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Abstract Bayesian optimization of function networks (BOFN) is a framework for optimizing expensive- 5

to-evaluate objective functions structured as networks, where some nodes’ outputs serve 6

as inputs for others. Many real-world applications, such as manufacturing and drug dis- 7

covery, involve function networks with additional properties—nodes that can be evaluated 8

independently and incur varying costs. A recent BOFN variant, p-KGFN, leverages this 9

structure and enables cost-aware partial evaluations, selectively querying only a subset of 10

nodes at each iteration. However, despite its effectiveness, p-KGFN suffers from computa- 11

tional inefficiency due to its formulation that requires solving nested optimizations with a 12

Monte Carlo-based objective function and the increasing number of acquisition function 13

optimizations as the network size grows. To address this, we propose an accelerated p-KGFN 14

algorithm that reduces computational overhead by considering a single acquisition function 15

problem per iteration. This approach first generates candidate inputs for the entire network 16

and leverages simulated intermediate outputs to form node-specific candidates. Experiments 17

on benchmark problems show that our method maintains competitive performance while 18

achieving up to a 16× speedup over existing BOFN methods. 19

1 Introduction 20

Bayesian Optimization (BO) (Jones et al., 1998; Frazier, 2018) stands out as a robust and efficient 21

method for solving optimization problems of the form 𝑥∗ ∈ argmax𝑥∈X 𝑓 (𝑥), where the objective 22

function 𝑓 (𝑥) is a time-consuming-to-evaluate derivative-free black-box function. 23

Starting with an initial set of 𝑛 observations 𝐷𝑛 = {(𝑥𝑖 , 𝑓 (𝑥𝑖)}𝑛𝑖=1, BO builds a surrogate model 24

approximating the objective function 𝑓 (𝑥). It then employs an acquisition function 𝛼𝑛 (𝑥), derived 25

from the surrogate model, that quantifies the value of evaluating 𝑓 (𝑥) at a new input point 𝑥 . 26

BO optimizes this acquisition function to choose the next input point 𝑥 at which to evaluate the 27

objective function. Once this point is evaluated, the newly obtained data is incorporated into the 28

observation set and the process iterates until an evaluation budget is exhausted. 29

The BO framework has demonstrated remarkable success across a broad spectrum of real-world 30

applications, including hyperparameter optimization in machine learning (Snoek et al., 2012), 31

materials design (Frazier and Wang, 2016), model calibration (Sha et al., 2020), agricultural planning 32

(Cosenza et al., 2022), and manufacturing processes (Deneault et al., 2021). 33

While treating the objective function as a black box makes BO easy to apply, recently emerging 34

grey-box BO methods (Astudillo and Frazier, 2021b) aim to accelerate optimization by exploiting 35

side information produced during objective function evaluations and by modifying the objective 36

function evaluation itself. 37

Bayesian optimization of function networks (BOFN) (Astudillo and Frazier, 2019, 2021a) is a 38

leading grey-box BO approach. BOFN considers objective functions 𝑓 (𝑥) that are compositions of 39

two or more black-box functions, as in Figure 1. Such compositions are called function networks 40

and are described with a directed acyclic graph (DAG) where each node in the graph is a function 41

and each edge is an input or output to/from a function. Function networks appear in real-world 42

applications such as epidemic model calibration (Garnett, 2002), robotic control (Plappert et al., 43
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2018) and solar cell production (Kusakawa et al., 2022). BOFN builds surrogates for these individual 44

constituent functions by observing inputs and outputs (so-called intermediate outcomes) obtained 45

during objective function evaluations. It then uses this extra information to guide the selection of 46

points to evaluate, accelerating optimization. 47
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Figure 1: An example of an objective function modeled as a function network. The objective function’s

input is the vector𝑥 ∈ X comprised of three variables: 𝑥1, 𝑥2 and𝑥3. The objective is evaluated

by evaluating individual functions 𝑓1, 𝑓2 and 𝑓3 (shown as nodes in a directed acyclic graph) on

their inputs (shown as edges in the graph). Its value is 𝑓 (𝑥) = 𝑦3 (𝑥) = 𝑓3 (𝑓1 (𝑥1), 𝑓2 (𝑥2), 𝑥3).

In the BOFN framework, Buathong et al. (2024) recently showed that optimization can be 48

further accelerated by intelligently performing partial evaluations, i.e. evaluating only some of 49

the functions in the function network in each iteration. In many applications, a partial evaluation 50

is less time consuming than a full objective function evaluation and yet can provide high-value 51

information. Using Figure 1 as an example, to optimize the final output 𝑦3, one might evaluate 52

𝑓1 at an input 𝑥1 and observe 𝑦1 = 𝑓1(𝑥1). This observation might suggest that 𝑥1 is promising 53

(if, for example, 𝑦1 is large and our posterior suggests 𝑓3 is increasing in 𝑦1), in which case one 54

might decide to evaluate 𝑓3 at 𝑦1 and some other previously-observed promising value for 𝑦2. Or, 55

if the observation suggests that 𝑥1 is not promising, we might evaluate 𝑓1 at a different input. 56

