
Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

SPARSE AND WIDE LINEAR RNNS ARE AT THE
EFFICIENCY-PERFORMANCE PARETO FRONT

Alessandro Pierro1,2,*,+ Steven Abreu1,3,* Jonathan Timcheck1 Philipp Stratmann1

Sumit Bam Shrestha1

1Neuromorphic Computing Lab, Intel Corporation, USA
2Institute of Informatics, LMU Munich, Germany
3Bernoulli Institute & CogniGron, University of Groningen, Netherlands
*Equal contribution
+Corresponding author: alessandro.pierro@intel.com

ABSTRACT

Linear recurrent neural networks enable powerful long-range sequence model-
ing with constant memory usage and time-per-token during inference. These
architectures hold promise for streaming applications at the edge, but deploy-
ment in resource-constrained environments requires hardware-aware optimizations
to minimize latency and energy consumption. In this paper, we investigate the
effectiveness of unstructured sparsity–both in weights and activations–at reduc-
ing the computational demand of linear RNNs, as well as its combination with
quantization. We find that highly sparse linear RNNs consistently achieve better
efficiency-performance trade-offs than dense baselines, with 2× less compute and
36% less memory at iso-accuracy, and quantizing a sparse-and-wide network leads
to lower performance degradation. When quantized to fixed-point arithmetic and
deployed on the Intel Loihi 2 neuromorphic chip, sparse models demonstrate 42×
lower latency and 149× lower energy consumption compared to an iso-accuracy
dense model on an edge GPU, providing hardware validation to the theoretical
gains of unstructured sparsity.

1 INTRODUCTION

Linear Recurrent Neural Networks (LRNNs) have emerged as powerful primitives for efficient
sequence modeling with constant memory and linear runtime (Smith et al., 2023; Gu et al., 2021),
making them ideal for low-latency, edge applications like audio denoising and keyword spotting
(Timcheck et al., 2023; Warden, 2018). While these models are efficient by design, further gains are
possible through model compression–which remains under-explored for LRNNs.

In this work, we explore the potential of unstructured sparsity–in weights and activations–and fixed-
point quantization for the compression of LRNNs. Theoretical studies have shown that wider sparse
layers outperform dense layers with the same parameter count (Golubeva et al., 2021; Chang et al.,
2021), with unstructured sparsity (often ≥ 90%) representing an upper bound on potential gains (Liu
& Wang, 2023; Mishra et al., 2021; Han et al., 2015). While GPUs cannot fully exploit unstructured
sparsity, we use neuromorphic hardware to realize the efficency gains from highly sparse neural
networks. Specifically, we explore three research questions. (1) Can we train LRNNs with high weight
and activation sparsity while retaining task accuracy?, (2) Do highly sparse LRNNs outperform
dense baselines across inference compute budgets?, (3) What is the combined effect of sparsity and
fixed-point quantization on accuracy for LRNNs?. We provide a positive answer to Question (1), and
present positive evidence for Questions (2) and (3).

2 BACKGROUND

Linear Recurrent Neural Networks Recurrent neural networks (RNNs) are a class of neural
networks designed for processing sequential data by maintaining hidden states that capture temporal
dependencies. Linear RNNs (LRNNs) distinguish themselves through their linear dynamics, which

1

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

enables parallelization over the sequence length and, thus, efficient training. It has been shown that
the network’s recurrent weight matrix can be diagonalized in the complex domain without loss of
generality (Orvieto et al., 2024; Gu et al., 2022) We use this diagonal formulation of linear RNNs,
with the state xk ∈ CN and output yk ∈ RM evolving as:

xk = diag(Ā)⊗ xk−1 + B̄⊤uk (1)

yk = Re
[
C̄⊤xk

]
+ diag(D̄)⊗ uk (2)

where ⊗ denotes the Hadamard product, uk ∈ RM is the input sequence, diag(Ā) ∈ CN are the
diagonal recurrent weights, B̄T ∈ CM×N are the input weights, C̄T ∈ CN×M are the output weights,
and diag(D̄) ∈ RM are the residual weights. We follow the S5 model (Smith et al., 2023) for the
initialization and parameterization of the model. See Appendix A.2 for more details.

wi

Parallel off-chip

IO interfaces

Microprocessors

Async NoC

10G Ethernet

Neuro cores

∑

Synapses

wi

Accumulator

Dendrite Spike

t

Figure 1: Loihi 2 implements a mesh of neuro-
cores through an asynchronous network-on-chip.
On a neuro-core, each neuron receives 24 bit
spike messages from other neurons via weighted
synapses, with 8 bit precision, which are summed
up in dendritic accumulators. This input updates
memory states that are local to the respective neu-
ron. The neuron communicates with other neurons
by sending spike messages.

