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Abstract

In this work we provide an extensive analysis into the operations of a maze solving1

reinforcement learning agent trained in the Procgen Heist environment. We target2

this model because it presented a high degree of polysemanticity due to the fact3

that it has to target multiple different entities to succeed. By focusing on an4

agent that has to target multiple similar entities we hope to answer questions5

about how each of these entities might be processed by the network. Our main6

finding is that the signals related to the targeting of different entities are encoded7

at different activation strengths within a single channel in the network. These8

"steering channels" are often highly redundant, with large numbers of channels9

enabling precise agent steering, but often only within narrow ranges of activation10

values. We also discover a paradoxical ablation effect in which removing both11

steering channels and navigation circuits improves entity collection rates compared12

to partial ablation, suggesting unexpected interference between these systems.13

These findings demonstrate that amplitude-based multiplexing is a fundamental14

strategy for encoding multiple goals in RL agents, while our counterintuitive15

ablation studies suggest surprising specialization and informational dependencies16

within the network.17

1 Introduction18

Understanding how deep learning models perform their tasks is currently an unsolved problem in the19

field of AI. This state of affairs ensures that highly reliable, controllable, and understandable models20

remain out of reach. This is particularly the case in the field of reinforcement learning (RL) that has21

been somewhat neglected by the techniques of mechanistic interpretability (MI) whose focus has22

largely been on Large Language Models (LLMs). With techniques from RL being applied to frontier23

models to a greater extent, it is our belief that lessons learned from applying MI to RL based agents24

can yield generalizable insights that can improve our understanding of AI agents and neural networks25

in general.26

This research builds on the work of Mini et al. [2023] in which precise control of a maze solving agent27

was achieved by intervening directly on activations within the network. The current contribution28

begins by extending their work to an environment that involves multiple competing entities that an29

agent needs to reach in sequence, using the Procgen Heist environment as the target of our research.30

The Procgen Heist environment requires the agent to collect up to 3 keys and 3 locks before reaching31

the final goal, a gem. The order in which the keys need to be collected is always the same (blue,32

green, red). The environment is procedurally generated and might generate with any combination33

of no keys, or 1-3 keys. The size of the maze will also change depending on how many objects are34

included.35
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Figure 1: The Procgen Heist environment presents a procedurally generated maze where agents must
collect keys and unlock corresponding doors in a specific sequence (blue, green, red) before reaching
the final goal (gem). The environment varies in complexity, sometimes only having the gem present,
and other times including multiple keys and locks.

The environment provides sparse rewards, only giving out a score of 10 if the agent makes it all the36

way to the final goal and 0 otherwise. The fact that the environment provides a variety of difficulties37

with some environments only having the gem and others including all 3 keys and locks establishes a38

natural curriculum for the agent. It also gives the agent a reasonable chance of reaching the end with39

a random walk before it starts to develop an actual policy.40

Part of the reason we selected an environment from the Procgen suite for this task was that the Procgen41

environments naturally force the agent to learn sufficiently general representations of different entities42

to allow us to potentially extract them from the weights. If the model could simply encode easily43

memorized heuristics then this might lead to uninterpretable and highly specific rules rather than44

general representations of entities.45

2 Related Work46

2.1 Mechanistic Interpretability in RL47

Previous work by Mini et al. [2023] demonstrated the ability to manipulate an agent’s navigation in a48

simple maze environment with an intervention to a single channel in the network. This serves as a49

foundation for our work, though we extend it to a more complex multi-objective setting. The idea of50

activation steering originated in RL and was later successfully applied to LLMs Turner et al. [2024],51

demonstrating the potential for the transfer of techniques between very different neural network52

architectures and domains.53

Work exploring the Procgen Coinrun environment provides a rich set of ideas for how to attribute54

attention from objects in the input to specific weights within the model, as well as visualizing the55

model weights Hilton et al. [2020]. They showed clear positive and negative attributions to specific56

entities according to how it might affect its ability to complete the task within the environment.57

