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Abstract

Recurrent neural networks (RNNs) have been widely adopted as models of cortical com-
putation, yet their utility for understanding neural mechanisms and explicit structure-
function relationships has been limited by their opacity. Recent advances in mechanistic
interpretability offer new hope for opening these black boxes, moving beyond correlation-
based analyses to causal understanding. Building on these developments, we present a
time-resolved circuit discovery method that reveals how RNNs implement computations
through dynamically coordinated subcircuits. Specifically, we combine windowed causal
interventions with time-resolved linearization to identify task-critical neurons and visualize
the dynamic reconfiguration of effective connectivity, exposing the temporal orchestration
of information flow. We demonstrate our approach on RNNs trained with Dale’s law
constraints to perform a context-dependent flip-flop task, identifying distinct circuits for
memory maintenance, state switching, and context-gated control. We find that excita-
tory and inhibitory neurons show consistent functional specialization: memory circuits are
dominated by recurrent excitation, while switching circuits recruit inhibitory neurons at
transition points. Critically, our time-resolved analysis reveals that during context switches,
the memory circuit remains stable while a separate gating circuit dynamically reconfigures;
a temporal dissociation invisible to static analyses. These findings demonstrate that mech-
anistic interpretability can bridge the gap between artificial and biological neural networks,
transforming RNNs from black-box function approximators into white-box models of neural
computation. We hope that our work encourages further development of such tools that
bear the promise to advance our understanding of both, artificial and biological intelligence.
Keywords: RNNs, Mechanistic Interpretability, Circuit Visualization

1. Introduction

Recurrent neural networks (RNNs) are now a common substrate of choice for modeling
cortical computation (Mante et al., 2013), supporting memory (Barak, 2017), dynamics
(Barak et al., 2013), and feedback (Balwani et al., 2025a) — all hallmarks of neural circuits.
Yet, their internal mechanisms remain difficult to understand from simply their weights or
average activations, thereby limiting their applicability for the purposes of mechanistically
finding neural circuits. Standard correlation-based analyses often reveal which units corre-
late with a variable but not how computations are implemented or when specific subcircuits
are engaged, thereby leaving much to be desired.

Encouragingly, recent progress in mechanistic interpretability suggests a path forward
(Wang et al., 2022; Conmy et al., 2023). Coupling causal interventions on internal states
with time-local connectivity analysis, we expose the flow of influence during task execu-
tion and develop a compact, general-purpose pipeline for time-resolved neural circuit
discovery in task- or data-trained RNNs. The central idea is to recover dynamically coordi-
nated subcircuits — sets of neurons and connections that are causally necessary or sufficient
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within short temporal windows — and to visualize how their effective connectivity reconfig-
ures around key task events. To this end, we use (i) windowed causal interventions to
score neurons by how much swapping or ablating their hidden traces within a brief window
changes the per-step decision margin, and (ii) time-resolved linearization to render the
“used” recurrent connectivity at each timestep by combining the hidden state Jacobian with
current presynaptic activity, giving us a sense for the network’s dynamics projected onto
the local tangent space of the neural manifold at each timestep. Together, the two steps
yield both, evidence of causality and an interpretable picture of how that causal effect is
transmitted locally in the first order.

We demonstrate our approach on single-layer RNNs trained to respect Dale’s law to
perform a context-dependent flip—flop task. This task disentangles three computational
demands that commonly co-occur in cortical settings: (1) memory maintenance, (2) state
switching in response to a relevant pulse, and (3) context-gated control that suppresses
distractors and adapts when the context cue flips. Using diagnostic stimuli that isolate each
demand, our method recovers distinct but interacting subcircuits specialized for memory,
switching, and cue-switching. Across trained models we observe a robust division of labor:
memory circuits are dominated by recurrent excitation, switching circuits recruit inhibitory
neurons at transition points, and context switches are mediated by a gating circuit whose
connectivity reconfigures rapidly while the memory circuit remains stable — a temporal
dissociation that would be invisible to simply static summaries of weights or activity.

