
Approximation Properties of Complex-valued
Neural Networks: An Overview

Paul Geuchen
KU Eichstätt-Ingolstadt

Mathematical Institute for Machine Learning and Data Science (MIDS)
Ingolstadt, Germany
paul.geuchen@ku.de

Abstract—While the approximation properties of real-valued
neural networks have been a subject of intense mathematical re-
search since the 1990s, the approximation properties of complex-
valued neural networks have only gained increased attention in
recent years. In this paper, we provide an overview of the known
results and specifically discuss the similarities and differences
between the complex-valued and real-valued case.

Index Terms—complex-valued neural networks, universality,
approximation rates

I. INTRODUCTION

Since the foundational work of the 1990s, the approximation
properties of real-valued neural networks (RVNNs) have been
extensively studied [5, 9, 17, 21, 23, 27, 28, 33]. Both
qualitative aspects such as universality and quantitative aspects
are subject of investigation. In recent years, however, complex-
valued neural networks (CVNNs) have emerged as a natural
modification of RVNNs, due to their suitability for problems
involving inherently complex-valued data such as MRI [8, 16,
30] and radar imaging [4, 25, 34]. Despite their success in
practical applications, the theoretical understanding of CVNNs
remains comparatively underdeveloped.

This paper provides an overview of the current state of
research on the approximation properties of CVNNs. We
summarize key results, highlighting their connections to and
differences from the well-established theory of RVNNs.

A. Preliminaries

Let F ∈ {R,C} and ϕ : F → F be a given function. An
F-valued neural network Φ with activation function ϕ is a
function of the form

Φ = V (L) ◦ ϕ ◦ V (L−1) ◦ ... ◦ V (1) ◦ ϕ ◦ V (0),

where the maps V (ℓ) : FNℓ → FNℓ+1 (for proper choices
of Nℓ ∈ N) are F-affine, and the function ϕ is applied
componentwise to a vector. N0 is called the number of input
neurons, NL+1 the number of output neurons, L is the depth
and max

ℓ=0,...,L+1
Nℓ is the width of Φ. Φ is called shallow if

L = 1 and deep if L ≥ 2. In the case of a shallow network,
we refer to N1 as the number of hidden neurons. Each affine
map V (ℓ) can be identified by a matrix W (ℓ) ∈ FNℓ+1×Nℓ and
a bias vector b(ℓ) ∈ FNℓ+1 . The entries of the W (ℓ) and b(ℓ)

are called the weights of Φ.

At first sight, CVNNs could appear to only be a trivial
extension of RVNNs by using the identification C ∼= R2.
However, the two network classes differ in the following
aspects:

• The activation function in a CVNN is a function C → C
(i.e., R2 → R2), whereas the activation function in an
RVNN is a function R → R.

• The affine maps in a CVNN are required to be C-affine
whereas the affine maps in an RVNN only need to be
R-affine.1

These two points show that it is not possible to view CVNNs
as a special case of RVNNs or vice versa. As a consequence,
one can (in general) not directly transfer approximation-
theoretic properties of RVNNs to the complex-valued case but
needs to carefully examine which properties translate, and in
which way.

The key advantage of CVNNs in comparison to RVNNs
is that it is possible to use activation functions that are
able to faithfully handle the complex nature of the inputs
of the network. This can for example be achieved by using
an activation function that preserves the phase of the input.
Two of the most popular complex activation functions are the
modReLU as introduced in [3] and the complex cardioid as
proposed in [30].

II. UNIVERSALITY

The most fundamental aspect regarding the approximation-
theoretic properties of neural networks is the question of
universality.

Definition II.1. Let F ∈ {R,C}, d1, d2 ∈ N and F ⊆
C(Fd1 ;Fd2) be a class of continuous functions. F is called
universal, if for every compact set K ⊆ Fd1 , every g ∈
C(K;Cd2) and every ε > 0, there exists a function f ∈ F
satisfying

∥f − g∥L∞(K) < ε.

1Each C-affine map V : CN1 → CN2 has an associated map Ṽ : R2N1 →
R2N2 , which is trivially R-affine. On the other hand, given an arbitrary R-
affine map W̃ : R2N1 → R2N2 , the associated map W : CN1 → CN2 is
not necessarily C-affine.