Other interpretability approaches for RL include saliency-based methods Greydanus et al. [2018],58

Atrey et al. [2020] which identify important input pixels but do not enable behavioral manipulation.59

2.2 Ablation Studies and Network Interpretability60

Systematic ablation studies have been fundamental to understanding CNNs since Zeiler and Fergus61

[2013] pioneered their use to identify important model components. However, recent work has62

revealed that networks exhibit surprising robustness to ablations McGrath et al. [2023]. While early63

interpretability work searched for individual neurons encoding specific concepts, Morcos et al. [2018]64
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Figure 2: Example of the intervention experiment. We test channels to see the extent to which a
single channel is capable of steering the agent to another location given the presence of a single entity
in the environment. We consider an intervention a success if the agent enters the modified region.

demonstrated that networks achieving good generalization distribute information redundantly, with65

no single neuron being critical for performance.66

Network Dissection Bau et al. [2017] assumes one-to-one neuron-concept mappings, but more recent67

work has demonstrated that neural networks are often polysemantic Elhage et al. [2022] and show that68

networks store multiple semantic concepts in superposition. Sparse Autoencoder research Bricken69

et al. [2023] successfully disentangles these polysemantic representations by training an autoencoder70

to separate semantic representations into a sparse overcomplete basis.71

3 Methods72

3.1 Model Architecture73

We train a compressed version of the Impala model that uses 5 convolutional layers instead of 1574

as used in the original Impala paper. This architecture comes from Hilton et al. [2020] where they75

find that this model was more interpretable with no discernible loss in performance. We include the76

model architecture in full in Appendix A.77

When training our model we use a simple PPO implementation from an open source implementation78

designed to train Procgen models called Procgen-pfrl. We used the easy distribution of the environ-79

ment due to compute limitations. We tested model training over a number of different batch sizes and80

distributions. The model checkpoints used to derive our main findings were trained with standard81

hyperparameters: learning rate 5e-4, 64 parallel environments collecting 256 steps each (16,38482

total steps per update), processed in batches of 8 over 3 epochs for 800 million steps. The training83

dynamics were significantly impacted by changes to batch size often completely collapsing training84

performance, but over the course of 5 runs with separate seeds with the parameters above we were85

able to replicate similar model dynamics in each case.86

3.1.1 Intervention experiments87

When doing our experiments, we would place a specific entity into the environment. We then88

intervene on a single channel in a single layer by applying a zero mask to the channel setting it to89

zero and setting a specific region of the channel to a chosen value. In this experiment, we would do a90

sweep over a range of intervention values between 0 and the maximum values that the channel would91

reach during typical functioning as determined by sampling from the environment during operation.92

By running this sweep, we can get a sense of what the different channels do at different intervention93

strengths. We kept the length of the episode to 20 steps to ensure that the agent would either be able94

to reach the target zone, or the actual entity, but not both.95

For each entity-channel combination, we ran 500 trials with the activation value incrementing linearly:96

vi = i · vmax

N , where i is the trial index (1 to N ), N = 500 is the total number of trials, and vmax is97

the maximum activation range.98
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We use a "Q" shaped maze with the design visible in Figure 2 because it was challenging enough99

that the agent would need to retain its navigational abilities to reach either target, while providing a100

clear decision point where the agent would need to choose between pursuing the original entity or101

our artificial target zone.102

We test a single entity at a time in this way meaning that steering that is effective with a particular103

value on a given channel may not be effective for redirecting the agent in the presence of another104

entity.105

To confirm that our results are robust, we also train Sparse Autoencoders (SAEs) Bricken et al. [2023]106

on the convolutional layers using techniques from Gorton [2024] to confirm that the results are not107

merely the result of polysemanticity.108

3.2 Channel Ablation Study109

To systematically assess the role of individual channels, we developed a comprehensive ablation110

methodology. For each channel in the network, we ran episodes with only that channel active while111