Neuromorphic Computing with Intel Loihi
2 Loihi 2 is the second-generation of Intel’s
neuromorphic research processor (Orchard et al.,
2021) and implements a spiking neural network
as illustrated in Figure 1. The network is pro-
cessed by massively parallel compute units, with
120 such neuro-cores per chip. The neuro-cores
compute and communicate asynchronously, but
a global algorithmic time step is maintained
through a barrier synchronization process. The
neuro-cores are co-located with memory and can
thus efficiently update local states, simulating
up to 8 192 stateful neurons per core. Each neu-
ron can be programmed by the user to realize a
variety of temporal dynamics through assembly
code. Input from and output to external hosts
and sensors is provided with up to 160M 32
bit integer messages/s (Shrestha et al., 2024b).
Loihi 2 can scale to real-world workloads of var-
ious sizes with up to 1B neurons and 128B synapses, using fully-digital stacked systems shown
in Figure 1. Importantly, Loihi 2 offers efficient low-precision arithmetic and its event-driven
architecture enables acceleration of sparse weight matrices and sparse activation vectors.

Synaptic Pruning Following previous work (Mishra et al., 2021), we initialize the parameters
from the pre-trained dense models. We adopt iterative magnitude pruning (IMP) which increases
sparsity progressively during training and achieves better task performance than one-shot approaches,
especially at high sparsity levels (Zhu & Gupta, 2018; Lee et al., 2023). More details on our
implementation are given in Appendix A.2.

Activity Sparsification Sparsifying layer activations provide another means for reducing the
compute and on-chip memory requirements during inference. On sparse and event-driven accelerators,
such as Loihi 2, sparse pre-activations directly translate into Multiply-and-Accumulate (MACs)
savings. In contrast, GPU architectures struggle to leverage dynamic sparse activation patterns and
have demonstrated gains with more structured activation patterns, and only in memory-bound regimes
as in auto-regressive generation with large models. We use ReLU-fication (Mirzadeh et al., 2024) for
activation sparsity since this is a fully element-wise operation that doesn’t require synchronization
across channels, which simplifies the implementation in compute-memory integrated platforms such
as Loihi 2. Other promising techniques include top-k (Key et al., 2024), sigma-delta coding (Shrestha
et al., 2024a; O’Connor & Welling, 2016), and sparse mixture-of-experts (Fedus et al., 2022; He,
2024). We detail our ReLU-fication process in Appendix A.2.

Quantization and Fixed-Point Computation Reducing the numerical precision of weights and
activations through quantization is an essential way to compress neural networks, directly leading to
reduced memory footprint and faster inference (Gholami et al., 2021). Without constraints during
training, post-training quantization (PTQ) has been shown to under-perform on both nonlinear and
linear RNNs (Wu et al., 2016; Abreu et al., 2024). In contrast, quantization-aware training (QAT)

2

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

simulates quantization in the forward pass and has shown promising results on LRNNs (Meyer et al.,
2024; Abreu et al., 2024). To enable hardware acceleration, we use static quantization (Gholami
et al., 2021) with fixed-point arithmetic (Wu et al., 2020). For more details, see Appendix A.2.

3 EXPERIMENTAL RESULTS

We evaluated our approach on the Intel Neuromorphic Deep Noise Suppression Challenge (Timcheck
et al., 2023), which aims to enhance the clarity of human speech recorded on a single microphone
in a noisy environment. Clean human speech and noise samples are mixed to produce noisy human
speech with a ground truth clean human speech goal. The denoising quality is evaluated with the
scale-invariant signal-to-noise ratio SI-SNR. See Appendix A.2 for more details.

0 1 2 3 4 5 6

13

14

15 Previous SotA

2

3
4

5
6

7 8 9 10 11 12

1

2

3
4

Effective MACs (×105)

Te
st

SI
-S

N
R

(d
B

)

Dense w/ GELU
Sparse w/ ReLU

Figure 2: Pareto fronts for S5 network audio de-
noising quality (SI-SNR) as a function of effective
compute on the Intel N-DNS test set. S5 networks
with weight and activation sparsity (green) exhibit
a large domain of Pareto optimality versus dense
S5 networks (orange). Number annotations enu-
merate increasing model width, from 500 k to 4M
parameters. Dashed horizontal like marks SI-SNR
of Spiking-FullSubNet XL, the previous state-of-
the-art model.