Altogether, our results illustrate that mechanistic interpretability can indeed turn RNNs
from black-box function approximators into more transparent models of neural computation,
acting as a lens for biological circuits.

2. Experimental Setup

Task. We study a context-dependent flip-flop task (Sussillo and Barak, 2013) in which
the network must maintain a latent state and update it only when a relevant input pulse
arrives. At each timestep ¢, the input x; contains two pulse channels (A,B) and a context
bit ¢; € {A,B} indicating which channel is currently relevant; distractor pulses may occur
on the irrelevant channel. The target y; € {—1,0,1} is the current flip—flop state: an in-
context “set” pulse switches the state to 1, an in-context “reset” pulse switches it to -1, and
in the absence of a relevant pulse the state persists. Context can change mid-sequence, after
which relevance swaps across channels; the output should immediately reflect the correct
state under the new context.

Model and training. We use a single-layer Elman RNN with tanh nonlinearity ¢
hitr = ¢(Whnhe + Winxe), 2= Wohe, g = softmax(z),

and train it to classify the flip-flop state at every step using cross-entropy with Dale’s
backpropagation (Balwani et al., 2025b) which enforces all hidden neurons to satisfy Dale’s
law by projecting the recurrent weights onto the appropriate sign-constrained orthant after
each gradient update. Specifics about the model and training are provided in Appendix A.

Diagnostic stimuli. To isolate computations and their associated subcircuits we leverage
three controlled stimulus families that let us attribute causal influence to distinct, time-
localized subcircuits for memory, switching, and cue-switching:
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e Memory probe: Initialize the state with a single in-context pulse, then present a
long delay with either no pulses or irrelevant distractors only.

e State-switching probe: In-context, deliver a pulse that flips the state (set—reset
or reset—set) with no context change and no distractors.

e Cue-switching probe: Establish a state, then flip the context channel while inject-
ing distractors on the now-irrelevant channel and occasional relevant pulses on the
newly relevant channel.

3. Mechanistic Interpretability for Neural Circuit Discovery in RNNs

To turn trained RNNs into time-resolved circuit diagrams, we first identify task-critical units
in short windows via windowed causal interventions after which we then render how these
units interact at each timestep using a time-resolved linearization that converts activity and
gains into an effective connectivity graph. Each of these steps is described intuitively as
follows, with their associated details provided in the appendix.

Windowed Causal Interventions. We estimate causal importance within a window
W = [ts:t.) by measuring how small, targeted soft ablations and trace patching change the
per—timestep decision margin m;. For necessity, we attenuate selected hidden units only
inside W with scale « € [0, 1) and re-roll, computing A,y (i; W) (Li and Janson, 2024) while
for sufficiency, we patch a unit’s trace from a donor run into a target run over W and use
Apatch (13 W) (Meng et al., 2022; Zhang and Nanda, 2023). We select the top-k units per
computation (memory/switch via patching; cue-switch/gating via soft ablation) to define
the circuit. Additional details are given in Appendix B.

Time-Resolved Linearization. We turn momentary network activity into a used re-
current graph by scoring each directed edge as “gate x wire X signal.” Intuitively, a
postsynaptic unit contributes only if it is locally “open” (high gain), where the connec-
tion carries an effect (weight), and the presynaptic unit is actually sending activity at
that moment. Concretely, let g;(¢) be the postsynaptic gain (the local slope of the hid-
den nonlinearity), then the instantaneous influence from j — i is S;i(t) = g¢:(t)
Whnli, gl - hi—1[j] (gate x wire x signal). This is exactly a row of the hidden-state Jaco-
bian Jt(h) = Ohy/Ohs—1 applied to the current presynaptic activity, so it highlights edges the
network is actually using at time t. For clarity of visualization we restrict ourselves to only
the causally-selected top-k nodes, coloring edges by sign and scaling widths by [S;-4(t)|.
Further details appear in Appendix C.

