ; ξ

i
j), x

⋆ − zij⟩+ ⟨Gi(z
i
j ; ξ

i
j), z

i
j − xk+1⟩)

≤
n∑

i=1

m∑
j=1

λ̄ij

(
Fi(x

⋆; ξij)− Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), z

i
j − xk+1⟩

)
=

n∑
i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)−

m∑
j=1

λ̄ij(Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩)

≤
n∑

i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)−

n∑
i=1

f̌i(xk+1; ξ) + δ.

In the first inequality above we used the star-convexity of the oracle (see Assumption 4.10 for the
stochastic case and Assumption 4.4 for the deterministic case). In the second inequality we used
Lemma A.2.

Inserting this into Lemma A.3 yields

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)

− 1

M

n∑
i=1

(
f̌i(xk+1; ξ) +

Mi

2
∥xk+1 − zim∥22

)
+

δ

M
.

The result now follows from adding and subtracting (1/L)f(x⋆) from the right side of the inequality
and dropping all but the most recent cut for every piecewise linear model.

We now distinguish between the deterministic and stochastic case. The following result from
(Feyzmahdavian et al., 2014) will be useful.
Lemma A.5. Let (Vk)

∞
k=0 be a non-negative sequence satisfying

Vk+1 ≤ qVk + p max
(k−τ)+≤ℓ≤k

Vℓ + r, k = 0, 1, 2, . . .

for some non-negative constants p, q and r. If q + p < 1, then

Vk ≤ ρkV0 + ϵ, k = 0, 1, 2, . . . ,

where ρ = (p+ q)1/(1+τ), ϵ = r/(1− p− q) and (k − τ)+ = max{k − τ, 0}.

Lemma A.5 will be used to analyze the algorithm under the quadratic functional growth assumption.
For the analysis of the convex case, we present a new sequence result that may be of independent
interest.
Lemma A.6. Suppose that (Vk)

∞
k=0 and (Wk)

∞
k=0 are non-negative sequences satisfying

Vk+1 ≤ max
(k−τ)+≤ℓ≤k

Vℓ −Wk+1 + r, k = 0, 1, 2, . . . (16)

for a non-negative constant r. Then, for any k ≥ 1,

min
t≤k

Wt ≤
(τ + 1)V0

k
+ r. (17)

Proof. We prove (17) by contradiction. Suppose that for some K ≥ 1, (17) fails to hold. Then, for
all k ≤ K,

Wk >
(τ + 1)V0

K
+ r. (18)

Define I0 = {0} and for any t ≥ 1,

It = [(t− 1)(τ + 1) + 1, t(τ + 1)].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Substituting (18) into (16) gives that for all k ≤ K − 1,

Vk+1 < max
(k−τ)+≤ℓ≤k

Vℓ −
(τ + 1)V0

K
. (19)

Let t̃ = ⌊K/(τ + 1)⌋. For any t ≤ t̃, It ⊆ [0,K]. Then, using (19), we can derive that for all
t ≤ t̃− 1,

max
k∈It+1

Vk < max
k∈It

Vk − (τ + 1)V0

K
.

Summing the above equation over t ∈ [0, t̃− 1] and noting that maxk∈I0
Vk = V0 yields

max
k∈It̃

Vk < V0 −
t̃(τ + 1)V0

K
. (20)

Note that t̃ = ⌊K/(τ + 1)⌋. If t̃ = K/(τ + 1), then

t̃(τ + 1)V0

K
= V0,

substituting which into (20) yields maxk∈It̃
Vk < 0, which cannot be true because Vk ≥ 0 for all

k ≥ 0.

If t̃ < K/(τ + 1), then we have K > t̃(τ + 1). Then, by (19),

VK < max
k∈It̃

Vk − (τ + 1)V0

K
.

Moreover, since t̃ ≥ K/(τ + 1)− 1, from (20) we have

max
k∈It̃

Vk <
(τ + 1)V0

K
.

Combining the above two equations, we obtain

VK < 0,

which cannot hold.

Concluding the above, (17) holds for all k ≥ 1.

EXACT FUNCTION VALUES AND GRADIENTS

First we prove convergence for exact (full-batch) function values and gradients.
Theorem A.7. Under Assumptions 4.1, 4.2, 4.3, and 4.4 the iterates of Algorithm 1 using Mi =
Li, i = 1, . . . , n satisfy

∥xk − x⋆∥22 ≤ ρk∥x0 − x⋆∥22 + ϵδ, (21)

where ρ = (L/(L+ µ))1/(1+τ) and ϵδ = 2δ/µ.