Pareto Front of Performance and Efficiency
We studied the performance-efficiency Pareto
front of dense and sparse models across infer-
ence compute budgets. Starting from the S5 ar-
chitecture (Smith et al., 2023), we trained a fam-
ily of dense models by linearly scaling the model
width, both the model dimension and size of the
S5 hidden state, while keeping the depth fixed
to three layers. Similarly, we trained a family
of sparse models, pruned and ReLU-fied accord-
ing to our methodology discussed above, with
90% of weights pruned by the end of training
(further details on the model dimensions are pro-
vided in Appendix A.2). The results, reported in
Figure 2, compare de-noising performance (SI-
SNR) and computational efficiency as measured
by effective MACs (see Appendix A.1).

The results show that sparsification significantly
degrades performance when applied to under-
parametrized dense models (e.g., sparsifying
dense-3 reduces SI-SNR by 7.3%). However,
task performance is recovered with increased
model width and the accuracy of dense models
is matched by wider sparse ones, with fewer
MACs and lower memory requirements. This
gives empirical support to theoretical work on
the capacity of sparse-and-wide neural networks (Golubeva et al., 2021). For example, sparse-8 model
requires 2× lower compute and 36% lower memory than the dense-3 model, while achieving
the same level of accuracy. Overall, sparse models constitute the Pareto front of task performance
and computational efficiency across compute budgets. In terms of absolute task performance, we
find that the S5 architecture provides state-of-the-art results on audio denoising. When compared to
Spiking-FullSubNet-XL (Hao et al., 2024), the Track 1 winner of the Intel N-DNS Challenge with
15.2 dB SI-SNR, our sparse-11 S5 model requires 3.2× lower compute and 5.37× lower memory
iso-accuracy.

Interaction of Weight and Activation Sparsity An interesting question is what is the interaction
between the two types of sparsity, in weights and activations. Figure 3a) reports the pre-activation
sparsity for different layers across the model depth for two ReLU-fied models of the same size (model
variant 6), with and without synaptic sparsity. We observe that the synaptic-sparse model exhibits
lower activation sparsity across the board, a finding that is consistent across model sizes. In addition,
activation sparsity significantly decreases with model depth, both for dense and sparse models. These
phenomena, previously observed in other models (Mukherji et al., 2024), suggest that, during training,
the model compensates the reduced information flow caused by pruning with increased levels of
activation. Additional research on more advanced activation functions would allow for the optimal

3

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Layer 1 Layer 2 Layer 3

20

40

60

80

100

Model Depth

Pr
e-

ac
tiv

at
io

n
Sp

ar
si

ty
(%

)

Norm S5 Out GLU
Dense Sparse

10 12 14 16

FXP

FP32

Test SI-SNR (dB)

Dense Sparse

Figure 3: a) Activation sparsity of ReLU blocks across model depth for a dense-weight model and a
sparse-weight model. The sparse-weight model exhibits significantly lower activation sparsity across
layers. b) Impact of quantization intervention on Test SI-SNR for weight-sparse (sparse-8) and a
weight-dense (dense-3) model, with similar initial accuracy. The wider but sparse model is more
resilient to quantization, showing a −6.6% drop in SI=SNR, compared to −8.3% of the dense one.

allocation of MACs, especially those that provide explicit control over sparsity without cross-channel
synchronization (e.g., approximate top-k (Key et al., 2024)).

Interaction of Quantization and Weight Sparsity Figure 3b) shows the effect of fixed-point
quantization on Test SI-SNR for a dense (dense-3) and a sparse one (sparse-8), with similar initial
task performance. We found that the wide-sparse model is more resilient to quantization than the
narrow-dense model, showing a −6.6% drop in SI-SNR, compared to −8.3% of the dense one. This
is in line with previous findings showing that wider models are more robust to quantization (Harma
et al., 2025). This is promising as wide-sparse models outperform narrow-dense models, and can be
further compressed with quantization more easily.

Table 1: Results of a dense model on the Jetson
Orin Nano compared against a sparse model on the
Loihi 2. See text for explanation.

Latency Energy Throughput

Loihi 2 76 µs 13 µJ 13 178

Orin Nano 3 224 µs 1 936 µJ 3 103

Hardware Implementation To measure the
empirical efficiency benefits afforded by the
sparse S5 model on neuromorphic hardware, we
profile inference on Loihi 2 using the fixed-point
S5 model, in particular, configuration sparse-8
from Figure 2. We also compared to conven-
tional hardware, profiling the dense-3 model on
Jetson Orin Nano1. On the Jetson, we optimize
our implementation to fit the real-time require-
ment of audio denoising. Our sparse model on
Loihi provides a 42× latency improvement, 149× energy reduction and 4× throughput improvement.