Results. The memory circuit (Fig. 1.A) manifests as mostly a tightly interconnected
excitatory cluster whose node sizes and recurrent edges remain stable from t=9 to t=11,
indicating persistent necessity of these units and steady effective influence for state main-
tenance; inhibitory nodes appear with fewer blue edges, consistent with a modulatory role
that does not particularly drive the computation. However, when aligned to a cue-switch
at t=10 (Fig. 1.B), while the excitatory cluster largely preserves its size and connectivity
(stable maintenance), but a distinct gating subcircuit transiently emerges: inhibitory nodes
expand in size precisely at t =10 and blue edges thicken toward task-relevant excitatory
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Figure 1: Time-resolved circuits. (A) Memory, (B) Cue-switching circuits at time steps
t=9,10,11 around the switching event at ¢ = 10. Only the top-10 neurons (by
windowed causal score) are shown. Node color: excitatory (red), inhibitory (blue).
Node size: proportional to the normalized hidden activity at time ¢t. Edge color:
sign of effective influence. Edge width: magnitude of instantaneous influence.

targets and readout pathways, then subside by t=11. This juxtaposition makes the tempo-
ral dissociation explicit: memory-related nodes and edges remain comparatively unchanged
while cue-switching recruits a brief, reconfiguring inhibitory drive that reroutes input rel-
evance without disturbing the stored state. For contrast, state-switching (Appendix D)
displays a similar but slightly weaker and delayed inhibitory pattern, presumably reflecting
the need to overcome the stable excitatory memory loop to flip the state.

4. Conclusion

Our time-resolved circuit discovery pipeline transforms RNNs from monolithic black boxes
into dynamic assemblies of functionally specialized subcircuits, illuminating concrete archi-
tecture — behavior relationships within them. It also opens new avenues for understanding
how various biophysical features may shape neural computation; by incorporating differ-
ent anatomical motifs into our RNN models and interpreting them, we can systematically
explore how certain structures or physiological phenomena constrain and enable specific
computational strategies. Finally we note that our framework extends naturally to differ-
ent granularities of analysis: the same windowed approach can be applied to individual
neurons, entire E/I populations, layers, or functional modules, allowing one to match the
scale of investigation to their hypotheses. By making RNN dynamics more mechanisti-
cally interpretable, we hope to accelerate neuroscientific discovery through intuitive and
decipherable visualizations that translate neural computations into testable hypotheses.
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Appendix A. RNN Model Architecture and Training Details

Task and targets. Sequences have length T=20 and three input channels per step: two

pulse channels (xgl),x,@) and a binary context ¢, € {—1,+1} indicating which pulse is

relevant. Training sequences are sampled i.i.d.; pulses on the two channels are drawn with
low per-step probability and amplitudes +1; the context ¢; flips with small probability (e.g.,
~ 0.05) to elicit cue-switch trials. The latent flip—flop state s; € {—1,0,+1} is initialized at
0 and updates only on relevant pulses (per the current context); otherwise it persists. For
cross-entropy, the target at each step is the class index

Yyt = (s1+1) €{0,1,2} (=10, 01, +1+>2).
By default, steps before the first relevant pulse are supervised as the 0-class.

Network. We use a single-layer, Dale-constrained RNN with a tanh—then-rectify hidden
nonlinearity constructed and trained as per Balwani et al. (2025b):

at = Win xt + Whp he—1 + bp,

up = tanh(ay),

hi = [ug]+ = max(u, 0) € RV,

2= Wy hy + b, € R3, U = softmax(zy).
Hidden units are partitioned into excitatory £ and inhibitory Z populations in the ratio

€ :7Z = 8 : 2 with 128 hidden neurons in total. Dale’s law is enforced on the recurrent
matrix Why; Input W;;, and readout W, are unconstrained.