Proof. We insert Mi = Li, M = L and Fi(x
⋆; ξij) = fi(x

⋆) into Lemma A.4 and use that fi is
smooth with parameter Li (see Assumption 4.2) to conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ 1

L
(R(x⋆)−R(xk+1)) +

1

L
f(x⋆) +

δ

L

− 1

L

n∑
i=1

(fi(z
i
m) + ⟨∇fi(z

i
m), xk+1 − zim⟩+ Li

2
∥xk+1 − zim∥22)

≤ 1

L
(R(x⋆)−R(xk+1)) +

1

L
f(x⋆) +

δ

L
− 1

L
f(xk+1)

=
1

L
(F (x⋆)− F (xk+1)) +

δ

L
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Now suppose that the quadratic functional growth condition of F (see Assumption 4.3) holds. We
conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ − µ

2L
∥xk+1 − x⋆∥22 +

δ

L
.

After rearranging terms we get

∥xk+1 − x⋆∥22 ≤ 1

L+ µ

n∑
i=1

Li∥zim − x⋆∥22 +
2δ

L+ µ

≤ L

L+ µ
· max
(k−τ)+≤ℓ≤k

∥xℓ − x⋆∥22 +
2δ

L+ µ
.

Applying Lemma A.5 yields the desired result.

We now consider the case without the growth assumption.
Theorem A.8. Under Assumptions 4.1, 4.2, and 4.4, the iterates of Algorithm 1 using Mi = Li, i =
1, . . . , n, satisfy that for any k ≥ 1,

min
t≤k

F (xt)− F (x⋆) ≤ (τ + 1)L∥x0 − x⋆∥22
2k

+ δ. (22)

Proof. From the proof of Theorem A.7 we know that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ 1

L
(F (x⋆)− F (xk+1)) +

δ

L
.

Note that ∥zim − x⋆∥2 ≤ max(k−τ)+≤ℓ≤k ∥xℓ − x⋆∥2 for any i = 1, . . . , n. Equation (22) follows
by applying Lemma A.6 with Vℓ =

1
2∥xℓ − x⋆∥2, Wk+1 = 1

L (F (xk+1)− F (x⋆)) and r = δ
L .

STOCHASTIC FUNCTION VALUES AND GRADIENTS

Next we prove the convergence for stochastic function values and gradients.
Theorem A.9. Consider Algorithm 1 with Mi = αLi, i = 1, . . . , n where α > 1. Assume that
stochastic function values and gradients are used. Under Assumptions 4.1, 4.2, and 4.10, the iterates
of Algorithm 1 satisfy

min
t≤k

E[F (xt)]− F (x⋆) ≤ α(τ + 1)L∥x− x0∥22
2k

+ ϵ, (23)

where ϵ = ϵδ + ϵσ1 + ϵσ2 with

ϵδ = δ, ϵσ1 = nσ1

√
m, ϵσ2 =

σ2
2

2(α− 1)
·

n∑
i=1

1

Li
.

If, in addition, Assumption 4.3 holds, then

E[∥xk − x⋆∥22] ≤ ρk∥x0 − x⋆∥22 + 2ϵ/µ,

where ρ = (αL/(αL+ µ))1/(1+τ).

Proof. According to Lemma A.4 we have

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

Fi(z
i
m; ξim) + ⟨Gi(z

i
m; ξim), xk+1 − zim⟩+ Mi

2
∥xk+1 − zim∥22︸ ︷︷ ︸

≜T1

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

(24)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Using the Cauchy-Schwarz inequality together with Mi = αLi and the assumption that worker i is
smooth with parameter Li, we bound T1 according to (this holds for all i = 1, . . . , n)

T1 = fi(z
i
m) + ⟨∇fi(z

i
m), xk+1 − zim⟩+ Li

2
∥xk+1 − zim∥22

+ Fi(z
i
m; ξim)− fi(z

i
m) + ⟨Gi(z

i
m; ξim)−∇fi(z

i
m), xk+1 − zim⟩+ (α− 1)Li

2
∥xk+1 − zim∥22

≥ fi(xk+1) + Fi(z
i
m; ξim)− fi(z

i
m) +

(α− 1)Li

2
∥xk+1 − zim∥22

− ∥Gi(z
i
m; ξim)−∇fi(z

i
m)∥2∥xk+1 − zim∥2

≥ fi(xk+1) + Fi(z
i
m; ξim)− fi(z

i
m)− 1

2(α− 1)Li
∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22,

where we in the last inequality used that (b/2)t2 − at ≥ −a2/(2b) for all t ∈ R, a ∈ R and b > 0.
Inserting this bound into (24) allows us to conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

(
fi(xk+1) + Fi(z

i
m; ξim)− fi(z

i
m)− 1

2(α− 1)Li
∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22

)
+

1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

By taking expectations conditioned on all randomness up to the current iteration and using that
E[Fi(z

i
m; ξmi)] = fi(z

i
m) where the expectation is conditional, we get

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
1

M

n∑
i=1

1

2(α− 1)Li
E[∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22]︸ ︷︷ ︸

≜T2

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

From the assumption of bounded variance (see Assumption 4.10) we have T2 ≤ σ2
2 . Hence,

