
Fast Bayesian Optimization of Function Networks with
Partial Evaluations

Poompol Buathong1 Peter I. Frazier2

1
Center for Applied Mathematics, Cornell University, Ithaca, NY, USA

2
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY,

USA

Abstract Bayesian optimization of function networks (BOFN) is a framework for optimizing expensive-

to-evaluate objective functions structured as networks, where some nodes’ outputs serve as

inputs for others. Many real-world applications, such as manufacturing and drug discovery,

involve function networks with additional properties – nodes that can be evaluated indepen-

dently and incur varying costs. A recent BOFN variant, p-KGFN, leverages this structure and

enables cost-aware partial evaluations, selectively querying only a subset of nodes at each

iteration. p-KGFN reduces the number of expensive objective function evaluations needed

but has a large computational overhead: choosing where to evaluate requires optimizing a

nested Monte Carlo-based acquisition function for each node in the network. To address this,

we propose an accelerated p-KGFN algorithm that reduces computational overhead with

only a modest loss in query efficiency. Key to our approach is generation of node-specific

candidate inputs for each node in the network via one inexpensive global Monte Carlo

simulation. Numerical experiments show that our method maintains competitive query

efficiency while achieving up to a 16× speedup over the original p-KGFN algorithm.

1 Introduction

Bayesian Optimization (BO) (Jones et al., 1998; Frazier, 2018) stands out as a robust and efficient

method for solving optimization problems of the form 𝑥∗ ∈ argmax𝑥∈X 𝑓 (𝑥), where the objective
function 𝑓 (𝑥) is a time-consuming-to-evaluate derivative-free black-box function.

Starting with an initial set of 𝑛 observations 𝐷𝑛 = {(𝑥𝑖 , 𝑓 (𝑥𝑖)}𝑛𝑖=1, BO builds a surrogate model

approximating the objective function 𝑓 (𝑥). It then employs an acquisition function 𝛼𝑛 (𝑥), derived
from the surrogate model, that quantifies the value of evaluating 𝑓 (𝑥) at a new input point 𝑥 .

BO optimizes this acquisition function to choose the next input point 𝑥 at which to evaluate the

objective function. Once this point is evaluated, the newly obtained data is incorporated into the

observation set and the process iterates until an evaluation budget is exhausted.

The BO framework has demonstrated remarkable success across a broad spectrum of real-world

applications, including hyperparameter optimization in machine learning (Snoek et al., 2012),

materials design (Frazier and Wang, 2016), model calibration (Sha et al., 2020), agricultural planning

(Cosenza et al., 2022), formulation design in food science (Khongkomolsakul et al., 2025) and

manufacturing processes (Deneault et al., 2021).

While treating the objective function as a black box makes BO easy to apply, recently emerging

grey-box BO methods (Astudillo and Frazier, 2021b) aim to accelerate optimization by exploiting

side information produced during objective function evaluations and by modifying the objective

function evaluation itself.

Bayesian optimization of function networks (BOFN) (Astudillo and Frazier, 2019, 2021a) is a

leading grey-box BO approach. BOFN considers objective functions 𝑓 (𝑥) that are compositions of

two or more black-box functions, as in Figure 1. Such compositions are called function networks
and are described with a directed acyclic graph (DAG) where each node in the graph is a function

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:pb482@cornell.edu
mailto:pf98@cornell.edu
https://creativecommons.org/licenses/by/4.0/

and each edge is an input or output to/from a function. Function networks appear in real-world

applications such as epidemic model calibration (Garnett, 2002), robotic control (Plappert et al.,

2018) and solar cell production (Kusakawa et al., 2022). BOFN builds surrogates for these individual

constituent functions by observing inputs and outputs (so-called intermediate outcomes) obtained

during objective function evaluations. It then uses this extra information to guide the selection of

points to evaluate, accelerating optimization.

𝑥1 𝑓1

𝑓3

𝑥2 𝑓2

𝑥3

𝑦
1

𝑦2
𝑦3

Figure 1: An example of an objective function modeled as a function network. The objective function’s

input is the vector𝑥 ∈ X comprised of three variables: 𝑥1, 𝑥2 and𝑥3. The objective is evaluated

by evaluating individual functions 𝑓1, 𝑓2 and 𝑓3 (shown as nodes in a directed acyclic graph) on

their inputs (shown as edges in the graph). Its value is 𝑓 (𝑥) = 𝑦3 (𝑥) = 𝑓3 (𝑓1 (𝑥1), 𝑓2 (𝑥2), 𝑥3).

In the BOFN framework, Buathong et al. (2024) recently showed that optimization can be

further accelerated by intelligently performing partial evaluations, i.e. evaluating only some of

the functions in the function network in each iteration. In many applications, a partial evaluation

is less time consuming than a full objective function evaluation and yet can provide high-value

information. Using Figure 1 as an example, to optimize the final output 𝑦3, one might evaluate

𝑓1 at an input 𝑥1 and observe 𝑦1 = 𝑓1(𝑥1). This observation might suggest that 𝑥1 is promising

(if, for example, 𝑦1 is large and our posterior suggests 𝑓3 is increasing in 𝑦1), in which case one

might decide to evaluate 𝑓3 at 𝑦1 and some other previously-observed promising value for 𝑦2. Or,

if the observation suggests that 𝑥1 is not promising, one might evaluate 𝑓1 at a different input.

Buathong et al. (2024) proposes an acquisition function, called the knowledge-gradient method for

function networks with partial evaluations (p-KGFN), that guides the choice of individual functions

to evaluate and the inputs at which to evaluate them by considering the value of the information

obtained per unit evaluation cost.

While the p-KGFN acquisition function significantly reduces the time spent on objective function

evaluation compared to previous BOFN and classical BO approaches, the acquisition function itself

is time-consuming to evaluate and optimize. This makes the approach only useful in problems

where the cost of objective function evaluation is so high that it outweighs the computational costs

of acquisition function optimization, limiting its applicability. A key computational bottleneck is

that computing p-KGFN requires solving a nested optimization problem with a Monte Carlo-based

objective function over a mixed discrete/continuous search space: the set of nodes in the function

network and their continuous vector-valued inputs.

To overcome this challenge and accelerate optimization across amuch broader range of problems,

we develop a fast-to-compute acquisition function, called Fast p-KGFN, that provides much of

the benefit of p-KGFN at a fraction of the computational cost. Unlike the original p-KGFN, our

approach avoids the need to solve a nested optimization problem. Instead, it uses a novel approach

to identify a promising set of candidate measurements – candidate nodes and inputs at which

to evaluate them. It then uses a novel approach for quickly evaluating the p-KGFN acquisition

function for each candidate.

After introducing our new Fast p-KGFN approach, we validate the proposed algorithm perfor-

mance across several test problems, demonstrating that it achieves comparable optimization results

while significantly accelerating the original p-KGFN.

2

2 Problem Setting

We now formally describe function networks. Our presentation follows Astudillo and Frazier

(2021a) and Buathong et al. (2024). We consider a sequence of functions 𝑓1, 𝑓2, . . . , 𝑓𝐾 corresponding

to nodes V = {1, 2, . . . , 𝐾} in a DAG, 𝐺 = (V, E). If an edge (𝑖, 𝑗) appears in the DAG ((𝑖, 𝑗) ∈ E),
this indicates that function 𝑖 produces output that is consumed as input by function 𝑗 . For simplicity,

we assume each 𝑓𝑖 produces scalar output though our approach generalizes easily to vector outputs.

