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Abstract

We investigate the efficiency of deep neural networks for approximating scoring1

functions in diffusion-based generative modeling. While existing approximation2

theories leverage the smoothness of score functions, they suffer from the curse of di-3

mensionality for intrinsically high-dimensional data. This limitation is pronounced4

in graphical models such as Markov random fields, where the approximation5

efficiency of score functions remains unestablished.6

To address this, we note score functions can often be well-approximated in graphical7

models through variational inference denoising algorithms. Furthermore, these8

algorithms can be efficiently represented by neural networks. We demonstrate this9

through examples, including Ising models, conditional Ising models, restricted10

Boltzmann machines, and sparse encoding models. Combined with off-the-shelf11

discretization error bounds for diffusion-based sampling, we provide an efficient12

sample complexity bound for diffusion-based generative modeling when the score13

function is learned by deep neural networks.14

1 Introduction15

In recent years, diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020, Song and Ermon,16

2019, Song et al., 2020] have emerged as a leading approach for generative modeling, achieving17

state-of-the-art results across diverse domains. Given a dataset of n independent and identically18

distributed samples {xi}ni=1 drawn from an unknown distribution µ ∈ P(Rd), diffusion models aim19

to learn a generative model that produces new samples x̂ ∼ µ̂ that match this distribution. Popular20

diffusion models such as DDPM [Ho et al., 2020] achieve this through a two-step procedure:21

• Step 1. Fit approximate score functions ŝt : Rd → Rd for t ∈ [0, T ] by minimizing the22

following empirical risk over a neural network class F :23

ŝt = arg min
NN∈F

1

n

n∑
i=1

∥∥σ−1
t gi +NN(λtxi + σtgi)

∥∥2
2
. (ERM)

In the above display, gi ∼iid N (0, Id) and (λt, σ
2
t ) = (e−t, 1− e−2t).24

• Step 2. Discretize the following stochastic differential equation (SDE) from Gaussian25

initialization, whose drift term is given by the fitted approximate score functions:26

dYt =
(
Yt + 2ŝT−t(Yt)

)
dt+

√
2dBt, t ∈ [0, T ], Y0 ∼ N (0, Id), (SDE)

and take the approximate sample x̂ = YT ∈ Rd.27
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Score functions st(z) are central to the diffusion model framework. Given infinite data and model28

capacity, the minimizer of the empirical risk in Eq. (ERM) yields the score function,29

st(z) =∇z logµt(z), µt(z) : density of z, x ∼ µ and [z|x] ∼ N (λtx, σ
2
t Id). (Score)

The sample quality from diffusion models relies on two key factors: (1) how well ŝt approximates st;30

and (2) how accurately the SDE discretization scheme approximates process (SDE). Recent work has31

made substantial progress on controlling the SDE discretization error in diffusion models, assuming32

access to a good score function estimator [Chen et al., 2022a, 2023a, Lee et al., 2023, Li et al., 2023a,33

Benton et al., 2023]. However, understanding when neural networks can accurately estimate the score34

function itself remains less explored. Some analyses rely on strong distributional assumptions for35

score function realizability [Shah et al., 2023, Yuan et al., 2023], while others exploit the smoothness36

of score functions, incurring the curse of dimensionality [Oko et al., 2023, Chen et al., 2023b]. These37

results do not cover many common high-dimensional graphical models for images and text, such as38

Markov random fields or restricted Boltzmann machines [Geman and Graffigne, 1986, Ranzato et al.,39

2010, Conroy and O’leary, 2001].40

A new perspective on score function approximation. We provide a new perspective on approxi-41

mating diffusion model score functions with neural networks. First, we observe that by Tweedie’s42

formula, score functions st are related to denoising functions mt:43

st(z) = (λt ·mt(z)− z)/σ2
t , mt(z) = E(x,g)∼µ⊗N (0,Id)[x|λtx+ σtg = z]. (Denoiser)

Our key insight is that if the data distribution µ arises from a graphical model, these denoisers mt(z)44

can often be approximated by variational inference (VI) algorithms, which takes the form45

mt(z) ≈ fout(u
(L)), u(ℓ) = fℓ(u

(ℓ−1)), ℓ ∈ {1, . . . , L}, u(0) = fin(z). (VI)

For instance, when µ is an Ising model, mt can be approximated by an iterative algorithm that46

minimizes a VI objective [Jordan et al., 1999, Wainwright et al., 2008]. Each update step fℓ is47

composed of simple operations, including matrix-vector multiplication and pointwise nonlinearity,48

which can be captured by a two-layer neural network fℓ(u) ≈ u+W1 ·ReLU(W2u). By comparing49

updates (VI) and residual network forms (ResNet), we can see how the iterative variational inference50

steps directly translate to residual block approximations. This establishes a clear connection between51

variational inference in graphical models and score approximation in diffusion models.52

2 Preliminaries: the DDPM sampling scheme53

Algorithm 1 The DDPM sampling scheme
Require: {xi}i∈[n], (d,D,L,M,B), (N,T, δ, {tk}0≤k≤N ) with 0 = t0 < · · · < tN = T − δ.

1: // Computing the approximate score function
2: Sample {gi}i∈[n] ∼iid N (0, Id).
3: for t ∈ {T − tk}0≤k≤N−1 do
4: Solve the ERM problem below for t = T − tk:

Ŵt = arg min
W∈Wd,D,L,M,B

1

n

n∑
i=1

∥∥∥σ−1
t gi + Pt[ResNW ](λtxi + σtgi)

∥∥∥2
2
. (1)

5: Take the approximate score function to be ŝt(z) = Pt[ResNŴt
](z).

6: // Sampling by discretizing the stochastic differential equation
7: Sample Ŷ0 ∼ N (0, Id).
8: for k = 0, · · · , N − 1 do
9: Sample Gk ∼ N (0, Id). Calculate Ŷk+1 using the exponential integrator scheme:

Ŷk+1 = eγk · Ŷk + 2(eγk − 1) · ŝT−tk(Ŷk) +
√
e2γk − 1 ·Gk, γk = tk+1 − tk. (2)

Return: x̂ = ŶN .

This section provides details on the two-step DDPM sampling scheme in Algorithm 1. The inputs54

of the algorithm are n IID samples {xi}i∈[n] from µ. The algorithm also receives parameters55
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(d,D,L,M,B) for specifying the ResNet class, and (N,T, δ, {tk}0≤k≤N ) for specifying the time56

discretization scheme. The first step of the algorithm performs empirical risk minimization to compute57

the approximate score functions ŝt (lines 2-5). The second step generates a sample by discretizing58

the reverse-time SDE using the fitted score functions (lines 7-9). We discuss the score learning and59

SDE discretization steps in more detail below.60

ERM and the ResNet class. The first step of Algorithm 1 solves an ERM problem (1) to fit the score61

functions. This regresses standard Gaussian noises {gi}i∈[n] on the noisy samples {λtxi+σtgi}i∈[n],62

using a standard ResNet architecture ResNW : Rd → Rd. The ResNet is parameterized by a set63

of weight matrices W = {W (ℓ)
1 ∈ RD×M ,W

(ℓ)
2 ∈ RM×D}ℓ∈[L] ∪ {Win ∈ R(d+1)×D,Wout ∈64

RD×d} with embedding dimension D, number of layers L, and hidden-layer width M . It applies65

iterative residual blocks with ReLU nonlinearities to map an input z to an output in Rd:66

ResNW (z) = Woutu
(L), u(ℓ) = u(ℓ−1) +W

(ℓ)
1 ReLU(W

(ℓ)
2 u(ℓ−1)), u(0) = Win[z; 1].

(ResNet)
The minimization in (1) is over the ResNets whose weights are contained in a B-bounded set,67

specified by parameters (d,D,L,M,B)68

Wd,D,L,M,B :=
{
W = {W (ℓ)

1 ,W
(ℓ)
2 }ℓ∈[L] ∪ {Win,Wout} : |||W ||| ≤ B

}
. (3)

Here the norm of ResNet weights is defined as69

|||W ||| := max
ℓ∈[L]

{
∥W (ℓ)

1 ∥op + ∥W (ℓ)
2 ∥op

}
∨max

{
∥Win∥op, ∥Wout∥op

}
. (4)

For technical reasons, we truncate the ResNet output using Pt. Given a function f : Rd → Rd, we70

define Pt[f ](z) = projλtσ
−2
t

√
d(f(z) + σ−2

t z)− σ−2
t z, where projR(z) is the projector of z ∈ Rd71

into the R-Euclidean ball. Note that when f(z) is a score function, f(z) + σ−2
t z is a rescaled72

denoising function and should be bounded for data distribution with compact support. This operator73

is a technical detail that could be eliminated in practice — it is only used to control the generalization74

error of the empirical risk minimization problem.75

Choice of the discretization scheme. We choose a particular scheme that uses a uniform grid76

in the first phase and an exponential decaying grid in the second phase. As shown in Benton et al.77

[2023], such a scheme provides a sharp sampling error control. We delay the detailed description of78

our discretization scheme to Appendix A.1.79

The conditional diffusion model. In conditional generative modeling tasks, we observe IID80

samples {(xi,θi)}i∈[n] ∼iid µ, and our goal is to learn a model to generate new samples x̂ from the81

conditional distribution µ(x|θ) for a given θ.82

The DDPM sampling scheme can be simply adapted to solve conditional generative modeling tasks,83

as per Algorithm 2. Specifically, we modify the ResNet in empirical risk minimization to take the84

form (ResNet-Conditional), admitting inputs (λtxi + σtgi,θi) ∈ Rd ×Rm. The approximated score85

functions ŝt(z) become conditional ŝt(z;θ) = Pt[ResNŴt
](z,θ), estimating the conditional score86

functions st(z;θ) = ∇z logµt(z,θ), where µt is the joint density of (z,θ) when (x,θ) ∼ µ and87

[z|x] ∼ N (λtx, σ
2
t Id). Details of the conditional algorithm are provided in Appendix D.1.88

3 Diffusion models for Ising models89

The Ising model µ ∈ P({±1}d) is a distribution over the discrete hypercube, with probability mass90

function characterized by an energy function of spin configurations. Specifically,91

µ(x) = Z−1 exp{⟨x,Ax⟩/2}, x ∈ {±1}d, Z =
∑

x∈{±1}d exp{⟨x,Ax⟩/2}. (Ising)

The Ising model stands as one of the most fundamental graphical models; it belongs to the exponential92

family, yet its normalizing constant, Z, does not possess an analytic expression.93

Consider the task of generative modeling where the input consists of IID samples {xi}i∈[n] ∼ µ94

derived from the Ising model. To demonstrate that Algorithm 1 outputs valid samples, we need to95
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control the estimation error E[∥ŝt(z)− st(z)∥22]. Recall that st relates to mt. To calculate mt(z),96

one often seeks to minimize certain type of free energy, for instance, the naive variational Bayes free97

energy [Wainwright et al., 2008]. To establish our main result, we will assume the consistency of a98

free energy minimizer with the denoiser.99

Assumption 1. Let x ∼ µ(σ) ∝ exp{⟨σ,Aσ⟩/2} and z ∼ N (λtx, σ
2
t Id). Denote the marginal100

distribution of z by µt. For any fixed t, assume that there exists ε2VI,t(A) < ∞ and K = K(A, t)101

with ∥K −A∥op ≤ A < 1, such that102

Ez∼µt [∥m̂t(z)−mt(z)∥22]/d ≤ ε2VI,t(A),

m̂t(z) = argminm∈[−1,1]d

{ d∑
i=1

−hbin(mi)−
1

2
⟨m,Am⟩ − λt

σ2
t

⟨z,m⟩+ 1

2
⟨m,Km⟩

}
.

In Appendix A.2, we will discuss cases in which the VI approximation error ε2VI,t(A) can be well-103

controlled. Given Assumption 1 holds, we are ready to provide a bound on the estimation error104

of the approximate score function. We give a proof outline in Appendix A.4 and the full proof in105

Appendix E.106

Theorem 1. Let Assumption 1 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given107

by Algorithm 1 in which we take108

D = 3d, M ≥ 4d, B ≥ 7 · (M/d) · log(M) + 1/min
k

{T − tk}+
√
d.

Then with probability at least 1− η, for any t ∈ {T − tk}0≤k≤N−1, we have109

Ez∼µt [∥ŝt(z)− st(z)∥22]/d ≲ λ2
tσ

−4
t ·

(
ε2VI,t(A) + ε2ResN + ε2gen

)
, (5)

where110

ε2ResN =
d2

M2(1−A)2
+A2L, ε2gen =

√
(MdL+ d2)[T + L log(BL)] + log(N/η)

n
. (6)

Combining Theorem 1 with off-the-shelf results on the DDPM discretization error [Benton et al.,111

2023], we obtain the following bound on the sampling error in terms of KL divergence:112

Corollary 1. Let Assumption 1 hold. Consider the two-phase discretization scheme as in Definition113

1. Denote the distribution of the output of Algorithm 1 as µ̂. Then, with probability at least 1− η, we114

have115

KL(µδ, µ̂)/d ≲ ε2score + ε2disc, (7)

where116

ε2score ≤ δ−1 ·
(

sup
0≤k≤N−1

ε2VI,T−tk
+ ε2ResN + ε2gen

)
, ε2disc ≤ κ2N + κT + e−2T . (8)

Equation (7) provides control on the KL divergence between µδ and µ̂ normalized by dimension117

d. If the right-hand side is small, this guarantees the two distributions are close in an average per-118

coordinate sense: for two d-dimensional product distributions µ = N (0, 1)⊗d and ν = N (ε, 1)⊗d119

that are close per coordinate, their KL divergence scales as KL(µ, ν) ≍ d · ε2, growing linearly with120

d. Furthermore, it is possible to derive bounds on the distance between the original distribution µ121

(instead of µδ) and the learned distribution µ̂ using other DDPM discretization analyses such as122

Chen et al. [2022a, 2023a], Li et al. [2023a]. We provide additional discussions of our results in123

Appendix A.3. We discuss other related works and future directions in Appendix C.124

Generalization to other high-dimensional graphical models To demonstrate the flexibility of our125

proposed framework, we also generalize the results in this section to other high-dimensional graphical126

models in Appendix B. Specifically, we consider latent variable Ising models (Appendix B.1), the127

conditional Ising models for the conditional generative modeling task (Appendix B.2), and the sparse128

coding models (Appendix B.3).129
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A More details for Section 3370

A.1 Discretization scheme371

Definition 1 (Two-phase discretization scheme [Benton et al., 2023]). The two-phase discretization372

scheme has parameters (κ,N0, N, T, δ) ∈ (0, 1)× N× N× R× (0, 1), where (κ,N0, N) are free373

parameters and (T, δ) are fully determined by (κ,N0, N). In the first uniform phase, the N0 time374

steps have equal length κ. In the second exponential phase, the N − N0 steps decay with rate375

1/(1 + κ) ∈ (0, 1). The last time step tN has a gap δ = (1 + κ)N0−N ∈ (0, 1) to T .376

Specifically, we take t0 = 0, tk = kκ for k ≤ N0, tN0 = N0κ = T − 1, tN0+k = T − (1 + κ)−k377

for 0 ≤ k ≤ N −N0, and tN = T − (1 + κ)N0−N = T − δ. Defining γk = tk+1 − tk, we have378

γk = κ for k ≤ N0 − 1, and γN0+k = κ/(1 + κ)k+1 for 0 ≤ k ≤ N −N0 − 1. See [Benton et al.,379

2023, Figure 1] for a pictorial illustration of this scheme.380

A.2 Verifying the assumption in examples381

This section provides examples that admit controlled VI approximation error ε2VI,t. The results in this382

section are proved in Appendix E.3.383

Ising model in the VB consistency regime. There is a line of work studying the consistency of384

the naive mean-field variational Bayes (VB) free energy in Ising models under high-temperature385

conditions [Chatterjee and Dembo, 2016, Eldan, 2018, Jain et al., 2018, Mukherjee and Sen, 2022].386

We build on this by providing a quantitative bound on the variational inference approximation error387

for a general coupling matrix A in this regime.388

Lemma 1. Assume ∥A∥op < 1/2. Then for any t, Assumption 1 is satisfied for K = 0, and389

ε2VI,t(A) ≤ 4

1− 2∥A∥op
∥A∥2F

d
. (9)
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As an example, for the ferromagnetic Ising model we have A = β11T/d, giving ε2VI,t(A) ≤390

[4β2/(1 − 2β)]/d. This shows the VI approximation error vanishes as β < 1/2 and d → ∞.391

However, this is not a particularly interesting regime for Ising models, since they can be well-392

approximated by a product distribution when β is small [Chatterjee and Dembo, 2016, Eldan, 2018].393

The Sherrington-Kirkpatrick model. The Sherrington-Kirkpatrick model assumes A = βJ ,394

where J ∼ GOE(d) is a symmetric Gaussian random matrix with off-diagonal entries that are395

IID Gaussian with variance 1/d. Prior work has shown that the VB free energy does not provide396

consistent estimation in this model [Ghorbani et al., 2019, Fan et al., 2021]. Instead, the variational397

objective that yields a consistent estimator of the Gibbs mean is the Thouless-Anderson-Palmer (TAP)398

free energy [Thouless et al., 1977, Fan et al., 2021, El Alaoui et al., 2022]. Using results on the TAP399

free energy, the variational inference (VI) approximation error can be controlled for this model when400

β < 1/4.401

Lemma 2. [Corollary of Lemma 4.10 of El Alaoui et al. [2022]] Assume A = βJ where J ∼402

GOE(d) and β < 1/4. Then for any t, there exists matrices K = ctId for some ct, such that with403

high probability, ∥A− ctId∥op ≤ A < 1 and404

εVI,t(βJ)
p−→ 0, as d → ∞.

