
Published as a workshop paper at MLGenX 2025

ENHANCING DNA FOUNDATION MODELS TO ADDRESS
MASKING INEFFICIENCIES

Monireh Safari∗
University of Waterloo, Canada

Pablo Millan Arias∗
University of Waterloo, Canada

Scott C. Lowe
Vector Institute, Canada

Lila Kari†
University of Waterloo, Canada
lila@uwaterloo.ca

Angel X. Chang
Simon Fraser University
Alberta Machine Intelligence Institute (Amii), Canada

Graham W. Taylor†
University of Guelph
Vector Institute, Canada
gwtaylor@uguelph.ca

ABSTRACT

Masked language modelling (MLM) as a pretraining objective has been widely
adopted in genomic sequence modelling. While pretrained models can successfully
serve as encoders for various downstream tasks, the distribution shift between pre-
training and inference detrimentally impacts performance, as the pretraining task
is to map [MASK] tokens to predictions, yet the [MASK] is absent during down-
stream applications. This means the encoder does not prioritize its encodings of
non-[MASK] tokens, and expends parameters and compute on work only relevant
to the MLM task, despite this being irrelevant at deployment time. In this work, we
propose a modified encoder-decoder architecture based on the masked autoencoder
framework, designed to address this inefficiency within a BERT-based transformer.
We empirically show that the resulting mismatch is particularly detrimental in
genomic pipelines where models are often used for feature extraction without
fine-tuning. We evaluate our approach on the BIOSCAN-5M dataset, comprising
over 2 million unique DNA barcodes. We achieve substantial performance gains
in both closed-world and open-world classification tasks when compared against
causal models and bidirectional architectures pretrained with MLM tasks. The
code repository is available at https://github.com/bioscan-ml/BarcodeMAE.

1 INTRODUCTION

DNA foundation models have emerged as effective tools for analyzing genomic sequences, utilizing
a wide variety of architectures, including transformers (Ji et al., 2021; Millan Arias et al., 2023; Zhou
et al., 2024), state space models (SSMs) (Poli et al., 2023; Gao & Taylor, 2024), and convolutional
neural networks (CNNs) (Benegas et al., 2023). These models leverage different pretraining strategies,
from causal to bidirectional learning, enabling strong performance across diverse genomic tasks.
Among these pretraining strategies, masked language modelling (MLM) has become widely adopted,
enabling models to learn effective sequence representations for downstream tasks like specimen
identification to taxon and species discovery. However, the effectiveness of MLM is highly dependent
on how masking is implemented, as different strategies can affect the model’s performance.

In DNA sequence modelling, foundation models typically adopt BERT’s three-part masking strategy
(Devlin et al., 2019), where 80% of selected tokens are replaced with [MASK], 10% remain un-
changed, and 10% are randomly substituted. Models such as the Nucleotide Transformer (Dalla-Torre
et al., 2024) and BarcodeBERT (Millan Arias et al., 2023) followed this approach, while DNABERT
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(Ji et al., 2021) and DNABERT-2 (Zhou et al., 2023) adopted a simpler strategy, replacing 100% of
selected positions with [MASK] tokens. Despite its popularity, MLM introduces a notable limitation:
a distribution shift between pretraining and inference due to the absence of [MASK] tokens during
downstream tasks. This mismatch leads to representational inefficiencies, as models prioritize the
quality of encodings and predictions corresponding to [MASK] tokens but lack a direct target for
non-[MASK] token inputs. Consequently, they allocate parameters and compute to tokens never
encountered during inference, potentially limiting their ability to capture biologically relevant patterns.
While this limitation and its impact on model performance have been studied in natural language
processing (NLP) settings (Meng et al., 2024; Clark et al., 2020), its effects on DNA sequence
foundation models remain unexplored.

