
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EIGENLORA: RECYCLE TRAINED ADAPTERS FOR
RESOURCE EFFICIENT ADAPTATION AND INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adapters (LoRA) are lightweight components that have made fine-
tuning large models on domain-specific tasks inexpensive. This has resulted in an
abundance of adapters in a growing open-source public community. We ask the
question: can these adapters be used to inform and further streamline adaptation to
new tasks? We introduce EigenLoRA, a parameter-efficient fine-tuning method
that uses trained adapters to perform fast adaptation on new domains with orders
of magnitude fewer parameters than LoRA. Our method finds a principal subspace
that aligns with the domain of the trained adapters. This allows for efficient and
fast adaptation to new tasks in this domain by simply learning coefficients on the
principal components of this subspace. Furthermore, EigenLoRA makes inference
time task-switching memory efficient. Instead of saving and loading whole LoRAs,
EigenLoRA can simply load lightweight coefficients. EigenLoRA1 works across a
variety of domains and tasks and is a viable solution for edge-based and efficient
personalization applications.

1 INTRODUCTION

Rapid progress in the fields of natural language processing (Touvron et al., 2023) and computer
vision (Rombach et al., 2021) has fueled the development of ever-growing large-scale models where
training billions of parameters has become commonplace. The size and complexity of these models
have made it infeasible for the average researcher to train or finetune them on downstream tasks and
datasets. In order to overcome these challenges, there has been an increased interest in parameter-
efficient fine-tuning (PEFT) methods like adapters (Houlsby et al., 2019; Chen et al., 2022; Luo et al.,
2023), low rank adaptation (LoRA) methods (Hu et al., 2021; Kopiczko et al., 2023; Liu et al., 2024),
prompt-based methods (Lester et al., 2021; Razdaibiedina et al., 2023; Fischer et al., 2024), etc.

In particular, LoRA and related follow-up works (Meng et al., 2024; Liu et al., 2024) have garnered
significant interest due to their simplicity and effectiveness. This simplicity of usage has led to a
proliferation of low-rank adapters within an expanding open-source community. These adapters
contain compressed information from their training data, which may or may not be publicly available,
inspiring an examination of whether adapter weights can be used to inform and enhance the efficiency
of adaptation to new tasks. Recent work has shown that weight updates to deep neural networks
occurs in low-dimensional invariant subspaces (Kwon et al., 2024). This raises a possible hypothesis
that these LoRA adapters may also share such a principal subspace that could be reused without
having to search for it from scratch during the training of new adapters. We introduce EigenLoRA,
a PEFT method that extracts a set of information-dense principal components defining a subspace,
by decomposing the weights of a given set of trained adapters. This allows us to reduce the number
of learnable parameters (extending up to 100× less than LoRA) and achieve faster optimization
(upto 2×) of new adapters. Moreover, EigenLoRA allows for more memory-efficient inference
using multiple task adapters, especially benefiting edge devices (Liu et al., 2022). We also present a
theoretical analysis of our method providing an approximation bound on reconstruction error when
projecting to principal subspaces; and our experiments across a wide range of vision and language
related tasks demonstrate its wide applicability.

Figure 1 shows an overview of how our method works. In summary, we propose EigenLoRA – a
method to recycle trained adapters by identifying a task-invariant weight subspace that is shared by

1We will release code compatible with HuggingFace PEFT and Diffusers library for EigenLoRA.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: LoRA uses low rank matrices (r ≪ n) for task adaptation. We observe that domain-specific
tasks may share a subspace even in the smaller LoRA weight space. This allows us to extract task-
invariant principal components defining this subspace. Using these fixed components, each LoRA
can be represented using an even smaller number of task-specific coefficients (K ≪ n), making
adapter training fast, and more parameter efficient; and inference more memory efficient.

all tasks in the adapter domain. We hypothesize (and validate through experiments) that weights for
different tasks in a domain are restricted to this subspace. This restriction allows for more efficient
training of new adapters as they can be learned faster with fewer task-specific parameters; and
multiple adapters can be served with lower memory footprint, improving inference efficiency. Our
key contributions are as follows:

• (Training): EigenLoRA uses significantly fewer number of parameters (up to 100×) to
train than LoRA, and converges faster (up to 2×) than comparable methods, while reaching
similar or better performance.