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

After taking expectations again and using the tower property of conditional expectations we get

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤
1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

1

M

n∑
i=1

E

[m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆))

]
︸ ︷︷ ︸

≜T3

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

To bound T3 we note that for i = 1, . . . , n, by the Cauchy-Schwarz inequality, it holds that

T3 ≤ E

[m∑
j=1

λ̄ij · |Fi(x
⋆, ξij)− fi(x

⋆)|
]

≤
(
E

[m∑
j=1

λ̄2
ij

])1/2

·
(
E

[m∑
j=1

(Fi(x
⋆; ξij)− fi(x

⋆))2
])1/2

≤
(m∑

j=1

E[(Fi(x
⋆; ξij)− fi(x

⋆))2]

)1/2

≤ σ1

√
m.

Hence,

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤
1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

nσ1
√
m

M
.

Note that E[∥zim − x⋆∥2] ≤ max(k−τ)+≤ℓ≤k E[∥xℓ − x⋆∥2] for any i = 1, . . . , n. Then,
by Lemma A.6 with Vℓ = 1

2 E[∥xℓ − x⋆∥2], Wk+1 = 1
M (E[F (xk+1) − F (x⋆)]) and r =

δ
M +

σ2
2

2(α−1)M

∑n
i=1

1
Li

+ nσ1
√
m

M , we have (23)

Now further assume that the quadratic functional growth of F (see Assumption 4.3) holds. We have

1

2
E[∥xk+1 − x⋆∥22]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤ − µ

2M
E[∥xk+1 − x⋆∥22] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

nσ1
√
m

M
.

Rearranging the terms shows that

E[∥xk+1 − x⋆∥22] ≤
1

M + µ

n∑
i=1

Mi E[∥zim − x⋆∥22] +
2

M + µ

(
δ + nσ1

√
m+

σ2
2

2(α− 1)

n∑
i=1

1

Li

)

≤ M

M + µ
· max
(k−τ)+≤ℓ≤k

E[∥xℓ − x⋆∥22] +
2

M + µ

(
δ + nσ1

√
m+

σ2
2

2(α− 1)

n∑
i=1

1

Li

)
.

Applying Lemma A.5 yields the desired result.

A.3 SOLVING THE MASTER PROBLEM

Here we discuss the complexity of solving the master problem (3) approximately. We use an accel-
erated projected gradient method to solve the dual problem

minimize g(λ)
subject to λ ∈ ∆.

(25)

The objective function g(λ) is defined in Lemma 3.1 and ∆ ⊆ Rmn is the Cartesian product of n
probability simplices of dimension m. In each iteration we must project onto ∆, which can be done
at a cost of order O(nm logm). The cost for evaluating the gradient (10) of the objective function
g(λ) is dominated by a term of order O(nmd), in addition to the cost of evaluating the proximal
operator of R. (We recall that n is the number of workers, m is the bundle size, and d is the
dimension of x.) If, for example, R(x) = λ∥x∥1, then the cost of evaluating the proximal operator
is O(d), so in this case the total cost per iteration of the projected gradient method is dominated by
a term of order O(mnd). In practice we found that only a dozen of iterations was often sufficient to
satisfy the termination criteria (6).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Modern interior-point solvers are fast, easy-to-use, robust, and good at exploiting sparsity. It is
therefore natural to use an interior-point solver for solving the master problem (3). If R(x) = λ∥x∥1,
the master problem can be formulated as a quadratic program with a separable objective function
and a coefficient matrix that is quite sparse (see, for example, (Andersen et al., 2011)).

To investigate the impact of our specialized approach for solving the subproblem, we ran ABM twice
and solved the master problem with either the projected gradient method applied to the dual (25) us-
ing accuracy δ = 10−7, or the state-of-the-art interior-point solver Clarabel (Goulart & Chen, 2021)
applied to the quadratic programming formulation of (3). For mnist8m, rcv1 and epsilon,
the average time to solve the master problem was 0.017, 0.29, and 0.027 seconds for the gradient
method, versus 0.20, 13.4, and 0.66 seconds for Clarabel. In other words, the gradient method (im-
plemented in Python) is more than an order of magnitude faster. This comparison is not completely
fair, since Clarabel in general finds a solution with higher accuracy. However, as shown in Theorem
4.5, it is not necessary to solve the master problem exactly to maintain convergence guarantees.