Lemma 2 provides a qualitative result on the consistency of variational inference (VI) for the405

Sherrington-Kirkpatrick model, but does not give a non-asymptotic error bound. To establish a406

non-asymptotic guarantee, one could potentially leverage tools like the smart path method [Talagrand,407

2003, Theorem 2.4.20] or Stein’s method [Chatterjee, 2010]. We conjecture it is possible to prove a408

quantitative error bound of order C(β)/d using these techniques, as illustrated in [Talagrand, 2003,409

Theorem 2.4.20].410

Other Ising models. We conjecture that Lemma 2 could extend to a variety of other models411

including non-Gaussian Wigner matrices [Carmona and Hu, 2006], heterogeneous variances [Wu,412

2023], orthogonally invariant spin glasses [Fan et al., 2022], and spiked matrix models with non-413

Rademacher priors [Fan et al., 2021, Lelarge and Miolane, 2019]:414

• Non-Gaussian Wigner matrices. We have A = βJ where J is a symmetric random matrix415

whose off-diagonal elements are independent with variance 1/d and satisfy some moment416

condition. This generalizes GOE matrices to non-Gaussian distributions. Since these417

matrices have similar properties to GOE matrices [Carmona and Hu, 2006], we conjecture418

Lemma 2 should hold.419

• Heterogeneous variance: multi-species Sherrington-Kirkpatrick models. We have A = βJ420

where J is a random matrix with independent entries but heterogeneous variance. An421

example is the bipartite Sherrington-Kirkpatrick model specified by a set S ⊆ [d], with422

Jij = Jji ∼ N (0, 1/d) for i ∈ S and j ∈ Sc, and Jij = 0 for i, j ∈ S or i, j ∈ Sc. The423

TAP equations verifying Assumption 1 has been shown to hold in similar models [Wu, 2023]424

in the high-temperature regime β ≤ β0.425

• Orthogonally invariant spin glass models. We have A = βJ , where J = OEOT ∈426

Rd×d. Here, O ∼ Haar(SO(d)) is a uniform random orthogonal matrix and E =427

diag(e1, . . . , ed) ∈ Rd×d is a diagonal matrix. The TAP equations have been shown428

for related models [Fan et al., 2022] in the high-temperature regime.429

• Spiked matrix models. Suppose we observe Y = uuT + J where J ∼ GOE(d) and430

u ∈ Rd with ui ∼iid π0 for some distribution π0 ∈ P(R). The posterior distribution of431

u given observation Y is given by µ(x) ∝ exp{⟨x,Y x⟩/2− ∥x∥42/(4n)}πd
0(x). Taking432

this µ as the sample distribution, we conjecture that Assumption 1 can be verified for this433

model Fan et al. [2021], Lelarge and Miolane [2019].434

A.3 Discussions435

More explicit sample complexity bounds. Corollary 1 provides a sampling error bound in436

terms of the KL divergence of µδ and µ̂. To interpret this bound, assume µ̂ satisfies a437

dimension-free transportation-information inequality, i.e., W 2
1 (µδ, µ̂) ≲ KL(µδ, µ̂). Further assume438
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supt ε
2
VI,t(A) ≲ 1/d (conjectured to hold for the SK model when β < 1). Since W 2

1 (µδ, µ)/d ≲ δ,439

this implies440

W 2
1 (µ, µ̂)/d ≲ W 2

1 (µ, µδ)/d+KL(µδ, µ̂)/d ≲ δ + ε2score + ε2disc.

By the formulation of ε2score and ε2disc in Eq. (6) and (8) and by supt ε
2
VI,t(A) ≲ 1/d, to ensure441

W 2
1 (µ, µ̂)/d ≲ ε2, it suffices to take442

δ ≍ ε2, T ≍ log(1/ε), κ ≍ ε2/ log(1/ε), N ≍ log2(1/ε)/ε2,

d ≍ 1/ε4, M ≍ 1/ε6, L ≍ log(1/ε), n ≍ log3(1/ε)/ε18.

The role of dimensionality. In contrast to existing results [Oko et al., 2023, Chen et al., 2023b]443

in which the score estimation error bounds exhibit a curse of dimensionality, our result seems to444

demonstrate a “blessing of dimensionality”. Specifically, the term ε2VI,t in Theorem 1 is independent445

of ResNet size, sample size, and will typically vanish as dimension d goes to infinity. However, we446

cannot conclude that score estimation actually becomes easier for higher-dimensional Ising models,447

since our result only provides an upper bound on the estimation error. Whether score approximation448

truly simplifies with increasing dimensions is an open question deserving further investigation.449

Generalizing Assumption 1. While Assumption 1 provides a sufficient condition for efficient450

score approximation, it is stronger than necessary. For example, in the Sherrington-Kirkpatrick451

model when A = βJ where J ∼ GOE(d), an efficient sampling algorithm is known when β < 1452

[Celentano, 2022]. However, we can only verify Assumption 1 for β ≤ β0 for some 1/4 < β0 < 1/2.453

Nevertheless, we believe one can weaken our assumption to show score estimation is efficient for any454

β < 1 by leveraging local convexity of the TAP free energy of the SK model, proved in El Alaoui455

et al. [2022], Celentano [2022].456

The choice of sampling scheme and discretization scheme. Importantly, our score estimation457

error bound in Theorem 1 can combine with sampling schemes beyond DDPM, as it does not rely458

on a specific diffusion model. For instance, stochastic localization schemes [Eldan, 2013, El Alaoui459

et al., 2022, Montanari and Wu, 2023, Montanari, 2023] estimate the denoiser rather than the score,460

and our analysis can be adapted to bound the denoiser estimation error, enabling sampling guarantees461

for stochastic localization. Additionally, the discretization scheme and sampling error bound in462

Corollary 1 may not be optimal. The analysis could likely be sharpened, or the discretization463

improved, to provide tighter error guarantees.464

A.4 Proof outline of Theorem 1465

Here, we outline the proof of Theorem 1, with full details in Appendix E.466

Recall that we have ŝt(z) = Pt[ResNŴ
](z), where Ŵ = argminW∈W Ê[∥PtResNW (z) +467

σ−1
t g∥22] for W = Wd,D,L,M,B . Here, Ê denotes averaging over the empirical data distribution. By468

standard error decomposition analysis in empirical risk minimization theory, we have:469

E[∥Pt[ResNŴ
](z) + σ−1

t g∥22]/d ≤ inf
W∈W

E[∥Pt[ResNW ](z) + σ−1
t g∥22]/d

+ 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.

Furthermore, a standard identity in diffusion model theory shows:470

E[∥ŝt(z)− st(z)∥22]/d = E[∥ŝt(z) + σ−1
t g∥22]/d+ C, C = E[∥st(z)∥22]/d− E[∥σ−1

t g∥22]/d.
Combining the above yields:471

E[∥ŝt(z)− st(z)∥22]/d ≤ ε̄2app + ε̄2gen,

where ε̄2app is the approximation error and ε̄2gen is the generalization error,472

ε̄2app = inf
W∈W

E[∥Pt[ResNW ](z)− st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.
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The generalization error ε̄2gen can be controlled by a standard empirical process analysis. We simply473

use a parameter counting argument to control this term, which can be found in Proposition 6. This474

gives rise to the term ε2gen in (6).475

To control the approximation error ε̄2app, we note that st(z) = (λt ·mt(z)−z)/σ2
t , where mt(z) =476

E(x,g)∼µ⊗N (0,Id)[x|λtx+σtg = z] is the denoiser. Thus, approximating the score function reduces477

to approximating mt(z) using a ResNet. By Assumption 1, the denoiser mt can be approximated478

by the minimizer of a variational free energy FVI
t . This minimizer can be found by a fixed point479

iteration, which can further be approximated by a ResNet.480

More specifically, simple calculus shows that the minimizer m̂ = m̂t of the variational free energy481

FVI
t satisfies the fixed point equation482

m̂ = tanh(Um̂+ h), U = A−K, h = λtσ
−2
t z.

When ∥U∥op < 1, this can be efficiently solved by fixed point iteration483

m̂ ≈ mL, mℓ+1 = tanh(Umℓ + h), m0 = 0.

This fixed point iteration can further be approximated by the ResNet structure (ResNet), where484

tanh is approximated by a linear combination of ReLU activations. Lemma 5 and 6 analyze this485

approximation error ε2ResN. Our analysis shows that the total approximation error ε̄2app is controlled486

by ε2VI + ε2ResN. Adding the generalization error yields the overall score estimation error bound in487

Eq. (5).488

B Generalization to other high-dimensional graphical models489

B.1 Diffusion models for latent variable Ising models490

In the latent variable Ising model µ, we have a coupling matrix A = [A11,A12;A
T
12,A22] ∈491

R(d+m)×(d+m) (where A11 ∈ Rd×d, A12 ∈ Rd×m, and A22 ∈ Rm×m), specifying a joint distribu-492

tion over (x,θ) ∈ {±1}d+m,493

µ(x,θ) ∝ exp{⟨x,A11x⟩/2 + ⟨x,A12θ⟩+ ⟨θ,A22θ⟩/2}, x ∈ {±1}d,θ ∈ {±1}m. (10)

Note that the joint distribution over (x,θ) is still an Ising model. However, here we will treat θ as a494

latent variable and consider generative modeling for the marginal distribution µ(x) =
∑

θ µ(x,θ)495

when θ is unobserved. When A11 = 0 and A22 = 0, this model reduces to a restricted Boltzmann496

machine, which is often used to model natural image distributions [Ranzato et al., 2010].497

We still consider the generative modeling task where we observe {xi}i∈[n] ∼iid µ, and our goal is to498

sample a new x̂ ∼ µ̂ with µ̂ ≈ µ. To show the DDPM scheme (Algorithm 1) provides a controlled499

error bound, we need to bound the score estimation error [Benton et al., 2023]. This estimation error500

can be controlled if we assume the denoiser minimizes a VI objective.501

Assumption 2 (Consistency of the free energy minimizer in marginal Ising models). Let σ =502

(x,θ) ∼ µ(x,θ) ∝ exp{⟨σ,Aσ⟩/2} and z ∼ N (λtx, σ
2
t Id). For any fixed t, assume that there503

exists ε2VI,t(A) < ∞ and K = K(A, t) ∈ R(d+m)×(d+m) with ∥K −A∥op ≤ A < 1, such that504

Ez∼µt
[∥m̂t(z)−mt(z)∥22]/d ≤ ε2VI,t(A), m̂t(z) = [ω̂t(z)]1:d,

ω̂t(z) = argminω∈[−1,1]d+m

{ d+m∑
i=1

−hbin(ωi)−
1

2
⟨ω,Aω⟩ − λt

σ2
t

⟨z,ω1:d⟩+
1

2
⟨ω,Kω⟩

}
.

Assumption 2 can be verified in concrete examples. Lemma 1 still applies in this model: when505

∥A∥op < 1/2, taking K = 0 gives ε2VI,t(A) ≤ 4d−1(1− 2∥A∥op)−1∥A∥2F . We conjecture that for506

A being spin glass models like the Sherrington-Kirkpatrick model at high temperature, there exists507

K such that E[ε2VI,t(A)] → 0 as d,m → ∞. Given Assumption 2, the following theorem provides a508

score estimation error bound and a sampling error bound in latent variable Ising models, proved in509

Appendix F.1.510
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Theorem 2. Let Assumption 2 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given511

by Algorithm 1 in which we take512

D = 3(d+m), M ≥ 4(d+m), B ≥ 7 · (M/(d+m)) · log(M)+
√
d+m+1/min

k
{T − tk}.

Then with probability at least 1− η, for any t ∈ {T − tk}0≤k≤N−1, we have513

Ez∼µt
[∥ŝt(z)− st(z)∥22]/d ≲ λ2

tσ
−4
t ·

(
ε2VI,t(A) + ε2ResN + ε2gen

)
, (11)

where ε2VI,t is given in Assumption 2, and514

ε2ResN =
d+m

d

( (d+m)2

M2(1−A)2
+A2L

)
,

ε2gen =

√
(ML+ d)(d+m)[T + L log(BL)] + log(N/η)

n
.

(12)

Furthermore, consider the two-phase discretization scheme as in Definition 1, we have with probability515

1− η that516

KL(µδ, µ̂)/d ≲ δ−1 ·
(

sup
0≤k≤N−1

ε2VI,T−tk
+ ε2ResN + ε2gen

)
+ κ2N + κT + e−2T . (13)

B.2 Conditional diffusion models for Ising models517

In the conditional Ising model, we also have a coupling matrix A = [A11,A12;A
T
12,A22] ∈518

R(d+m)×(d+m), specifying a joint distribution over (x,θ) ∈ {±1}d+m as in Eq. (10). However, we519

now consider the conditional generative modeling task where we observe {(xi,θi)}i∈[n] ∼iid µ.520

The goal is to sample x̂ ∼ µ̂(·|θ) ≈ µ(·|θ) for a given θ. Such problems naturally arise in image521

imputation tasks, where (x,θ) represents a full image, θ is the observed part, and x is the missing522

part to impute.523

The conditional generative modeling task can be solved using the conditional DDPM scheme (Al-524

gorithm 2 as described in Appendix D.1). To bound the error, we need to control the estima-525

tion error of the conditional score st(z;θ) = ∇z logµt(z,θ). By Tweedie’s formula, we have526

st(z;θ) = (λtmt(z;θ) − z)/σ2
t , where mt(z;θ) := E(x,θ,g)∼µ⊗N (0,1)[x|θ, z = λtx + σtg] is527

the conditional denoiser. We assume the following about mt(z;θ).528

Assumption 3 (Consistency of the free energy minimizer in conditional Ising models). Let (x,θ) ∼529

µ(x,θ) ∝ exp{⟨σ,Aσ⟩/2} and z ∼ N (λtx, σ
2
t Id). For any fixed t, assume that there exists530

ε2VI,t(A) < ∞ and K = K(A, t) ∈ Rd×d with ∥K −A11∥op ≤ A < 1, such that531

E(θ,z)[∥m̂t(z;θ)−mt(z;θ)∥22]/d ≤ ε2VI,t(A),

m̂t(z;θ) = argminm∈[−1,1]d

{ d∑
i=1

−hbin(mi)−
1

2
⟨m,A11m⟩ − ⟨m,A12θ⟩ −

λt

σ2
t

⟨z,m⟩+ 1

2
⟨m,Km⟩

}
.