In this study, we propose BarcodeMAE which uses a modified encoder-decoder architecture based
on the masked autoencoder for MLM (MAE-LM; Meng et al., 2024). BarcodeMAE is designed to
address the MLM inefficiency with BERT-style transformer models for biodiversity analysis using
DNA barcodes. This approach eliminates [MASK] tokens during encoding, thereby mitigating the
distribution shift between pretraining and inference. Computation and parameters needed to predict
values for [MASK] tokens is isolated to the decoder block, which is discarded after pretraining and
not called at inference time. We empirically show that this mismatch is particularly detrimental in
genomic pipelines where models are used for feature extraction without fine-tuning. To evaluate our
model, we conduct self-supervised pretraining on the BIOSCAN-5M dataset (Gharaee et al., 2024),
which comprises over 2 million unique DNA barcodes. Our model outperforms existing foundation
models in genus-level classification, surpassing a comparable encoder-only architecture by over 10
percentage points. Although it does not achieve the highest performance in BIN reconstruction,
BarcodeMAE demonstrates superior average performance across evaluation tasks.

2 METHOD

In this section, we first describe the BIOSCAN-5M dataset and its partitioning scheme. Next, we
introduce BarcodeMAE, our proposed model that adapts the masked auto-encoder architecture to
address the representational limitations of masking approaches for DNA foundation models.

2.1 DATA

Our analysis utilizes the BIOSCAN-5M dataset1, a comprehensive collection of 2.4 M unique DNA
barcodes organized into three distinct partitions: (i) Pretrain: Contains 2.28 M unique DNA barcodes
from unclassified specimens, used for self-supervised pretraining. (ii) Seen: Encompasses DNA
barcodes with validated scientific species names, split into training (118 k barcodes), validation (6.6 k
barcodes), and test (18.4 k barcodes) subsets for closed-world evaluation tasks. (iii) Unseen: Contains
novel species with reliable placeholder taxonomic labels, distributed across reference key (12.2 k
barcodes), validation (2.4 k barcodes), and test (3.4 k barcodes) subsets for open-world evaluation
tasks. For each sample in unseen, its species does not appear in seen, but its genus does appear.
This structure enables the evaluation of both closed-world classification and open-world species
identification capabilities.

2.2 BARCODEMAE: A MASKED AUTO-ENCODING MODEL FOR DNA BARCODE SEQUENCES

In this section, we present BarcodeMAE, the encoder-decoder architecture for DNA sequence
modelling. We describe the core architectural design and masking strategy that addresses the
distribution shift between pretraining and inference, followed by the implementation specifications:
tokenization, positional embeddings, and training procedures.

2.2.1 ENCODER-DECODER ARCHITECTURE WITH MODIFIED MASKING

To address the representational inefficiency in DNA sequence modelling, we adapt the MAE-LM
approach (Meng et al., 2024) for genomic applications. In training using masked language modelling

1The BIOSCAN-5M dataset contains 5.15 M arthropod records, each with associated an image and DNA
barcode sequence. Although the images are different for each record, the same barcode can occur across multiple
records, hence there are fewer than 5 M unique barcodes.
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objectives, part of the encoder’s capacity must be allocated to processing [MASK] tokens, which
potentially limits the model’s overall representational capacity to encode real tokens. The MAE-
LM architecture effectively mitigates this limitation by using a bidirectional encoder and shallow
bidirectional decoder, where the masked tokens are only presented to the decoder.

The encoder operates on nucleotide sequences with masked-out tokens removed entirely. Given
a DNA sequence x = [x1, . . . , [MASK]i, . . . , xn] and the set of masked positions M, the encoder
processes only nucleotide tokens. The encoder’s input sequence H0 is composed of token embeddings
exi

and positional embeddings pi for non-masked positions:

H0 = {h0
i }i/∈M, h0

i = exi
+ pi (1)

The decoder then processes sequences containing both masked and unmasked positions, explicitly
incorporating the [MASK] token in its input. The decoder’s input sequence Ĥ0 is constructed as:

Ĥ0 = {ĥ0
i }1≤i≤n, ĥ0

i =

{
e[MASK] + pi i ∈ M
hi
L + pi i /∈ M (2)

where hi
L represents the final layer output from the encoder for non-masked positions and e[MASK] is

the token embedding for the [MASK] token.