A.4 ADDITIONAL NUMERICAL EXPERIMENTS

CONVEX EXPERIMENTS

Figure 3 shows the performance of ABM, DAve-RPG and PIAG for binary logistic regression with
λ2 = 0, i.e., when the objective function is convex but not strongly convex. The optimization
trajectories are very similar to the progress in the strongly convex case for mnist8m and epsilon,
but removing the strong convexity degrades the performance on rcv1 for all three methods (see
Figure 1 in the main text). Nevertheless, ABM outperforms the two competitors.

0 50 100 150 200 250 300
Runtime (s)

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DAve-RPG
PIAG

0 2000 4000 6000 8000 10000
Number of gradients

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
DAve-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of gradients

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

0 50 100 150 200 250 300
Runtime (s)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

0 2000 4000 6000 8000 10000 12000 14000
Number of gradients

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

Figure 3: The progress of ABM, DAve-RPG and PIAG on the binary classification problems for
λ2 = 0. The datasets are arranged in the order mnist8m, rcv1 and epsilon from the left.

BENCHMARKING ON MULTINOMIAL LOGISTIC REGRESSION

For the multiclass classification problems the objective function is

f(x) = − 1

N

N∑
j=1

K∑
k=1

1{yj = k} log
(

ex
T
k aj∑K

ℓ=1 exp(x
T
ℓ aj)

)
+

λ2

2

K∑
k=1

∥xk∥22

R(x) = λ1

K∑
k=1

∥xk∥1,

where y1, . . . , yN ∈ {1, 2, . . . ,K} are the labels. Here the decision variable is x = (x1, . . . , xK)
where each xj , 1 ≤ j ≤ K is a vector with dimension equal to the number of features. Figure
4 shows the relative suboptimality of ABM, DAve-RPG and PIAG on the two multiclass datasets
SVHN and mnist8m. (The dimension of the problems can be found in Table 1 in the main text.)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0 100 200 300 400 500 600
Runtime (s)

10−3

10−2

(f(
x k
)−

f*
)/f

*

ABM
DAve-RPG
PIAG

0 100 200 300 400 500 600
Runtime (s)

10−3

10−2

10−1

ABM
DAve-RPG
PIAG

Figure 4: The progress of ABM, DAve-RPG and PIAG on the multiclass classification problems.
The datasets are arranged in the order SVHN and mnist8m from the left.

STOCHASTIC FUNCTION VALUES AND SUBGRADIENTS

We test the stochastic extension of ABM using mini-batches. We split each worker’s data set into 100
mini-batches. For ABM based on exact function and gradient evaluations we estimate the smoothness
parameters as described in §5. For the stochastic variant using mini-batches we estimate the smooth-
ness parameters as follows. Each worker stores the last point, say zim−1, it was queried in, and when
queried again in a point zim, the worker draws ξ representing a mini-batch and then evaluates both
Gi(z

i
m; ξ) and Gi(z

i
m−1; ξ). The worker can then estimate the smoothness parameter Li with

L̂i =
∥Gi(z

i
m; ξ)−Gi(z

i
m−1; ξ)∥2

∥zim − zim−1∥2
.

The worker then sends back both the gradient Gi(z
i
m; ξ) and the smoothness estimate L̂i to the

central server.

For comparison we also implemented a synchronous proximal stochastic gradient method. The
step size parameter was carefully tuned. The left part of Figure 5 shows the progress of ABM, the
stochastic extension (ABMStoch), and the proximal stochastic gradient method (ProxSGD). The
right part of Figure 5 shows the progress in the presence of some struggling workers. (For the
right part we let one third of the workers have random delays uniformly distributed in the interval
[2tgrad, 4tgrad] every time they compute a gradient, where tgrad is the time required to compute the
gradient.) It is interesting to note that while ProxSGD performs much worse for simulated delays,
both ABM and ABMStoch are barely affected by the delays.

0 100 200 300 400 500 600
Runtime (s)

10−4

10−3

10−2

10−1

(f(
x k
)−

f*
)/f

*

ABM
ABMStoch
ProxSGD (t ned)

(a)

0 100 200 300 400 500 600
Runtime (s)

10−4

10−3

10−2

10−1

ABM
ABMStoch
ProxSGD (tuned)

(b)

Figure 5: Left: The progress of ABM, the stochastic variant ABMStoch and a tuned synchronous
proximal stochastic gradient method ProxSGD. Right: The progress under simulated delays.

25

	Introduction
	Related work
	Algorithm
	Main idea
	Solving the master problem
	An efficient approximate master problem solver
	Extension to stochastic function values and gradients

	Convergence analysis
	Analysis for exact function values and gradients
	Analysis for stochastic function values and gradients

	Implementation
	Experiments
	Benchmarking
	Sensitivity to hyperparameters
	Further experiments

	Discussion
	Appendix
	Dual subproblem
	Convergence analysis
	Solving the master problem
	Additional numerical experiments