Assumption 3 can be verified in concrete examples. Lemma 1 still applies in this model: when532

∥A11∥op < 1/2, taking K = 0 gives ε2VI,t(A) ≤ 4d−1(1− 2∥A11∥op)−1∥A11∥2F . We conjecture533

that E[ε2VI,t(A)] → 0 as d,m → ∞ for A being spin glass models at high temperature. Given534

Assumption 3, the following theorem provides a conditional score estimation error bound and a535

conditional sampling error bound in conditional Ising models, proved in Appendix F.2.536

Theorem 3. Let Assumption 3 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given537

by Algorithm 2 in which we take538

D = 4d, M ≥ 4d, B ≥ 7 · (M/d) · log(M)+
√
d+1/min

k
{T − tk}+ ∥A12∥op · (M/d+1).

Then with probability at least 1− η, for any t ∈ {T − tk}0≤k≤N−1, we have539

E(θ,z)[∥ŝt(z;θ)− st(z;θ)∥22]/d ≲ λ2
tσ

−4
t ·

(
ε2VI,t(A) + ε2ResN + ε2gen

)
,
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where ε2VI,t is given in Assumption 3, and540

ε2ResN =
d2

M2(1−A)2
+A2L,

ε2gen =

√
(MdL+ d(d+m))[T + L log(BLd−1(m+ d))] + log(N/η)

n
.

(14)

Furthermore, consider the two-phase discretization scheme as in Definition 1, we have with probability541

1− η that542

Eθ∼µ[KL(µδ(·|θ), µ̂(·|θ))/d] ≲ δ−1 ·
(

sup
0≤k≤N−1

ε2VI,T−tk
+ ε2ResN + ε2gen

)
+κ2N +κT + e−2T .

We note the score estimation and sampling error bounds in Theorem 3 are averaged over θ ∼ µ(θ) =543 ∑
x∈{±1}d µ(x,θ), the marginal of θ. These do not ensure error bounds for any fixed θ.544

B.3 Diffusion models for sparse coding545

In sparse coding, there is a fixed dictionary A ∈ Rd×m. Our observations are noisy, sparse linear546

combinations of the columns of the dictionary: xi = Aθi + εi for i ∈ [n]. Here εi ∼iid N (0, τ2Id)547

are noise vectors, and θi ∼iid π⊗m
0 are sparse coefficient vectors, with π0 ∈ P(R) having a Dirac548

delta mass at 0. Given observations {xi}i∈[n], sparse coding typically aims to recover A and estimate549

{θi}i∈[n]. Instead, we consider the generative modeling problem — learning a model to generate550

new samples x̂ resembling the observations {xi}i∈[n].551

The generative modeling task for sparse coding can be solved by the DDPM sampling scheme552

(Algorithm 1). To control the score estimation error, we make the following assumption on the553

following denoising function et, which requires a little modification in the sparse coding setting:554

et(z∗) := E(z∗,θ) [θ | z∗] , z∗ = Aθ + ε̄, ε̄j ∼iid N (0, τ2 + σ2
t /λ

2
t ). (15)

Assumption 4 (Consistency of the free energy minimizer in sparse coding). Fix A ∈ Rd×m.555

Consider the Bayesian linear model z∗ = Aθ + ε̄ ∈ Rd, ε̄j ∼iid N (0, τ̄2t ) where τ̄2t = τ2 + σ2
t /λ

2
t556

and θi ∼iid π0 where π0 ∈ P([−Π,Π]). Assume that for any t > 0, there exist (νt,Kt, ε
2
VI,t) that557

depend on (π0,A, τ, t) with ∥ATA/τ̄2t −Kt∥op ≤ A < 1/Π2, such that558

Ez∼µt
[∥êt(z∗)− et(z∗)∥22]/m ≤ ε2VI,t(A),

êt(z∗) = argmine∈[−Π,Π]m

{ m∑
i=1

max
λ

[
λmi − logEβ∼π0 [e

λβ−β2νt/2]
]
+

1

2τ̄2t
∥z∗ −Ae∥22 −

1

2
⟨e,Kte⟩

}
.

We also use a different truncation operator in Algorithm 1, replacing Pt by P̄t:

P̄t[f ](z) = proj√m ∥A∥opΠλt(σ2
t+τ2λ2

t )
−1(f(z) + (σ2

t + τ2λ2
t )

−1z)− (σ2
t + τ2λ2

t )
−1z.

Given Assumption 4, the following theorem provides a score estimation error bound in sparse coding559

models, proved in Appendix F.3.560

Theorem 4. Let Assumption 4 hold. Let {ŝT−tk}0≤k≤N−1 be the approximate score function given561

by Algorithm 1 in which we take562

D = 3m+ d, M ≥ 4m,

B ≥ (M/m) ·
(
A+ 1 + 2Π2 + w⋆

)
+ 2Π + 6 + (∥A∥op + 1)/min

k
{T − tk}+ τ−2∥A∥op +

√
m,

where w⋆ is defined in Eq. (65). Then with probability at least 1− η, when n ≥ log(2/η), for any563

t ∈ {T − tk}0≤k≤N−1, we have the following score estimation error bound564

E(θ,z)[∥ŝt(z;θ)− st(z;θ)∥22]/d

≲ λ2
t∥A∥2op(1 + τ−4) · m

d
·
(
ε2VI,t(A) + ε2ResN

)
+
(
λ2
t∥A∥2op(1 + τ−4)Π2 · m

d
+

λ2
t

σ2
t

(1 + τ2)
)
ε2gen,
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for ε2VI,t as given in Assumption 4, and565

ε2ResN = Π2 · (Π2A)2L +
m2Π2

(1−Π2A)2M2
, ε2gen =

√
(dD + LDM) · (T + L) · ι

n
. (16)

where ι = log(LBnmT (1 + τ)(1 + ∥A∥opΠ)τ−1Nη−1).566

Theorem 4 can be further combined with an off-the-shelf discretization bound as in Theorem 5 to567

derive a sampling error bound.568

Verifying the assumption. The VI approximation error ε2VI in Assumption 4 converges to 0 as569

d,m → ∞ when A is a rotationally invariant design matrix, by choosing the variational objective570

to be the TAP free energy [Thouless et al., 1977]. Specifically, assume the SVD decomposition571

A = QDOT where Q ∈ Rd×d and O ∈ Rm×m are orthonormal, and D ∈ Rd×m is diagonal.572

Assume that O ∼ Haar(SO(m)) is independent of everything else, and the diagonal elements of573

D have certain empirical distribution converging to a bounded distribution D. As an example, A574

with IID Gaussian entries of variance 1/m is rotationally invariant. Under the assumption that A is575

rotationally invariant, a corollary of [Li et al., 2023b, Theorem 1.11] gives the following lemma, with576

proof contained in Appendix F.4.577

Lemma 3 (Corollary of Li et al. [2023b] Theorem 1.11). Let A ∈ Rd×m be a rotationally invariant578

design matrix and let Assumption 7 hold. Then for any π0, α = d/m, and limiting distribution D,579

there exists τ2 > 0, such that for any t, there exists matrices K = ctId for some ct, such that580

εVI,t(A)
a.s.→ 0, d,m → ∞, d/m → α.

Although Lemma 3 does not provide non-asymptotic control of the VI approximation error, we581

believe this could be obtained through more refined analysis.582

C Other related work and future directions583

Score function approximation in diffusion models. Neural network-based score function ap-584

proximation has been recently studied in Oko et al. [2023], Chen et al. [2023b], Yuan et al. [2023],585

Shah et al. [2023]. Oko et al. [2023] assumes that the data distribution µ ∈ P(Rd) has a density586

with s-order bounded derivatives and shows that estimating the score to precision ε requires network587

size and sample complexity at least ε−d/s. This suffers from the curse of dimensionality unless the588

data distribution is very smooth (s ≍ d). Oko et al. [2023], Chen et al. [2023b] avoid the curse589

of dimensionality by assuming that the data distribution has a low-dimensional structure, but this590

assumption does not apply to high-dimensional graphical models. Shah et al. [2023] considers591

Gaussian mixture models where the score function has a closed form, enabling parameterized by a592

small shallow network.593

In contrast, we assume the data distribution is a graphical model, common for images and text [Blei594

et al., 2003, Mnih and Hinton, 2007, Geman and Graffigne, 1986]. Assuming the efficiency of595

variational inference approximation, we show that the score can be well-approximated by a network596

polynomial in dimension, enabling efficient learning from polynomial samples. Our graphical model597

assumption and algorithm unrolling of variational inference perspective circumvent dimensionality598

issues faced by prior work.599

Discretizing the diffusion process. Recent work has studied the convergence rates of the discretized600

reverse SDEs/ODEs for diffusion models [Liu et al., 2022b, Li et al., 2023a, Lee et al., 2023, Chen601

et al., 2022b, 2023d, 2022a, 2023c,a, Benton et al., 2023]. In particular, Chen et al. [2023a], Benton602

et al. [2023] provide minimal assumptions to quantitatively control the KL divergence between the603

perturbed and data distributions. These assumptions include the second moment bound and the604

controlled score estimation error. Our work focuses on controlling the score estimation error, a goal605

that is orthogonal to analyzing discretization schemes. Specifically, we directly leverage the result of606

Benton et al. [2023] to provide an end-to-end error bound.607

Stochastic localization. Stochastic localization, proposed by Eldan [2013, 2022], is another sam-608

pling scheme similar to diffusion models. Recent works have developed algorithmic sampling609
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techniques based on stochastic localization [El Alaoui et al., 2022, Montanari and Wu, 2023, Ce-610

lentano, 2022]. Montanari [2023] shows the equivalence of stochastic localization to the DDPM611

sampling scheme in the Gaussian setting and proposes various ways of generalizing stochastic local-612

ization schemes. While we present our results in the diffusion model framework, our methods can613

also provide sampling error bound for stochastic localization schemes.614

Neural network approximation theory. Classical neural network approximation theory typically615

relies on assumptions that the target function is smooth or hierarchically smooth [Cybenko, 1989,616

Hornik et al., 1989, Hornik, 1993, Pinkus, 1999, DeVore et al., 2011, Weinan et al., 2019, Yarotsky,617

2017, Barron, 1993, Bach, 2017, DeVore et al., 2021]. These enable overcoming the curse of618

dimensionality for higher-order smooth or low-dimensional target functions [Barron, 1993, Weinan619

et al., 2019, Bach, 2017]. However, when applying them to score function approximation in diffusion620

models, it is unclear whether such assumptions hold for the score function of high-dimensional621

graphical models.622

A recent line of work investigated the expressiveness of neural networks through an algorithm623

approximation viewpoint [Wei et al., 2022, Bai et al., 2023, Giannou et al., 2023, Liu et al., 2022a,624

Marwah et al., 2021, 2023]. Wei et al. [2022], Bai et al. [2023], Giannou et al. [2023], Liu et al.625

[2022a] show that transformers can efficiently approximate several algorithm classes, such as gradient626

descent and Turing machines. Marwah et al. [2021, 2023] demonstrate that deep networks can627

efficiently approximate PDE solutions by approximating the gradient dynamics. We also adopt this628

algorithmic perspective for neural network approximation but apply it to score function approximation629

for diffusion models.630

Variational inference in graphical models. Variational inference is commonly used to approximate631

the marginal statistics of graphical models [Pearl, 1982, Jordan et al., 1999, Minka, 2013, Mezard632

and Montanari, 2009, Wainwright et al., 2008, Blei et al., 2017]. In certain regimes, such as graphical633

models in the high temperature, naive variational Bayes has been shown to yield consistent posterior634

estimates [Chatterjee and Dembo, 2016, Eldan, 2018, Jain et al., 2018, Mukherjee and Sen, 2022].635

For high dimensional statistical models in the low signal-to-noise ratio regime, approximate message636

passing [Donoho et al., 2009, Feng et al., 2022] and equivalently TAP variational inference [Thouless637

et al., 1977, Ghorbani et al., 2019, Fan et al., 2021, Celentano et al., 2021, Celentano, 2022, Celentano638

et al., 2023+], can achieve consistent estimation of the Bayes posterior. Our paper directly adopts639

results developed for variational inference methods in spin glass models and Bayesian linear models640

[Talagrand, 2003, Chatterjee, 2010, Barbier et al., 2019, 2016, Fan et al., 2021, 2022, Li et al., 2023b,641

Celentano et al., 2021, Celentano, 2022, Celentano et al., 2023+].642

Algorithm unrolling. A line of work has focused on neural network denoising by unrolling iterative643

denoising algorithms into deep networks [Gregor and LeCun, 2010, Zheng et al., 2015, Zhang and644

Ghanem, 2018, Papyan et al., 2017, Ma et al., 2021, Chen et al., 2018, Borgerding et al., 2017, Monga645

et al., 2021, Yu et al., 2023a,b]. These approaches include unrolling ISTA for LASSO into recurrent646

nets [Gregor and LeCun, 2010, Zhang and Ghanem, 2018, Papyan et al., 2017, Borgerding et al.,647

2017], unrolling belief propagation for Markov random fields into recurrent nets [Zheng et al., 2015],648

and unrolling graph denoising algorithms into graph neural nets [Ma et al., 2021]. Our work also649

adopts this algorithm unrolling viewpoint, but with a different goal: while the prior literature has650

mainly focused on devising better denoising algorithms, our work uses this perspective to provide651

neural network approximation theories for diffusion-based generative models.652

Algorithmic hard phase. The algorithm unrolling perspective can also shed light on the failure653

mode of score approximation, namely when score functions cannot be efficiently represented by654

neural networks. For example, we can conclude that the score function of the Sherrinton-Kirkpatrick655

model with β > 1 cannot be efficiently represented by a neural network, as it was proven in El Alaoui656

et al. [2022] that there is no stable algorithm to sample the SK Gibbs measure for β > 1. More657

generally, the relationship between hardness of sampling, hardness of diffusion-based sampling, and658

hardness of score approximation deserves further investigation. Recent work such as Ghio et al.659

[2023] provides a valuable discussion on this important topic.660

Future directions. Our work leaves open several interesting questions. One issue is that for fixed661

dimension d, our score approximation error does not decay as the network size and sample size662
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increase, and is lower bounded by the variational inference approximation error ε2VI. To resolve663

this, one approach could consider a hierarchy of variational inference algorithms, such as Plefka’s664

expansion [Plefka, 1982, Maillard et al., 2019], which provide increasingly accurate approximations.665

Using these hierarchical approximations within our framework could potentially reduce the score666

approximation error.667

Another open question is understanding the algorithms that diffusion neural networks like U-nets668

and transformers implement in diffusion models for image tasks. One hypothesis is that U-nets669

with convolution layers are implementing some form of variational inference denoising on graphical670

models with certain locality and invariance structures. It would be interesting to test this hypothesis671

on real image datasets.672

Finally, an exciting direction is leveraging the algorithmic unrolling perspective to design improved673

neural network architectures for diffusion models. The resulting architectures could potentially be674

more interpretable and achieve better emergent capabilities, as illustrated by recent works like Yu675

et al. [2023a,b].676

D Technical preliminaries677

D.1 DDPM conditional sampling scheme678

We provide the details of the DDPM conditional sampling scheme (Algorithm 2) as mentioned in679

Section 2. The algorithm still has two steps, with minor modifications from unconditional DDPM680

(Algorithm 1). In the first step, empirical risk minimization (Eq. (18)) fits manually-generated noises681

{gi}i∈[n] using the noisy samples and conditioning variables {(λtxi + σtgi;θi)}i∈[n]. The ResNet682

ResNW : Rd × Rm → Rd is parameterized by W = {W (ℓ)
1 ∈ RD×M ,W

(ℓ)
2 ∈ RM×D}ℓ∈[L] ∪683

{Win ∈ R(d+m+1)×D,Wout ∈ RD×d} and is defined iteratively as684

ResNW (z,θ) = Woutu
(L), u(ℓ) = u(ℓ−1)+W

(ℓ)
1 ReLU(W

(ℓ)
2 u(ℓ−1)), u(0) = Win[z;θ; 1].

(ResNet-Conditional)
The only difference between (ResNet) and (ResNet-Conditional) is the input dimension. Minimization685

is over the ResNets with weights in the set (for parameters d,m,D,L,M,B):686

Wd,m,D,L,M,B :=
{
W = {W (ℓ)

1 ,W
(ℓ)
2 }ℓ∈[L] ∪ {Win,Wout} : |||W ||| ≤ B

}
,

|||W ||| := max
ℓ∈[L]

{
∥W (ℓ)

1 ∥op + ∥W (ℓ)
2 ∥op

}
∨max

{
∥Win∥op, ∥Wout∥op

}
.