Buathong et al. (2024) proposes an acquisition function, called the knowledge-gradient method for 57

function networks with partial evaluations (p-KGFN), that guides the choice of individual functions 58

to evaluate and the inputs at which to evaluate them by considering the value of the information 59

obtained per unit evaluation cost. 60

While the p-KGFN acquisition function significantly reduces the time spent on objective function 61

evaluation compared to previous BOFN and classical BO approaches, the acquisition function itself 62

is time-consuming to evaluate and optimize. This makes the approach only useful in problems 63

where the cost of objective function evaluation is so high that it outweighs the computational costs 64

of acquisition function optimization, limiting its applicability. A key computational bottleneck is 65

that computing p-KGFN requires solving a nested optimization problem with a Monte Carlo-based 66

objective function over a mixed discrete/continuous search space: the set of nodes in the function 67

network and their continuous vector-valued inputs. 68

To overcome this challenge and accelerate optimization across amuch broader range of problems, 69

we develop a fast-to-compute acquisition function, called Fast p-KGFN, that provides much of 70

the benefit of p-KGFN at a fraction of the computational cost. Unlike the original p-KGFN, our 71

approach avoids the need to solve a nested optimization problem. Instead, it uses a novel approach 72

to identify a promising set of candidate measurements — candidate nodes and inputs at which 73

to evaluate them. It then uses a novel approach for quickly evaluating the p-KGFN acquisition 74

function for each candidate. 75

After introducing our new Fast p-KGFN approach, we validate the proposed algorithm perfor- 76

mance across several test problems, demonstrating that it achieves comparable optimization results 77

while significantly accelerating the original p-KGFN. 78
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2 Problem Setting 79

We now formally describe function networks. Our presentation follows Astudillo and Frazier 80

(2021a) and Buathong et al. (2024). We consider a sequence of functions 𝑓1, 𝑓2, . . . , 𝑓𝐾 corresponding 81

to nodes V = {1, 2, . . . , 𝐾} in a DAG, 𝐺 = (V, E). If an edge (𝑖, 𝑗) appears in the DAG ((𝑖, 𝑗) ∈ E), 82

this indicates that function 𝑖 produces output that is consumed as input by function 𝑗 . For simplicity, 83

we assume each 𝑓𝑖 produces scalar output though our approach generalizes easily to vector outputs. 84

Let J (𝑘) = { 𝑗 : ( 𝑗, 𝑘) ∈ 𝐸} denote the set of parent nodes of node 𝑘 , where 𝑗 is said to be a 85

parent node of 𝑘 if 𝑘 consumes input produced as output from 𝑗 . We assume that nodes are ordered 86

such that 𝑗 < 𝑘 for all 𝑗 ∈ J (𝑘). We suppose that there is an external input to the function network, 87

indicated by 𝑥 and taking values in X ⊆ R𝑑 . The output from the function network, and thus the 88

objective function value, is determined by 𝑥 . Let I (𝑘) ⊆ {1, . . . , 𝑑} be the set of components of 𝑥 89

that are taken as input by function 𝑓𝑘 . 90

With these definitions, the output at node 𝑓𝑘 when the input to the function network is 𝑥 is 91

given by a recursive formula: 92

𝑦𝑘 (𝑥) = 𝑓𝑘 (𝑦J (𝑘 ) (𝑥), 𝑥I (𝑘 ) ), ∀𝑘 = 1, . . . , 𝐾, (1)

where 𝑦J (𝑘 ) (𝑥) denotes a vector of outputs from node 𝑘’s parent nodes, i.e. 𝑦J (𝑘 ) (𝑥) = 93

[𝑦 𝑗 (𝑥)] 𝑗∈J (𝑘 ) , and 𝑥I (𝑘 ) = [𝑥𝑖]𝑖∈I (𝑘 ) are the external inputs to node 𝑘 . We group the two types of 94

inputs to 𝑓𝑘 , 𝑦J (𝑘 ) (𝑥) and 𝑥I (𝑘 ) , into a single vector 𝑧𝑘 . Then, the set of possible inputs to node 𝑘 95

is Z𝑘 = YJ (𝑘 ) × XI (𝑘 ) where YJ (𝑘 ) represents the set of all possible values for the parent nodes’ 96

outputs and XI (𝑘 ) denotes the set of possible values for 𝑥I (𝑘 ) . 97

Our goal is to adaptively choose nodes 𝑘 and associated inputs 𝑧𝑘 to learn a near-optimal input 98

𝑥 to the function network that maximizes the output at the final node 𝑦𝐾 (𝑥). For each node 𝑘 , 99

we assume an associated positive evaluation cost function 𝑐𝑘 (·), and the learning task should be 100

accomplished while minimizing the cumulative evaluation cost. 101

Buathong et al. (2024) allowed a restriction on the nodes and inputs evaluated that arises in 102

some applications. In this restriction, when evaluating a function node 𝑓𝑘 at input that includes 103

node output 𝑦J (𝑘 ) , it is necessary to first provide parent node evaluations that produce this output. 104