This approach prevents the encoder from learning specific embeddings for the [MASK] token,
ensuring the decoder’s representational capacity is not devoted to encoding this special token. Con-
sequently, the encoder’s representations remain unaffected by the [MASK] token and will use the
full representational capacity to learn meaningful patterns from the nucleotide sequences. During
downstream tasks, only the encoder is utilized, effectively isolating any potential limitations or
inefficiencies related to the [MASK] tokens.

2.2.2 MODEL IMPLEMENTATION

BarcodeMAE uses a transformer architecture to implement the MAE-LM framework for DNA
barcodes. It is trained using masked language modelling objectives. The architecture consists of a
symmetrical design: an encoder and decoder, each comprising 6 transformer layers with 6 attention
heads. Both components maintain a consistent hidden dimension of 768 units to ensure uniform
representation capacity throughout the network. To obtain an embedding of the entire DNA barcode,
the model employs global average pooling across the sequence of 768-dimensional output vectors,
excluding padding and special tokens. Figure 1 illustrates the architectural differences between
BarcodeBERT, an encoder-only foundation model, and BarcodeMAE, an encoder-decoder model.

For DNA sequence processing, we use non-overlapping k-mer tokenization with a vocabulary size
of 4k + 2, including the [UNK] and [MASK] special tokens. To handle frame-shift sensitivity, we
incorporate the data augmentation strategy proposed in BarcodeBERT (Millan Arias et al., 2023),
where sequences are randomly offset before tokenization. Based on previous studies (Millan Arias
et al., 2023; Dalla-Torre et al., 2024) showing optimal performance with k values of 4 or 6, we
evaluate our model using both of these k-mer lengths.

In this model, the encoder processes DNA sequences without [MASK] tokens, requiring a modified
positional encoding scheme. Our implementation preserves sequence order by skipping masked
position indices during encoding. This design maintains the relative positions of unmasked tokens
from the original sequence, enabling spatial relationship modelling in DNA sequences.

We implement our model using PyTorch and the Hugging Face Transformers library. Our model is
trained using masked token prediction with a 50% token masking strategy. To optimize the cross-
entropy loss of masked tokens, we use AdamW (Loshchilov & Hutter, 2017) with a weight decay
coefficient of 1× 10−5 and a OneCycle scheduler with a maximum learning rate of 1× 10−4.

3 EXPERIMENTS

In this section, we describe both closed-world and open-world evaluation tasks designed to assess
different aspects of the model’s performance. Additionally, we present comparative results against
current state-of-the-art baselines and conclude with an ablation study examining the impact of k-mer
length and the number of layers.
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Figure 1: Comparison of pretraining processes for BarcodeBERT (left) and BarcodeMAE (right). BarcodeBERT
uses an encoder-only transformer architecture with direct masking. BarcodeMAE processes DNA barcode
sequences through a transformer encoder-decoder architecture. The masking strategy differs from other founda-
tion models by excluding the [MASK] token from the encoder input, requiring the decoder to predict masked
sequences. After pretraining, the decoder is discarded and only the encoder is used for downstream tasks.

3.1 EVALUATION FRAMEWORK

We evaluate our model through two self-supervised learning (SSL) tasks: a closed-world task
assessing generalization to new species within known genera, and an open-world task evaluating the
model’s ability to handle unseen taxonomic groups.

Closed-World Task: 1-NN Probing. To evaluate model generalization to new species within known
genera, we perform genus-level 1-NN classification using cosine similarity. We use the training
subset of the Seen partition as the reference set and the Unseen partition as the query set. This task,
while involving unseen species, operates within the closed-world setting as it evaluates performance
on known genera from the training taxonomy.