(17)

We still truncate the ResNet output using Pt: for f : Rd × Rm → Rd, we define Pt[f ](z,θ) =687

projλtσ
−2
t

√
d(f(z,θ) + σ−2

t z)− σ−2
t z, where projR projects z ∈ Rd into the R-Euclidean ball.688

The second step of Algorithm 2 still discretizes the backward SDE through the exponential integrator689

scheme (19) and the two-phase discretization scheme (Definition 1). However, we replace the score690

function ŝt(Ŷk) with the conditional score function ŝt(Ŷk;θ) = Pt[ResNŴt
](Ŷk,θ).691

D.2 Sampling error bound of the DDPM scheme692

In this section, we state a result from Benton et al. [2023], which establishes the convergence of693

the DDPM discretization scheme, when evaluated using Kullback-Leibler (KL) divergence, with694

only minimal assumptions required. A slight generalization of the result in Benton et al. [2023] is695

necessary, generalizing the identity covariance assumption to a general covariance matrix. The proof696

requires little modification, but we present a proof sketch here for completeness.697

Suppose we are interested in drawing samples from µ in Rd. The forward process that evolves698

according to the Ornstein-Uhlenbeck (OU) process is defined as the following SDE:699

dXt = −Xtdt+
√
2dBt, X0 ∼ µ, 0 ≤ t ≤ T. (20)

In the above display, (Bt)0≤t≤T is a standard Brownian motion in Rd. We denote by µt the700

distribution of Xt. One can check that Xt
d
= e−tX0 +

√
1− e−2tg for g ∼ N (, Id) that is701
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Algorithm 2 The DDPM conditional sampling scheme
Require: Samples {(xi,θi)}i∈[n] ⊆ Rd × Rm. Conditional latent variable θ. ResNet parameters

(d,m,D,L,M,B). Discretization scheme parameters (N,T, δ, {tk}0≤k≤N ) with 0 = t0 <
· · · < tN = T − δ. Denote γk = tk+1 − tk.

1: // Computing the approximate conditional score function
2: Sample {gi}i∈[n] ∼iid N (0, Id).
3: for t ∈ {T − tk}0≤k≤N do
4: Solve the ERM problem below for t = T − tk:

Ŵt = arg min
W∈Wd,m,D,L,M,B

1

n

n∑
i=1

∥∥∥σ−1
t gi + Pt[ResNW ](λtxi + σtgi,θi)

∥∥∥2
2
. (18)

5: Take the approximate score function to be ŝt(z;θ) = Pt[ResNŴt
](z,θ).

6: // Sampling by discretizing the stochastic differential equation
7: Sample Ŷ0 ∼ N (0, Id).
8: for k = 0, · · · , N − 1 do
9: Sample Gk ∼ N (0, Id). Calculate Ŷk+1 using the exponential integrator scheme: (here θ is

provided as an input)

Ŷk+1 = eγk · Ŷk + 2(eγk − 1) · ŝT−tk(Ŷk;θ) +
√
e2γk − 1 ·Gk. (19)

Return: x̂ = ŶN .

independent of X0. The reverse process that corresponds to process (20) is defined via the SDE702

dYt = {Yt + 2∇µT−t(Yt)} dt+
√
2dB′

t, Y0 ∼ µT . (21)

An approximation to continuous-time process (21) is obtained via performing time discretization,703

which directly leads to a sampling algorithm. More precisely, for 0 = t0 < t1 < · · · < tN = T − δ,704

we let705

dŶt = {Ŷt + 2ŝT−tk(Ŷtk)}dt+ dB̂t for tk ≤ t ≤ tk+1, Ŷ0 ∼ N (0, Id), (22)

where ŝT−t(·) is an estimate of the true score function sT−t(·) = ∇ logµT−t(·). We denote by pt706

the marginal distribution of Ŷt, and set γk = tk+1 − tk. In addition, we assume there exists κ > 0,707

such that γk ≤ κ ·min{1, T − tk+1}.708

Next, we state the assumptions required to establish the discretization error bound of the DDPM709

sampling scheme.710

Assumption 5 (Rescaled version of Benton et al. [2023] Assumption 1). The score function estimator711

ŝt satisfies712

N−1∑
k=0

γkEx∼µT−tk

[
∥∇ logµT−tk(x)− ŝT−tk(x)∥22

]
≤ d · ε2score.

Assumption 6. The data distribution µ has finite second moment: Ex0∼µ[∥x0∥22] ≤ d · B, where713

B ≥ 1 is a fixed constant.714

With Assumptions 5 and 6, we are ready to state the main theorem for this part.715

Theorem 5. [Theorem 1 of Benton et al. [2023]] Let Assumptions 5 and 6 hold. Then there exists a716

numerical constant C0 > 0, such that717

KL(µδ, ptN ) ≤ C0 · d ·
(
ε2score + κ2NB + κTB + e−2TB

)
.

Proof sketch of Theorem 5.718

Part 1. We first control the quantity719

Es,t = E
[
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22

]
,
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where 0 ≤ s ≤ t ≤ T . According to Lemma 2 of Benton et al. [2023], we have720

d
(
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22

)
= −2∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22dt

− 2 {∇ logµT−t(Yt)−∇ logµT−s(Ys)} · ∇ logµT−s(Ys)dt+ 2∥∇2 logµT−t(Yt)∥2Fdt (23)

+ 2
√
2 {∇ logµT−t(Yt)−∇ logµT−s(Ys)} · ∇2 logµT−t(Yt) · dB′

t.

In the above display, s is fixed and t varies. Taking expectation and integrate over [s, t], we obtain721

E
[
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥2

]
= E

∫ t

s

−2∥∇ logµT−r(Yr)−∇ logµT−s(Ys)∥22dr

− E
∫ t

s

2 {∇ logµT−r(Yr)−∇ logµT−s(Ys)} · ∇ logµT−s(Ys)dr

+ E
∫ t

s

2∥∇2 logµT−r(Yr)∥2Fdr.

Observe that all terms above are integrable. Hence, we may apply Fubini’s theorem and interchange722

integration and expectation, which gives723

dEs,t

dt
= −2E

[
∥∇ logµT−t(Yt)−∇ logµT−s(Ys)∥22

]
+ 2E [{∇ logµT−s(Ys)−∇ logµT−t(Yt)} · ∇ logµT−s(Ys)] + 2E

[
∥∇2 logµT−t(Yt)∥2F

]
.

Invoking Cauchy-Schwartz inequality, we have724

dEs,t

dt
≤ E

[
∥∇ logµT−s(Ys)∥22

]
+ 2E

[
∥∇2 logµT−t(Yt)∥2F

]
. (24)

Next, we upper bound E
[
∥∇ logµT−s(Ys)∥22

]
and E

[
∥∇2 logµT−t(Yt)∥2F

]
, respectively.725

Lemma 3 of Benton et al. [2023] gives726

∇ logµt(xt) = −σ−2
t xt + e−tσ−2

t mt(xt),

∇2 logµt(xt) = −σ−2
t I+ e−2tσ−4

t Σt(xt),
(25)

where σ2
t = 1−e−2t, mt(xt) = Eµ0|µt(x0|xt)[x0], and Σt(xt) = Covµ0|µt(x0|xt)[x0]. By Eq. (25),727

we see that728

Ext∼µt

[
∥∇ logµt(xt)∥22

]
=σ−4

t Ext∼µt

[
∥xt∥22

]
− 2e−tσ−4

t Ext∼µt [xt ·mt(xt)] + e−2tσ−4
t Ext∼µt

[
∥mt(xt)∥22

]
.

Note that729

Ext∼µt [xt ·mt(xt)] = Ext∼µt [xt · x0] = e−tEx0∼µ0

[
∥x0∥2

]
≤ dBe−t,

Tr(Σt(xt)) = E[∥x0∥2 | xt]− ∥mt(xt)∥22,

hence730

Ext∼µt

[
∥∇ logµt(xt)∥2

]
= σ−4

t ·
(
e−2tE[∥x0∥2] + σ2

t d
)
− 2e−2tσ−4

t E[∥x0∥2] + e−2tσ−4
t ·

(
E[∥x0∥2]− E[Tr(Σt(xt))]

)
(26)

= σ−2
t d− e−2tσ−4

t E[Tr(Σt(xt))] ≤ dσ−2
t .

That is to say, we have E[∥∇ logµT−s(Ys)∥22] ≤ dσ−2
T−s. We write Σt = Σt(xt) for short. The731

second part of Eq. (25) implies that732

Ext∼µt

[
∥∇2 logµt(xt)∥2F

]
= σ−4

t d− 2σ−6
t e−2tE [Tr(Σt)] + e−4tσ−8

t E[Tr(Σ2
t )]. (27)

Lemma 1 of Benton et al. [2023] gives733

e2tσ4
t

2

d

dt
E [Σt] = E[Σ2

t ]. (28)
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Putting together Eq. (27) and (28), we obtain734

Ext∼µt

[
∥∇2 logµt(xt)∥2F

]
= dσ−4

t − 2σ−6
t e−2tE [Tr(Σt)] +

e−2tσ−4
t

2

d

dt
E[Tr[Σt]]

≤ dσ−4
t +

1

2

d

dt

(
σ−4
t E[Tr(Σt)]

)
.

(29)

Putting together Eq. (26) and (29), we get735

E
[
∥∇ logµT−s(Ys)∥22

]
+ 2E

[
∥∇2 logµT−t(Yt)∥2F

]
≤ σ−2

T−sd+ 2dσ−4
T−t −

d

dr

(
σ−4
T−rE[Tr(ΣT−r)]

) ∣∣
r=t

.

We define736

E
(1)
s,t := dσ−2

T−s + 2dσ−4
T−t, E

(2)
s,t := − d

dr

(
σ−4
T−rE[Tr(ΣT−r)]

) ∣∣
r=t

.

According to Eq. (24) and notice that Etk,tk = 0, we have737

Etk,t ≤
∫ t

tk

{
E
[
∥∇ logµT−tk(Ytk)∥22

]
+ 2E

[
∥∇2 logµT−s(Ys)∥2F

]}
ds ≤

∫ t

tk

(
E

(1)
tk,s

+ E
(2)
tk,s

)
ds.

Following exactly the same procedure as in Benton et al. [2023], we conclude that there exists a738

positive numerical constant C0, such that739

N−1∑
k=0

∫ tk+1

tk

E
[
∥∇ logµT−t(Yt)−∇ logµT−tk(Ytk)∥2

]
≤ C0(κ

2dNB + κdTB).

Part 2. We denote by Q the distribution of YtN derived from process (21), and PµT the distribution740

of process (22) at time tN initialized at µT . By Proposition 3 of Benton et al. [2023], we obtain741

KL(Q ||PµT ) ≤
N−1∑
k=0

∫ tk+1

tk

E
[
∥∇ logµT−t(Yt)− ŝT−tk(Ytk)∥22

]
dt,

which by triangle inequality is no smaller than742

2

N−1∑
k=0

γkE
[
∥∇ logµT−tk(Ytk)− ŝT−tk(Ytk)∥22

]
dt

+ 2

N−1∑
k=0

∫ tk+1

tk

E
[
∥∇ logµT−tk(Ytk)−∇ logµT−t(Yt)∥22

]
≤ 2 d · ε2score + 2C0(κ

2dNB + κdTB).

We denote by P the distribution of process (22) at time tN initialized at N (0, Id). By Eq. (19) of743

Benton et al. [2023], we have744

KL(Q ||P ) = KL(Q ||PµT ) + KL(µT || N (0, Id)).

Proposition 4 of Benton et al. [2023] gives KL(µT || N (0, Id)) ≲ dBe−2T . Putting together the745

above upper bounds, we arrive at the following conclusion:746

KL(µδ|| ptN ) ≤ C0 · d ·
(
Be−2T + κ2NB + κTB + ε2score

)
,

thus concluding the proof of Theorem 5.747

D.3 Generalization error of empirical risk minimization over ResNets748

D.3.1 Result for Ising models749

Note that the conditional (and unconditional) DDPM methods estimate the score function ŝt =750

PtResNŴt
by solving the following ERM problem:751

Ŵt = argminW∈Wd,m,D,L,M,B
R̂n(W ),

R̂n(W ) =
1

nd

n∑
i=1

∥∥σ−1
t gi + Pt(ResNW (λtxi + σtgi,θi))

∥∥2
2
.

(30)
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Here, xi, gi ∈ Rd, and θi ∈ Rm follow {(xi,θi, zi)}i∈[n] ∼iid µ ⊗ N (0, Id). Recall that the752

truncation operator gives Pt[f ](z,θ) = projλtσ
−2
t

√
d(f(z,θ) + σ−2

t z)− σ−2
t z. In cases where θi753

does not exist (unconditional DDPM), we simply set m = 0. The population risk gives754

R(W ) :=
1

d
E(x,θ,g)∼µ⊗N (0,Id)

[∥∥σ−1
t g0 + Pt(ResNW ([λtx+ σtg,θ]))

∥∥2
2

]
.

In the proposition below, we provide a uniform upper bound for |R̂(W ) − R(W )| over755

Wd,m,D,L,M,B , where the ResNet class is given by Eq. (17).756

Proposition 6. Assume that µ ∈ P([−1, 1]d+m). There exists a numerical constant C > 0, such757

that with probability at least 1− η,758

sup
W∈Wd,m,D,L,M,B

∣∣∣R̂(W )−R(W )
∣∣∣

≤ C · λ
2
t

σ4
t

·

√
[(d+m)D + LDM ] · [L · log(LB(m+ d)/d) + log(λ−1

t )] + log(1/η)

n
.

Proof of Proposition 6. The proof of this proposition uses the following lemma.759

Lemma 4 (Proposition A.4 of Bai et al. [2023]). Suppose that {Xw}w∈Θ is a zero-mean random760

process given by761

Xw ≡ 1

n

n∑
i=1

f(zi;w)− Ez[f(z;w)],

where z1, · · · , zn are i.i.d samples from a distribution Pz such that the following assumption holds:762

(a) The index set Θ is equipped with a distance ρ and diameter B. Further, assume that for763

some constant A, for any ball Θ′ of radius r in Θ, the covering number admits upper bound764

logN(∆;Θ′, ρ) ≤ d log(2Ar/∆) for all 0 < ∆ ≤ 2r.765

(b) For any fixed w ∈ Θ and z sampled from Pz , the random variable f(z;w)− Ez[f(z;w)] is766

a σ-sub-Gaussian random variable (E[eλ[f(z;w)−Ez′ [f(z
′;w)]]] ≤ eλ

2σ2/2 for any λ ∈ R).767

(c) For any w,w′ ∈ Θ and z sampled from Pz , the random variable f(z;w) − f(z;w′) is a768

σ′ρ(w,w′)-sub-Gaussian random variable (E[eλ[f(z;w)−f(z;w′)]] ≤ eλ
2(σ′)2ρ2(w,w′)/2 for769

any λ ∈ R).770

Then with probability at least 1− η, it holds that771

sup
w∈Θ

|Xw| ≤ Cσ

√
d · log(2A(1 +Bσ′/σ)) + log(1/η)

n
,

where C is a universal constant.772

In Lemma 4, we can take z = (g,x,θ), w = W , Θ = Wd,m,D,L,M,B , ρ(w,w′) = |||W −W ′|||,773

and f(zi;w) = d−1∥σ−1
t gi + Pt(ResNW (λtxi + σtgi,θi))∥22. Therefore, to show Proposition 6,774

we just need to apply Lemma 4 by checking (a), (b), (c).775

Check (a). We note that the index set Θ = Wd,m,D,L,M,B equipped with ρ(w,w′) = |||W −W ′|||776

has diameter 2B. Further note that Wd,m,D,L,M,B has dimension bounded by 4(d+m)D+2LDM .777

According to Example 5.8 of Wainwright [2019], it holds that logN(∆;Wd,m,D,L,M,r, |||·|||) ≤778

[4(d+m)D + 2LDM ] · log(1 + 2r/∆) for any 0 < ∆ ≤ 2r. This verifies (a).779

Check (b). By the definition of the projection operator that Pt[f ](z) = projλtσ
−2
t

√
d(f(z)+σ−2

t z)−780

σ−2
t z and that z = λtx+ σtg, we have781

0 ≤ f(z;w) = d−1∥σ−1
t g + Pt(ResNW (λtx+ σtg,θ))∥22

= d−1∥ − λtσ
−2
t x+ projλtσ

−2
t

√
d(ResNW1

(λtx+ σtg,θ) + σ−2
t z)∥22

≤ 4λ2
tσ

−4
t .