A. The universal approximation theorem for CVNNs

In the most classical setting, one analyzes which properties
an activation function has to satisfy in order for the class
of associated networks with arbitrary but fixed depth to be
universal. In the real-valued case, this question was extensively
studied in the late 80s and early 90s (see for instance [9,
17]). It could be shown that the set of RVNNs with fixed
continuous activation function ϕ is universal if and only if ϕ
is non-polynomial [17, Theorem 1], known as the universal
approximation theorem (UAT). However, it remained open in
what way this result generalizes to the case of CVNNs.

Two of the first works to address this issue were [1, 2],
by P. Arena, L. Fortuna, R. Re and M. G. Xibilia. These
authors in particular observed that a holomorphic activation
function never gives rise to universal CVNNs. Indeed, if the
activation function is holomorphic, then every CVNN that
uses this activation function is holomorphic too. Since the
locally uniform limit of holomorphic functions is holomorphic,
it is easy to see that the set of holomorphic functions is not
universal, showing that the set of CVNNs using holomorphic
activation functions cannot be universal. Moreover, the authors
show universality of shallow CVNNs that use a discriminatory
activation function, similar to the statement for RVNNs in [9].
However, for an activation function ϕ : C → C it is usually
not easy to determine whether it is discriminatory or not.

A full characterization of the complex activation functions
that yield universal CVNNs was given by F. Voigtlaender
in [31]. An activation function ϕ ∈ C(C;C) is called poly-
harmonic, if 2 ϕ ∈ C∞(C;C) and if there exists m ∈ N0

for which ∆mϕ ≡ 0, where ∆ := ∂2

∂x2 + ∂2

∂y2 denotes the
Laplace-operator. Further, ϕ is called anti-holomorphic, if ϕ is
holomorphic. The main result from [31] then reads as follows:

Theorem II.2 (UAT for CVNNs, [31, Theorems 1.3, 1.4]).
Let ϕ ∈ C(C;C) and d, L ∈ N. Then the set of CVNNs with
d input neurons, a depth of L and activation function ϕ is
universal if and only if:

1) ϕ is not polyharmonic (L = 1).
2) ϕ is neither holomorphic, nor anti-holomorphic, nor a

polynomial in z and z (L ≥ 2).

Remarkably, the characterization of “good” activation func-
tions in the case of shallow CVNNs differs from the charac-
terization when L ≥ 2. This is a significant difference to the
case of RVNNs, where the same characterization is correct for
any choice of L.

We further note that both [17] and [31] even show a more
general result, considering activation functions that are locally
bounded and where the set of discontinuities has measure zero.
Trivially, this includes all continuous functions.

The proof of Theorem II.2 works in its main steps similar
to the proof of the real-valued statement in [17]: According
to the Stone-Weierstraß theorem (see [10, Theorem 4.51])
it suffices to approximate complex polynomials in z and z.

2For notations of the form “Cr(C;C)”, differentiability is to be understood
in the sense of real variables.

Making heavy use of the Wirtinger calculus (see for instance
[14, §1]) one can then show that it is possible to approximate
complex polynomials in z and z locally uniformly by CVNNs.

We further mention a recently published result [29, The-
orem 1], in which a universal approximation property for
shallow H-valued neural networks is established, where H
is any non-degenerate hypercomplex algebra (see [29, Defi-
nitions 1-3]). Note that the complex numbers form such an
algebra. While the result is on the one hand remarkable due
to its generality since it applies to arbitrary hypercomplex
algebras, it is limited on the other hand, since it only considers
split activation functions. In the complex-valued case, these
are functions of the form ϕ(x + iy) = ψ(x) + iψ(y) with
ψ : R → R. The result [29, Theorem 1] hence does not apply
to popular complex activation functions such as the modReLU
or the complex cardioid.

B. Universality of deep narrow CVNNs

In Section II-A, we studied networks of arbitrary but fixed
depth and unrestricted width. However, various applications
have shown that deep networks are advantageous compared
to networks with fewer layers, motivating the investigation
of the universality of “deep and narrow” networks, i.e., sets
of networks with unrestricted depth and restricted width. P.
Kidger and T. Lyons [15] showed that every continuous non-
affine real activation function yields universal RVNNs in the
case of unrestricted depth, which is a larger class of functions
than in the case of restricted depth, where the activation
function must be non-polynomial in order to yield universality.
Further, it is shown that the sufficient width of the RVNNs can
be upper bounded by d1+d2+2, where d1 and d2 are the input
and output dimension of the considered networks, respectively.