4 DISCUSSION

Our work demonstrates that sparse event-driven accelerators, such as neuromorphic processors, can
provide state-of-the-art accuracy on high-frequency signal processing tasks, with orders of magnitude
gains in latency and energy efficiency. This possibility opens up several research directions to further
materialize these gains in real-world applications. In particular, future work should investigate how
the efficiency-performance Pareto front scales up to larger models and more complex tasks, such
as language and multimodal modeling. In this setting, the scalability of multi-chip neuromorphic
processors (Kudithipudi et al., 2025) and high-frequency execution could power the growing need for
large-scale inference compute (Snell et al., 2024).

1Our W8A16 fixed-point model in JAX does not provide a speedup over the FP32 model on the Jetson Orin
Nano, therefore we profile the FP32 model.

4

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

REFERENCES

Steven Abreu, Jens E Pedersen, Kade M Heckel, and Alessandro Pierro. Q-S5: Towards quantized
state space models. International Conference on Machine Learning Workshops, 2024.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Xiangyu Chang, Yingcong Li, Samet Oymak, and Christos Thrampoulidis. Provable Benefits of
Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(8):6974–6983, May 2021. ISSN
2374-3468. doi: 10.1609/aaai.v35i8.16859. URL https://ojs.aaai.org/index.php/
AAAI/article/view/16859. Number: 8.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging
the Lottery: Making All Tickets Winners. In Proceedings of the 37th International Con-
ference on Machine Learning, pp. 2943–2952. PMLR, November 2020. URL https://
proceedings.mlr.press/v119/evci20a.html. ISSN: 2640-3498.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity, June 2022. URL http://arxiv.org/abs/
2101.03961. arXiv:2101.03961 [cs].

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A Survey of Quantization Methods for Efficient Neural Network Inference, June 2021. URL
http://arxiv.org/abs/2103.13630. arXiv:2103.13630 [cs].

Anna Golubeva, Guy Gur-Ari, and Behnam Neyshabur. Are wider nets better given the same
number of parameters? October 2021. URL https://openreview.net/forum?id=
zx8Oka09eF.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 572–585, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization
and initialization of diagonal state space models. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper files/paper/2022/hash/
e9a32fade47b906de908431991440f7c-Abstract-Conference.html.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Xiang Hao, Chenxiang Ma, Qu Yang, Kay Chen Tan, and Jibin Wu. When audio denoising meets
spiking neural network. In 2024 IEEE Conference on Artificial Intelligence (CAI), pp. 1524–1527,
2024. doi: 10.1109/CAI59869.2024.00275.

Simla Burcu Harma, Ayan Chakraborty, Elizaveta Kostenok, Danila Mishin, Dongho Ha, Babak
Falsafi, Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Subramanian, and Amir Yazdanbakhsh.
Effective Interplay between Sparsity and Quantization: From Theory to Practice, January 2025.
URL http://arxiv.org/abs/2405.20935. arXiv:2405.20935 [cs].

Xu Owen He. Mixture of A Million Experts, July 2024. URL http://arxiv.org/abs/
2407.04153. arXiv:2407.04153 [cs].

5

http://arxiv.org/abs/1308.3432
https://ojs.aaai.org/index.php/AAAI/article/view/16859
https://ojs.aaai.org/index.php/AAAI/article/view/16859
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2103.13630
https://openreview.net/forum?id=_zx8Oka09eF
https://openreview.net/forum?id=_zx8Oka09eF
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/e9a32fade47b906de908431991440f7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e9a32fade47b906de908431991440f7c-Abstract-Conference.html
http://arxiv.org/abs/2405.20935
http://arxiv.org/abs/2407.04153
http://arxiv.org/abs/2407.04153

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Oscar Key, Luka Ribar, Alberto Cattaneo, Luke Hudlass-Galley, and Douglas Orr. Approximate
top-k for increased parallelism. CoRR, abs/2412.04358, 2024. doi: 10.48550/ARXIV.2412.04358.
URL https://doi.org/10.48550/arXiv.2412.04358.

Dhireesha Kudithipudi, Catherine Schuman, Craig M. Vineyard, Tej Pandit, Cory Merkel, Rajkumar
Kubendran, James B. Aimone, Garrick Orchard, Christian Mayr, Ryad Benosman, Joe Hays,
Cliff Young, Chiara Bartolozzi, Amitava Majumdar, Suma George Cardwell, Melika Payvand,
Sonia Buckley, Shruti Kulkarni, Hector A. Gonzalez, Gert Cauwenberghs, Chetan Singh Thakur,
Anand Subramoney, and Steve Furber. Neuromorphic computing at scale. Nature, 637(8047):
801–812, January 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08253-8. URL https:
//www.nature.com/articles/s41586-024-08253-8.