We do not consider this restriction here, though we believe that our approach can be extended 105

to applications where this restriction holds. Instead, for each 𝑘 , we assume that a set containing 106

YJ (𝑘 ) is known and that 𝑓𝑘 can be evaluated at any input in this set. This set containing YJ (𝑘 ) 107

could simply be R |J (𝑘 ) | or it could be some strict subset. 108

3 Existing Methods 109

We now present existing methods relevant to our method, focusing on Astudillo and Frazier (2021a) 110

and Buathong et al. (2024). We first present the approach to inference proposed in Astudillo and 111

Frazier (2021a) and used in Buathong et al. (2024), and which we also use. We then present two 112

acquisition functions that we build on in our work. 113

Inference. To perform inference, Astudillo and Frazier (2021a) proposes to model each function 114

𝑓𝑘 with an independent Gaussian process (GP) (Williams and Rasmussen, 2006). This is tractable 115

because our data is acquired as a collection of input/output pairs for each node 𝑘 , D𝑛𝑘 (𝑛),𝑘 = 116

{(𝑧𝑖,𝑘 , 𝑦𝑖,𝑘 )}𝑛𝑘 (𝑛)𝑖=1
, where 𝑛𝑘 (𝑛) is the number observations at node 𝑘 after the total of 𝑛 evaluations. 117

For simplicity, we will suppress the explicit dependency on𝑛 andwill use the notation𝑛𝑘 throughout 118

the manuscript. With data acquired in this way, the resulting posterior distributions on 𝑓1, . . . , 𝑓𝑘 119

remain conditionally independent GPs. We let 𝜇𝑛,𝑘 (·) and Σ𝑛,𝑘 (·, ·) denote the posterior mean and 120

kernel associated with the GP on 𝑓𝑘 given D𝑛𝑘 ,𝑘 at the time when a total of 𝑛 evaluations have been 121

performed. 122
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Algorithm 1 Proposed Algorithm

Input:
The network DAG; Observation set D𝑛 ; 𝑐𝑘 (·), the evaluation cost function for node 𝑘 , 𝑘 = 1, . . . , 𝐾 ;

𝐵, the total evaluation budget; 𝜇𝑛,𝑘 and 𝜎𝑛,𝑘 , the mean and standard deviation of the GP for node

𝑘, 𝑘 = 1, . . . , 𝐾 (fitted using initial observations D𝑛);
Output: the point with the largest posterior mean at the final function node

1: 𝑏 ← 0

2: while 𝑏 < 𝐵 do
3: Generate an EIFN network candidate 𝑥𝑛 by solving Eq. (2)

4: Sample a realization function
ˆ𝑓𝑘 from a GP at node 𝑘 , ∀𝑘 = 1, . . . , 𝐾

5: Construct a network realization
ˆ𝑓 by combining

ˆ𝑓𝑘 , ∀𝑘 = 1, . . . , 𝐾 according to the DAG

6: Compute intermediate output 𝑦𝑘 (𝑥𝑛) by a recursive formula similar to Eq. (1).

7: Construct a node-specific input 𝑧𝑛,𝑘 = (𝑦J (𝑘 ) (𝑥), 𝑥I (𝑘 ) ), ∀𝑘 = 1, . . . , 𝐾

8: Construct a discrete set A using Thompson sampling and local point methods.

9: Evaluate a p-KGFN value, 𝛼𝑛,𝑘 (𝑧𝑛,𝑘 ), in Eq. (4) with using the discrete set A, ∀𝑘 = 1, . . . , 𝐾

10: Select
ˆ𝑘 ← argmax𝑘=1,...,𝐾 𝛼𝑛,𝑘 (𝑧𝑛,𝑘 )

11: Obtain the resulting evaluation 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘 )
12: Update the GP model for node

ˆ𝑘 with the additional observation (𝑧
𝑛, ˆ𝑘
, 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘 ))

13: Update budget 𝑏 ← 𝑏 + 𝑐 ˆ𝑘 (𝑧𝑛, ˆ𝑘 ) and iteration 𝑛 ← 𝑛 + 1
14: end while
return argmax𝑥∈X 𝜈𝑛 (𝑥) the maximum value of the posterior mean at the final node output

Let D𝑛 = ∪𝐾
𝑘=1

D𝑛𝑘 ,𝑘 be the combined observation set. The conditionally independent GP 123

posterior distributions over 𝑓1, . . . , 𝑓𝐾 givenD𝑛 further induce a posterior distribution over the final 124

node output 𝑦𝐾 (·). However, due to its compositional network structure, this induced posterior 125

distribution of 𝑦𝐾 (·) is not Gaussian. 126

The EIFN Acquisition Function. Using the statistical model above, Astudillo and Frazier (2021a), 127

proposed the EIFN acquisition function to select a candidate 𝑥𝑛 ∈ X at which to evaluate the entire 128

function network. For example, this 𝑥𝑛 in the Figure 1 example is a 3-dimensional input tuple 129