This observation was generalized to the complex-valued
setting in [11]. The main result of that paper reads as follows.

Theorem II.3 (UAT for deep narrow CVNNs, [11, Theo-
rem 1.1]). Let d1, d2 ∈ N. Moreover, let ϕ ∈ C(C;C) be (real)
differentiable at some point with non-vanishing derivative at
that point. Then the set of CVNNs with activation function
ϕ, d1 input neurons, d2 output neurons, arbitrary depth and
width at most 2d1 + 2d2 + 5 is universal if and only if ϕ is
neither holomorphic, nor anti-holomorphic, nor R-affine.

In particular, Theorem II.3 shows that, similar to the case
of RVNNs, the class of “good” activation functions increases
if one moves from the case of restricted depth to the case
of unrestricted depth, in the sense that the condition “not
a polynomial in z and z” is replaced by “not R-affine”.
Moreover, [11] discusses the optimality of the sufficient width
2d1 + 2d2 + 5. In particular, it is shown that if there exists a
point z0 ∈ C at which ϕ is differentiable with(

∂wirtϕ(z0), ∂wirtϕ(z0)
)
∈ [C∗×{0}] ∪ [{0}×C∗] ,

then in fact a width of d1 + d2 + 3 is sufficient. Here, C∗ :=
C \ {0} and ∂wirt and ∂wirt denote the Wirtinger derivatives.
However, it is proved that in the given generality of arbitrary



continuous activation functions, a width of max{2d1, 2d2} is
necessary; see [11, Theorem 6.4].

The proof of Theorem II.3 is mainly based on a generalized
Taylor expansion for functions from C to C. Using this
expansion and the given assumptions on ϕ, it is possible to
approximate elementary building blocks such as the complex
identity, complex conjugation and complex multiplication by
CVNNs. By carefully combining those building blocks, one
can then prove that each complex polynomial in z and z can
be approximated by CVNNs of a certain width. Again, the
Stone-Weierstrass theorem then yields the claim.

C. Holomorphic activation functions

While the set of CVNNs with a holomorphic activation
function (of arbitrary depth and width) can surely not be uni-
versal (since this set only consists of holomorphic functions), it
is then natural to ask which functions can be approximated by
such CVNNs. In some application areas, it might for example
be sufficient to be able to approximate holomorphic functions
(and not arbitrary continuous functions). This question was
analyzed in [22] with the following result.

Theorem II.4 (special case of [22, Theorem 1]). Let ϕ : C →
C be an entire non-polynomial function. Moreover, let K ⊆
Cd be compact and f ∈ C(K;C). Then the following are
equivalent:

1) For every ε > 0 there exists a shallow CVNN
Φ : Cd → C with activation function ϕ satisfying
∥f − Φ∥L∞(K) ≤ ε.

2) For every ε > 0 there exists a complex polynomial P :
Cd → C satisfying ∥f − P∥L∞(K) ≤ ε.

Note that the polynomial P appearing in Theorem II.4 is a
polynomial solely in the variable z and not in the variables z
and z. Unlike in the real case, it is in general quite challenging
to determine the set of functions f that satisfy 2). At least in
the case d = 1 the following characterization is possible: If
C \ K is connected, then the set of functions f that satisfy
2) coincides with the set of functions that are holomorphic on
the interior K◦ (see [26, Theorem 20.5]). We also mention [6,
Theorem 1] which is a special case of Theorem II.4 by using
[26, Theorem 13.11(e)].

III. QUANTITATIVE BOUNDS

The previous section focused on qualitative results, ad-
dressing the existence of networks that approximate a target
function up to an arbitrary, given precision. In the present
section, we explore quantitative bounds, i.e., we examine the
network size (in terms of the number of parameters) required
to achieve a desired approximation accuracy.