Open-World Task: BIN Reconstruction. To assess the model’s ability to identify novel species
and capture taxonomic relationships, we implement a Barcode Index Number (BIN) reconstruction
task. We merge the test subset from the Seen partition with the test subset of Unseen partition and
employ zero-shot clustering on embeddings generated without fine-tuning (Lowe et al., 2024). This
evaluation is particularly crucial for understanding the model’s capability to group sequences from
rare or previously unclassified species based on shared biological features.

3.2 RESULTS

We compared BarcodeMAE against a comprehensive set of baselines, four encoder-only transformer-
based models, DNABERT-2 (Zhou et al., 2023), DNABERT-S (Zhou et al., 2024), Nucleotide
Transformer (Dalla-Torre et al., 2024), all trained on non-barcode data, and BarcodeBERT (Mil-
lan Arias et al., 2023), trained on DNA barcodes. Since BarcodeBERT is a 4-layer encoder-only
model and BarcodeMAE uses 6 encoder layers we pretrained a 6-layer model on the BIOSCAN-5M
to ensure the fair comparison. We also implemented a baseline that uses an encoder-decoder architec-
ture whilst maintaining the standard masking (BarcodeMAE w/MASK). This serves as a controlled
baseline to isolate the impact of architectural choices from masking strategies. Note that, even though
BarcodeMAE is conceptually an encoder-decoder model, for both BarcodeMAE and BarcodeMAE
w/MASK, we discard the decoder component at inference time, using only the pretrained encoder for
downstream tasks.

As shown in Table 1, BarcodeMAE achieves state-of-the-art performance in genus-level classification
with 69.0% accuracy, significantly outperforming the previous best baseline, BarcodeBERT, by over
10%. This strong performance in the 1-NN probing task suggests that BarcodeMAE develops more
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effective representations of the taxonomic hierarchy, particularly in closed-world scenarios where the
genera are known but the species are unseen. Notably, even our BarcodeMAE w/MASK baseline
model outperforms existing approaches, demonstrating that decoupling the encoder and decoder
alone contributes to improving representation learning in DNA barcode sequences, independent of
masking strategy optimizations.

For BIN reconstruction using ZSC, DNABERT-S achieves the highest AMI score of 87.7%, potentially
due to its diverse pretraining dataset that aligns well with the clustering objective (Zhou et al., 2024).
Notably, BarcodeMAE reaches comparable performance with an AMI of 80.3%, outperforming
models like DNABERT-2 and BarcodeBERT. To assess the performance across closed and open-world
tasks, we calculated the harmonic mean between genus-level accuracy and BIN reconstruction AMI.
BarcodeMAE achieves the highest harmonic mean of 74.2%, outperforming all other baselines. This
balanced metric highlights BarcodeMAE’s robust performance across both genus-level classification
and BIN reconstruction tasks.

Table 1: Performance comparison of DNA foundation models on BIOSCAN-5M. We evaluate on two key tasks:
genus-level accuracy for 1-NN probing of unseen species and BIN reconstruction AMI using ZSC. The harmonic
mean between these metrics provides a balanced assessment of each model’s performance across both tasks.
The models are divided into two groups: encoder-only transformer-based DNA foundation models, and our
proposed model, BarcodeMAE. The best results are indicated in bold, and second best underlined. BarcodeMAE
achieves the highest harmonic mean of 74.2%, demonstrating superior balanced performance across closed and
open-world tasks.