𝑥𝑛 = (𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3). We refer to such evaluations of the entire function network as full evaluations, 130

in contrast with our focus in this paper on partial evaluations. We introduce EIFN because we will 131

use it as a tool in our approach. 132

To define the EIFN acquisition function, define 𝑦∗
𝑛,𝐾

= max𝑖=1,...,𝑛𝐾 𝑦𝐾 (𝑥𝑖) as the current best 133

observed value at the final node given D𝑛 . The EIFN at a proposed point 𝑥 is the expected 134

improvement of 𝑦𝐾 (𝑥) over the current 𝑦∗𝑛,𝐾 under the current posterior. Specifically, 135

EIFN𝑛 (𝑥) = E𝑛 [(𝑦𝐾 (𝑥) − 𝑦∗𝑛,𝐾 )+ |D𝑛], (2)

where (𝑎)+ = max{0, 𝑎}. The candidate selected is 𝑥𝑛 ∈ argmax𝑥∈X EIFN𝑛 (𝑥). 136

The p-KGFNAcquisition Function. Buathong et al. (2024) introduced the cost-aware knowledge gra- 137

dient for function networks with partial evaluations (p-KGFN) acquisition function. This acquisition 138

function proposes an individual candidate node 𝑘 and an associated input 𝑧𝑘 ∈ Z𝑘 . 139

To define p-KGFN, let 𝜈𝑛 (𝑥) = E𝑛 [𝑦𝐾 (𝑥) |D𝑛] be the posterior mean of the final node’s output 140

evaluated at network input 𝑥 and define the maximum value of this current posterior mean function 141

𝜈∗𝑛 = max

𝑥∈X
𝜈𝑛 (𝑥), (3)
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as the current solution quality. At each BO iteration, p-KGFN loops through all function nodes and 142

proposes a candidate 𝑧𝑛,𝑘 that solves: 𝑧𝑛,𝑘 ∈ argmax𝑧𝑘 ∈Z𝑘 𝛼𝑛,𝑘 (𝑧𝑘 ), where 143

𝛼𝑛,𝑘 (𝑧𝑘 ) =
E𝑦𝑘 (𝑧𝑘 ) [𝜈∗𝑛+1 |𝑧𝑘 , 𝑦𝑘 (𝑧𝑘 )] − 𝜈∗𝑛

𝑐𝑘 (𝑧𝑘 )
. (4)

The p-KGFN method proposes a node-specific candidate 𝑧𝑛,𝑘 that maximizes the the expected 144

improvement of the solution quality per unit evaluation cost. Then the p-KGFN compares these 145

node-specific candidates and selects the node
ˆ𝑘 ∈ argmax𝑘=1,...,𝐾 𝛼𝑛,𝑘 (𝑧𝑛,𝑘 ) to evaluate at its corre- 146

sponding input 𝑧
𝑛, ˆ𝑘

. 147

The p-KGFN acquisition function is challenging to optimize because it is defined by a complex 148

nested expectation. Specifically, it is the expectation with respect to an unknown observation, 149

𝑦𝑘 (𝑧𝑘 ), over the value of a random maximization problem. This maximization problem is itself 150

challenging to evaluate because its objective function 𝜈𝑛 (𝑥) = E𝑛 [𝑦𝐾 (𝑥) |D𝑛] is an expectation (un- 151

der the updated posterior given 𝑦𝑘 (𝑧𝑘 )). These expectations do not have analytical expressions and 152

must be evaluated using Monte Carlo. Furthermore, because p-KGFN is node-specific, generating 153

candidates for each node requires solving separate p-KGFN optimization problems for each node, 154

further compounding the computational challenges. 155

4 Our Method 156

With the challenge of optimizing the p-KGFN acquisition function in mind from the previous 157

section, we introduce in this section a significantly faster-to-optimize acquisition function, Fast 158

p-KGFN, that uses significantly less compute than the original p-KGFN while still providing a 159

similar ability to find good solutions to the original optimization problem using a small number of 160

low-cost partial evaluations. 161

This Fast p-KGFN consists of two key innovative components: (1) fast candidate generation 162

that reduces a complex search over continuous node inputs to simply evaluating the acquisition 163

function on a small discrete set; and (2) fast acquisition function computation, which enables 164

efficient selection of the enumerated point from (1) with the best p-KGFN value. At each iteration, 165

the method requires solving only one continuous optimization problem, and this continuous 166

problem uses an objective function that is significantly more tractable than the original p-KGFN. 167

Algorithm 1 outlines the complete procedure described in this section. 168

4.1 Fast Candidate Generation 169

To generate node-specific candidates as inputs for each node in the network, our Fast p-KGFN 170

algorithm follows these steps. In each iteration, given a DAG representing the function network and 171

initial combined observation set D𝑛 , the proposed Fast p-KGFN first fits the posterior distribution 172

for 𝑦𝐾 , induced by the conditional posterior distributions of 𝑓1, . . . , 𝑓𝐾 . Next, it optimizes the EIFN 173

acquisition function defined in Eq. (2) from the fitted model to obtain a network candidate 𝑥𝑛 . For 174

example, in Figure 1, a network candidate takes the form 𝑥𝑛 = (𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3). 175