All the results presented in this section are concerned with
the approximation of Sobolev functions defined on Ωd :=
[−1, 1]d + i[−1, 1]d . To this end, let B (W r,p

2d ) denote the set
of Lp-Sobolev functions of regularity r defined on [−1, 1]2d

satisfying ∥f∥W r,p
2d

≤ 1. We then write B (W r,p
d (C)) for the

set of functions f : Ωd → C with Re(f), Im(f) ∈ B (W r,p
2d ),

upon identifiying Ωd
∼= [−1, 1]2d. We then seek to establish

upper and lower bounds for the error

sup
f∈B(W r,p

d (C))
inf
Φ

∥f − Φ∥Lq(Ωd)
(III.1)

for various choices of q, where the infimum runs over all
CVNNs Φ of a certain size. Typically, the input dimension
d and the regularity r of the target functions are considered
as fixed and one analyzes, how the error in (III.1) behaves as
the size of the considered CVNNs is increased.

The first paper to address this question was [7], in which
the expressive power of CVNNs with modReLU activation
function is considered. We here only discuss it briefly, since
its main result could be significantly improved in [13]; see
also Section III-A. Essentially, [7, Theorem 1] shows that

sup
f∈B(W r,∞

d (C))
inf
Φ

∥f − Φ∥L∞(Ωd)
≲d,r

(
n · ln−2(n)

)−r/(2d)
,

where the infimum is over all modReLU-CVNNs with at most
C(d, r) · ln(n) layers, n non-zero weights, and all weights
bounded in absolute value by n22r · ln44r(n). The proof of
[7, Theorem 1] relies to a large extent on techniques used
in [32], where a similar statement for the approximation
using deep ReLU-networks in the real-valued case was shown.
Moreover, [7] establishes a certain optimality of the upper
bound under the restriction that the magnitude of the weights
grows at most polynomially with the number of weights; see
[7, Theorem 12].

A. The case of continuous weight selection

In the real-valued case it is known that already shallow
neural networks with any activation function that is smooth but
non-polynomial on some arbitrary open ball can approximate
L∞-Sobolev functions of regularity r at the rate of n−r/d [21].
The extension to the complex-valued case is contained in [13].

Theorem III.1 ([13, Theorem 3.2]). Let d, r ∈ N. Then there
exists a constant C = C(d, r) > 0 with the following property:
For any complex activation function ϕ : C → C that is smooth
and non-polyharmonic on an open set ∅ ̸= U ⊆ C, any
n ∈ N and any f ∈ B(W r,∞

d (C)), there exists a shallow
CVNN Φ : Cd → C with n hidden neurons and activation
function ϕ satisfying

∥f − Φ∥L∞(Ωd)
≤ C · n−r/(2d).

The exponent −r/(2d) instead of −r/d in the real setting
results from the identification C ∼= R2. Essentially, Theo-
rem III.1 states that CVNNs match the approximation power
of RVNNs. Remarkably, Theorem III.1 applies to arbitrary
activation functions that are smooth and non-polyharmonic on
some non-empty open set. This property can be verified for the
popular complex activation functions modReLU and complex
cardioid, see [13, Corollaries A.4&A.6]. Hence, Theorem III.1
improves [7, Theorem 1] in the sense that (i) it applies to very
general activation functions, (ii) it improves the approximation
rate by a logarithmic factor and (iii) it is shown that this rate



can already be achieved by shallow CVNNs. On the other
hand, [7, Theorem 1] provides a bound on the magnitude of the
weights of the approximating networks. Such a bound is not
obtained in [13] for the case of arbitrary activation functions.

The proof in [13] works similarly as the proof in the
real-valued case in [21]. Essentially, one uses the Wirtinger
derivatives combined with a multivariate version of divided
differences to approximate polynomials in z and z using
CVNNs of a certain size which only depends on the degree
of the approximated polynomial and not on the approximation
accuracy (see [13, Theorem 3.1]). Finally, one uses the well-
known fact that Sobolev functions of regularity r can be
approximated at the rate of s−r by polynomials of degree s.

It is even shown in [13] that the weights of the CVNN Φ
that connect the input and the hidden layer can be chosen
independent of the target function f and only the weights
connecting hidden layer and output neuron have to be adapted
to f . Furthermore, it is shown that the map that assigns to
a target function f ∈ B(W r,∞

d (C)) the parameters of the ap-
proximating network realizing the upper bound of C ·n−r/(2d)

can be chosen as a continuous map. This setting is called
continous weight selection.

In the regime of continous weight selection, the following
lower bound can be shown.