Let J (𝑘) = { 𝑗 : (𝑗, 𝑘) ∈ 𝐸} denote the set of parent nodes of node 𝑘 , where 𝑗 is said to be a

parent node of 𝑘 if 𝑘 consumes input produced as output from 𝑗 . We assume that nodes are ordered

such that 𝑗 < 𝑘 for all 𝑗 ∈ J (𝑘). We suppose that there is an external input to the function network,

indicated by 𝑥 and taking values in X ⊆ R𝑑 . The output from the function network, and thus the

objective function value, is determined by 𝑥 . Let I (𝑘) ⊆ {1, . . . , 𝑑} be the set of components of 𝑥

that are taken as input by function 𝑓𝑘 .

With these definitions, the output at node 𝑓𝑘 when the input to the function network is 𝑥 is

given by a recursive formula:

𝑦𝑘 (𝑥) = 𝑓𝑘 (𝑦J (𝑘) (𝑥), 𝑥I (𝑘)), ∀𝑘 = 1, . . . , 𝐾, (1)

where 𝑦J (𝑘) (𝑥) denotes a vector of outputs from node 𝑘’s parent nodes, i.e. 𝑦J (𝑘) (𝑥) =

[𝑦 𝑗 (𝑥)] 𝑗∈J (𝑘) , and 𝑥I (𝑘) = [𝑥𝑖]𝑖∈I (𝑘) are the external inputs to node 𝑘 . We group the two types of

inputs to 𝑓𝑘 – 𝑦J (𝑘) (𝑥) and 𝑥I (𝑘) – into a single vector 𝑧𝑘 . Then, the set of possible inputs to node

𝑘 is Z𝑘 = YJ (𝑘) × XI (𝑘) where YJ (𝑘) represents the set of all possible values for the parent nodes’
outputs and XI (𝑘) denotes the set of possible values for 𝑥I (𝑘) .

Our goal is to adaptively choose nodes 𝑘 and associated inputs 𝑧𝑘 to learn a near-optimal input

𝑥 to the function network that maximizes the output at the final node 𝑦𝐾 (𝑥). For each node 𝑘 ,

we assume an associated positive evaluation cost function 𝑐𝑘 (·), and the learning task should be

accomplished while minimizing the cumulative evaluation cost.

Buathong et al. (2024) allowed a restriction on the nodes and inputs evaluated that arises in

some applications. In this restriction, when evaluating a function node 𝑓𝑘 at input that includes

node output 𝑦J (𝑘) , it is necessary to first provide parent node evaluations that produce this output.

We do not consider this restriction here, though we believe that our approach can be extended

to applications where this restriction holds. Instead, for each 𝑘 , we assume that a set containing

YJ (𝑘) is known and that 𝑓𝑘 can be evaluated at any input in this set. This set containing YJ (𝑘)
could simply be R |J (𝑘) | or it could be some strict subset. We argue that this setting is common. For

example, in manufacturing, instead of producing an intermediate part with desired properties 𝑦J (𝑘)
in-house, one can order the part from another supplier and combine it with other materials in a

subsequent process. The external supplier might be too expensive to use during regular production

but is acceptable during process development.

3 Existing Methods

We now present existing methods relevant to our method, focusing on Astudillo and Frazier (2021a)

and Buathong et al. (2024). We first present the approach to inference proposed in Astudillo and

Frazier (2021a) and used in Buathong et al. (2024), and which we also use. We then present two

acquisition functions that we build on in our work.

Inference. To perform inference, Astudillo and Frazier (2021a) proposes to model each function

𝑓𝑘 with an independent Gaussian process (GP) (Williams and Rasmussen, 2006). This is tractable

because our data is acquired as a collection of input/output pairs for each node 𝑘 , D𝑛𝑘 (𝑛),𝑘 =

{(𝑧𝑖,𝑘 , 𝑦𝑖,𝑘)}𝑛𝑘 (𝑛)𝑖=1
, where 𝑛𝑘 (𝑛) is the number observations at node 𝑘 after the total of 𝑛 evaluations.

For simplicity, we will suppress the explicit dependency on𝑛 andwill use the notation𝑛𝑘 throughout

the manuscript. With data acquired in this way, the resulting posterior distributions on 𝑓1, . . . , 𝑓𝑘

3

Algorithm 1 Proposed Fast p-KGFN Algorithm

Input:
The network DAG; Observation set D𝑛 ; 𝑐𝑘 (·), the evaluation cost function for node 𝑘 , 𝑘 = 1, . . . , 𝐾 ;

𝐵, the total evaluation budget; 𝜇𝑛,𝑘 and 𝜎𝑛,𝑘 , the mean and standard deviation of the GP for node

𝑘, 𝑘 = 1, . . . , 𝐾 (fitted using initial observations D𝑛);
Output: the point with the largest posterior mean at the final function node

1: 𝑏 ← 0

2: while 𝑏 < 𝐵 do
3: Identify the maximizer of the current network posterior mean function 𝑥∗𝑛 ∈

argmax𝑥∈X 𝜈𝑛 (𝑥) and the current solution quality 𝜈∗𝑛 ;
4: Generate an EIFN network candidate 𝑥𝑛 by solving Eq. (2) with replacing 𝑦∗

𝑛,𝐾
by 𝜈∗𝑛 ;

5: Sample a realization function
ˆ𝑓𝑘 from a GP at node 𝑘 , ∀𝑘 = 1, . . . , 𝐾 ;

6: Compute intermediate output𝑦𝑘 (𝑥𝑛) using a recursive formula in Eq. (1) and DAG structure;

7: Construct a node-specific input 𝑧𝑛,𝑘 = (𝑦J (𝑘) (𝑥𝑛), 𝑥𝑛,I (𝑘)), ∀𝑘 = 1, . . . , 𝐾 ;

8: Construct a discrete set A that includes points from the novel batch-Thompson sampling

and local point methods and the current maximizer 𝑥∗𝑛 ;
9: Evaluate a p-KGFN value, 𝛼𝑛,𝑘 (𝑧𝑛,𝑘), in Eq. (4) with using the discrete set A, ∀𝑘 = 1, . . . , 𝐾 ;

10: Select
ˆ𝑘 ← argmax𝑘=1,...,𝐾 𝛼𝑛,𝑘 (𝑧𝑛,𝑘);

11: Obtain the resulting evaluation 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘);
12: Update the GP model for node

ˆ𝑘 with the additional observation (𝑧
𝑛, ˆ𝑘
, 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘));

13: Update budget 𝑏 ← 𝑏 + 𝑐 ˆ𝑘 (𝑧𝑛, ˆ𝑘) and the number of total evaluations 𝑛 ← 𝑛 + 1;
14: end while
return argmax𝑥∈X 𝜈𝑛 (𝑥) the maximum value of the posterior mean at the final node output.

remain conditionally independent GPs. We let 𝜇𝑛,𝑘 (·) and Σ𝑛,𝑘 (·, ·) denote the posterior mean and

kernel associated with the GP on 𝑓𝑘 given D𝑛𝑘 ,𝑘 aften 𝑛 evaluations have been performed.

Let D𝑛 = ∪𝐾
𝑘=1

D𝑛𝑘 ,𝑘 be the combined observation set. The conditionally independent GP

posterior distributions over 𝑓1, . . . , 𝑓𝐾 givenD𝑛 further induce a posterior distribution over the final

node output 𝑦𝐾 (·). However, due to its compositional network structure, this induced posterior

distribution of 𝑦𝐾 (·) is not Gaussian.