The proposed algorithm then draws a realization
ˆ𝑓𝑘 of each function 𝑓𝑘 from its GP posterior 176

and combines these sampled functions according to the DAG structure to construct a realization 177

of all node outputs at the network candidate, 𝑦𝑘 (𝑥𝑛) using a recursive formula similar to Eq. (1). 178

In Figure 1, this step yields the two intermediate outputs 𝑦1(𝑥𝑛) and 𝑦2(𝑥𝑛), corresponding to 179

evaluations of the sampled function
ˆ𝑓1 at 𝑥𝑛,1 and ˆ𝑓2 at 𝑥𝑛,2, respectively. 180

Finally, for each function node 𝑓𝑘 , the algorithm constructs node-specific candidates 𝑧𝑛,𝑘 = 181

(𝑦J (𝑘 ) (𝑥𝑛), 𝑥𝑛,I (𝑘 ) ) by concatenating the EIFN-generated candidate components 𝑥𝑛,I (𝑘 ) with the 182

simulated intermediate outcomes from the parent nodes 𝑦J (𝑘 ) (𝑥𝑛). 183

For example, in Figure 1, node-specific candidates take the form 𝑧𝑛,1 = 𝑥𝑛,1, 𝑧𝑛,2 = 𝑥𝑛,2 and 184

𝑧𝑛,3 = (𝑦1(𝑥𝑛), 𝑦2(𝑥𝑛), 𝑥𝑛,3) to be proposed to evaluate at function nodes 𝑓1, 𝑓2 and 𝑓3, respectively. 185
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Figure 2: Function networks in the numerical experiments: (a) AckMat (b) FreeSolv and (c) Manu

The p-KGFN acquisition function will then be evaluated for each of these finitely many candi- 186

dates to identify the one with the largest acquisition function value. To perform this evaluation 187

quickly despite the fact that evaluation requires a nested expectation, we leverage a novel tech- 188

nique described below in Section 4.2. The node
ˆ𝑘 with the highest p-KGFN value is then selected 189

for evaluation at the selected input 𝑧
𝑛, ˆ𝑘

. The resulting data point (𝑧
𝑛, ˆ𝑘
, 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘 )) is added to the 190

observation set D𝑛 . This process is repeated iteratively until the evaluation budget is depleted. 191

4.2 Fast Acquisition Function Computation 192

This section describes an improved approach for computing the p-KGFN acquisition function, 193

which is used as described above in Section 4.1. 194

Specifically, evaluating the pKGFN acquisition function requires approximating the solutions 195

of the posterior mean optimization problems: 𝜈∗𝑛 = max𝑥∈X 𝜈𝑛 (𝑥) and 𝜈∗𝑛+1 = max𝑥∈X 𝜈𝑛+1(𝑥). To 196

expedite these optimizations, rather than solving them over X , the discretization method solves 197

them over a smaller discrete set A which is designed to include high-potential solutions. Buathong 198

et al. (2024) proposed two approaches for generating this discrete set A, i.e. (1.) a Thompson 199

sampling-based approach and (2.) local point sampling. 200

We improve the Thompson sampling-based approach with the following novel strategy. Instead

of randomly sampling 𝑁𝑇 realizations of the function network from its posterior and optimizing

each independently to obtain 𝑁𝑇 maximizers for inclusion in A, we draw 𝑀 ≥ 𝑁𝑇 realizations

from the posterior function network, denoted
ˆ𝑓 A𝑗 (the superscript A distinguishes this from the

realizations
ˆ𝑓𝑘 mentioned earlier in Section 4.1 sampled to construct a network realization

ˆ𝑓 used

to generate node-specific candidates). Then, we use the sampled realizations together to produce a

set 𝑆𝑁𝑇 containing 𝑁𝑇 potential discrete points as follow:

S𝑁𝑇 ∈ argmax

S⊂X𝑁𝑇

1

𝑀

𝑀∑︁
𝑗=1

max

𝑥∈S
ˆ𝑓 A𝑗 (𝑥) .