masking all other channels to zero. This allowed us to measure the isolated capability of each channel112

to support navigation to different entities in the environment. We recorded successful entity collection113

counts for each channel across 400 rollouts, providing a quantitative measure of each channel’s114

specialization and capability. This methodology allows us identify which channels are sufficient for115

basic navigation. An example of the maze used is given in 3.116

Figure 3: Maze configurations for ablation studies. (a) Fork maze tests individual channel navigation
capability by requiring explicit path choices towards different entities and providing sufficient
complexity that navigational abilities must be preserved. We orient the stem toward the model’s
inherent bias direction to minimize false positives. (b) Open maze with entities in corners tests
the effect of ablating intervention spans without navigational constraints, ensuring only preferences
regarding entity collection are observed.

3.3 Expanded ablation experiments117

To derive further insights from our earlier results, we ablate regions of the network based on their118

success in modifying model behavior in the previous experiments. Our experiment uses a modified119

maze which removes all walls, and has the keys and gem randomly distributed in the corners of the120

maze.121

We perform four targeted ablations based on our steering and navigation findings:122

Ablation 1 (Intervention spans): We zero out any activations within the value ranges that suc-123

cessfully steered the agent. Specifically, for entity e and channel c, we set hc,i,j = 0 whenever the124

activation falls within the successful steering range Se,c identified in our intervention experiments.125
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Ablation 2 (Navigation channels): We completely ablate the top 10 channels identified as navigation-126

critical in our channel isolation study, setting these channels to zero while preserving all others.127

Ablation 3 (Combined): We apply both ablations simultaneously, zeroing both the navigation128

channels and the intervention spans.129

Ablation 4 (Inverse): We preserve only the intervention spans that successfully steered the agent in130

the presence of entity e, ablating everything else. This tests whether these spans alone are sufficient131

for navigation.132

4 Results133

All results presented are from checkpoint 35001 (35k update steps), well past convergence which134

occurred around 20k, unless otherwise noted.135

4.1 Quantitative Steering Results136

We apply our incremental steering experiments across all channels in conv3a and conv4a and find a137

large number of channels which successfully steer the agent away from a given entity. We present our138

results from conv4a here as its effective value ranges were more sparse and provided clearer results.139

Figure 4: To determine the frequency with which a given channel can be used to steer the model
away from a given entity, we create an artificial maze and place an artificial activation at a given
point of the maze. We determine a successful intervention based on whether the agent makes contact
with the region we specify. Each colored dot above represents a successful intervention with the
specified entity as the target for the agent to move towards. Intervention success is partially localized
to specific activation value ranges based on entity. This sample is from channel conv4a.

The most striking aspect of our results is the fact that particular value ranges worked for specific140

entities, illustrating how the channel seemed to signal the presence of a particular entity through the141

amplitude of the activation within a channel.142
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Figure 5: Heatmap showing entity collection counts when only a single channel is active (all others
ablated). The vertical axis shows different entity types (gem, blue_key, green_key, red_key), while
the horizontal axis shows channel indices. Brighter colors (yellow) indicate higher collection success
rates.

We trained SAEs on these layers and found they exhibit identical multiplexing patterns, confirming143

this is a robust organizational strategy rather than the result of polysemanticity.144

4.2 Channel Ablation Studies145

Our ablation analysis reveals that the ability to navigate is surprisingly redundantly encoded through-146

out the network. The heatmap in Figure 5 shows the results in full. We observe that all channels have147

some success with reaching the entities some of the time with the best performing channels achieving148

success rates greater than 40% for certain entities, while others have lower than 10% success rates149

between entities. We also see that some channels show similar performance across entities, while150

others are significantly better at particular entities.151

Table 1: Functional specialization between steering and navigation channels
Entity Steering-only Navigation-only Overlap