The EIFN Acquisition Function. Using the statistical model above, Astudillo and Frazier (2021a),

proposed the EIFN acquisition function to select a candidate 𝑥𝑛 ∈ X at which to evaluate the entire

function network. For example, this 𝑥𝑛 in the Figure 1’s example is a 3-dimensional input tuple

𝑥𝑛 = (𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3). We refer to such evaluations of the entire function network as full evaluations,
in contrast with our focus in this paper on partial evaluations. We introduce EIFN because we will

use it as a tool in our approach.

To define the EIFN acquisition function, define 𝑦∗
𝑛,𝐾

= max𝑖=1,...,𝑛 𝑦𝐾 (𝑥𝑖) as the current best
observed value at the final node given D𝑛 . The EIFN at a proposed point 𝑥 is the expected

improvement of 𝑦𝐾 (𝑥) over the current 𝑦∗𝑛,𝐾 under the current posterior. Specifically,

EIFN𝑛 (𝑥) = E[(𝑦𝐾 (𝑥) − 𝑦∗𝑛,𝐾)+ |D𝑛], (2)

where (𝑎)+ = max{0, 𝑎}. The candidate selected is 𝑥𝑛 ∈ argmax𝑥∈X EIFN𝑛 (𝑥).

The p-KGFN Acquisition Function. Buathong et al. (2024) introduced the cost-aware knowledge
gradient for function networks with partial evaluations (p-KGFN). This acquisition function proposes

an individual candidate node 𝑘 and an associated input 𝑧𝑛,𝑘 ∈ Z𝑘 at each iteration 𝑛.

4

To define p-KGFN, let 𝜈𝑛 (𝑥) = E[𝑦𝐾 (𝑥) |D𝑛] be the posterior mean of the final node’s output

evaluated at network input 𝑥 and define the maximum value of this current posterior mean function

𝜈∗𝑛 = max

𝑥∈X
𝜈𝑛 (𝑥), (3)

as the current solution quality. At each BO iteration, p-KGFN loops through all function nodes and

proposes a candidate 𝑧𝑛,𝑘 that solves: 𝑧𝑛,𝑘 ∈ argmax𝑧𝑘 ∈Z𝑘
𝛼𝑛,𝑘 (𝑧𝑘), where

𝛼𝑛,𝑘 (𝑧𝑘) =
E[max𝑥∈X 𝜈𝑛+1(𝑥 ; 𝑧𝑘) |D𝑛] − 𝜈∗𝑛

𝑐𝑘 (𝑧𝑘)
(4)

and 𝜈𝑛+1(𝑥 ; 𝑧𝑘) denotes the new posterior mean of 𝑦𝐾 at 𝑥 , conditioned on an unknown observation

𝑦𝑘 (𝑧𝑘) evaluated at node 𝑘 with the input 𝑧𝑘 , i.e. 𝜈𝑛+1(𝑥 ; 𝑧𝑘) = E[𝑦𝐾 (𝑥) |D𝑛, 𝑦𝑘 (𝑧𝑘)]. Interpreting
𝜈∗𝑛 andmax𝑥∈X 𝜈𝑛+1(𝑥 ; 𝑧𝑘) as the expected quality of the best solution available before and after the

observation of 𝑦𝑘 (𝑧𝑘), the p-KGFN method proposes a node-specific candidate 𝑧𝑛,𝑘 that maximizes

the expected increase in this measure of solution quality per unit evaluation cost. Then the p-KGFN

compares these node-specific candidates and selects the node
ˆ𝑘 ∈ argmax𝑘=1,...,𝐾 𝛼𝑛,𝑘 (𝑧𝑛,𝑘) to

evaluate at its corresponding input 𝑧
𝑛, ˆ𝑘

.

The p-KGFN acquisition function is challenging to optimize because it is defined by a complex

nested expectation. Specifically, it is the expectation with respect to an unknown observation,

𝑦𝑘 (𝑧𝑘), of the value of a maximization problem. This maximization problem is itself challenging

to solve because its objective function 𝜈𝑛+1(𝑥 ; 𝑧𝑘) is also an expectation of the final node’s value

(under the updated posterior given a random observation 𝑦𝑘 (𝑧𝑘)). These expectations do not have

analytical expressions and must be evaluated using Monte Carlo, quasi Monte Carlo, or numerical

integration. Furthermore, generating candidates for each node requires solving separate p-KGFN

optimization problems for each node, further compounding the computational challenges.

4 Our Method

With the challenge of optimizing the p-KGFN acquisition function in mind from the previous

section, we introduce in this section a significantly faster-to-optimize acquisition function, Fast

p-KGFN, that uses significantly less compute than the original p-KGFN while still providing a

similar ability to find good solutions to the original optimization problem using a small number of

low-cost partial evaluations.

This Fast p-KGFN consists of two key innovative components: (1) fast candidate generation

that reduces a complex search over continuous node inputs to simply evaluating the acquisition

function on a small discrete set; and (2) fast acquisition function computation, which enables

efficient selection of the enumerated point from (1) with the best p-KGFN value. At each iteration,

the method requires solving only one continuous optimization problem, and this continuous

problem uses an objective function that is significantly more tractable than the original p-KGFN.

Algorithm 1 outlines the complete procedure described in this section.

4.1 Fast Candidate Generation

To generate node-specific candidates as inputs for each node in the network, our Fast p-KGFN

algorithm performs the following steps. In each iteration, given a DAG representing the function

network and initial combined observation set D𝑛 , the proposed Fast p-KGFN first fits the the

conditional posterior distributions of 𝑓1, . . . , 𝑓𝐾 , which together induce the posterior distribution

for 𝑦𝐾 . This is the same as the original p-KGFN.

Next, Fast p-KGFN optimizes a modified version of the EIFN acquisition function defined

in Eq. (2). EIFN is modified by replacing 𝑦∗
𝑛,𝐾

, the maximum function network output over the

previously-evaluated network inputs, with 𝜈∗𝑛 , the maximum conditional expected value of the

5

𝑥

𝑥 ′

𝑓1 𝑓2
𝑦1 𝑦2

(a)

𝑥 𝑓1 𝑓2
𝑦1 𝑦2

(b)

𝑥 𝑓1 𝑓2

𝑓4

𝑥 ′ 𝑓3

𝑦1
𝑦
2

𝑦 3
𝑦4

(c)

Figure 2: Function networks in the numerical experiments: (a) AckMat (b) FreeSolv and (c) Manu

function network’s output over all possible network inputs. We use 𝜈∗𝑛 instead of 𝑦∗
𝑛,𝐾

because,

during partial evaluations, the entire network is seldom fully evaluated with a single network

input 𝑥 . As such, 𝑦∗
𝑛,𝐾

is seldom updated. In contrast, 𝜈∗𝑛 is updated every time a new observation

is evaluated. Optimizing this modified EIFN acquisition function produces a network candidate

𝑥𝑛 containing values for all external inputs to the function network. For example, in Figure 1,

optimizing EIFN gives a network candidate that takes the form 𝑥𝑛 = (𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3).
Fast p-KGFN then draws a realization

ˆ𝑓𝑘 of each function 𝑓𝑘 from its GP posterior and combines

these sampled functions according to the DAG structure to construct a realization of all node outputs

at the network candidate, 𝑦𝑘 (𝑥𝑛). This is done using the recursive formula given by replacing 𝑓𝑘

by
ˆ𝑓𝑘 and 𝑦𝑘 by 𝑦𝑘 in Eq. (1). In Figure 1, this step yields the two intermediate outputs 𝑦1(𝑥𝑛) and

𝑦2(𝑥𝑛), corresponding to evaluations of the sampled function
ˆ𝑓1 at 𝑥𝑛,1 and ˆ𝑓2 at 𝑥𝑛,2, respectively.