Joo Hyung Lee, Wonpyo Park, Nicole Mitchell, Jonathan Pilault, Johan S. Obando-Ceron, Han-
Byul Kim, Namhoon Lee, Elias Frantar, Yun Long, Amir Yazdanbakhsh, Shivani Agrawal,
Suvinay Subramanian, Xin Wang, Sheng-Chun Kao, Xingyao Zhang, Trevor Gale, Aart Bik,
Woohyun Han, Milen Ferev, Zhonglin Han, Hong-Seok Kim, Yann N. Dauphin, Karolina Dz-
iugaite, Pablo Samuel Castro, and Utku Evci. Jaxpruner: A concise library for sparsity re-
search. CoRR, abs/2304.14082, 2023. doi: 10.48550/ARXIV.2304.14082. URL https:
//doi.org/10.48550/arXiv.2304.14082.

Shiwei Liu and Zhangyang Wang. Ten lessons we have learned in the new ”sparseland”: A short
handbook for sparse neural network researchers. CoRR, abs/2302.02596, 2023. doi: 10.48550/
ARXIV.2302.02596. URL https://doi.org/10.48550/arXiv.2302.02596.

Svea Marie Meyer, Philipp Weidel, Philipp Plank, Leobardo Campos-Macias, Sumit Bam Shrestha,
Philipp Stratmann, and Mathis Richter. A diagonal structured state space model on loihi 2 for
efficient streaming sequence processing. arXiv preprint arXiv:2409.15022, 2024.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta, Carlo C del Mundo, Oncel Tuzel,
Golnoosh Samei, Mohammad Rastegari, and Mehrdad Farajtabar. ReLU strikes back: Exploiting
activation sparsity in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=osoWxY8q2E.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications, 9(1):2383, June 2018. ISSN 2041-1723. doi:
10.1038/s41467-018-04316-3. URL https://doi.org/10.1038/s41467-018-04316-
3.

Rishav Mukherji, Mark Schöne, Khaleelulla Khan Nazeer, Christian Mayr, David Kappel, and Anand
Subramoney. Weight sparsity complements activity sparsity in neuromorphic language models.
arXiv preprint arXiv:2405.00433, 2024.

Peter O’Connor and Max Welling. Sigma delta quantized networks. arXiv preprint arXiv:1611.02024,
2016.

Garrick Orchard, Edward Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam
Shrestha, Friedrich T. Sommer, and Mike Davies. Efficient neuromorphic signal processing
with loihi 2. In IEEE Workshop on Signal Processing Systems, SiPS 2021, Coimbra, Portugal,
October 19-21, 2021, pp. 254–259. IEEE, 2021. doi: 10.1109/SIPS52927.2021.00053. URL
https://doi.org/10.1109/SiPS52927.2021.00053.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L. Smith. Universality
of linear recurrences followed by non-linear projections: Finite-width guarantees and benefits
of complex eigenvalues. In ICML, 2024. URL https://openreview.net/forum?id=
47ahBl70xb.

6

https://doi.org/10.48550/arXiv.2412.04358
https://www.nature.com/articles/s41586-024-08253-8
https://www.nature.com/articles/s41586-024-08253-8
https://doi.org/10.48550/arXiv.2304.14082
https://doi.org/10.48550/arXiv.2304.14082
https://doi.org/10.48550/arXiv.2302.02596
https://openreview.net/forum?id=osoWxY8q2E
https://doi.org/10.1038/s41467-018-04316-3
https://doi.org/10.1038/s41467-018-04316-3
https://doi.org/10.1109/SiPS52927.2021.00053
https://openreview.net/forum?id=47ahBl70xb
https://openreview.net/forum?id=47ahBl70xb

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Sumit Bam Shrestha, Jonathan Timcheck, Paxon Frady, Leobardo Campos-Macias, and Mike Davies.
Efficient video and audio processing with loihi 2. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 13481–13485. IEEE,
2024a.

Sumit Bam Shrestha, Jonathan Timcheck, Paxon Frady, Leobardo Campos-Macias, and Mike
Davies. Efficient Video and Audio Processing with Loihi 2. In ICASSP 2024 - 2024
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
13481–13485, April 2024b. doi: 10.1109/ICASSP48485.2024.10448003. URL https:
//ieeexplore.ieee.org/abstract/document/10448003.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space lay-
ers for sequence modeling. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=Ai8Hw3AXqks.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.48550/
ARXIV.2408.03314. URL https://doi.org/10.48550/arXiv.2408.03314.