Gem 8 channels 8 channels 2 (20%)
Blue Key 7 channels 7 channels 3 (30%)
Green Key 8 channels 8 channels 2 (20%)
Red Key 9 channels 9 channels 1 (10%)

Total unique 15 channels 19 channels 6 channels

4.3 Expanded ablation study152

Our ablation studies reveal two counterintuitive findings.153

First, ablating the gem’s identified steering channels improves collection rates from 96.8% to 98.0%,154

while the same ablation reduces key collection by 43% on average. This suggests the gem may155

be encoded through the absence of key and lock signals, rather than through dedicated positive156

features. This broader intervention space suggests the network affords greater flexibility to gem-157

pursuit circuitry, as it can safely activate without competing with other navigation objectives once all158

preceding entities have been collected.159

Second, we discover that partial ablation can be more harmful than complete ablation. When we160

ablate only navigation channels, gem collection drops to 34.0%. However, when we additionally161

ablate the intervention spans (removing more of the network) performance improves to 47.8%. This162

suggests an interference mechanism between the navigation and steering systems.163

To further investigate the distributed nature of these representations, we performed inverse ablations164

where we preserved only the intervention spans for each entity. This revealed a clear preference165

of pursuit: blue key maintained 44% performance (well above the 26% random baseline), while166
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Table 2: Effect of targeted ablations on entity collection rates. Bold values indicate performance
improvements or minimal degradation compared to baseline.

Entity Baseline Intervention Navigation Both Preserve Only Random
Spans Only Channels Only Intervention Spans (Control)

Gem 96.8% 98.0% 34.0% 47.8% 20.0% 24.0%
Blue Key 98.0% 57.0% 98.3% 66.3% 40.0% 26.0%
Green Key 94.8% 52.0% 96.3% 57.0% 32.0% 22.0%
Red Key 80.0% 34.8% 89.0% 39.3% 28.0% 31.5%

gem performance dropped to 16% (below the 24% random baseline). This confirms that early-game167

entities have more localized representations while the final goal requires whole-network context.168

5 Discussion169

5.1 Solution Multiplicity and Representational Drift170

A striking observation from our experiments was that intervention positions changed completely171

across different checkpoints even after convergence. Despite maintaining similar performance, the172

network continued exploring different encoding schemes within the solution space. This suggests173

that amplitude-based multiplexing is not a unique solution but rather one of many equivalent repre-174

sentations the network can adopt. The continuous drift between encoding schemes post-convergence175

indicates the network exists on a "valley floor" of equally viable solutions, constantly reorganizing its176

internal representations while preserving behavioral performance.177

We find a notable checkpoint at update step 30001 where no steerable channels at all are found for178

any entity, though we only found 1 example of this in the 60 checkpoints we tested, suggesting it179

might be less optimal than those with the stronger intervention configuration.180

This has meaningful implications for approaching understanding the inner workings of models. The181

specific channels and activation ranges we identify for steering are not fixed properties of the task but182

rather snapshots of a dynamic system exploring equivalent representations as possible solutions. This183

representational drift may explain some of the difficulty in creating robust interpretability tools and184

suggests that interventions may need to be continuously recalibrated as networks evolve, though the185

extent to which this phenomena occurs beyond RL is unknown.186

5.2 Activation-Level Entity Encoding187

Our findings regarding how the intervention spans encode multiple entities at different activation188

strengths reveal a sophisticated information compression mechanism. Rather than requiring separate189

channels for each entity type, the model has learned to use activation magnitude as an additional190

dimension for encoding information. This suggests that interventions on neural networks may need191

to consider not just which channels to modify, but also the precise activation values to use.192