Finally, for each function node 𝑘 , the algorithm constructs node-specific candidates 𝑧𝑛,𝑘 =

(𝑦J (𝑘) (𝑥𝑛), 𝑥𝑛,I (𝑘)) by concatenating the EIFN-generated candidate components 𝑥𝑛,I (𝑘) with the

simulated intermediate outcomes from the parent nodes 𝑦J (𝑘) (𝑥𝑛). For example, in Figure 1, node-

specific candidates take the form 𝑧𝑛,1 = 𝑥𝑛,1, 𝑧𝑛,2 = 𝑥𝑛,2 and 𝑧𝑛,3 = (𝑦1(𝑥𝑛), 𝑦2(𝑥𝑛), 𝑥𝑛,3) at function
nodes 𝑓1, 𝑓2 and 𝑓3, respectively.

As we describe below in Section 4.3, the p-KGFN acquisition function will then be evaluated for

each of these finitely many node-specific candidates to identify the one with the largest p-KGFN

acquisition function value. To perform this evaluation quickly despite the fact that evaluation

requires a nested expectation, we leverage a novel technique described below in Section 4.2.

4.2 Fast Acquisition Function Computation

This section describes an accelerated approach for computing the p-KGFN acquisition function,

which is used as described below in Section 4.3.

Assuming that the maximizer 𝑥∗𝑛 of the current posterior mean 𝜈∗𝑛 = max𝑥∈X 𝜈𝑛 (𝑥) has been
accurately identified, evaluating the p-KGFN acquisition function at a candidate node 𝑘 with input

𝑧𝑘 involves approximating the solution to the updated optimization problem: max𝑥∈X 𝜈𝑛+1(𝑥 ; 𝑧𝑘).
Solving this problem is computationally expensive. Moreover, we must solve this optimization

problem for many different sampled values of 𝑦𝑘 (𝑧𝑘). (Each sampled value changes the function

𝜈𝑛+1(𝑥).) To solve these many related optimization problems quickly, we adopt an idea from the

literature (Scott et al., 2011; Ungredda et al., 2022). Rather than optimizing each problem over the

full continuous search space X , our proposed discretization method optimizes them over a small

finite discrete set A that is designed to include high-potential solutions.

Buathong et al. (2024) also leveraged this approach and proposed two approaches for construct-

ing this discrete set A: (1.) a Thompson sampling-based approach and (2.) local point sampling.

We propose an improved method for constructing this set.

In the Thompson sampling-based method,𝑀 function network realizations are sampled from

the current posterior, and each realization is optimized independently to obtain a maximizer. The

resulting 𝑀 maximizers are then included in A. In this approach, increasing 𝑀 , and thus the

cardinality of A, improves the accuracy of p-KGFN estimates but increases computational cost.

6

0 200 400 600
1.0

0.8

0.6

0.4

0.2

0.0
(a) AckMat c1 = 1, c2 = 49

0 200 400 600
10

15

20

25

(b) FreeSolv c1 = 1, c2 = 49

0 200 400 600

2.0

1.8

1.6

1.4

1.2

1.0
(c) Manu c1 = 5, c2 = 10, c3 = 10, c4 = 45

Cost

y K
(x

* n
)

p-KGFN
Fast p-KGFN (Our Method)

EIFN
TSFN

EI
Random

KG
KGFN

Figure 3: Optimization performance comparing between our proposed Fast p-KGFN algorithm and

benchmarks including p-KGFN, EIFN, KGFN, TSFN, EI, KG and Random on three experiments:

AckMat (left), Freesolv (middle) Manu (right).

Our goal here is to more intelligently select the set of points in A to achieve a better tradeoff

between computational cost and the accuracy of p-KGFN estimation. Our novel strategy considers

a large collection of 𝑀 posterior samples generated using Thompson sampling and selects a subset

𝑆𝑇 of representative maximizers for A. Specifically, our method proceeds as follows. First, our

method samples 𝑀 function network realizations, each denoted as
ˆ𝑓 A𝑗 where the superscript A

distinguishes these from the realizations used earlier in Section 4.1 for generating node-specific

candidates. Then, our method selects a subset S𝑇 of candidate points that perform well across the

𝑀 sampled network realizations. This is done by solving

S𝑇 ∈ argmax

S⊂X𝑁𝑇 : |S |=𝑁𝑇

1

𝑀

𝑀∑︁
𝑗=1

max

𝑥∈S
ˆ𝑓 A𝑗 (𝑥),

where the selected subset cardinality, 𝑁𝑇 = |S𝑇 |, is a hyperparameter of the method. This approach

can be viewed as a batch Thompson sampling method designed to generate a diverse set of high-

potential candidates with significantly lower computational cost than optimizing each realization

independently.

For local point sampling, we follow the random sampling procedure described in Buathong et al.

(2024). A set S𝐿 of local points with cardinality 𝑁𝐿 is generated around the current posterior mean

maximizer 𝑥∗𝑛 . A local point 𝑥 ∈ X is generated by sampling uniformly among points satisfying

𝑑 (𝑥, 𝑥∗𝑛) ≤ 𝑟 max𝑖=1,...,𝑑 (𝑏𝑖 − 𝑎𝑖), where 𝑎𝑖 and 𝑏𝑖 are the lower and upper bounds of the input of

dimension 𝑖𝑡ℎ and 𝑟 is a positive hyperparameter.

The final discrete set isA = S𝑇 ∪S𝐿 ∪ {𝑥∗𝑛} and is used in place of the original full search space

X in solving updated posterior mean optimization problem, i.e. we solve max𝑥∈A 𝜈𝑛+1(𝑥 ; 𝑧𝑘).

4.3 Node Selection

After evaluating the p-KGFN candidates (nodes and input values) from Section 4.1 using the

discretization approach from Section 4.2, the node
ˆ𝑘 with the highest p-KGFN value is then selected

for evaluation at the selected input 𝑧
𝑛, ˆ𝑘

. The resulting data point (𝑧
𝑛, ˆ𝑘
, 𝑓 ˆ𝑘 (𝑧𝑛, ˆ𝑘)) is added to the

observation set D𝑛 . This process is repeated iteratively until the evaluation budget is depleted. The

complete procedure is summarized in Algorithm 1.

5 Numerical Experiments
This section assesses the efficiency of the proposed Fast p-KGFN algorithm described in Section

4, with parameters 𝑀 = 𝑁𝑇 = 𝑁𝐿 = 10 and 𝑟 = 0.1 used in the new discretization method. To

7

0 20 40
1.0

0.8

0.6

0.4

0.2

Ac
kM

at
 y

K(
x

* n
)

(a) c1 = 1, c2 = 1

0 50 100 150
1.0

0.8

0.6

0.4

0.2

(b) c1 = 1, c2 = 9

0 200 400 600
1.0

0.8

0.6

0.4

0.2

0.0
(c) c1 = 1, c2 = 49

0 20 40
10

15

20

25

Fr
ee

So
lv

 y
K(

x
* n
)

0 50 100 150
10

15

20

25

0 200 400 600
10

15

20

25

Cost
p-KGFN
Fast p-KGFN (Our Method)

EIFN
TSFN

EI
Random

KG
KGFN

Figure 4: Cost sensitivity analysis for AckMat (top row) and FreeSolv (bottom row) problems with

different costs (a) 𝑐1 = 1, 𝑐2 = 1; (b) 𝑐1 = 1, 𝑐2 = 9; and (c) 𝑐1 = 1, 𝑐2 = 49.