This method can be interpreted as a batch Thompson sampling approach, producing a diverse batch 201

of potential solutions for the posterior mean problems. This joint optimization problem offers a 202

faster runtime than optimizing the network realizations individually as in the original p-KGFN. 203

For local point sampling, we follow the random sampling implementation in Buathong et al. 204

(2024) to generate a set S𝐿 of 𝑁𝐿 local points around the point 𝑥∗𝑛 , the maximizer of the current 205

network posterior mean function. A local point 𝑥 ∈ X is defined as one satisfying 𝑑 (𝑥, 𝑥∗𝑛) ≤ 206

𝑟 max𝑖=1,...,𝑑 (𝑏𝑖 − 𝑎𝑖), where 𝑎𝑖 and 𝑏𝑖 are the lower and upper bounds of the input of dimension 207

𝑖𝑡ℎ and 𝑟 is a positive hyperparameter. The discrete set is constructed as A = S𝑇 ∪ S𝐿 and is used 208

instead of the original search space X in solving optimization problems 𝜈∗𝑛 and 𝜈
∗
𝑛+1. 209

4.3 Node Selection 210

After evaluating the p-KGFN candidates (nodes and input values) from Section 4.1 using discretiza- 211

tion approach from Section 4.2, the node
ˆ𝑘 with the highest p-KGFN value is then selected for 212

6



0 200 400 600
1.0

0.8

0.6

0.4

0.2

0.0
(a) AckMat c1 = 1, c2 = 49

0 200 400 600
10

15

20

25

(b) FreeSolv c1 = 1, c2 = 49

0 200 400 600

2.0

1.8

1.6

1.4

1.2

1.0
(c) Manu c1 = 5, c2 = 10, c3 = 10, c4 = 45

Cost
y K

(x
* n
)

p-KGFN
Fast p-KGFN (Our Method)

EIFN
TSFN

EI
Random

KG
KGFN
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Figure 4: Cost sensitivity analysis for AckMat (Top row) and FreeSolv (Bottom row) problem with

different costs (a) 𝑐1 = 1, 𝑐2 = 1; (b) 𝑐1 = 1, 𝑐2 = 9; and (c) 𝑐1 = 1, 𝑐2 = 49.

evaluation at the selected input 𝑧
𝑛, ˆ𝑘

. The resulting data point (𝑧
𝑛, ˆ𝑘
, 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘 )) is added to the ob- 213

servation set D𝑛 . This process is repeated iteratively until the evaluation budget is depleted. The 214

complete procedure is outlined in Algorithm 1. 215

5 Numerical Experiments 216

This section assesses the efficiency of the proposed algorithm described in Section 4, with parameters 217

𝑀 = 𝑁𝑇 = 𝑁𝐿 = 10 and 𝑟 = 0.1 used in the new discretization method. To show that our method 218

provides competitive optimization performance, but offers significantly faster runtime than the 219

original p-KGFN, we consider three test problems previously considered in Buathong et al. (2024): 220

AckMat, FreeSolv and Manu, with structures presented in Figure 2. 221

AckMat is a synthetic two-node cascade network whose structure is commonly found in real- 222

applications, such as multi-stage simulators and inventory problems. Here, we aim to find optimal 223

values of 𝑥 and 𝑥 ′ which yield the highest value of 𝑦2. FreeSolv (Mobley and Guthrie, 2014) is 224

originally a materials design problem whose objective is to find an optimal small molecule 𝑥 whose 225
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Table 1: Runtime on 8-core CPUs comparison of the proposed Fast p-KGFN algorithm, p-KGFN, and

EIFN on AckMat and FreeSolv problems with three cost scenarios and the Manu problem.

The table reports the average runtime (with standard error) over 30 trials and BO courses,

along with the speedup factor indicating how many times faster the proposed algorithm is

compared to p-KGFN (shown in parentheses)

Runtimes (mins per one BO iteration)
Problem p-KGFN EIFN Fast p-KGFN (Our method) (compared to p-KGFN)

(1.a) ActMat 𝑐1 = 1, 𝑐2 = 1 11.24 ± 0.45 2.81 ± 0.32 0.98 ± 0.09 (11.47×)
(1.b) ActMat 𝑐1 = 1, 𝑐2 = 9 11.75 ± 0.54 0.78 ± 0.08 2.77 ± 0.29 (4.24×)
(1.c) ActMat 𝑐1 = 1, 𝑐2 = 49 8.52 ± 0.28 0.69 ± 0.04 1.69 ± 0.15 (5.04×)
(2.a) FreeSolv 𝑐1 = 1, 𝑐2 = 1 5.45 ± 0.38 0.53 ± 0.03 0.34 ± 0.02 (16.03×)
(2.b) FreeSolv 𝑐1 = 1, 𝑐2 = 9 3.98 ± 0.14 1.70 ± 0.19 0.42 ± 0.02 (9.48×)
(2.c) FreeSolv 𝑐1 = 1, 𝑐2 = 49 3.81 ± 0.17 1.00 ± 0.09 0.29 ± 0.02 (13.14×)
(3) Manu 𝑐1 = 5, 𝑐2 = 10, 𝑐3 = 10, 𝑐4 = 45 7.80 ± 0.43 0.52 ± 0.07 1.40 ± 0.10 (5.57×)

negative experimental free energy 𝑦2 is maximized with using a computational energy value 𝑦1 226

as a pre-screen approximation of 𝑦2. The similar network structure can be found in sequential 227

processes. Manu is a problem representing multiple processes happening in the real manufacturing 228

problems. Here, we want to identify the combinations of materials 𝑥 and 𝑥 ′ which yield the highest 229

value of final product 𝑦4. 230

We consider the cost scenarios: 𝑐1 = 1 and 𝑐2 = 49 for AckMat and FreeSolv problems, and 231