Jonathan Timcheck, Sumit Bam Shrestha, Daniel Ben Dayan Rubin, Adam Kupryjanow, Garrick
Orchard, Lukasz Pindor, Timothy Shea, and Mike Davies. The intel neuromorphic dns challenge.
Neuromorphic Computing and Engineering, 3(3):034005, aug 2023. doi: 10.1088/2634-4386/
ace737. URL https://dx.doi.org/10.1088/2634-4386/ace737.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. CoRR,
abs/1804.03209, 2018. URL http://arxiv.org/abs/1804.03209.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer Quantization
for Deep Learning Inference: Principles and Empirical Evaluation, April 2020. URL http:
//arxiv.org/abs/2004.09602. arXiv:2004.09602 [cs, stat].

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural
Machine Translation System: Bridging the Gap between Human and Machine Translation, October
2016. URL http://arxiv.org/abs/1609.08144. arXiv:1609.08144 [cs].

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=Sy1iIDkPM.

7

https://ieeexplore.ieee.org/abstract/document/10448003
https://ieeexplore.ieee.org/abstract/document/10448003
https://openreview.net/pdf?id=Ai8Hw3AXqks
https://openreview.net/pdf?id=Ai8Hw3AXqks
https://doi.org/10.48550/arXiv.2408.03314
https://dx.doi.org/10.1088/2634-4386/ace737
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/2004.09602
http://arxiv.org/abs/2004.09602
http://arxiv.org/abs/1609.08144
https://openreview.net/forum?id=Sy1iIDkPM

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A APPENDIX

+ ⊗ +

R
eL

U

+
+

Host

B
at

ch
N

o
rm

d
ia

g(
ഥ 𝐷

)

𝑊
𝜏

S
ig

m
o

id

D
ec

o
d

er

re
al

(
ҧ

𝐶
)

R
eL

U

im
ag

(
ҧ

𝐶
)

im
ag

(
ത 𝐵

)
re

al
(

ത 𝐵
)

R
eL

U

diag(𝐴)

diag(𝐴)

re
al

(𝑥
)

im
ag

(𝑥
)

R
eL

U
R

eL
U

× 𝑁𝑙𝑎𝑦𝑒𝑟𝑠

Weight matrix

Activation funcs., regularization, normalization

Input Accumulator

Spike output

Recurrent state

Loihi 2 neuron
Ethernet

E
n
co

d
er

Figure 4: Diagram of S5 as implemented on Loihi 2. To leverage the neuromorphic hardware archi-
tecture, several adjustments are made in comparison to the original S5 model: First, complex numbers
are split into real and complex components for processing. Second, ReLUs are introduced to increase
activation sparsity. Third, multiple element-wise operations are fused into single neuromorphic
neurons. Symbols are shown as defined in Section 2.

A.1 EFFECTIVE MACS COMPUTATION FOR S5 ARCHITECTURE

In this section, we detail the computation of effective multiply-accumulate operations (MACs)
for different components of the S5 architecture. The total MAC count provides an estimate of
the computational cost associated with each stage of the model. Below, we outline the individual
contributions from key components of the architecture. The effective MACs for all model sizes–sparse
and dense–in Figure Figure 2 are calculated based on the formulas below, summed over the entire
network structure.

Notation:

• Ninput: Input dimension
• Nmodel: Model dimension for activations outside of the linear RNN.
• Nssm: Dimension of the linear RNN’s hidden state.
• Noutput: Output dimension (equal to the number of classes for classification)

• dwgt
x : Density of weights for x

• dact
x : Density of activations for x

where the density d is calculated from the sparsity s as d = 1− s.

Breakdown of MAC Calculation per Component:

• Encoder: The MACs for the encoder depend on the input dimension, model size, and scale
linearly with activation and weight densities:

NinputNmodeld
wgt
encoderd

act
input (3)

• Batch Normalization (BatchNorm): A lightweight operation, requiring only element-wise
scaling, leading to:

Nmodel (4)

8

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

• S5 Hidden Layer: The hidden state update for the S5 model involves both matrix multipli-
cations and element-wise operations:

2NmodelNssmd
wgt
B dact

pre ssm + 4Nssm (5)

• SSM Output Layer: Computes the output transformation of the linear RNN:

2NssmNmodeld
wgt
C dact

hidden +Nmodeld
act
pre ssm (6)

• Gated Linear Unit (GLU): The computation for the GLU involves matrix multiplications
for the dense weight matrix, followed by an element-wise multiplication:

N2
modeld

wgt
GLUd

act
pre GLU +Nmodel (7)

• Classification Head: The final linear projection for classification:

NmodelNoutputd
wgt
headd

act
pre hread (8)

• Regression Head: The regression head follows the same computation as the classification
head:

NmodelNoutputd
wgt
headd

act
pre hread (9)

Numerical operations such as the inverse square-root, sigmoid function, and others, are ignored from
our MAC calculations, as is commonly done when calculating the MACs or floating point operations
(FLOPs) of machine learning models (Evci et al., 2020).