Theorem III.2 ([13, Theorem 4.1]). Let d, r ∈ N. Then there
exists a constant c = c(d, r) > 0 with the following property:
For any n ∈ N, any map a : B(W r,∞

d (C)) → Cn that is
continuous with respect to some norm (on a vector space
containing B(W r,∞

d (C))) and any map M : Cn → C(Ωd;C),
we have

sup
f∈B(W r,∞

d (C))
∥f −M(a(f))∥L∞(Ωd)

≥ c · n−r/(2d).

Remarkably, the lower bound holds in the very general
setting where one approximates functions from B(W r,∞

d (C))
using a class of functions that is parametrizable by n parame-
ters and under the assumption of continuous weight selection.
Hence, even if one considers possibly deep CVNNs with ≍ n
parameters, the rate of n−r/(2d) cannot be improved (assuming
a continuous weight selection). Moreover, it follows that in the
setting of continuous weight selection, CVNNs are not able
to achieve a better approximation rate than RVNNs.

For the sake of completeness, it should be noted that the
statements in [13] are formulated for Cr-functions (instead of
Sobolev functions or regularity r). However, the proofs in [13]
work similarly for Sobolev functions.

B. The case of unrestricted weight selection

It remains to study the case of unrestricted weight selection,
i.e., the optimal approximation rate when the continuity of the
map that assigns to the Sobolev functions the parameters of
the approximating network is not assumed.

In the real-valued case, this question was solved in [18,
19] by studying sums of n arbitrary ridge functions, where a
ridge function is a function of the form Rd ∋ x 7→ h(aTx) for
some h : R → R and a direction a ∈ Rd. Essentially, it was

shown that the error of approximation can be lower bounded
by n−r/(d−1) (up to a fixed multiplicative constant) for the
large class of locally integrable activation functions. Moreover,
it could be proved that there exists a smooth activation
function that indeed achieves the optimal approximation rate
of n−r/(d−1). Note that this is strictly better than the rate of
n−r/d obtained in the case of continuous weight selection.

Obtaining a lower bound for CVNNs requires to study sums
of n multivariate ridge functions, i.e., sums of n functions of
the form Rd ∋ x→ h(Ax), where A ∈ Rℓ×d and h : Rℓ → R
for some fixed ℓ ∈ {1, ..., d− 1}. The special case ℓ = 2 then
readily implies a lower bound for the approximation using
CVNNs. This question was recently solved in [12].

Theorem III.3 ([12, Theorem 1.3(1)]). Let d, r ∈ N with
d ≥ 2. Then there exists a constant c = c(d, r) > 0
with the following property: For every n ∈ N there exists
a function f ∈ B(W∞,r

d (C)) such that for every choice of
ϕ ∈ L1

loc(C;C), and any shallow CVNN Φ : Cd → C with
activation function ϕ and n hidden neurons we have

∥f − Φ∥L1(Ωd)
≥ c · n−r/(2d−2).

Remarkably, this lower bound does not only hold with
respect to L∞ but even with respect to L1. As already
explained above, the proof relies on the study of sums of
multivariate ridge functions and essentially combines ideas
from [20] and [18]. In fact, [12, Theorem 1.1] contains a
general lower bound for such sums (and not just for CVNNs).

Moreover, the following upper bound is derived.

Theorem III.4 ([12, Theorem 1.3(2)]). There exists ϕ ∈
C∞(C;C) with the following property: For every d, r ∈ N
with d ≥ 2 and p ∈ [1,∞] there exists a constant C =
C(d, p, r) > 0 such that for every n ∈ N and every function
f ∈ B(W p,r

d (C)) there exists a shallow CVNN Φ : Cd → C
with n hidden neurons and activation function ϕ satisfying

∥f − Φ∥Lp(Ωd)
≤ C · n−r/(2d−2).

In particular, this shows that shallow CVNNs can achieve
a strictly better approximation rate than RVNNs, for which
at most a rate of n−r/(2d−1) is possible. Thus, while CVNNs
are in the setting of continuous weight selection not able to
improve the approximation rate that RVNNs achieve, they are
able to do so if the continuity assumption is dropped.

The proof of Theorem III.4 works by transferring various
results from [24, Chapter 5] to the complex-valued setting and
by then constructing the activation function that realizes the
desired approximation rate in a “piecewise” manner.

Lastly, it should be noted that there exist complex activation
functions, for which the rate of n−r/(2d) cannot be improved
(up to a logarithmic factor), even if the continuity assumption
on the weight selection is dropped; see [13, Theorem 4.3].
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