22



As a consequence, f(z, w)− Ez[f(z, w)] is a σ = 4λ2
tσ

−4
t sub-Gaussian random variable.782

Check (c). Direct calculation yields783

|f(z;w1)− f(z;w2)|

=
1

d

∣∣∣∥σ−1
t g + Pt(ResNW1

(λtx+ σtg,θ))∥22 − ∥σ−1
t g + Pt(ResNW2

(λtx+ σtg,θ))∥22
∣∣∣

=
1

d

∣∣∣∥ − λtσ
−2
t x+ projλtσ

−2
t

√
d(ResNW1

(λtx+ σtg,θ) + σ−2
t z)∥22

− ∥ − λtσ
−2
t x+ projλtσ

−2
t

√
d(ResNW2

(λtx+ σtg,θ) + σ−2
t z)∥22

∣∣∣
≤ 8λt

σ2
t

√
d
·
∥∥projλtσ

−2
t

√
d(ResNW1

(λtx+ σtg,θ) + σ−2
t z)

− projλtσ
−2
t

√
d(ResNW2(λtx+ σtg,θ) + σ−2

t z)
∥∥
2

≲
2λtL(B

2 + 1)L

σ2
t

· 1√
d

(
λt∥x∥2 + σt∥g∥2 + ∥θ∥2

)
· |||W1 −W2|||.

Notice that (x,θ, g) ∼ µ⊗N (0, Id) and note that µ ∈ P([−1, 1]d+m), we have that ∥θ∥2/
√
d is784 √

m/d-bounded and is thus O(
√
m/d)-sub-Gaussian, ∥x∥2/

√
d is 1-bounded and is thus O(1)-785

sub-Gaussian, and ∥g∥2/
√
d is O(1)-sub-Gaussian. As a consequence, f(z;w1) − f(z;w2) is786

σ′ρ(w1, w2) = C · λtσ
−2
t L(B2 + 1)L

√
(m+ d)/d · |||W1 −W2||| sub-Gaussian.787

Therefore, we apply Lemma 4, and use the fact that788

log(2(1 +Bσ′/σ))

= log(2(1 + (C/2)Bλ−1
t σ2

tL(B
2 + 1)L

√
(m+ d)/d)) ≲ L log(LB(m+ d)/d) + log(λ−1

t ).

This concludes the proof of Proposition 6.789

D.3.2 Result for Sparse coding790

In the setting of sparse coding, we assume a fixed dictionary A ∈ Rd×m. The model x ∼ µ is given791

by x = Aθ+ε, where ε ∼ N (0, τ2Id) is independent of anything else and θi ∼iid πθ ∈ P([−Π,Π])792

for i ∈ [m]. Assume that we have {(xi, gi)}i∈[n] ∼iid µ⊗N (0, Id). We are interested in estimating793

the score function ŝt = P̄tResNŴt
by solving the following ERM problem:794

Ŵt = argminW∈Wd,D,L,M,B
R̂n(W ),

R̂n(W ) =
1

nd

n∑
i=1

∥∥σ−1
t gi + P̄t(ResNW (λtxi + σtgi))

∥∥2
2
.

(31)

Here, the truncation operator gives P̄t[f ](z) = proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(f(z) + (σ2

t +795

τ2λ2
t )

−1z)− (σ2
t + τ2λ2

t )
−1z. The corresponding population risk gives796

R(W ) :=
1

d
E(x,g)∼µ⊗N (0,Id)

[∥∥σ−1
t g + P̄t(ResNW (λtx+ σtg))

∥∥2
2

]
.

In the proposition below, we provide a uniform upper bound for |R̂(W )−R(W )| over Wd,D,L,M,B797

in the sparse coding setup, where the ResNet class is given by Eq. (3).798

Proposition 7. Under the setting of sparse coding stated above, there exists a numerical constant799

C > 0, such that with probability at least 1− η, for n ≥ log(2/η), we have800

sup
W∈Wd,D,L,M,B

∣∣∣R̂(W )−R(W )
∣∣∣ ≲ (λ2

t∥A∥2opΠ2(τ−4 + 1)
m

d
+

λ2
t

σ2
t

(1 + τ2)
)

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2/η)

n
.
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Proof of Proposition 7. Note that {(xi, gi)}i∈[n] ∼iid µ × N (0, Id) where µ is the sparse coding801

model. Then we must have xi = Aθi + εi for some (θi, εi) ∼iid πm
0 × N (0, τ2Id). Denote802

z = (g,x, ε), w = W , and803

f(z;w) = d−1(∥σ−1
t g+P̄t(ResNW (λtx+σtg))∥22−∥(σ−1

t −σt(σ
2
t+τ2λ2

t )
−1)g−λt(σ

2
t+τ2λ2

t )
−1ε∥22).

We further denote z = λtx+ σtg. Note that we have804

|f(z;w1)− f(z;w2)|

=
1

d

∣∣∣∥σ−1
t g + P̄t(ResNW1

(λtx+ σtg))∥22 − ∥σ−1
t g + P̄t(ResNW2

(λtx+ σtg))∥22
∣∣∣

≤ 1

d

∣∣∣∥proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW1(z) + (σ2

t + τ2λ2
t )

−1z)− (σ2
t + τ2λ2

t )
−1z + σ−1

t g∥22

− ∥proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW2(z) + (σ2

t + τ2λ2
t )

−1z)− (σ2
t + τ2λ2

t )
−1z + σ−1

t g∥22
∣∣∣

≲

(√
mλtΠ∥A∥op

d(σ2
t + τ2λ2

t )
+

λt

d(σ2
t + τ2λ2

t )
∥ε∥2 +

τ2λ2
t

dσt(σ2
t + τ2λ2

t )
∥g∥2

)
×
∥∥proj√m∥A∥opΠ·λt(σ2

t+τ2λ2
t )

−1(ResNW1
(z) + (σ2

t + τ2λ2
t )

−1z)

− proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW2

(z) + (σ2
t + τ2λ2

t )
−1z)

∥∥
2

≲
L(B2 + 1)Lλt

(σ2
t + τ2λ2

t )
·
(√

mΠ∥A∥op√
d

+
∥ε∥2√

d
+

τ2λt ∥g∥2√
dσt

)
×

1√
d

(
λt∥Aθ∥2 + λt∥ε∥2 + σt∥g∥2

)
· |||W1 −W2|||.

Therefore, we denote by N (∆;Wd,D,L,M,B , ρ) a ∆-covering of Wd,D,L,M,B under metric805

ρ(W1,W2) = |||W1 −W2||| for some ∆ > 0. Then806

sup
w∈Wd,D,L,M,B

∣∣∣∣∣ 1n
n∑

i=1

f(zi;w)− E[f(z;w)]

∣∣∣∣∣
≤ sup

w∈N (∆;Wd,D,L,M,B ,ρ)

∣∣∣∣∣ 1n
n∑

i=1

f(zi;w)− E[f(z;w)]

∣∣∣∣∣+ L(B2 + 1)Lλt

(σ2
t + τ2λ2

t )
·∆ · (Ln + E[Ln]),

where807

Ln =
1

nd

n∑
i=1

(√
mΠ∥A∥op + ∥εi∥2 + σ−1

t τ2λt ∥gi∥2
)
·
(
λt∥Aθi∥2 + λt∥εi∥2 + σt∥gi∥2

)
.

Since (θi, εi, gi) ∼ πm
0 ⊗ N (0, τ2Id) ⊗ N (0, Id), σ2

t ≤ 1 and λ2
t ≤ 1, we have E[Ln] ≤ L and808

Ln − E[Ln] is SE(L/
√
n,L), for L = (m/d)Π2∥A∥2op + σ−2

t (τ4 + 1). By Bernstein’s inequality,809

we conclude that with probability at least 1− η/2, we have810

Ln + E[Ln] ≤ C · L(1 +
√
log(2/η)/n+ log(2/η)/n) ≤ C · L(1 + log(2/η))

= C ·
(
(m/d)Π2∥A∥2op + σ−2

t (τ4 + 1)
)
· (1 + log(2/η)).

for some numerical constant C.811

Furthermore, note that we have812

f(z;w)

= d−1∥σ−1
t g + P̄t(ResNW (λtx+ σtg))∥22 − d−1∥(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε∥22

= d−1∥σ−1
t g + proj√m∥A∥opΠ·λt(σ2

t+τ2λ2
t )

−1(ResNW (z) + (σ2
t + τ2λ2

t )
−1z)− (σ2

t + τ2λ2
t )

−1z∥22
− d−1∥(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε∥22

= d−1∥proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW (z) + (σ2

t + τ2λ2
t )

−1z)− λt(σ
2
t + τ2λ2

t )
−1Aθ∥22

+ 2d−1
〈
(σ−1

t − σt(σ
2
t + τ2λ2

t )
−1)g − λt(σ

2
t + τ2λ2

t )
−1ε,

proj√m∥A∥opΠ·λt(σ2
t+τ2λ2

t )
−1(ResNW (z) + (σ2

t + τ2λ2
t )

−1z)− λt(σ
2
t + τ2λ2

t )
−1Aθ

〉
.
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As a consequence, f(z;w)− Ez[f(z, w)] is sub-Gaussian with variance proxy813

C2 ·

(
m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

)2

for some other numerical constant C. Therefore, with probability at least 1− η/2, by sub-Gaussian814

tail bound and by the bound log |N (∆;Wd,D,L,M,B , ρ)| ≤ [4dD + 2LDM ] · log(1 + 2B/∆), we815

have816

sup
W∈N (∆;Wd,D,L,M,B ,ρ)

∣∣∣∣∣ 1n
n∑

i=1

f(zi;wi)− E[f(z;w)]

∣∣∣∣∣
≲
(m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

)
·
√

[4dD + 2LDM ] · log(1 + 2B/∆) + log(2/η)

n
.

Setting817

∆ =
(m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

)
· (σ2

t + τ2λ2
t )

nL(B2 + 1)Lλt ·
(
md−1Π2∥A∥2op + σ−2

t (τ4 + 1)
) ,

we conclude that with probability at least 1− η, when n ≥ log(2/η), we have818

sup
W∈N (Wd,D,L,M,B ,ρ,∆)

∣∣∣∣∣ 1n
n∑

i=1

f(zi;wi)− E[f(z;w)]

∣∣∣∣∣
≲ n−1 ·

(m∥A∥2opΠ2λ2
t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

)
· (log(2/η) + 1) +

{
m∥A∥2opΠ2λ2

t

d(σ2
t + τ2λ2

t )
2
+

τ2λ2
t

σ2
t (σ

2
t + λ2

t τ
2)

}

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2/η)

n

≲
(
λ2
t∥A∥2opΠ2(τ−4 + 1)

m

d
+

λ2
t

σ2
t

(1 + τ2)
)

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2/η)

n
,

where the inequalities above uses the definition that λt = e−t, σ2
t = 1 − e−2t and t ≤ T . This819

concludes the proof of Proposition 7.820

D.4 Uniform approximation of the denoiser821

The lemma below tells us that denoiser functions can be uniformly approximated with a linear822

combination of ReLU(·) with changing intercepts. Furthermore, such approximation can achieve823

arbitrary precision.824

Lemma 5. Assume π0 is a probability distribution over R that has bounded support, and γ > 0 is a825

fixed constant. Define F (λ) := E(β,z)∼π0⊗N (0,1)[β | β+γ−1/2z = λγ−1]. Let Πmin := infλ F (λ),826

Πmax := supλ F (λ), Π := max{ |Πmax|, |Πmin| }, and ∆ := Πmax − Πmin. One can verify that827

F (·) is Π2-Lipschitz continuous and non-decreasing. For any ζ > 0, we define828

wζ := inf
{
w : for all λ1 > λ2 ≥ w or λ1 < λ2 ≤ −w we have |F (λ1)− F (λ2)| < ∆/⌈∆ζ−1⌉

}
.

(32)
Then there exists {aj}j∈{0}∪[⌈∆ζ−1⌉−1] and {wj}j∈[⌈∆ζ−1⌉−1], such that829

sup
λ∈R

|F (λ)− f(λ)| ≤ ζ, where f(λ) =

⌈∆ζ−1⌉−1∑
j=1

ajReLU(λ− wj) + a0. (33)

Furthermore, we have supj∈[⌈∆ζ−1⌉−1] |wj | ≤ wζ , |a0| ≤ Π, and |aj | ≤ 2Π2 for all j ∈ [⌈∆ζ−1⌉−830

1].831
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Proof of Lemma 5. When π0 is a Dirac measure, we simply take a0 = E[β]. In other cases, one can832

verify that F (·) is strictly increasing, hence Πmax > Πmin. Then for any α ∈ (Πmin,Πmax), there833

exists a unique µα ∈ R, such that F (µα) = α.834

Let a0 = Πmin +∆⌈∆ζ−1⌉−1. For j ∈ [[∆ζ−1]− 1], we let835

wj = µ−Πmin+j∆/⌈∆ζ−1⌉, aj =
∆

⌈∆ζ−1⌉(wj+1 − wj)
− ∆

⌈∆ζ−1⌉(wj − wj−1)
.

In the above equations, we make the convention that w0 = w⌈∆ζ−1⌉ = ∞. With836

{aj}j∈{0}∪[⌈∆ζ−1⌉−1] and {wj}j∈[⌈∆ζ−1⌉−1] defined as above, one can verify that Eq. (33) is true.837

Furthermore, since ∥F ′∥∞ ≤ Π2, we have |∆/⌈∆ζ−1⌉(wj+1 − wj)| ≤ Π2 for all possible j. This838

gives |aj | ≤ 2Π2 for every j.839

840

Remark 1. When π0 = Unif({±1}), one can check that for any γ > 0, we have F (x) = tanh(x).841

In this case, one can verify that |wζ | ≤ log⌈ζ−1⌉. In addition, we can further guarantee that842 ∑
j∈[⌈∆ζ−1⌉−1] |aj | ≤ 2.843

D.5 Approximation error of fixed point iteration844

Lemma 6. Assume that h ∈ Rd, U ∈ Rd×d with ∥U∥op ≤ A < Π−2 for some Π > 0. Further845

assume that f∗ : R 7→ R is Π2-Lipschitz continuous and f : R 7→ R is a function satisfying846

sup
u∈R

|f(u)− f∗(u)| ≤ ζ. (34)

Let m̂ ∈ Rd satisfying ∥m̂∥2 ≤ Π
√
d be the unique fixed point of847

m̂ = f∗(Um̂+ h). (35)

Let m̃0 = 0 and848

m̃k = f(Um̃k−1 + h). (36)

Then we have849

1√
d
∥m̃k − m̂∥2 ≤ Π · (Π2A)k +

ζ

1−Π2A
. (37)

Proof of Lemma 6. By Eq. (34) and (36), we have850

m̃k = f∗(Um̃k−1 + h) + ζk,

where ∥ζk∥2 ≤
√
dζ. Comparing with Eq. (35), we get851

∥m̃k − m̂∥2 ≤ Π2∥U∥op∥m̃k−1 − m̂∥2 + ∥ζk∥2 ≤ Π2A · ∥m̃k−1 − m̂∥2 +
√
dζ.