Genus-level acc (%)
of unseen species

BIN clustering
AMI (%) Harmonic

MeanArchitecture SSL Pretraining Model 1-NN probe ZSC probe

Encoder-only Multi-species DNA DNABERT-2 18.0 77.0 29.2
Multi-species DNA DNABERT-S 17.7 87.7 29.5
Multi-species DNA Nucleotide Transformer 21.7 37.3 27.4
BIOSCAN-5M BarcodeBERT 58.3 79.3 67.2

Encoder-decoder BIOSCAN-5M BarcodeMAE w/MASK 65.4 80.6 72.2
BIOSCAN-5M BarcodeMAE 69.0 80.3 74.2

To further validate the effectiveness of the model on underrepresented taxa, Figure 2 visualizes the
embeddings for 20 randomly sampled genera with fewer than 50 sequences in the dataset. The
embeddings from BarcodeMAE and the second best-performing model, BarcodeBERT, are projected
to two dimensions using t-SNE (van der Maaten & Hinton, 2008). The visualization shows that
BarcodeMAE produces more cohesive and well-separated clusters compared to BarcodeBERT,
indicating its ability to learn more discriminative embeddings even for genera with limited samples.
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Figure 2: t-SNE visualization of DNA barcode embeddings from BarcodeBERT (left) and BarcodeMAE (right)
for 20 randomly selected underrepresented genera. Each point represents a DNA barcode sequence, and colours
indicate different genera. BarcodeMAE shows more distinct and well-separated clusters, suggesting better
discrimination between genera compared to BarcodeBERT.

5



Published as a workshop paper at MLGenX 2025

3.3 ABLATION STUDY

We conducted an ablation study to analyze the impact of different architectural configurations on
BarcodeMAE model performance, focusing on two key parameters: k-mer size and the number of
layers and attention heads of the encoder-decoder. As shown in Table 2, we systematically varied
the number of layers in both the encoder and decoder. The notation “enc:L-H dec:M-J” indicates an
encoder with L layers and H attention heads and a decoder with M layers and J attention heads. For
each architecture, we evaluated both a k-mer size of k = 4 and k = 6.

Table 2: Impact of k-mer size and model architecture on genus-level classification accuracy. Architecture
notation “enc:L-H dec:M-J” indicates L layers and H attention heads in the encoder, and M layers and J heads
in the decoder. Results are shown for k = 4 and k = 6, with best performance per k-mer size in bold, and
second best performance underlined.

Genus-level acc (%) of
unseen species with 1-NN probe

k-mer size enc:4-4
dec:2-2

enc:4-4
dec:4-4

enc:6-6
dec:2-2

enc:6-6
dec:4-4

enc:6-6
dec:6-6

4 64.1 68.4 65.0 66.1 65.3
6 60.5 64.9 64.0 67.1 69.0

Our experiments demonstrate that the best performance is achieved with balanced encoder and
decoder architectures (enc:6-6 dec:6-6), achieving 69.0% accuracy for k = 6. This contradicts tra-
ditional NLP approaches where shallower decoders are preferred (Meng et al., 2024). The improved
performance with deeper decoders indicates that DNA sequence modelling requires more complex fea-
ture reconstruction capabilities. This finding provides evidence that effective DNA language models
need architectures specifically designed for genomic data rather than direct adaptations from NLP.

3.4 EMPIRICAL EVIDENCE OF REPRESENTATIONAL DEFICIENCY IN DNA FOUNDATION
MODELS

In this section, we investigate the effects of [MASK] token embeddings across both the encoder-only
foundation model, BarcodeBERT, and our proposed encoder-decoder model, BarcodeMAE. To
understand how the presence of [MASK] tokens impact taxonomic information during inference, we
conducted two experiments using the genus-level 1-NN classification task from Section 3.2. First,
we replaced different portions of input sequences with [MASK] tokens, varying the masking ratio
from 0.1 to 0.9, and evaluated the performance of the pretrained BarcodeBERT model (for which the
encoder saw [MASK] tokens during training). Second, we performed a comparative analysis where
instead of substituting the dropped tokens with [MASK], we instead, removed them entirely. This
version was performed for both BarcodeMAE and BarcodeBERT. This allows us to study the impact
of removing portions of the sequence on both models, and the effect of the [MASK] token versus
token deletion on model performance.