𝑐1 = 5, 𝑐2 = 10, 𝑐3 = 10 and 𝑐4 = 45 for Manu problem. The BO evaluation budget is set to 700. We 232

defer the full descriptions of these problems to Appendix A. 233

5.1 Benchmarks and Comparison Metric 234

We evaluate the proposed algorithm’s optimization performance against several baseline methods, 235

including standard Expected Improvement (EI) (Jones et al., 1998; Močkus, 1975), Knowledge 236

Gradient (KG) (Frazier et al., 2008; Wu and Frazier, 2016), and simple random sampling (Random), 237

which do not utilize network structure. Additionally, we compare to EIFN (Astudillo and Frazier, 238

2021a), Thompson Sampling for Function Networks (TSFN), and Knowledge Gradient for Function 239

Networks (KGFN), which exploit network structure but require full evaluations. We also include the 240

original p-KGFN algorithm, which supports partial evaluations and leverages network structure. 241

All algorithms start with the same uniformly sampled 2𝑑 + 1 initial observations, fully evaluated 242

across the network, where 𝑑 is the network dimension. Algorithms proceed until the budget of 243

700 is exhausted. Performance is averaged over 30 trials, each with different initial observations. 244

We report at each iteration the average ground truth value 𝑦𝐾 (𝑥∗𝑛), where 𝑥∗𝑛 ∈ argmax𝑥∈X 𝜈𝑛 (𝑥), 245

with confidence intervals, as in Buathong et al. (2024). Though EI, KG and Random do not leverage 246

network structure in their sampling strategies, this metric is computed using a model that incorpo- 247

rates it. We also report the CPU runtimes of each algorithm to validate our claim that the proposed 248

algorithm is faster than the original p-KGFN. 249

All algorithms are implemented in BoTorch package (Balandat et al., 2020) in Python. 250

Code to reproduce our numerical experiments can be found at the anonymous repository: 251

https://anonymous.4open.science/r/fastpKGFN-E719/README.md. 252

6 Results 253

Figure 3 illustrates the performance of the proposed Fast p-KGFN algorithm compared to various 254

benchmarks on the AckMat (left), FreeSolv (middle), and Manu (right) problems. Among the 255

evaluated methods, all except p-KGFN and the proposed approach require full evaluations. Notably, 256

only EIFN, p-KGFN, and the proposed algorithm incorporate network structure into their sampling 257

strategies. Additionally, both p-KGFN and the proposed method enable partial evaluations, allowing 258

intermediate nodes to be evaluated at any feasible inputs within their known ranges. 259
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Overall, p-KGFN demonstrated the most promising optimization performance, followed closely 260

by the proposed algorithm. This outcome is expected, as p-KGFN fully optimizes the acquisition 261

functions and selects the most promising node-specific candidate at each iteration. While the 262

proposed algorithm also supports partial evaluations, it reuses EIFN candidates, which may slightly 263

reduce candidate quality and lead to a minor performance trade-off. Nevertheless, the proposed 264

method outperforms the original EIFN algorithm, highlighting the benefits of partial evaluations. 265

To further examine the behavior of the proposedmethod, we investigate the impact of evaluation 266

costs. Specifically, we vary the evaluation cost of the second node in the AckMat and FreeSolv 267

problems, considering three settings: (a) 𝑐1 = 𝑐2 = 1, (b) 𝑐1 = 1, 𝑐2 = 9, and (c) 𝑐1 = 1, 𝑐2 = 49. These 268

are with the BO evaluation budgets equal to 50, 150 and 700, respectively. Figure 4 presents the 269

effect of evaluation costs on these problems. The results show that the proposed algorithm behaves 270

similarly to p-KGFN, with the benefits of partial evaluations becoming more pronounced as the 271

second node’s evaluation cost increases. This allows the p-KGFN and the proposed method to 272

find better solutions more efficiently than other competitors. These findings confirm that despite 273

slightly lower-quality node-specific candidates, the proposed algorithm effectively leverages partial 274

evaluations to achieve strong optimization performance. 275

Beyond optimization performance, the proposed algorithm offers significant reduction in 276

computational time to the original p-KGFN. Table 1 summaries the average runtimes on 8-core CPU 277

over 30 trials for all experiments and cost scenarios, focusing exclusively on the proposed algorithm, 278

EIFN, and p-KGFN. The proposed method consistently outperformed p-KGFN in runtime, achieving 279

the fastest improvement in FreeSolv with 𝑐1 = 𝑐2 = 1, where it attained a 16.03× speedup. 280

7 Conclusion 281

In this work, we address the Bayesian optimization of function networks with partial evaluations (p- 282