Table 1: Runtime comparison on 8-core CPUs for Fast p-KGFN, p-KGFN, and EIFN across AckMat,

FreeSolv (three cost scenarios), and Manu. The table shows average runtime (with standard

error) over 30 trials and BO courses with Fast p-KGFN speedup over p-KGFN shown in

parentheses.

Runtimes (mins per one BO iteration)
Problem p-KGFN EIFN Fast p-KGFN (Our method) (compared to p-KGFN)

(1.a) ActMat 𝑐1 = 1, 𝑐2 = 1 11.24 ± 0.45 2.81 ± 0.32 0.98 ± 0.09 (11.47×)
(1.b) ActMat 𝑐1 = 1, 𝑐2 = 9 11.75 ± 0.54 0.78 ± 0.08 2.77 ± 0.29 (4.24×)
(1.c) ActMat 𝑐1 = 1, 𝑐2 = 49 8.52 ± 0.28 0.69 ± 0.04 1.69 ± 0.15 (5.04×)
(2.a) FreeSolv 𝑐1 = 1, 𝑐2 = 1 5.45 ± 0.38 0.53 ± 0.03 0.34 ± 0.02 (16.03×)
(2.b) FreeSolv 𝑐1 = 1, 𝑐2 = 9 3.98 ± 0.14 1.70 ± 0.19 0.42 ± 0.02 (9.48×)
(2.c) FreeSolv 𝑐1 = 1, 𝑐2 = 49 3.81 ± 0.17 1.00 ± 0.09 0.29 ± 0.02 (13.14×)
(3) Manu 𝑐1 = 5, 𝑐2 = 10, 𝑐3 = 10, 𝑐4 = 45 7.80 ± 0.43 0.52 ± 0.07 1.40 ± 0.10 (5.57×)

show that our method provides competitive optimization performance, but offers significantly

faster runtime than the original p-KGFN, we consider three test problems previously considered in

Buathong et al. (2024): AckMat, FreeSolv and Manu, with structures presented in Figure 2.

AckMat is a synthetic two-node cascade network whose structure is commonly found in real-

applications, such as multi-stage simulators and inventory problems. Here, we aim to find optimal

values of 𝑥 and 𝑥 ′ which yield the highest value of 𝑦2. FreeSolv (Mobley and Guthrie, 2014) is

originally a materials design problem whose objective is to find an optimal small molecule 𝑥 whose

negative experimental free energy 𝑦2 is maximized with using a computational energy value 𝑦1
as a pre-screen approximation of 𝑦2. The similar network structure can be found in sequential

processes. Manu is a problem representing multiple processes happening in the real manufacturing

problems. Here, we want to identify the combinations of materials 𝑥 and 𝑥 ′ which yield the highest

value of final product 𝑦4.

8

We consider the cost scenarios: 𝑐1 = 1 and 𝑐2 = 49 for AckMat and FreeSolv problems, and

𝑐1 = 5, 𝑐2 = 10, 𝑐3 = 10 and 𝑐4 = 45 for Manu problem. The BO evaluation budget is set to 700. We

defer the full descriptions of these problems to Appendix A.

We also perform additional experiments to assess the impact on Fast p-KGFN performance

of each discrete point generation strategy described in Section 4.2, as well as to evaluate the

influence of parameters𝑀 , 𝑁𝑇 , 𝑁𝐿 and 𝑟 involved in discrete set construction. Both experiments

are conducted on the AckMat problem with the 𝑐1 = 1 and 𝑐2 = 49 cost scenario. The complete

results for these studies are presented in Appendices B and C, respectively.

5.1 Benchmarks and Comparison Metric

We evaluate the proposed Fast p-KGFN algorithm’s optimization performance against several

baseline methods, including standard Expected Improvement (EI) (Jones et al., 1998; Močkus, 1975),

Knowledge Gradient (KG) (Frazier et al., 2008; Wu and Frazier, 2016), and simple random sampling

(Random), which do not utilize network structure. Additionally, we compare to EIFN (Astudillo and

Frazier, 2021a), Thompson Sampling for Function Networks (TSFN), and Knowledge Gradient for

Function Networks (KGFN), which exploit network structure but require full evaluations. We also

include the original p-KGFN algorithm, which supports partial evaluations and leverages network

structure.

All algorithms start with the same uniformly sampled 2𝑑 + 1 initial observations, fully evaluated
across the network, where 𝑑 is the network dimension. Algorithms proceed until the budget of

700 is exhausted. Performance is averaged over 30 trials, each with different initial observations.

We report at each iteration the average ground truth value 𝑦𝐾 (𝑥∗𝑛), where 𝑥∗𝑛 ∈ argmax𝑥∈X 𝜈𝑛 (𝑥),
with confidence intervals, as in Buathong et al. (2024). Though EI, KG and Random do not leverage

network structure in their sampling strategies, this metric is computed using a model that incorpo-

rates it. We also report the CPU runtimes of each algorithm to validate our claim that the proposed

algorithm is faster than the original p-KGFN.

All algorithms are implemented using BoTorch (Balandat et al., 2020) in Python. Optimization

settings, unless stated otherwise, follow the implementations in Buathong et al. (2024). Code to

reproduce our numerical experiments is available at: https://github.com/frazier-lab/partial_kgfn.

6 Results

Figure 3 illustrates the performance of the proposed Fast p-KGFN algorithm compared to various

benchmarks on the AckMat (left), FreeSolv (middle), and Manu (right) problems. Among the

evaluated methods, all except p-KGFN and the proposed approach require full evaluations. Notably,

only EIFN, KGFN, TSFN, p-KGFN, and the proposed method incorporate the network structure into

their sampling strategies. Furthermore, both p-KGFN and the proposed algorithm support partial

evaluations, enabling intermediate nodes to be evaluated at any input within their known ranges.

Overall, p-KGFN achieved the strongest optimization performance, closely followed by the

proposed method. This result is expected, as p-KGFN fully optimizes the acquisition function to

select the most promising node-specific candidate in each iteration. While the proposed method

also supports partial evaluations, it reuses candidate points from EIFN, which may slightly degrade

candidate quality and introduce aminor performance trade-off. Nonetheless, the proposed algorithm

consistently outperforms the original EIFN, demonstrating the benefits of partial evaluations.

To further investigate the proposed method, we assess its sensitivity to varying evaluation costs.

Specifically, we alter the cost of evaluating the second node in AckMat and FreeSolv, considering

three scenarios: (a) 𝑐1 = 𝑐2 = 1 (BO budget = 50), (b) 𝑐1 = 1, 𝑐2 = 9 (BO budget = 150), and (c)

𝑐1 = 1, 𝑐2 = 49 (BO budget = 700). Figure 4 presents the results. They show that the proposed

algorithm behaves similarly to p-KGFN, with the benefits of partial evaluations becoming more

pronounced as the second node’s evaluation cost increases. This allows p-KGFN and the proposed

9

https://github.com/frazier-lab/partial_kgfn

method to find better solutions more efficiently than other competitors. These findings confirm

that despite slightly lower-quality node-specific candidates, the proposed algorithm effectively

leverages partial evaluations to achieve strong optimization performance.

Beyond optimization quality, the proposed method substantially improves computational

efficiency over p-KGFN. Table 1 summarizes the average runtimes (across 30 trials on an 8-core

CPU) for all cost settings, focusing on the proposed algorithm, EIFN, and p-KGFN. The proposed

method consistently achieved lower runtimes, with the most notable speedup in FreeSolv under

𝑐1 = 𝑐2 = 1, where it attained a 16.03× improvement over p-KGFN. Appendix D provides a full

comparison of the Pareto fronts over acquisition runtime and final objective value for all methods.