By the fact that ∥m̃0 − m̂∥2 = ∥m̂∥2 ≤ Π
√
d, this gives Eq. (37), which concludes the proof of the852

lemma.853

D.6 Properties of two-phase time discretization scheme854

The lemma below provides a bound related to the two-phase time discretization scheme that appears855

to be useful when deriving the sampling error bound.856

Lemma 7. Consider the two-phase discretization scheme (κ,N0, N, T, δ, {tk}0≤k≤N ) and recall857

that γk = tk+1 − tk (Definition 1). Recall the definition λt = e−t and σ2
t = 1− e−2t. Then we have858 ∑

0≤k≤N−1

γk · λ2
T−tk

σ−4
T−tk

≲ 1 + δ−1. (38)
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Proof of Lemma 7. Simple algebra yields859

σ−2
t = 1/[1− e−2t] ≤ 10 · [1 ∨ (1/t)].

Note that T − tk ≤ 1 for all k ≥ N0 and T − tk ≥ 1 for all k ≤ N0 − 1 (c.f. Definition 1 for N0).860

Then the summation in the first phase has bound (we use the fact that κ < 1)861 ∑
0≤k≤N0−1

γk · λ2
T−tk

σ−4
T−tk

≤ 100κ
∑

0≤k≤M−1

e−2(T−tk) ≤ 100κe−2
∑
k≥0

e−2kκ

≤100κe−2 1

1− e−2κ
≤ 100.

Furthermore, the summation in the second phase yields (recall from Definition 1 that for k ≥ N0, we862

have T − tN0+k = (1 + κ)−k, γN0+k = κ/(1 + κ)k+1, and δ = (1 + κ)N0−N )863 ∑
N0≤k≤N−1

γkλ
2
T−tk

σ−4
T−tk

≤ 100
∑

N0≤k≤N−1

γk/(T − tk)
2

= 100
∑

0≤k≤N−N0−1

[κ/(1 + κ)k+1] · (1 + κ)2k = 100
κ

δ

∑
0≤k≤N−N0−1

(1 + κ)−2−k

≤ 100
κ

δ

∞∑
k=1

(1 + κ)−k = 100/δ.

Combining the two inequalities above proves Eq. (38) and concludes the proof.864

E Proofs for Section 3: Ising models865

E.1 Proof of Theorem 1866

Approximate the minimizer of the free energy via an iterative algorithm867

We first show that we can approximate the minimizer of FVI
t using a simple iterative algorithm.868

Calculating the Hessian of FVI
t , we obtain869

∇2
mFVI

t (m; z) = diag{(1−m2
i )i∈[d]} −A+K ⪰ (1−A) · Id ≻ 0, ∀m ∈ [−1, 1]d,

where the inequalities are due to the fact that diag{(1 − m2
i )i∈[d]} ⪰ Id and the assumption that870

∥K −A∥op ≤ A < 1. Therefore, FVI
t (·, z) is strongly convex in its first coordinate for all z ∈ Rd,871

hence the critical equation872

∇mFVI
t (m; z) = tanh−1(m)−Am− λtσ

−2
t z +Km = 0,

can have at most one solution on [−1, 1]d. Furthermore, ∇mFVI
t (m; z) = 0 is equivalent to the873

fixed point equation874

m = tanh((A−K)m+ λtσ
−2
t z),

and T (m) = tanh((A−K)m+λtσ
−2
t z) is a continuous mapping from [−1, 1]d to itself. Therefore,875

there exists a solution of m = T (m) by Brouwer’s fixed-point theorem. This implies that the above876

fixed point equation has a unique solution m̂t(z) ∈ [−1, 1]d.877

Take f : R → R to be the function as derived by Lemma 5 achieving ζ-uniform approximation to878

tanh(·). We write f(x) =
∑⌈2ζ−1⌉−1

j=1 ajReLU(x− wj) + a0. Define iterative algorithm {m̃ℓ}ℓ≥0879

by880

m̃0 = 0, m̃ℓ(z) = m̃ℓ = f((A−K)m̃ℓ−1 + λtσ
−2
t z). (39)

Then by Lemma 6 with Π = 1, we obtain that881

∥m̃ℓ(z)− m̂t(z)∥2/
√
d ≤ Aℓ + ζ · (1−A)−1. (40)
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Represent the iterative algorithm as a ResNet882

Next, we show that m̃ℓ(z) defined as above takes the form of a ResNet.883

Lemma 8. For all ℓ ∈ N+ and δ ≤ t ≤ T , there exists W ∈ Wd,D,ℓ,M,B with884

D = 3d, M = (⌈2ζ−1⌉+ 3)d,

B = (⌈2ζ−1⌉ − 1)(4 + log⌈ζ−1⌉) + 8 + (1− e−2δ)−1 +
√
d,

such that (λtm̃
ℓ(z)− z)/σ2

t = ResNW (z), where m̃ℓ is as defined in Eq. (39).885

Proof of Lemma 8. Recall the definition of f as an approximation of tanh as in Lemma 5. Recall886

that a ResNet takes the form (ResNet). We shall choose the weight matrices appropriately such that887

u(ℓ) = [m̃ℓ;σ−2
t z;1d]

T ∈ R3d. In particular, for ℓ = 0, we set888

Win =

[
0d×d σ−2

t Id 0d×d

01×d 01×d 11×d

]T
∈ R3d×(d+1).

For ℓ ≥ 1, we set889

W
(ℓ)
1 =

[
aiId · · · a⌈2ζ−1⌉−1Id −Id Id a0Id −a0Id
0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

]
∈ R3d×(⌈2ζ−1⌉+3)d,

W
(ℓ)
2 =

[
A−K · · · A−K Id −Id 0d×d 0d×d

λtId · · · λtId 0d×d 0d×d 0d×d 0d×d

−w1Id · · · −w⌈2ζ−1⌉−1Id 0d×d 0d×d Id −Id

]T
∈ R(⌈2ζ−1⌉+3)d×3d.

Finally, we take Wout = [λtσ
−2
t Id,−Id,0d×d] ∈ Rd×3d.890

By Lemma 5 and Remark 1, we have
∑⌈2ζ−1⌉−1

j=1 |aj | ≤ 2, |a0| ≤ 1, and |wj | ≤ log⌈ζ−1⌉. Therefore,891

∥Win∥op ≤
√
d + σ−2

t , ∥Wout∥op ≤ 1 + λtσ
−2
t , ∥W (ℓ)

1 ∥op ≤ 2⌈2ζ−1⌉ + 2 and ∥W (ℓ)
2 ∥op ≤892

(⌈2ζ−1⌉ − 1)(2 + log⌈ζ−1⌉) + 4. Hence, |||W ||| ≤ (⌈2ζ−1⌉ − 1)(4 + log⌈ζ−1⌉) + 8 + σ−2
t +

√
d.893

Note that for δ ≤ t ≤ T , it holds that σ−2
t ≤ (1− e−2δ)−1. Therefore, we have894

|||W ||| ≤ B = (⌈2ζ−1⌉ − 1)(3 + log⌈ζ−1⌉) + 8 + (1− e−2δ)−1 +
√
d.

This completes the proof of Lemma 8.895

Proof of Theorem 1896

Recall that we have ŝt(z) = Pt[ResNŴ
](z), where Ŵ = argminW∈W Ê[∥Pt[ResNW ](z) +897

σ−1
t g∥22] for W = Wd,D,L,M,B . Here, Ê denotes averaging over the empirical data distribution. By898

standard error decomposition analysis in empirical risk minimization theory, we have:899

E[∥Pt[ResNŴ
](z) + σ−1

t g∥22]/d ≤ inf
W∈W

E[∥Pt[ResNW ](z) + σ−1
t g∥22]/d

+ 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.

Furthermore, a standard identity in diffusion model theory shows:900

E[∥ŝt(z)− st(z)∥22]/d = E[∥ŝt(z) + σ−1
t g∥22]/d+ C, C = E[∥st(z)∥22]/d− E[∥σ−1

t g∥22]/d.

Combining the above yields:901

E[∥ŝt(z)− st(z)∥22]/d ≤ ε̄2app + ε̄2gen, (41)

where ε̄2app is the approximation error and ε̄2gen is the generalization error,902

ε̄2app = inf
W∈W

E[∥Pt[ResNW ](z)− st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z) + σ−1
t g∥22]/d− E[∥Pt[ResNW ](z) + σ−1

t g∥22]/d
∣∣∣.
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By Proposition 6 and take D = 3d and m = 0, with probability at least 1− η, simultaneously for903

any t ∈ {T − tk}0≤k≤N−1, we have904

ε̄2gen ≲
λ2
t

σ4
t

·

√
[d2 + LdM ] · [L · log(LB) + log(λ−1

t )] + log(N/η)

n
. (42)

To bound ε̄2app, by the identity that st(z) = (λtmt(z) − z)/σ2
t and PtResNW (z) =905

projλtσ
−2
t

√
d(ResNW (z)+σ−2

t z)−σ−2
t z, recalling m̃L(z) as defined in Eq. (39), and by Lemma 8,906

we have907

ε̄2app = inf
W∈W

E[∥Pt[ResNW ](z)− st(z)∥22]/d

= inf
W∈W

E[∥projλtσ
−2
t

√
d(ResNW (z) + σ−2

t z)− λtσ
−2
t mt(z)∥22]/d

≤ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z))− λtσ

−2
t mt(z)∥22]/d

≲ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

+ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z))− λtσ

−2
t mt(z)∥22]/d

(43)

where the last inequality uses the triangle inequality. By Eq. (40) and the 1-Lipschitzness of908

projλtσ
−2
t

√
d, the first quantity in the right-hand side is controlled by909

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

≲
λ2
t

σ4
t

· (A2L + ζ2(1−A)−2) ≲
λ2
t

σ4
t

·
(
A2L +

d2

(1−A)2M2

)
,

(44)

where the last inequality is by the fact that we can choose ζ such that M = d · (⌈2ζ−1⌉+ 3), which910

gives ζ ≤ 6d/M . Furthermore, by Assumption 1 and by ∥m̂(z)∥2 ≤
√
d, the second quantity in the911

right-hand side is controlled by912

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z))− λtσ

−2
t mt(z)∥22]/d ≲

λ2
t

σ4
t

· ε2VI,t(A). (45)

Combining Eq. (41), (42), (43), (44), (45) completes the proof of Theorem 1.913

E.2 Proof of Corollary 1914

Corollary 1 is a direct consequence of Theorem 1, Theorem 5, and Lemma 7.915

E.3 Proofs for Section A.2916

E.3.1 Proof of Lemma 1917

Lemma 1 is a direct consequence of Lemma 9 below. Given Lemma 9, Lemma 1 holds by observing918

that when ∥A∥op < 1/2, we have (1− ∥A∥op)−2 ≤ 4.919

Lemma 9. Let h ∈ Rd, A ∈ Rd×d be symmetric with ∥A∥op < 1/2. Consider the Ising model920

µ(σ) ∝ exp{⟨σ,Aσ⟩/2 + ⟨σ,h⟩} and denote m = Eσ∼µ[σ]. Let m̂ be the unique minimizer of921

the naive VB free energy922

m̂ = argminm∈[−1,1]d

{ d∑
i=1

−hbin(mi)− ⟨m,Am⟩/2− ⟨m,h⟩
}
.

Then we have923
1

d
∥m− m̂∥22 ≤ 1

(1− 2∥A∥op)(1− ∥A∥op)2
∥A∥2F

d
.

Proof of Lemma 9. Denote ℓi(σ) =
∑

j ̸=i Aijσj+hi. Simple calculations yields Eµ[σi|{σj}j ̸=i] =924

tanh(ℓi(σ)), which implies that925

Eµ[σi] = Eµ[tanh(ℓi(σ))].
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By the fact that supx∈R |(d2/dx2) tanh(x)| ≤ 1 and by Taylor’s expansion, we have926

|Eµ[tanh(ℓi(σ))]− tanh(Eµ[ℓi(σ)])|2 ≤ Varµ(ℓi(σ)).

By Theorem 1 of Eldan et al. [2022], the Ising model satisfies a Poincare’s Inequality with Poincare’s927

coefficient to be 1/(1− 2∥A∥op) (we need to translate the Ising model to their setting, which leads928

to an additional 2 coefficient in front of ∥A∥op). Therefore, the Poincare’s inequality implies that929

Varµ(ℓi(σ)) ≤
1

1− 2∥A∥op

∑
j ̸=i

A2
ij .

Combining the equations above, we get930

1

d

∥∥∥m− tanh(Am+ h)
∥∥∥2
2
=

1

d

d∑
i=1

(
Eµ[σi]− tanh(Eµ[ℓi(σ)])

)2 ≤ 1

1− 2∥A∥op
∥A∥2F

d
≡ ε2.

Furthermore, notice that m̂ is the unique minimizer of the naive VB free energy implies that931

m̂ = tanh(Am̂+ h). Therefore, by the equation above, we get932

ε ≥ 1√
d

∥∥(m− m̂)− (tanh(Am+ h)− tanh(Am̂+ h))
∥∥
2

≥ 1√
d

(
∥m− m̂∥2 − ∥ tanh(Am+ h)− tanh(Am̂+ h)∥2

)
≥ (1− ∥A∥op) ·

1√
d
∥m− m̂∥2.

Combining the equations above concludes the proof of Lemma 9.933

E.3.2 Proof of Lemma 2934

Lemma 2 is a direct consequence of the lemma below.935

Lemma 10 (Lemma 4.10 and Proposition 4.2 of El Alaoui et al. [2022]). Let J ∼ GOE(d) and936

β < 1/2. Let x ∼ µ(x) ∝ exp{β⟨x,Jx⟩/2} on {±1}d and g ∼ N (0, Id) independently. Let937

z = λx+ σg. Consider the posterior measure938

µ(x|z) ∝ exp{β⟨x,Jx⟩/2 + (λ/σ2)⟨x, z⟩},
and define m(z) =

∑
x∈{±1}d xµ(x|z). Furthermore, consider the TAP free energy939

FTAP(m; z, q) =

d∑
i=1

−hbin(mi)−
β

2
⟨m,Jm⟩ − λ

σ2
⟨z,m⟩+ β2(1− q)

2
∥m∥22,

take q⋆ = q⋆(β, λ, σ) to be the unique solution of940

q⋆ = EG∼N (0,1)

[
tanh2(β2q⋆ + (λ2/σ2) +

√
β2q⋆ + (λ2/σ2)G)

]
,

and define m̂(z) = argminm∈[−1,1]dFTAP(m; z, q) to be the unique minimizer. Then we have941

∥m(z)− m̂(z)∥22/d
p−→ 0.

Remark 2. We discuss the several seeming differences between Lemma 10 and [El Alaoui et al.,942

2022, Lemma 4.10].943

• The parameter λ2/σ2 in Lemma 10 maps to the parameter t in [El Alaoui et al., 2022,944

Lemma 4.10]. The variable (λ/σ2)z = (λ2/σ2)x + (λ/σ)g in Lemma 10 maps to the945

variable y
d
= tx+

√
t · g in [El Alaoui et al., 2022, Lemma 4.10].946

• Lemma 10 takes m̂(z) to be the unique global minimizer of FTAP(m; z, q⋆), whereas947

[El Alaoui et al., 2022, Lemma 4.10] takes m̂(z) to be a particular local minimizer of948

FTAP(m; z, q⋆). However, when β < 1/2, it can be shown that FTAP is strongly convex949

with high probability, and hence the local minimizer is the global minimizer with high950

probability.951
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• [El Alaoui et al., 2022, Lemma 4.10] is proven under a different joint distribution of (J , z).952

However, [El Alaoui et al., 2022, Proposition 4.2] shows that the distribution for [El Alaoui953

et al., 2022, Lemma 4.10] is contiguous to the distribution for Lemma 10, and hence the954

high probability event under the sampling distribution of [El Alaoui et al., 2022, Lemma955

4.10] can be translated to the corresponding high probability event under the sampling956

distribution of Lemma 10.957

To prove Lemma 2, we take ct = β2(1− qt) where qt is the unique solution of958

qt = EG∼N (0,1)

[
tanh2(β2qt + (λ2

t/σ
2
t ) +

√
β2qt + (λ2

t/σ
2
t )G)

]
.

Hence by Lemma 10, for any β < 1/2, we have959

Ez∼µt
[∥m̂t(z)−mt(z)∥22]/d

p−→ 0, d → ∞.