A.2 EXPERIMENTAL DETAILS

Model architecture Our linear RNN is based on the S5 architecture (Smith et al., 2023), as
described in section 2. We use the following dimensions for our base model with width scaling k = 1
(i.e. configuration 4 in Figure 2). We use three layers, the recurrent state vector is xt ∈ R256, we use
a model dimension of 192. Both input and output have dimension 257. The width scaling factors ki
scale the model and recurrent state dimension linearly. In Figure 2, we report results for a k-family of
sparse and densely trained networks where ksparse ∈ [0.5, 3.0], kdense ∈ [0.25, 1.0].

Training recipe We trained all models for 50 epochs with the Adam optimizer. The parameters of
the SSM block were updated with initial learning rate 0.002, while the rest of the architecture used
initial learning rate 0.008 and weight decay 0.04. All learning rates used cosine annealing and no
warmup epochs. The dropout was set to 0.1.

Iterative pruning We adopt iterative magnitude pruning (IMP) for weight sparsity. We train for E
epochs with T update steps in total. Sparsity starts at Si = 0 at ti = 0 and is increased following a
degree-3 polynomial schedule (Zhu & Gupta, 2018) and updated three times per epoch as:

St = Sf − (Sf − Si) ·
(
1− t− ti

tf − ti

)3

with tf = 0.75T . Given the total sparsity St and weights W ℓ
t ∈ RNℓ×Mℓ

at time t and position ℓ in
the network, we scale the sparsity sℓt for each weight according to the Erdös-Renyi-Kernel (ERK)
strategy (Evci et al., 2020; Mocanu et al., 2018) to compute the mask M ℓ

t :

sℓt = st ·
N ℓ +M ℓ

N ℓ ·M ℓ

M ℓ
t = 1

(
|W ℓ

t | ≥ τ ℓt
)

τ ℓt = min
[
TopK

(
|W ℓ

t |, sℓtN ℓM ℓ
)]

where τ ℓt is the calculated threshold for W ℓ
t to reach sparsity sℓt and TopK(W,k) gives the top-k

values from W . In the forward pass, weights are masked as W̄ = M ⊙W , while the backward pass
applies straight-through estimation (Bengio et al., 2013) enabling gradient updates also for masked
weights.

9

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

ReLU-fication . Following previous work on transformer models (Mirzadeh et al., 2024), we start
from the original dense model with GELU non-linearity, as shown in ??, and apply two modifications.
First, we replace the GELU activation with a ReLU, sparsifying pre-activations of the linear layer
in the GLU block. Second, we insert additional ReLU activations after the residual add in the GLU
block and to the real component of the S5 hidden layer, further increasing the pre-activation sparsity
of linear operators. Both model surgeries are applied to the pre-trained model at the beginning of
the iterative pruning procedure, enabling accuracy recovery from both weight and activation pruning
without extra training budget.

Quantization We denote the tensor to be quantized with x and the number of bits to use with n,
such that the quantized tensor x̄n is defined as:

x̄n =

⌊
x

∆x
+ zx

⌉
= ⌊sxx+ zx⌉ (10)

where ⌊·⌉ indicates rounding to the nearest integer, sx is the scale for the given tensor, zx is the zero
point, and ∆x is the corresponding step size. sx = (2n−1 − 1)(max |x|)−1 and zx = 0, i.e., we
use symmetric quantization based on the absolute maximum. Following prior work on quantizing
linear RNNs (Abreu et al., 2024), we choose 8 bit for all weights, except the diagonal recurrent
diag(Ā) weights which is stored with 16 bit. All activations are quantized to 16 bit. We denote this
quantization recipe with W8A16. For the linear RNNs that are deployed to the Loihi 2 chip, we
combine QAT with sparse training.

N-DNS Denoising Task The denoising quality is evaluated with the scale-invariant signal-to-noise
ratio

SI-SNR = 10 log10
∥starget∥2

∥enoise∥2
, (11)

which provides a volume-agnostic measure of audio cleanliness relative to the ground truth signal.
To train our models, we used the default Intel N-DNS Challenge training and validation sets, each
consisting of 60 000 noisy audio samples of 30 s each, and a test set with 12 000 samples. We
encoded and decoded each audio sample using the Short-Time Fourier Transform (STFT) and Inverse
Short-Time Fourier Transformer (iSTFT) following the N-DNS baseline solution, NsSDNet (Shrestha
et al., 2024a), with a 32ms window length and a 8ms hop length. This resulted in a nominal real-time
audio processing latency of 32ms, which allows ample time (8ms) for denosing network inference,
as 40ms is the standard for an acceptable latency as recognized in the Microsoft N-DNS Challenge.