In our ablation study on discrete point generation strategies, we find that excluding the maxi-

mizer of the current posterior mean 𝑥∗𝑛 from the discrete set A significantly degrades the perfor-

mance of Fast p-KGFN. The best results are achieved when using the full combination of batch

Thompson points, local points, and the current maximizer, justifying the discrete set A used in our

main experiments. Progress curves for this study are shown in Appendix B.

Fixing this full combination strategy, we further analyze the influence of parameters𝑀 (number

of network realizations), 𝑁𝑇 (number of batch Thompson points), 𝑁𝐿 (number of local points) and 𝑟

(positive parameter used to defined local points). Across a range of parameter values, Fast p-KGFN

consistently maintains robust performance. Full results for this study are provided in Appendix C.

7 Conclusion

This work addresses Bayesian optimization of function networks with partial evaluations (p-KGFN),

a framework designed for optimizing expensive objective functions structured as function networks,

where each node can be queried independently with varying evaluation costs. While p-KGFN

finds better solutions with lower evaluation budgets than traditional approaches, it suffers from

high computational overhead due to its reliance on Monte Carlo simulations and the need to solve

individual acquisition function problems for node-specific candidate selection in each iteration.

To overcome these challenges, we propose a faster variant of p-KGFN that leverages the expected

improvement for function networks (EIFN) framework. Instead of solving separate acquisition

problems for each node, the proposed method generates a single candidate for the entire network

using EIFN and combines it with simulated intermediate outputs from the surrogate model to

generate node-specific candidates. A cost-aware selection strategy then determines which node

and corresponding input candidate to evaluate at each iteration.

We evaluate the efficiency of the proposed method across multiple test problems. Our approach

achieves competitive optimization performance compared to p-KGFN while significantly reducing

computational time, with the fastest runtime improvement exceeding 16×.
Despite these advantages, our method has some limitations. It assumes that intermediate nodes

can be evaluated at any feasible input without requiring the outputs of parent nodes in advance,

which may limit its applicability in more constrained function network scenarios. Extending the

method to handle upstream-downstream dependencies is an important direction for future work.

8 Broader Impact Statement

After careful reflection and consideration, the authors believe that this work presents no notable

negative impacts to the society or the environment.

Acknowledgements

We would like to thank the anonymous reviewers for their comments. PB would like to thank the

DPST scholarship project granted by IPST, Ministry of Education, Thailand for providing financial

support. PF was supported by AFOSR FA9550-20-1-0351.

10

References

Ackley, D. (2012). A connectionist machine for genetic hillclimbing, volume 28. Springer science &

business media.

Astudillo, R. and Frazier, P. (2019). Bayesian optimization of composite functions. In International
Conference on Machine Learning, pages 354–363. PMLR.

Astudillo, R. and Frazier, P. (2021a). Bayesian optimization of function networks. Advances in
neural information processing systems, 34:14463–14475.

Astudillo, R. and Frazier, P. I. (2021b). Thinking inside the box: A tutorial on grey-box bayesian

optimization. In 2021 Winter Simulation Conference (WSC), pages 1–15. IEEE.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020).

Botorch: A framework for efficient monte-carlo bayesian optimization. Advances in neural
information processing systems, 33:21524–21538.

Buathong, P., Wan, J., Astudillo, R., Daulton, S., Balandat, M., and Frazier, P. I. (2024). Bayesian

optimization of function networks with partial evaluations. In Proceedings of the 41st International
Conference on Machine Learning, pages 4752–4784.

Cosenza, Z., Astudillo, R., Frazier, P. I., Baar, K., and Block, D. E. (2022). Multi-information source

bayesian optimization of culture media for cellular agriculture. Biotechnology and bioengineering,
119(9):2447–2458.

Deneault, J. R., Chang, J., Myung, J., Hooper, D., Armstrong, A., Pitt, M., and Maruyama, B. (2021).

Toward autonomous additive manufacturing: Bayesian optimization on a 3d printer. MRS Bulletin,
46:566–575.

Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811.

Frazier, P. I., Powell, W. B., and Dayanik, S. (2008). A knowledge-gradient policy for sequential

information collection. SIAM Journal on Control and Optimization, 47(5):2410–2439.

Frazier, P. I. and Wang, J. (2016). Bayesian optimization for materials design. Information science for
materials discovery and design, pages 45–75.

Garnett, G. P. (2002). An introduction to mathematical models in sexually transmitted disease

epidemiology. Sexually transmitted infections, 78(1):7–12.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B.,

Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A. (2018).

Automatic chemical design using a data-driven continuous representation of molecules. ACS
central science, 4(2):268–276.

Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for global optimisation

problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2):150–
194.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive

black-box functions. Journal of Global optimization, 13:455–492.

11

Khongkomolsakul, W., Buathong, P., Yang, E., Dadmohammadi, Y., Zhou, Y., Li, P., Yang, L., Frazier,

P., and Abbaspourrad, A. (2025). Improving thermal and gastric stability of phytase via ph

shifting and coacervation: A demonstration of bayesian optimization for rapid process tuning.

bioRxiv, pages 2025–04.

Kusakawa, S., Takeno, S., Inatsu, Y., Kutsukake, K., Iwazaki, S., Nakano, T., Ujihara, T., Karasuyama,

M., and Takeuchi, I. (2022). Bayesian optimization for cascade-type multistage processes. Neural
Computation, 34(12):2408–2431.

Mobley, D. L. and Guthrie, J. P. (2014). Freesolv: a database of experimental and calculated hydration

free energies, with input files. Journal of computer-aided molecular design, 28:711–720.

Močkus, J. (1975). On bayesian methods for seeking the extremum. In Optimization techniques IFIP
technical conference: Novosibirsk, July 1–7, 1974, pages 400–404. Springer.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J.,

Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement learning: Challenging robotics

environments and request for research. arXiv preprint arXiv:1802.09464.

Scott, W., Frazier, P., and Powell, W. (2011). The correlated knowledge gradient for simulation

optimization of continuous parameters using gaussian process regression. SIAM Journal on
Optimization, 21(3):996–1026.

Sha, D., Ozbay, K., and Ding, Y. (2020). Applying bayesian optimization for calibration of trans-

portation simulation models. Transportation Research Record, 2674(10):215–228.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine

learning algorithms. Advances in neural information processing systems, 25.

Ungredda, J., Pearce, M., and Branke, J. (2022). Efficient computation of the knowledge gradient for

bayesian optimization. arXiv preprint arXiv:2209.15367.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning, volume 2.

MIT press Cambridge, MA.

Wu, J. and Frazier, P. (2016). The parallel knowledge gradient method for batch bayesian optimiza-

tion. Advances in neural information processing systems, 29.

12

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Claims made in abstract and introduction accurately reflect

the paper’s contributions and scope.

(b) Did you describe the limitations of your work? [Yes] See Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 8.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? (see

https://2022.automl.cc/ethics-accessibility/) [Yes] We have read the guidelines.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources, etc.)? [Yes] Details in this part were

thoroughly discussed in Section 5.1 Benchmarks and Comparison Metric

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning details and results, etc.)? [Yes] These details were

mentioned across Section 5. More details can be found in Appendix A.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] Each problem was repeated

for 30 runs with different sets of initial observations as mentioned in Section 5.1

(d) Did you report the uncertainty of your results (e.g., the standard error across random

seeds or splits)? [Yes] BO progress curves and runtimes are reported with standard errors

computed from 30 runs. See the figures and the table in Section 6.