Furthermore, note that ct ≤ β2 and ∥βJ∥op ≤ 2β + ε with high probability for arbitrarily small ε.960

This ensures that ∥βJ − ctId∥op ≤ ∥βJ∥op + β2 < 1 when β ≤ 1/4. This proves Lemma 2.961

F Proofs for Section B: Generalization to other models962

F.1 Proof of Theorem 2963

Approximate the minimizer of the free energy via iterative algorithms964

Once again, we first prove that we can approximately minimize the free energy by implementing a965

simple iterative algorithm. Recall that966

ω̂t(z) = argminω∈[−1,1]d+mFmarginal
t (ω; z),

Fmarginal
t (ω; z) :=

{ d+m∑
i=1

−hbin(ωi)−
1

2
⟨ω,Aω⟩ − λt

σ2
t

⟨z,ω1:d⟩+
1

2
⟨ω,Kω⟩

}
.

Taking the gradient and the Hessian of Fmarginal
t (ω; z), we obtain967

∇ωFmarginal
t (ω; z) = tanh−1(ω) + (K −A)ω − λt

σ2
t

[z;0m]T,

∇2
ωF

marginal
t (ω; z) = diag{(1− ω2

i )
−1}i∈[d+m] +K −A.

Since ∥K −A∥op ≤ A < 1, we can then conclude that ∇2
wFmarginal

t (w; z) ⪰ (1 − A)Id+m for968

all z ∈ Rd, hence Fmarginal
t (·; z) is strongly-convex for all z ∈ Rd. This further implies that the969

fixed-point equation below970

ω = tanh

(
(A−K)ω +

λt

σ2
t

[z;0m]T
)

has a unique solution. By Lemma 6, we obtain that if we run the iteration971

ω̃0(z) = 0, ω̃k(z) = f((A−K)ω̃k−1(z) + λtσ
−2
t [z;0m]T), (46)

where ∥f(·)− tanh(·)∥∞ ≤ ζ, then972

1√
d+m

∥ω̃k(z)− ω̂t(z)∥2 ≤ Ak + ζ(1−A)−1. (47)

In particular, we require that f(·) is the function that we construct in Lemma 5.973

Represent the iterative algorithm as a ResNet974

Recall that m̂t(z) = [ω̂t(z)]1:d. We define m̃ℓ(z) := [ω̃(ℓ)(z)]1:d. In what follows, we show that975

(λtm̃
ℓ(z)− z)/σ2

t can be expressed as a ResNet that takes input z.976
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Lemma 11. For all ℓ ∈ N+ and δ ≤ t ≤ T , there exists W ∈ Wd,D,ℓ,M,B with977

D = 3(d+m), M = (⌈2ζ−1⌉+ 1)(d+m),

B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4) + 8 +
√
d+m+ (1− e−2δ)−1,

such that (λtm̃
ℓ(z)− z)/σ2

t = ResNW (z), where m̃ℓ is as defined in Eq. (46).978

Proof of Lemma 11. Recall the definition of f as an approximation of tanh as in Lemma 5. The979

proof of this lemma is similar to that of Lemma 8. To be specific, we will select the weight980

matrices {W (ℓ)
1 ,W

(ℓ)
2 ,Win,Wout} appropriately such that u(ℓ) = [ω̃ℓ(z);σ−2

t [z;0m]T;1d+m]T ∈981

R3(d+m). When ℓ = 0, this can be achieved by setting982

Win =

[
0d×(d+m) σ−2

t [Id,0d×m] 0d×(d+m)

01×(d+m) 01×(d+m) 11×(d+m)

]
∈ R(d+1)×3(d+m).

Also, recall that f(x) =
∑⌈2ζ−1⌉−1

j=1 ReLU(x− wj) + a0. Therefore, for ℓ ∈ N+, we simply set983

W
(ℓ)
1 =

 aiId · · · a⌈2ζ−1⌉−1Id+m −Id+m Id+m a0Id+m −a0Id+m

0(d+m)×(d+m) · · · 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m)

0(d+m)×(d+m) · · · 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m)


∈ R3(d+m)×(⌈2ζ−1⌉+3)(d+m),

W
(ℓ)
2 =

 A−K · · · A−K Id+m −Id+m 0(d+m)×(d+m) 0(d+m)×(d+m)

λtId+m · · · λtId+m 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m) 0(d+m)×(d+m)

−w1Id+m · · · −w⌈2ζ−1⌉−1Id+m 0(d+m)×(d+m) 0(d+m)×(d+m) Id+m −Id+m

T

∈ R(⌈2ζ−1⌉+3)(d+m)×3(d+m).

Finally, we take Wout = [λtσ
−2
t Id,0d×m,−Id,0d×(d+2m)] ∈ Rd×3(d+m).984

Next, we upper bound the norm of the residual network. By Lemma 5 and Remark 1, we have985 ∑⌈2ζ−1⌉−1
j=1 |aj | ≤ 2, |a0| ≤ 1, |wj | ≤ log⌈ζ−1⌉. Therefore,986

∥Win∥op ≤
√
d+m+ σ−2

t , ∥Wout∥op ≤ 1 + λtσ
−2
t ,

∥W (ℓ)
1 ∥op ≤ 2⌈2ζ−1⌉+ 2, ∥W (ℓ)

2 ∥op ≤ (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 2) + 4.

This implies that987

|||W ||| ≤ B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4) + 8 +
√
d+m+ (1− e−2δ)−1.

This completes the proof of Lemma 11.988

Proof of Theorem 2989

Similar to the proof of Theorem 1, we obtain990

E[∥ŝt(z)− st(z)∥22]/d ≤ ε̄2app + ε̄2gen, (48)

where ε̄2app is the approximation error and ε̄2gen is the generalization error,991

ε̄2app = inf
W∈W

E[∥PtResNW (z)− st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥PtResNW (z) + σ−1
t g∥22]/d− E[∥PtResNW (z) + σ−1

t g∥22]/d
∣∣∣.

By Proposition 6 and take D = 3(d +m), with probability at least 1 − η, simultaneously for any992

t ∈ {T − tk}0≤k≤N−1, we have993

ε̄2gen ≲
λ2
t

σ4
t

·

√
[ML+ d](d+m) · [L · log(LB) + log(λ−1

t )] + log(N/η)

n
. (49)
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To bound ε̄2app, by the identity that st(z) = (λtmt(z) − z)/σ2
t and PtResNW (z) =994

projλtσ
−2
t

√
d(ResNW (z) + σ−2

t z) − σ−2
t z, recalling m̃L(z) = ω̃L

1:d(z) as defined in Eq. (46),995

and by Lemma 11, we have996

ε̄2app = inf
W∈W

E[∥PtResNW (z)− st(z)∥22]/d

≲ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

+ E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z))− λtσ

−2
t mt(z)∥22]/d.

(50)

By Eq. (47), the 1-Lipschitzness of projλtσ
−2
t

√
d, and the definition that m̂t(z) = [ω̂t(z)]1:d and997

m̃ℓ(z) = [ω̃(ℓ)(z)]1:d, the first quantity on the right-hand side is controlled by998

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z))∥22]/d

≲
d+m

d
· λ

2
t

σ4
t

· (A2L + ζ2(1−A)−2) ≲
d+m

d
· λ

2
t

σ4
t

·
(
A2L +

(d+m)2

(1−A)2M2

)
,

(51)

where the last inequality is by the fact that we can choose ζ such that ζ ≤ 6(d+m)/M . Furthermore,999

by Assumption 2 and by ∥m̂(z)∥2 ≤
√
d, the second quantity in the right-hand side is controlled by1000

E[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z))− λtσ

−2
t mt(z)∥22]/d ≲

λ2
t

σ4
t

· ε2VI,t(A). (52)

Combining Eq. (48), (49), (50), (51), (52) completes the proof of the score estimation result in1001

Theorem 2. The KL divergence bound is a direct consequence of score estimation error, Theorem 5,1002

and Lemma 7. This concludes the proof.1003

F.2 Proof of Theorem 31004

Approximate the minimizer of the free energy via iterative algorithm1005

We define1006

Fcond
t (m; z,θ) :=

d∑
i=1

−hbin(mi)−
1

2
⟨m,A11m⟩ − ⟨m,A12θ⟩ −

λt

σ2
t

⟨z,m⟩+ 1

2
⟨m,Km⟩.

Taking the gradient and the Hessian of Fcond
t , we obtain1007

∇mFcond
t (m; z,θ) = tanh−1(m) + (K −A11)m−A12θ − λt

σ2
t

z,

∇2
mFcond

t (m; z,θ) = diag{((1−m2
i )

−1)i∈[d]}+K −A11.

When ∥K −A11∥op ≤ A < 1, we always have ∇2
mFcond

t (m; z,θ) ⪰ (1−A)I ≻ 0. That is to say,1008

Fcond
t (·; z,θ) is strongly convex, hence1009

m = tanh

(
(A11 −K)m+A12θ +

λt

σ2
t

z

)
has a unique solution. We then can apply Lemma 6, and conclude that if we run iteration1010

m̃0(z;θ) = 0, m̃ℓ(z;θ) = f((A11 −K)m̃ℓ−1(z;θ) +A12θ + λtσ
−2
t z) (53)

for some ∥f − tanh ∥∞ ≤ ζ, it then holds that1011

1√
d
∥m̃ℓ(z;θ)− m̂t(z;θ)∥2 ≤ Aℓ + ζ(1−A)−1. (54)

As usual, we require f(·) satisfies all other conditions from Lemma 5.1012
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Represent the iterative algorithm as a ResNet1013

Next, we show that (λtm̃
ℓ(z;θ)− z)/σ2

t can be expressed as a ResNet as in (ResNet-Conditional)1014

that has input (z,θ).1015

Lemma 12. For all ℓ ∈ N+ and δ ≤ t ≤ T , there exists W ∈ Wd,m,D,ℓ,M,B with1016

D = 4d, M = (⌈2ζ−1⌉+ 3)d,

B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4 + ∥A12∥op) + 8 + (1− e−2δ)−1 + ∥A12∥op +
√
d,

such that (λtm̃
ℓ(z;θ)− z)/σ2

t = ResNW (z,θ), where m̃ℓ is as defined in Eq. (53).1017

Proof of Lemma 12. Recall the definition of f as an approximation of tanh as in Lemma 5. We shall1018

choose the weight matrices such that u(ℓ) = [m̃ℓ(z;θ);σ−2
t z;A12θ;1d] ∈ R4d. For ℓ = 0, we1019

simply set1020

Win =

 0d×d 0d×m 0d×1

σ−2
t Id 0d×m 0d×1

0d×d A12 0d×1

0d×d 0d×m 1d×1

 ∈ R4d×(d+m+1).

For ℓ ≥ 1, we let1021

W
(ℓ)
1 =

 aiId · · · a⌈2ζ−1⌉−1Id −Id Id a0Id −a0Id
0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

0d×d · · · 0d×d 0d×d 0d×d 0d×d 0d×d

 ∈ R4d×(⌈2ζ−1⌉+3)d,

W
(ℓ)
2 =

 A11 −K · · · A11 −K Id −Id 0d×d 0d×d

λtId · · · λtId 0d×d 0d×d 0d×d 0d×d

A12 · · · A12 0d×d 0d×d 0d×d 0d×d

−w1Id · · · −w⌈2ζ−1⌉−1Id 0d×d 0d×d Id −Id


T

∈ R(⌈2ζ−1⌉+3)d×4d.

Finally, we let Wout = [λtσ
−2
t Id,−Id,0d×d,0d×d] ∈ Rd×4d. By Lemma 5 and Remark 1, we have1022 ∑⌈2ζ−1⌉−1

j=1 |aj | ≤ 2, |a0| ≤ 1, |wj | ≤ log⌈ζ−1⌉. Therefore,1023

∥Wout∥op ≤ λtσ
−2
t + 1, ∥Win∥op ≤

√
d+ σ−2

t + ∥A12∥op,

∥W (ℓ)
1 ∥op ≤ 2⌈2ζ−1⌉+ 2, ∥W (ℓ)

2 ∥op ≤ (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 2 + ∥A12∥op) + 4.

As a result, we conclude that1024

|||W ||| ≤ B = (⌈2ζ−1⌉ − 1) · (log⌈ζ−1⌉+ 4 + ∥A12∥op) + 8 + (1− e−2δ)−1 + ∥A12∥op +
√
d.

We have completed the proof of Lemma 12.1025

Proof of Theorem 31026

Similar to the proof of Theorem 1, we obtain1027

Eθ,z[∥ŝt(z;θ)− st(z;θ)∥22]/d ≤ ε̄2app + ε̄2gen, (55)

where ε̄2app is the approximation error and ε̄2gen is the generalization error,1028

ε̄2app = inf
W∈W

Eθ,z[∥Pt[ResNW ](z,θ)− st(z;θ)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥Pt[ResNW ](z,θ) + σ−1
t g∥22]/d− Eθ,z[∥Pt[ResNW ](z,θ) + σ−1

t g∥22]/d
∣∣∣.

By Proposition 6 and take D = 4d, with probability at least 1 − η, simultaneously for any t ∈1029

{T − tk}0≤k≤N−1, we have1030

ε̄2gen ≲
λ2
t

σ4
t

·

√
(MdL+ d(d+m)) · [L · log(LBd−1(m+ d)) + log(λ−1

t )] + log(N/η)

n
. (56)
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To bound ε̄2app, by the identity that st(z;θ) = (λtmt(z;θ) − z)/σ2
t and PtResNW (z,θ) =1031

projλtσ
−2
t

√
d(ResNW (z,θ) + σ−2

t z) − σ−2
t z, recalling m̃L(z) as defined in Eq. (53), and by1032

Lemma 12, we have1033

ε̄2app = inf
W∈W

Eθ,z[∥Pt[ResNW ](z,θ)− st(z;θ)∥22]/d

≲ Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z;θ))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z;θ))∥22]/d

+ Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z;θ))− λtσ

−2
t mt(z;θ)∥22]/d.

(57)

By Eq. (54) and the 1-Lipschitzness of projλtσ
−2
t

√
d, the first quantity on the right-hand side is1034

controlled by1035

Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̃L(z;θ))− projλtσ

−2
t

√
d(λtσ

−2
t m̂(z;θ))∥22]/d

≲
λ2
t

σ4
t

· (A2L + ζ2(1−A)−2) ≲
λ2
t

σ4
t

·
(
A2L +

d2

(1−A)2M2

)
,

(58)

where the last inequality is by the fact that we can choose ζ such that ζ ≤ 6d/M . Furthermore, by1036

Assumption 3 and by ∥m̂(z;θ)∥2 ≤
√
d, the second quantity in the right-hand side is controlled by1037

Eθ,z[∥projλtσ
−2
t

√
d(λtσ

−2
t m̂(z;θ))− λtσ

−2
t mt(z;θ)∥22]/d ≲

λ2
t

σ4
t

· ε2VI,t(A). (59)

Combining Eq. (55), (56), (57), (58), (59) completes the proof of the score estimation result in1038

Theorem 3. The KL divergence bound is a direct consequence of score estimation error, Theorem 5,1039

and Lemma 7. This concludes the proof.1040

To prove the second result of the bound of the expected KL divergence, we simply notice that by1041

Theorem 5, conditioning on every θ we have1042

1

d
KL(µδ(·|θ), µ̂(·|θ)) ≲ ε2 + κ2N + κT + e−2T ,

where1043

ε2 =
1

d

N−1∑
k=0

γkE
[
∥ŝT−tk(z;θ)− sT−tk(z;θ)∥22 | θ

]
.

The proof is complete of Theorem 3 by simply integrating over θ.1044

F.3 Proof of Theorem 41045

Relationship of the score function st to the denoiser et1046

We first compute the score function st(z) = ∇z logµt(z), for x = Aθ + ε and z = λtx + σtg,1047

where g ∼ N (0d, Id) is independent of (θ, ε) ∼ πm
0 ⊗N (0, τ2Id). Note that1048

E[x | z] = E[Aθ + ε | λtAθ + λtε+ σtg] = AE[θ | z] + E[ε | λtAθ + λtε+ σtg]

= AE[θ | z] + λtτ
2

λ2
t τ

2 + σ2
t

E[λtε+ σtg | λtAθ + λtε+ σtg]

= AE[θ | z] + λtτ
2

λ2
t τ

2 + σ2
t

· (z − λtAE[θ | z]) = σ2
t

λ2
t τ

2 + σ2
t

AE[θ | z] + λtτ
2

λ2
t τ

2 + σ2
t

z.