As shown in Figure 3, we find that BarcodeMAE outperforms BarcodeBERT in the expected
downstream use-case where the whole input sequence is shown to the model. The performance of
BarcodeMAE decreases approximately linearly as input tokens are removed from the sequence, and
begins to fall as soon as any tokens are removed. Meanwhile, the BarcodeBERT model, in both
masked and removed variants, demonstrates only a shallow decline in performance as tokens are
dropped until reaching its training masking ratio of 50%, after which the accuracy decreases much
more rapidly. These results demonstrate that BarcodeBERT is better able to operate on partially
complete information, but can not integrate together all information in the sequence. Given that the
two training tasks are the same, it is surprising that BarcodeMAE does not match the performance of
BarcodeBERT for partial sequences, and this suggests there may be potential for further performance
gains.

Additionally, we find that BarcodeBERT performs better when dropped tokens are replaced with
the [MASK] token instead of being removed completely from the input. The performance gap
emerges immediately (+4% at 10% dropped) and increases to reach approximately +10% at 80%

6



Published as a workshop paper at MLGenX 2025

0.0 0.2 0.4 0.6 0.8
Proportion of Tokens Dropped

0

10

20

30

40

50

60

70

Ge
nu

s-
le

ve
l A

cc
ur

ac
y 

(%
)

BarcodeMAE
BarcodeBERT (masked)
BarcodeBERT (removed)

Figure 3: Impact of masking and token deletion on genus-level classification accuracy. While BarcodeBERT
shows stability at higher drop rates, the practical inference scenario occurs at x=0 with no masking, where
BarcodeMAE demonstrates superior performance. The robustness to masking or removing tokens shown by
BarcodeBERT does not correspond to an improved real-world performance since these conditions are not
encountered during inference.

dropped. Since the [MASK] tokens do not contain any information about the specimen’s genus, the
fact that the BarcodeBERT model performs better when they are present indicates it learned to use the
computation associated with [MASK] tokens to better extract information from rest of the sequence.

These results empirically demonstrate the distribution shift challenge inherent in masked language
modelling, as the model develops dependency on [MASK] tokens during training that are absent
during inference. The contrasting behaviour of BarcodeMAE, which learns representations solely
from observed nucleotides, suggests its architecture may better align with inference-time conditions,
where the [MASK] token is not present.

4 CONCLUSION

We introduced BarcodeMAE, an encoder-decoder architecture that mitigates the fundamental limita-
tions of masked language modelling in DNA barcode sequence analysis. By eliminating [MASK]
tokens during encoding, BarcodeMAE reduces the distribution shift between pretraining and in-
ference, significantly enhancing performance over existing DNA foundation models. Notably, it
achieves over a 10% improvement in genus-level classification accuracy on the BIOSCAN-5M dataset
compared to the previous state-of-the-art, BarcodeBERT.

While BarcodeMAE does not have the best performance in BIN reconstruction, it achieves the
highest harmonic mean across the evaluation tasks, demonstrating a robust performance between
closed-world and open-world settings. Our ablation studies reveal that, unlike NLP models that favour
shallow decoders, DNA sequence modelling benefits from balanced encoder-decoder architectures,
underscoring the need for domain-specific architectural designs.

These findings highlight the critical impact of [MASK] token distribution shifts on foundation model
effectiveness, particularly in genomic applications where models are used for feature extraction
without fine-tuning. The superior performance of BarcodeMAE across diverse evaluation scenarios
validates its architectural approach to addressing masking inefficiencies in genomic foundation
models.
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APPENDICES

A COMPARISON WITH CAUSAL MODELS

To compare our model with recently developed causal models for DNA sequence analysis, we
conducted additional experiments comparing BarcodeMAE with several state-of-the-art models, such
as HyenaDNA-tiny and Caduceus-PS-1k which are trained on non-barcode data and BarcodeMamba
which is trained on DNA barcode data. For a fair comparison, since BarcodeMamba was trained on
the CANADA-1.5M dataset (Hebert et al., 2016), we trained BarcodeMAE on the same dataset and
evaluated all models on BIOSCAN-5M.