(e) Did you report the statistical significance of your results? [N/A]

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims?

[Yes] We considered three different problems with multiple cost scenarios as described

in Section 5. Moreover we performed ablation studies to further investigate the behavior

of the algorithms and effects of hyperparameters. These results are further discussed in

Appendices B and C.

(g) Did you compare performance over time and describe how you selected the maximum

runtime? [Yes] Discussion about runtime can be found in Section 6.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] This information can be found in Table 1.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We did cost sensitivity analysis presented in Section 6. We also performed ablation

studies on discrete set construction strategies and parameters whose results were presented

in Appendices B and C.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all dependencies (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation instructions, and execution commands (either

in the supplemental material or as a url)? [Yes] We provided all the codes required to run

13

https://2022.automl.cc/ethics-accessibility/

the experiments in the Github repository mentioned in Section 5.1. Instruction to create an

environment including all dependencies as well as code descriptions and examples can be

found in README in the repository.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] One can reduce the BO budget for a shorter runtime.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] Details can be found in README.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] Unfortunately, we cannot provide the raw result data due to its large

size. However, the data can be reproduced by running the code as outlined in the README.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] Although we do not provide the

raw data, we offer the source codes used to generate all the figures and tables presented in

the paper. These codes are located in the Visualization folder within the repository. After

running the experiments, the "results" folder will be automatically created. One can then

load the saved results and reproduce the result figures and tables using the following files:

read_results_and_plot_graphs.ipynb (for figures) and read_wallclock.ipynb (for tables).

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] All codes that we developed from were

properly cited.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

See the code.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] We included the GitHub repository in Section 5.1.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to institutional review board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

14

A Test Problem Descriptions

A.1 Problem 1: ActMat

We consider a two-node cascade network, as illustrated in Figure 2a. The first node is a Ackley

function (Ackley, 2012) that takes a 6-dimensional input 𝑥 as input:

𝑓1(𝑥) = −20 exp
©­«−0.2

√√√
1

6

6∑︁
𝑖=1

𝑥2
𝑖

ª®¬ − exp
(
1

6

6∑︁
𝑖=1

cos(2𝜋𝑥𝑖)
)
+ 20 + exp(1),

Each dimension of 𝑥 lies in [−2, 2]. The second node processes the first node output denoted as 𝑦1
with an additional parameter 𝑥 ′ ∈ [−10, 10] to produce the final output 𝑦2. We use the negated

Matyas function (Jamil and Yang, 2013) for this second node:

𝑓2(𝑦1, 𝑥 ′) = −0.26(𝑦21 + 𝑥 ′2) + 0.48𝑦1𝑥 ′,

We assume the range of𝑦1 ∈ [0, 20]. This bound is used by p-KGFN algorithm to generate candidates

for the second node.

The evaluation costs for nodes are set as 𝑐1 = 1 and 𝑐2 = 49. The objective is to find 𝑥 and 𝑥 ′

that maximize the final output 𝑦2.

A.2 Problem 2: FreeSolv

FreeSolv is a molecular design test case built upon the available data set (Mobley and Guthrie,

2014), consisting of calculated and experimental hydration-free energies of 642 small molecules.

The problem is constructed as a two-stage function network presented in Figure 2b. Here, the

input 𝑥 ∈ [0, 1]3 is a continuous representation of small molecule extracted from a variational

autoencoder model (Gómez-Bombarelli et al., 2018) and compressed by the principal component

analysis. 𝑓1 represents a mathematical model that takes input 𝑥 and is used to estimate the negative

calculated free energy. The second node represents a wet-lab experiment that takes this calculated

negative energy output as input and returns the negative experimental free energy, a target we

aim to maximize. To construct this continuous network optimization problem, two GP models for

calculated and experimental negative energies are separately fitted using all available data and the

posterior mean functions of these two GP models are used as the functions 𝑓1 and 𝑓2, respectively.

We estimate the range of 𝑦1 from the raw dataset and assume that 𝑦1 ∈ [−5, 30]. Similar to

AckMat problem, the evaluation costs are set to be 𝑐1 = 1 and 𝑐2 = 49.

A.3 Problem 3: Manufacturing (Manu)

A manufacturing problem is constructed as the function network shown in Figure 2c. Each function

is drawn from a GP prior with Matérn 5/2 kernels and varying length scale parameters to reflect

the different complexities of the individual process. The length scale parameters are 0.631, 1, 1 and

3 for 𝑓1, 𝑓2, 𝑓3 and 𝑓4, respectively. The outputscale parameter is set to 0.631 for all functions, except

𝑓4 which uses 10.

We assume the intermediate outputs’ ranges as follows: 𝑦1 ∈ (−2, 2) and 𝑦2, 𝑦3 ∈ (−1, 1),. The
inputs 𝑥 and 𝑥 ′ are constrained to (−1, 1). Evaluation costs are assigned as 𝑐1 = 5, 𝑐2 = 10, 𝑐3 = 10

and 𝑐4 = 45. The goal is to determine the optimal pair of raw materials 𝑥 and 𝑥 ′ that maximize the

final output 𝑦4.

B Ablation Study: The Effects of Discrete Set Generation Methods

This section presents progress curves averaging over 30 trials of the Fast p-KGFN algorithm on

the AckMat problem under the cost scenario 𝑐1 = 1, 𝑐2 = 49, using different configurations of the

15

discrete set A for approximating the p-KGFN acquisition function. Recall that S𝑇 denotes the set

of discrete points generated by the novel batch Thompson sampling method and its cardinality is

denoted by 𝑁𝑇 . S𝐿 denotes the set of discrete points generated by local point sampling approach

and its cardinality is denoted by 𝑁𝐿 . 𝑥
∗
𝑛 denotes the maximizer of the current posterior mean

function. We compare the following six configurations:

• Thompson + Local + Current Maximizer, the default setting used in the main numerical experi-

ments: A = S𝑇 ∪ S𝐿 ∪ {𝑥∗𝑛}, with 𝑁𝑇 = 𝑁𝐿 = 10;

• Thompson + Local: A = S𝑇 ∪ S𝐿 , with 𝑁𝑇 = 𝑁𝐿 = 10;

• Thompson + Current Maximizer: A = S𝑇 ∪ {𝑥∗𝑛}, with 𝑁𝑇 = 20;

• Local + Current Maximizer: A = S𝐿 ∪ {𝑥∗𝑛}, with 𝑁𝐿 = 20;

• Thompson Only: A = S𝑇 , with 𝑁𝑇 = 20 and

• Local Only: A = S𝐿 , with 𝑁𝐿 = 20.

The results are shown in Figure 5. The default configuration achieves the best overall performance

and is nearly matched by the Thompson + Current Maximizer strategy. Excluding the current

maximizer 𝑥∗𝑛 dramatically reduces performance.