A.3 ADDITIONAL RESULTS

A.3.1 LOIHI EXECUTION MODE

Loihi 2’s asynchronous architecture allows to trade off between throughput and latency, as illustrated
in Figure 5a. For optimal throughput, new input is provided every time step and forwarded through
the neuronal layers in a pipelined mode. For optimal latency, new input is injected only once the
previous input has been processed by, or fallen through, the network as fast as possible. The pipelined
and fall-through mode can be balanced by changing the rate of new input, to match the throughput of
a given input stream while minimizing its processing latency.

As audio denoising is typically deployed in realtime in an online fashion where one STFT input frame
in processed at a time, fall-through mode is appropriate, as one desires a corresponding output STFT
frame immediately.

We see that Loihi 2 processes a single STFT frame 35× faster and with 1200× less energy than the
Jetson Orin Nano (Token-by-token; Loihi 2 Fall-Through and Jetson Orin Nano Recurrent 1-step
(b=1) in Table 2).

10

Published as a paper at ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 2: Power and performance results∗. The Loihi 2 is running a sparse and quantized S5 model,
while the Jetson Orin Nano is running a smaller dense S5 model that reaches similar test performance.
All measurements are averaged over 8 random samples from the test set, each containing 3 750 time
steps. Gray highlights denote violation of real-time constraints for the audio denoising task. Best
real-time results are underlined.

Mode Latency (↓) Energy (↓) Throughput (↑)

Token-by-token
Intel Loihi 2† Fall-Through 76 µs 13 µJ/tok 13 178 tok/s

Jetson Orin Nano‡ Recurrent 1-step (b = 1) 2 688 µs 15 724 µJ/tok 372 tok/s
Jetson Orin Nano‡ Recurrent 10-step (b = 1) 3 224 µs 1 936 µJ/tok 3 103 tok/s
Jetson Orin Nano‡ Recurrent 100-step (b = 1) 10 653 µs 626 µJ/tok 9 516 tok/s
Jetson Orin Nano‡ Recurrent scan (b = 1) 236 717 µs 404 µJ/tok 15 845 tok/s

Sample-by-sample
Intel Loihi 2† Pipeline 60.58ms 185.80mJ/sam 16.58 sam/s

Jetson Orin Nano‡ Scan (b = 1) 233.48ms 1 512.60mJ/sam 4.28 sam/s
Jetson Orin Nano‡ Scan (b = bmax) 226.53ms 5.89mJ/sam 1 130.09 sam/s
† Loihi 2 workloads were characterized on an Oheo Gulch system with N3C1-revision Loihi 2 chips running NxCore 2.5.8 and NxKernel 0.2.0 with

on-chip IO unthrottled sequencing of inputs. Researchers interested to run S5 on Loihi 2 can gain access to the software and systems by joining Intel’s

Neuromorphic Research Community. ‡ Jetson workloads were characterized on an NVIDIA Jetson Orin Nano 8GB running Jetpack 6.2, CUDA 12.4,

JAX 0.4.32, using the MAXN SUPER power mode; energy values are computed based on the TOT power as reported by jtop 4.3.0. The batch size

bmax = 256 was chosen to be the largest that fits into memory. ∗Performance results are based on testing as of January 2025 and may not reflect all

publicly available security updates; results may vary.

𝑡0 𝑡1Input

Layer 0

Layer 2

Layer n

… …

Fall-through mode

𝑡0 𝑡1Input

Layer 0

Layer 2

Layer n

… …

Pipelined mode

𝑡2 𝑡3 𝑡4

Latency

Throughput−1

Latency

Throughput−1

10 20 30 40 50
0

10

20

Step

Ti
m

e
pe

rS
te

p
(µ
s)

Fall-Through Pipelined

Figure 5: (a) Loihi 2 offers two processing modes that optimize either throughput or latency. In
the pipelined mode, a new data point is inserted in each time step, to use all processing cores and
maximize the throughput–at the expense of latency because equal time bins t0 = t1 = . . . are
enforced. In the fall-through mode, a new data points is only provided once the last data point has
been fully processed with minimum latency. Only a single neuronal layer is active at any step as data
travels through the network. The time per step is thus minimized as traffic is reduced and potentially
more complex neuronal layers are not updated. (b) Comparison of execution mode and time per step.

11

	Introduction
	Background
	Experimental Results
	Discussion
	Appendix
	Effective MACs computation for S5 architecture
	Experimental Details
	Additional Results
	Loihi execution mode