By (Denoiser), we obtain1049

st(z) =
λt

σ2
t

E[x | z]− 1

σ2
t

z = − 1

τ2λ2
t + σ2

t

z +
λt

τ2λ2
t + σ2

t

A · E[θ | z].

We notice the equality in distribution z/λt
d
= z∗ = Aθ + ε̄ where (θ, ε̄) ∼ πm

0 ⊗N (0, τ̄2t Id) (this1050

z∗ is as defined in Assumption 4). This implies1051

st(z) = − 1

τ2λ2
t + σ2

t

z +
λt

τ2λ2
t + σ2

t

A · et(z/λt), (60)

where et is as defined in Eq. (15).1052
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Existence of a unique minimizer of the VI free energy1053

We analyze the VI free energy. We define1054

F sparse
t (e; z∗) :=

m∑
i=1

max
λ

[
λei − logEβ∼π0 [e

λβ−β2νt/2]
]
+

1

2τ̄2t
∥z∗ −Ae∥22 −

1

2
⟨e,Kte⟩.

Let Gt(λ) = logEβ∼π0
[eλβ−β2νt/2], and λi = argmaxλ[λei − Gt(λ)], then ei = G′

t(λi). There-1055

fore,1056

d

dei
[λiei −Gt(λi)] = λi +

ei
G′′

t (λi)
− G′

t(λi)

G′′
t (λi)

= λi,

d2

d2ei
[λiei −Gt(λi)] =

1

G′′
t (λi)

.

Hence, we have1057

∇eF sparse
t (e; z∗) = (G′

t)
−1(e)− 1

τ̄2t
ATz∗ +

1

τ̄2t
ATAe−Kte,

∇2
eF

sparse
t (e; z∗) = diag{(G′′

t (λi)
−1)i∈[m]}+

1

τ̄2t
ATA−Kt.

Note that G′′
t (λi) = Var(β,z)∼π0⊗N (0,1)[β | β + ν

−1/2
t z = λν−1

t ] ≤ Π2. In addition, note that1058

|G′
t(λ)| = |E[β | β+ ν

−1/2
t z = λν−1

t ]| ≤ Π for all λ. By assumption, ∥τ̄−2
t ATA−Kt∥op < Π−2,1059

hence ∇2
eF

sparse
t (e; z∗) is positive-definite and F sparse

t (·; z∗) as a function of e is strongly convex.1060

That is to say, the equation1061

e = G′
t

(
(−τ̄−2

t ATA+Kt)e+ τ̄−2
t ATz∗

)
has a unique fixed point êt(z∗).1062

Approximate the minimizer of the free energy via iterative algorithm1063

We denote by ft(·) the function obtained from Lemma 5 that achieves ζ-uniform approximation to1064

G′
t(·). By Lemma 6, we conclude that if we implement the following iteration1065

ẽ0(z∗) = 0, ẽℓ+1(z∗) = ft
(
(−τ̄−2

t ATA+Kt)ẽ
ℓ(z∗) + τ̄−2

t ATz∗
)
, (61)

then for all ℓ ∈ N+, we have1066

1√
m
∥ẽℓ(z∗)− êt(z∗)∥2 ≤ Π · (Π2A)ℓ +

ζ

1−Π2A
. (62)

Represent the iterative algorithm as a ResNet1067

We then show that st(z) = (λtAet(z/λt)− z)/(τ2λ2
t + σ2

t ) (c.f. Eq. (60)) can be expressed as a1068

ResNet that takes input z.1069

Lemma 13. For all t ∈ {T − tk}0≤k≤N−1 and ℓ ∈ N+, there exists W ∈ Wd,D,ℓ,M,B , with1070

D = 3m+ d, M = (⌈2Πζ−1⌉+ 3)m,

B =
(
⌈2Πζ−1⌉ − 1

)
·
(
A+ 1 + 2Π2 + wζ

)
+ 2Π + 6 + (∥A∥op + 1)/(1− e−2δ) + τ̄−2

t λ−1
t ∥A∥op +

√
m,

such that (λtAẽℓ(z/λt)− z)/(τ2λ2
t + σ2

t ) = ResNW (z). Here, ẽℓ is as defined in Eq. (61), and1071

wζ is given by1072

wζ = sup
t∈{T−tk}0≤k≤N−1

inf
{
w : for all λ1 > λ2 ≥ w or λ1 < λ2 ≤ −w we have |G′

t(λ1)−G′
t(λ2)| < ζ

}
.

Proof of Lemma 13. Recall that the ResNet is defined as (ResNet). Recall the definition of ft as an1073

approximation of G′
t as in Lemma 5. We shall choose the weight matrices appropriately, such that1074

u(ℓ) = [ẽℓ(z/λt); τ̄
−2
t ATz/λt;1m; z] ∈ R3m+d. For ℓ = 0, we set1075

Win =

[
0d×m τ̄−2

t λ−1
t A 0d×m Id

01×m 01×m 11×m 01×d

]T
∈ R(3m+d)×(d+1).
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For ℓ ≥ 1, we set1076

W
(ℓ)
1 =

 aiIm · · · a⌈2Πζ−1⌉−1Im −Im Im a0Im −a0Im
0m×m · · · 0m×m 0m×m 0m×m 0m×m 0m×m

0m×m · · · 0m×m 0m×m 0m×m 0m×m 0m×m

0d×m · · · 0d×m 0d×m 0d×m 0d×m 0d×m

 ∈ R(3m+d)×(⌈2Πζ−1⌉+3)m,

W
(ℓ)
2 =

 −τ̄−2
t ATA+Kt · · · −τ̄−2

t ATA+Kt Im −Im 0m×m 0m×m

Im · · · Im 0m×m 0m×m 0m×m 0m×m

−w1Im · · · −w⌈2Πζ−1⌉−1Im 0m×m 0m×m Im −Im
0d×m · · · 0d×m 0d×m 0d×m 0d×m 0d×m


T

∈ R(⌈2Πζ−1⌉+3)m×(3m+d).

For the output layer, we let Wout = [λtA/(σ2
t + τ2λ2

t ),0d×m,0d×m,−(τ2λ2
t + σ2

t )
−1Id] ∈1077

Rd×(3m+d).1078

The following upper bounds are straightforward:1079

∥Win∥op ≤ τ̄−2
t λ−1

t ∥A∥op +
√
m+ 1, ∥Wout∥op ≤ (∥A∥op + 1)/(1− e−2δ),

∥W (ℓ)
1 ∥op ≤ 2Π2(⌈2Πζ−1⌉ − 1) + 2Π + 2, ∥W (ℓ)

2 ∥op ≤
(
⌈2Πζ−1⌉ − 1

)
· (A+ 1 + wζ) + 4.

In summary, we have

|||W ||| ≤
(
⌈2Πζ−1⌉ − 1

)
·
(
A+ 1 + 2Π2 + wζ

)
+2Π+6+(∥A∥op+1)/(1−e−2δ)+τ̄−2

t λ−1
t ∥A∥op+

√
m.

This concludes the proof of Lemma 13.1080

Proof of Theorem 41081

Similar to the proof of Theorem 1, we obtain1082

E[∥ŝt(z)− st(z)∥22]/d ≤ ε̄2app + ε̄2gen, (63)

where ε̄2app is the approximation error and ε̄2gen is the generalization error:1083

ε̄2app = inf
W∈W

E[∥P̄t[ResNW ](z)− st(z)∥22]/d,

ε̄2gen = 2 sup
W∈W

∣∣∣Ê[∥P̄t[ResNW ](z) + σ−1
t g∥22]/d− E[∥PtResNW (z) + σ−1

t g∥22]/d
∣∣∣.

Applying Proposition 7 and taking D = 3m+ d, we conclude that with probability at least 1− η,1084

simultaneously for any t ∈ {T − tk}0≤k≤N−1, when n ≥ log(2/η), we have1085

ε̄2gen ≲
(
λ2
t∥A∥2opΠ2(τ−4 + 1)

m

d
+

λ2
t

σ2
t

(1 + τ2)
)

×
√

(dD + LDM) · [T + L log(LB) + log(nmT (τ + 1)(∥A∥opΠ+ 1)τ−1)] + log(2N/η)

n
.

(64)
where we choose1086

B =M/m ·
(
A+ 1 + 2Π2 + w⋆

)
+ 2Π + 6 + (∥A∥op + 1)/(1− e−2δ) + τ−2∥A∥op +

√
m,

w⋆ = sup
t∈{T−tk}0≤k≤N−1

inf
{
w : for all λ1 > λ2 ≥ w or λ1 < λ2 ≤ −w, |G′

t(λ1)−G′
t(λ2)| < M/(6mΠ)

}
.

(65)

We next upper bound ε̄2app. Recall Eq. (60) and τ̄2t = τ2 + σ2
t /λ

2
t , we have st(z) =1087

−λ−2
t τ̄−2

t z + λt
−1τ̄−2

t Aēt(z∗) (recall that z∗ = z/λt) and recall P̄t[ResNW ](z) =1088

proj√m∥A∥opΠλ−1
t τ̄−2

t
(ResNW (z)+λ−2

t τ̄−2
t z)−λ−2

t τ̄−2
t z. According to Lemma 13, recalling ẽL1089
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as defined in Eq. (61), we have1090

ε̄2app = inf
W∈W

E[∥P̄t[ResNW ](z)− st(z)∥22]/d

= inf
W∈W

E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(ResNW (z) + λ−2

t τ̄−2
t z)− λt

−1τ̄−2
t Aēt(z∗)∥22]/d

≤ E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t AẽL(z∗))− λt

−1τ̄−2
t Aēt(z∗)∥22]/d

≲ E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t AẽL(z∗))− proj√m∥A∥opΠλ−1

t τ̄−2
t

(λ−1
t τ̄−2

t Aê(z∗))∥22]/d

+ E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t Aê(z∗))− λ−1

t τ̄−2
t Aēt(z∗)∥22]/d

(66)
where the last inequality is by the triangle inequality. By Eq. (62) and the 1-Lipschitzness of proj(·),1091

we obtain that the first term in the right-hand side above is upper bounded by1092

E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t AẽL(z∗))− proj√m∥A∥opΠλ−1

t τ̄−2
t

(λ−1
t τ̄−2

t Aê(z∗))∥22]/d

≲
m∥A∥2op
dλ2

t τ̄
4
t

· (Π2 · (Π2A)2L + ζ2(1−Π2A)−2) ≲
m∥A∥2op
dλ2

t τ̄
4
t

·
(
Π2 · (Π2A)2L +

m2Π2

(1−Π2A)2M2

)
.

(67)
In the above display, the last inequality is by the fact that we can choose ζ such that M = m ·1093

(⌈2Πζ−1⌉+3), which implies that 2mΠ/M ≤ ζ ≤ 6mΠ/M . Furthermore, by Assumption 4 and by1094

the fact that ∥ê(z∗)∥2 ≤
√
mΠ, we obtain that the second quantity in the right-hand side of Eq. (66)1095

is controlled by1096

E[∥proj√m∥A∥opΠλ−1
t τ̄−2

t
(λ−1

t τ̄−2
t Aê(z∗))−λ−1

t τ̄−2
t Aēt(z∗)∥22]/d ≲

m∥A∥2op
dλ2

t τ̄
4
t

·ε2VI,t(A). (68)

Finally, we combine Eq. (63), (64), (66), (67), (68). This completes the proof of Theorem 4.1097

F.4 Proof of Lemma 31098

Consider the sparse coding problem z∗ = Aθ + ε̄ ∈ Rd with dictionary A ∈ Rd×m, sparse1099

representation θ ∈ Rm, and noise ε̄ ∈ Rd. Assume that the model satisfies the following assumption.1100

Assumption 7 (Simplified version of Assumption 1 - 4 of Li et al. [2023b]). Assume that A =1101

QDOT is the singular value decomposition of A, where Q ∈ Rd×d and O ∈ Rm×m are orthogonal1102

and D ∈ Rd×m is diagonal with diagonal elements {di}i∈[min{d,m}]. Assume that Q, D are1103

deterministic, O, θ, ε are mutually independent, and O ∼ Haar(SO(m)) is uniformly distributed1104

on the special orthogonal group. As d,m → ∞, we assume µD
W→ D where µD is the empirical1105

distribution of coordinates of D, D is a random variable with supp{D2} ⊆ [d−, d+] and 0 <1106

d− < d+ < ∞, and W→ denotes Wasserstein-p convergence. Furthermore, mini{d2i } → d− and1107

maxi{d2i } → d+. We further assume θi ∼iid π0 with Eπ0
[θ] = 0, Eπ0

[θ2] > 0, and π0 is compactly1108

supported. Finally, we have ε̄i ∼iid N (0, τ̄2).1109

Denote the posterior mean of θ given (A, z∗) by e(z∗) = E[θ|z∗]. Theorem 1.11 of Li et al. [2023b]1110

proves the following.1111

Lemma 14 (Theorem 1.11 of Li et al. [2023b]). Let Assumption 7 hold. There exists τ̄20 that depends1112

on (α, π0,D), such that the following happens. For any τ̄2 ≥ τ̄20 , there exists ν⋆ = (α, π0,D, τ̄
2) that1113

depends on (α, π0,D, τ̄
2) such that, taking G(λ) = logEβ∼π0 [e

λβ−β2ν⋆/2] we have almost surely1114

lim
d,m→∞

Ez∗

[∥∥∥e(z∗)−G′(− τ̄−2
(
(ATA− ν⋆Im)e(z∗)−ATz∗

))∥∥∥2
2

∣∣∣A] = 0.

Furthermore, for any fixed (π0, α,D), we have supτ̄2≥τ̄2
0
ν⋆(τ̄

2) < ∞.1115

We remark that Theorem 1.11 of Li et al. [2023b] assumes the fixed noise level τ̄2 = 1. However, a1116

simple rescaling argument could extend the result to general τ̄2.1117

Given Lemma 14, we are now ready to prove Lemma 3. Taking τ̄2 = τ̄2t = τ2+σ2
t /λ

2
t , νt = ν⋆(τ̄

2
t ),1118

Gt = G, and Kt = τ̄−2
t ν⋆(τ̄

2
t ), we note that the minimizer of the VI free energy êt(z∗) ∈ [−Π,Π]m1119

should satisfy1120

êt(z∗) = G′
t

(
−τ̄−2

t

(
(ATA− νtIm)êt(z∗)−ATz∗

))
.
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For the posterior mean et(z∗) ∈ [−Π,Π]m, we have1121 ∥∥∥et(z∗)−G′
t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))∥∥∥
2

≥
∥∥∥et(z∗)− êt(z∗)

∥∥∥
2

−
∥∥∥G′

t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))
−G′

t

(
− τ̄−2

t

(
(ATA− νtrIm)êt(z∗)−ATz∗

)∥∥∥
2

≥
(
1−Π2τ̄−2

t ∥ATA− νtIm∥op
)
∥et(z∗)− êt(z∗)∥2,

where the last inequality used the fact that G′
t is Π2-Lipschitz. Notice that by Lemma 14,1122

supτ̄2≥τ̄2
0
ν⋆(τ̄

2) = ν < ∞, and ∥ATA∥op = maxi d
2
i bounded almost surely by some D < ∞ per1123

Assumption 7. Therefore, when τ20 ≥ 2Π2(D + ν), we have 1− Π2τ̄−2
t ∥ATA− ν⋆Im∥op ≥ 1/21124

for any τ2 ≥ τ20 and any t. This gives1125 ∥∥∥et(z∗)−G′
t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))∥∥∥
2
≥ ∥et(z∗)− êt(z∗)∥2/2.

Furthermore, by Lemma 14, the posterior mean et(z∗) satisfies1126

lim
d,m→∞

Ez∗

[∥∥∥et(z∗)−G′
t

(
− τ̄−2

t

(
(ATA− νtIm)et(z∗)−ATz∗

))∥∥∥2
2

∣∣∣A] = 0.

This implies that1127

lim
d,m→∞

Ez∗ [∥et(z∗)− êt(z∗)∥22|A] = 0,

which concludes the proof of Lemma 3.1128
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