Training objective. We minimize stepwise cross-entropy over the three classes:

B T
1
L= Yy e, )

b=1 t=1
where B is the batch size and CE is the standard logits-based cross-entropy loss.
Optimization and Dale projection (“Dale’s backprop”). Parameters are updated
with Adam (learning rate 1073; other hyperparameters at PyTorch defaults), for 200 epochs

with batch size 200. After each optimizer step, we project the recurrent matrix onto the
sign-constrained set:

(Whn),; {

This is the closest sign-consistent update in the Frobenius sense and maintains Dale’s law
throughout training.

max{(Whp)ij, 0}, if presynaptic j € &,
min{(Whp)ij, 0}, if presynaptic j € 7.

Nonlinearity and postsynaptic gain. With h; = [tanh(a;)];, the postsynaptic gain
used in our time-resolved linearization is

Dy = diag((1 — u?) ® 1{h¢ > 0}), gi(t) = Dy (i, i) > 0.

Under Dale’s law, the sign of an instantaneous influence Sj_,;(t) = g:i(t) Whali, j] he—1[J]
matches the synaptic sign, simplifying E/I interpretation in our circuit visualizations.
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Appendix B. Windowed Causal Interventions

We estimate a neuron’s causal contribution within a short window W = [t : t.) by inter-
vening on its hidden trace and measuring the average change in the per—timestep decision
margin. For a label y}, define

mi(zt,y7) = 2iy;] — maxz[d].
c#y;

Soft ablation (necessity). Given a neuron set I and a scale a € [0,1), we attenuate
their hidden states only inside W and then re-roll:

ahg;,, €I, teW,

= = B = g X (e ).
Nt i otherwise. teW

where m; is the margin after ablation. Positive A,y indicates necessity in W.

Trace patching (sufficiency). Given a source run (e.g., with a switch) and a target run
(e.g., hold), we copy a single neuron’s trace in W and re-roll the target:

atch
hf o < hiL, teW, Apagen (1° |W| (mt mt)
teWw

Positive Apaten indicates the neuron is sufficiently helpful in W.
We test sufficiency for computations that write or restore state (memory/switch), and
necessity for computations that filter or gate inputs (cue-switch).

Appendix C. Time-Resolved Linearization (TRL): activity-weighted
Jacobian edges

Our analyzed RNN uses a tanh followed by a rectifying clamp:
ay = Wz‘hl‘t + Whhht_l + b, Ut = tanh(at), ht = [Ut]Jr, Zt = Woht + bo‘
Define the postsynaptic gain as the diagonal Jacobian of the hidden nonlinearity,
Doy = diag((1 —u2) © 1{h; > 0}),

so the one-step hidden Jacobian w.r.t. h;_1 is

Ohy (h)
= = Dy Whp,.
6ht_ | Jt o,t VYV hh

We score the instantaneous recurrent influence from presynaptic j to postsynaptic ¢ at time
t as

Sjsi(t) = Dgt(i,3) - Whplt, ] - he—1[j]
—_—— —— ~——

gate wire signal
This “gate x wire x signal” form equals a Jacobian row entry modulated by the actual
presynaptic activity, highlighting edges that are used at that moment. Because Dy, > 0
and (under Dale) sign(Wpi, j]) is fixed, the sign of Sj_;(t) is interpretable as excitatory
(red) vs. inhibitory (blue). We restrict the rendered graph to the WCl-selected top-k nodes
and draw edges with width o< |S;-(t)].



Appendix D. State-Switching Circuit Visualization

Figure 2: Time-resolved switching circuit. Switching circuit at time steps t=9, 10,11
around the switching event at ¢ = 10. Only the top-10 neurons (by windowed
causal score) are shown. Node color: excitatory (red), inhibitory (blue). Node
size: proportional to the normalized hidden activity at time ¢. Edge color: sign
of effective influence. Edge width: magnitude of instantaneous influence.
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