C Ablation Study: The Effects of Parameters in Batch Thompson Sampling and Local point
Strategies for Discrete Set Construction

In this section, we perform ablation studies on the parameter settings used to construct the discrete

set A in the Fast p-KGFN algorithm. Specifically, we vary the parameters𝑀 (number of network

realizations), 𝑁𝑇 (number of batch Thompson points), 𝑁𝐿 (number of local points), and the radius

parameter 𝑟 that defines the neighborhood for local point sampling. All studies are conducted on

the AckMat problem under the cost scenario 𝑐1 = 1, 𝑐2 = 49, using the best-performing strategy for

constructing A, which includes points from batch Thompson sampling, local point strategy, and

the current posterior mean maximizer 𝑥∗𝑛 .
We begin by fixing 𝑟 = 0.1 and varying the values of 𝑀 , 𝑁𝑇 , and 𝑁𝐿 . We compare the

default setting (𝑀 = 𝑁𝑇 = 𝑁𝐿 = 10), used in the main experiments, against four alternatives: (1)

𝑀 = 𝑁𝑇 = 𝑁𝐿 = 5; (2) 𝑀 = 𝑁𝑇 = 10, 𝑁𝐿 = 5; (3) 𝑀 = 𝑁𝐿 = 10, 𝑁𝑇 = 5; and (4) 𝑀 = 𝑁𝑇 = 𝑁𝐿 = 15.

As shown in Figure 6, the Fast p-KGFN algorithm maintains strong and consistent performance

across all these configurations.

Next, we fix the default values𝑀 = 𝑁𝑇 = 𝑁𝐿 = 10 and vary the radius parameter 𝑟 , considering

𝑟 = 0.01, 0.1 (default), and 0.5. The results in Figure 7 demonstrate that Fast p-KGFN is also robust

to changes in the radius parameter.

D Pareto Front Comparison

Figure 8 presents a comprehensive Pareto front comparison averaging over 30 trials with different

initial observations of all 8 methods across the 3 problems — 3 cost scenarios for AckMat, 3 for

FreeSolv, and 1 for Manu — evaluated based on acquisition function optimization runtime and the

objective function value at the best design found by the end of the optimization process. In nearly

all cases, the original p-KGFN achieved the best objective value, while our Fast p-KGFN produced

highly competitive solutions with significantly lower runtime.

16

0 100 200 300 400 500 600 700

1.0

0.8

0.6

0.4

0.2

Effects of discrete set strategies evaluated on
 AckMat c1 = 1, c2 = 49

Cost

y K
(x

* n
)

Thompson (NT=10) + Local (NL=10) + Current Maximizer (Default)
Thompson (NT=10) + Local (NL=10)
Thompson (NT=20) + Current Maximizer
Local (NL=20) + Current Maximizer
Thompson Only (NT=20)
Local Only (NL=20)

Figure 5: Ablation study focused on the discrete set generation method. Fast p-KGFN average perfor-

mance over 30 trials on the AckMat problem (𝑐1 = 1, 𝑐2 = 49), evaluated using six discrete

set construction strategies combining batch Thompson sampling, local search, and the cur-

rent posterior mean maximizer. The default configuration achieves the best performance

compared to other considered configurations. Moreover, excluding the current maximizer

from the discrete set significantly degrades the performance of the Fast p-KGFN algorithm.

17

0 100 200 300 400 500 600 700

1.0

0.8

0.6

0.4

0.2

Effects of discrete set strategy parameters
 M, NT, NL with fixing r = 0.1 evaluated on AckMat c1 = 1, c2 = 49

Cost

y K
(x

* n
)

M = 10, NT = 10, NL = 10 (Default)
M = 5, NT = 5, NL = 5
M = 10, NT = 5, NL = 10

M = 10, NT = 10, NL = 5
M = 15, NT = 15, NL = 15

Figure 6: Ablation study focused on the discrete set generation parameters𝑀, 𝑁𝑇 and 𝑁𝐿 . Fast p-KGFN

average performance over 30 trials on the AckMat problem (𝑐1 = 1, 𝑐2 = 49) using fixed

𝑟 = 0.1 and five configurations of discrete set parameters 𝑀 , 𝑁𝑇 , and 𝑁𝐿 . Fast p-KGFN

consistently maintains robust performances across all considered sets of these parameters.

18

0 100 200 300 400 500 600 700

1.0

0.8

0.6

0.4

0.2

Effects of local point radius parameter r
 with fixing M = NT = NL = 10 evaluated on AckMat c1 = 1, c2 = 49

Cost

y K
(x

* n
)

r = 0.1 (Default) r = 0.5 r = 0.01

Figure 7: Ablation study focused on the discrete set generation parameter 𝑟 . Fast p-KGFN average

performance over 30 trials on the AckMat problem (𝑐1 = 1, 𝑐2 = 49) with𝑀 = 𝑁𝑇 = 𝑁𝐿 = 10

and varying local radius 𝑟 = 0.01, 0.1 (default), 0.5 for discrete set construction. The

performance of Fast p-KGFN remains consistent across all considered values of 𝑟 .

19

0.6 0.5 0.4 0.3 0.2 0.1
Obj Func. at Best Design at Final Iteration

0

5

10

15

20

25

30

Ru
nt

im
e

(m
in

ut
es

)

(a) AckMat c1 = 1, c2 = 1

0.7 0.6 0.5 0.4 0.3 0.2 0.1
Obj Func. at Best Design at Final Iteration

0

5

10

15

20

25

30

35

Ru
nt

im
e

(m
in

ut
es

)

(b) AckMat c1 = 1, c2 = 9

0.7 0.6 0.5 0.4 0.3 0.2 0.1
Obj Func. at Best Design at Final Iteration

0

5

10

15

20

25

30

Ru
nt

im
e

(m
in

ut
es

)

(c) AckMat c1 = 1, c2 = 49

16 18 20 22 24 26 28
Obj Func. at Best Design at Final Iteration

0

2

4

6

8

10

12

14

Ru
nt

im
e

(m
in

ut
es

)

(d) FreeSolv c1 = 1, c2 = 1

14 16 18 20 22 24 26 28
Obj Func. at Best Design at Final Iteration

0

5

10

15

20

25

Ru
nt

im
e

(m
in

ut
es

)

(e) FreeSolv c1 = 1, c2 = 9

14 16 18 20 22 24 26 28
Obj Func. at Best Design at Final Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt

im
e

(m
in

ut
es

)

(f) FreeSolv c1 = 1, c2 = 49

1.4 1.3 1.2 1.1 1.0
Obj Func. at Best Design at Final Iteration

0

5

10

15

20

25

30

35

Ru
nt

im
e

(m
in

ut
es

)

(g) Manu c1 = 5, c2 = 10, c3 = 10, c4 = 45

p-KGFN
EIFN

EI
KG

Fast p-KGFN (Our Method)
TSFN

Random
KGFN

Figure 8: Pareto front comparison (acquisition optimization runtime vs. final objective value) averaged

over 30 trials with error bars, comparing Fast p-KGFN against 8 baselines across 7 problems:

AckMat (3 cost scenarios), FreeSolv (3 cost scenarios), and Manu (1 cost scenario). KGFN and

p-KGFN achieve better (largest) final objective function values than previous methods in 6 of

7 problems but have much larger runtimes. Our method, Fast p-KGFN, achieves comparable

solution quality (final objective value) while offering much lower runtimes than KGFN and

p-KGFN.

20

	Introduction
	Problem Setting
	Existing Methods
	Our Method
	Fast Candidate Generation
	Fast Acquisition Function Computation
	Node Selection

	Numerical Experiments
	Benchmarks and Comparison Metric

	Results
	Conclusion
	Broader Impact Statement
	Test Problem Descriptions
	Problem 1: ActMat
	Problem 2: FreeSolv
	Problem 3: Manufacturing (Manu)

	Ablation Study: The Effects of Discrete Set Generation Methods
	Ablation Study: The Effects of Parameters in Batch Thompson Sampling and Local point Strategies for Discrete Set Construction
	Pareto Front Comparison