This activation-level encoding also helps explain why the model can maintain full functionality with193

so few active channels - the network has effectively learned to multiplex information within individual194

channels.195

An explanation for why this happens might be that due to the similarity of the task of tracking196

each key, it proves the most efficient solution to have re-purpose channels already capable of entity197

detection in general, and to have them simply target each one sequentially, while indicating the nature198

of the given entity by varying the activation strength.199

5.3 Role specialization200

A surprising finding was that some channels seem able to unilaterally alter where the agent will201

navigate to, many other channels were more reliably able to navigate the agent when the other202

channels were ablated, but were completely unable to individually steer the agent, as evidenced by203

examining 4 and 5. This indicates that the specific function of indicating that the agent "must go204
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to this spot" were exclusive to the steering channels, and the channels that were more successful in205

navigating had a role specifically in identifying how to get to a position, that in the absence of any206

other channels providing contrasting signals would lead the agent to go to that position.207

This idea of specialization and reliance between channels is reinforced by the fact that ablating both208

the navigation channels and the intervention spans produced better collection rates than ablating the209

best navigation channels while leaving the intervention spans untouched. The fact that this occurred210

52% of cases with n=400 trials is evidence that this effect is robust and not just noise.211

Unfortunately we do not have a clear understanding of the precise nature of the intervention spans at212

this point, or what leads to the interference effect specifically, and hope to advance this question in213

future work.214

6 Conclusion215

Our work demonstrates that entities can be multiplexed within single channels in a neural network,216

and exploring these channels leads to surprising specialization within the network.217

Our key findings include:218

• Steering using a single channel worked in multiple layers (conv3a, conv4a) across check-219

points during training.220

• While some channels seemed to both track certain entities and were able to affect steering,221

some channels were highly efficient at tracking, but couldn’t modify the location the agent222

would go to, indicating specialized roles in the model.223

• We found that the model was still able to navigate to different keys despite only having a224

single channel active.225

• We found that there exist many regions within channels in the model that were capable226

of successful agent re-targeting in the presence of different entities at different activation227

strengths, revealing a mechanism for multiplexing information within a single channel.228

• We uncovered surprising results showing that in some cases when ablating the best navigation229

channels it in fact improved performance to also remove the steering channels.230

• We discover the surprising phenomenon of models slowly exploring a variety of global min-231

ima of possible solutions to the Procgen Heist environment without degrading performance232

as their changes occur.233

These results show that there is specialization that occurs within the network both at the level of234

activation amplitude to signal specific entities, and also between channels where certain channels235

seem to play a role of directing the heading of the network while other channels provide navigational236

functionality to the agent.237

7 Future Work238

Promising directions for future work include:239

• Better understand the precise mechanism of navigation within the network, and the mecha-240

nism of steering, and how these impact the next layer.241

• Train a decision transformer or RNN style network that we can train probes on, and do242

targeted interventions in the residual stream.243

• Better understanding the role of negative activations in agent navigation.244

• Do further analysis on the difference in the treatment of keys and locks within the network.245

• Techniques such as attribution-based parameter decomposition Braun et al. [2025] are also246

likely to yield valuable and potentially generalizable insights if applied to networks such as247

this one.248

As RL techniques increasingly influence frontier models, understanding these fundamental organiza-249

tional principles will likely provide valuable insights into building interpretable and controllable AI250

systems.251
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• Input: Image (H,W,C) → Normalization [0,1] → Format adaptation298

• Conv Block 1: Conv(C→16, 7×7) → ReLU → LPPool(2×2, s=2)299

• Conv Block 2: Conv(16→32, 5×5) → ReLU → Conv(32→32, 5×5) → ReLU → LP-300

Pool(2×2, s=2)301

• Conv Block 3: Conv(32→32, 5×5) → ReLU → LPPool(2×2, s=2)302

• Conv Block 4: Conv(32→32, 5×5) → ReLU → LPPool(2×2, s=2)303

• Flatten → Linear(flattened→256) → ReLU304

• Linear(256→512) → ReLU305

• Dual heads: Policy(512→num_outputs) & Value(512→1)306

Figure 6: The convolutional neural network architecture used in our experiments. We use a modified
version of the Impala CNN with 5 convolutional layers rather than the original 15 layers, which
provides better interpretability without compromising performance.
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