KGFN), a framework designed for optimizing expensive objective functions structured as function 283

networks, where each node can be queried independently with varying evaluation costs. While 284

p-KGFN has demonstrated significant improvements over traditional approaches by achieving 285

better solutions with lower evaluation budgets, it suffers from high computational overhead due 286

to its reliance on Monte Carlo simulations and the need to solve individual acquisition function 287

problems for node-specific candidate selection in each iteration. 288

To overcome these challenges, we propose a faster variant of p-KGFN that leverages the expected 289

improvement for function networks (EIFN) framework. Instead of solving separate acquisition 290

problems for each node, the proposed method generates a single candidate for the entire network 291

using EIFN and combines it with simulated intermediate outputs from the surrogate model to 292

generate node-specific candidates. A cost-aware selection strategy then determines which node 293

and corresponding input candidate to evaluate at each iteration. 294

We evaluate the efficiency of the proposed method across multiple test problems and cost sce- 295

narios. The results demonstrate that our approach achieves competitive optimization performance 296

compared to p-KGFN while significantly reducing computational time, with the fastest runtime 297

improvement exceeding 16×. 298

Despite these advantages, our method has some limitations. It assumes that intermediate nodes 299

can be evaluated at any feasible input without requiring the outputs of parent nodes in advance, 300

which may limit its applicability in more constrained function network scenarios. Extending the 301

method to handle upstream-downstream dependencies is an important direction for future work. 302

8 Broader Impact Statement 303

After careful reflection and consideration, the authors believe that this work presents no notable 304

negative impacts to the society or the environment. 305
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A Test Problem Descriptions 443

A.1 Problem 1: ActMat 444

We consider a two-node cascade network, as illustrated in Figure 2a. The first node is a Ackley 445

function (Ackley, 2012) that takes a 6-dimensional input 𝑥 as input: 446

𝑓1(𝑥) = −20 exp
©­«−0.2

√√√
1

6

6∑︁
𝑖=1

𝑥2
𝑖

ª®¬ − exp
(
1

6

6∑︁
𝑖=1

cos(2𝜋𝑥𝑖)
)
+ 20 + exp(1),

Each dimension of 𝑥 lies in [−2, 2]. The second node processes the first node output denoted as 𝑦1 447

with an additional parameter 𝑥 ′ ∈ [−10, 10] to produce the final output 𝑦2. We use the negated 448

Matyas function (Jamil and Yang, 2013) for this second node: 449

𝑓2(𝑦1, 𝑥7) = −0.26(𝑦21 + 𝑥27) + 0.48𝑦1𝑥7,

We assume the range of𝑦1 ∈ [0, 20]. This bound is used by p-KGFN algorithm to generate candidates 450

for the second node. 451

The evaluation costs for nodes are set as 𝑐1 = 1 and 𝑐2 = 49. The objective is to find 𝑥 and 𝑥 ′ 452

that maximize the final output 𝑦2. 453

A.2 Problem 2: FreeSolv 454

FreeSolv is a molecular design test case built upon the available data set (Mobley and Guthrie, 455

2014), consisting of calculated and experimental hydration-free energies of 642 small molecules. 456

The problem is constructed as a two-stage function network presented in Figure 2b. Here, the input 457

𝑥 ∈ [0, 1]3 is a continuous representation of small molecule extracted from a variational autoencoder 458

model (Gómez-Bombarelli et al., 2018) and compressed by the principal component analysis. 𝑓1 459

represents a mathematical model that takes input 𝑥 and is used to estimate the negative calculated 460

free energy. The second node represents a wet-lab experiment that takes this calculated energy 461

output as input and returns the negative experimental free energy, a target we aim to maximize. 462

To construct this continuous network optimization problem, two GP models for calculated and 463

experimental energies are separately fitted using all available data and the posterior mean functions 464

of these two GP models are used as the functions 𝑓1 and 𝑓2, respectively. 465

We estimate the range of 𝑦1 from the raw dataset and assume that 𝑦1 ∈ [−5, 30]. Similar to 466

AckMat problem, the evaluation costs are set to be 𝑐1 = 1 and 𝑐2 = 49. 467

A.3 Problem 3: Manufacturing (Manu) 468

A manufacturing problem is constructed as the function network shown in Figure 2c. Each function 469

is drawn from a GP prior with Matérn 5/2 kernels and varying length scale parameters to reflect 470

the different complexities of the individual process. The length scale parameters are 0.631, 1, 1 and 471

3 for 𝑓1, 𝑓2, 𝑓3 and 𝑓4, respectively. The outputscale parameter is set to 0.631 for all functions, except 472

𝑓4 which uses 10. 473

We assume the intermediate outputs’ ranges as follows: 𝑦1 ∈ (−2, 2) and 𝑦2, 𝑦3 ∈ (−1, 1),. The 474

inputs 𝑥 and 𝑥 ′ are constrained to (−1, 1). Evaluation costs are assigned as 𝑐1 = 5, 𝑐2 = 10, 𝑐3 = 10 475

and 𝑐4 = 45. The goal is to determine the optimal pair of raw materials 𝑥 and 𝑥 ′ that maximize the 476

final output 𝑦4. 477
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