As shown in Table 3, While causal models show strong performance in BIN clustering, with
HyenaDNA-tiny achieving 85.0% AMI, they underperform in the genus-level classification of
unseen species. BarcodeMamba, specifically trained on DNA barcodes, achieves the highest balanced
performance among state space models with 36.3% genus-level accuracy and 82.7% BIN clustering
AMI, resulting in a harmonic mean of 50.5%.

The encoder-only architecture, BarcodeBERT, demonstrates enhanced genus-level classification
through 1-NN probing compared to causal models, achieving 40.9% accuracy. BarcodeMAE sur-
passes all competing models with 51.2% genus-level classification accuracy and a harmonic mean of
63.2%, indicating superior balanced performance across metrics. One interesting finding of these
results is that BarcodeMAE surpasses models pre-trained on BIOSCAN-5M by 3% in the ZSC bin
reconstruction task, despite being trained on the smaller CANADA-1.5M dataset.

Table 3: Performance comparison of DNA foundation models on BIOSCAN-5M. We evaluate on two key tasks:
genus-level accuracy for 1-NN probing of unseen species and BIN reconstruction AMI using ZSC. The harmonic
mean between these metrics provides a balanced assessment of each model’s performance across both tasks.
The models are divided into three groups: transformer-based DNA foundation models, state space models, and
our proposed model, BarcodeMAE. The best results are indicated in bold, and second best are underlined.

Genus-level acc (%)
of unseen species

BIN clustering
AMI (%) Harmonic

MeanArchitecture SSL Pretraining Model 1-NN probe ZSC probe

State space Human genome HyenaDNA-tiny 19.3 85.0 31.4
Human genome Caduceus-PS-1k 9.1 65.4 15.9
CANADA-1.5M BarcodeMamba 36.3 82.7 50.5

Encoder-only CANADA-1.5M BarcodeBERT 40.9 73.4 52.5

Encoder-decoder CANADA-1.5M BarcodeMAE w/MASK 49.4 83.8 62.2
CANADA-1.5M BarcodeMAE 51.2 82.4 63.2

B BASELINE MODELS

For evaluation, we utilized the respective Pretrained models from Huggingface ModelHub, specifi-
cally:

• DNABERT-2: zhihan1996/DNABERT-2-117M

• DNABERT-S: zhihan1996/DNABERT-S

• NT: InstaDeepAI/nucleotide-transformer-v2-50m-multi-species

• HyenaDNA: LongSafari/hyenadna-tiny-1k-seqlen

• BarcodeBERT: bioscan-ml/BarcodeBERT

• Caduceous: kuleshov-group/caduceus-ps seqlen-1k d model-256 n layer-4 lr-8e-3

• BarcodeMamba: bioscan-ml/BarcodeMamba-dim384-layer2-char
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B.1 PRETRAINING

BarcodeBERT and BarcodeMAE were pretrained for 35 epochs using the AdamW optimizer
Loshchilov & Hutter (2017) with a learning rate of 2× 10−4, a batch size of 128, and a OneCycle
learning rate scheduler. The pretraining process utilized four NVIDIA V100 GPUs and required
approximately 36 hours to complete for each experiment executed. To examine the impact of pre-
training, we also trained a model from scratch on the training subset of the Seen partition without any
pretraining.

B.2 ZERO-SHOT CLUSTERING

We evaluated the models’ ability to group sequences without supervision using a modified version of
the framework from Lowe et al. (2024). Embeddings were extracted from the pretrained encoders and
reduced to 50 dimensions using UMAP (McInnes et al., 2018) to enhance computational efficiency
while preserving data structure. These reduced embeddings were clustered with Agglomerative
Clustering (cosine distance, Ward’s linkage), using the number of true species as the target number of
clusters. Clustering performance was assessed with adjusted mutual information (AMI) to measure
alignment with ground-truth labels.
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