• (Inference): EigenLoRA improves the memory efficiency of inference (≈ 18×) on
multiple tasks, by reducing the number of switchable parameters between tasks.

• (Applicability): We empirically demonstrate the effectiveness of EigenLoRA on a range of
aligned and diverse domains across different modalities of data (text/image). This validates
the existence of shared principal subspaces in modalities across the board.

2 RELATED WORKS

Low-Rank Adaptation refers to modeling neural network weight updates as a function of low-rank
matrices instead of training the entire weight matrix. This is a well-established line of research
starting from Burer-Monteiro factorization (Burer & Monteiro, 2003), with a recent resurgence by Hu
et al. (2021) (LoRA), who used it as a technique to finetune LLMs; and other related variants (Ma
et al., 2024; Chi et al., 2019; Kwon et al., 2024). However, with rapid growth in the scale of models,
Low-Rank Adaptation has also become relatively expensive; for example, LoRA with a rank of
16 on GPT-3 Brown et al. (2020) requires 75.5 million parameters. Consequently, more efficient
low-rank fine-tuning methods are being developed. Mixture of experts models (Huang et al., 2023;
Wu et al., 2024; Diao et al., 2023; Zhong et al., 2024; Zhou et al., 2018) have been proposed as a
method to adapt to new domains using a mixture of low-rank modules. But these approaches typically
require a substantial number of high-quality adapters to work efficiently (Ku et al., 2024), which can
significantly increase the model memory requirements (Zhou et al., 2022). Furthermore, complex
gating or weighting mechanisms utilized with these models can exhibit training instability (Zoph
et al., 2022).

Recent methods have aimed to learn better subspaces for low-rank optimization, primarily by decom-
posing model weights into singular vectors for improved training. Meng et al. (2024) demonstrate
that initializing LoRA with singular vectors is superior to random initialization, while Sharma
et al. (2023) find that removing minor singular components enhances robustness. Using randomly
initialized principal components (Kopiczko et al., 2023) or weight matrices (Koohpayegani et al.,
2024) has also been explored to reduce the number of trainable parameters. However, as shown

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in Section 4, random initialized subspaces may not be very useful. This is intuitive as the random
subspace may not have an overlap with domain-specific principal subspaces. On the other hand,
EigenLoRA uses trained adapters to extract a principal subspace suitable for a given domain of tasks
resulting in a better subspace initialization than and parameter efficiency. Given our focus on resource
and computation efficiency in this work, we focus primarily on LoRA (Hu et al., 2021) as our main
baseline, but EigenLoRA can be used with any PEFT method like Liu et al. (2024); Zhang et al.
(2023) where task-specific weights can be analyzed together.

3 METHOD

In this section, we describe the theoretical motivation and the algorithm of our method, with a
discussion on the hyper-parameters and quantification of practical benefits.

3.1 THEORETICAL MOTIVATION

Let W ∈ Rm×n be a linear transformation matrix from vector space Rm to Rn. If W is a full-rank
(with rank min(n,m)) transformation matrix, then it represents all possible linear mappings between
the two spaces. In contrast, LoRA adapters are defined as two matrices B ∈ Rm×r and A ∈ Rr×n

such that BA has the same size as W but rank r < min(n,m). These matrices combine to yield a
linear transformation between the same spaces Rm to Rn, but cannot span the entire space of such
mappings. Hence, LoRA adapters provide a parameter-efficient (typically, m · r + r · n < m · n)
way to adapt large models by learning only “important” directional updates confined to a subspace.

Moreover, many downstream adapters have been found to reuse the same “important” directions
(Meng et al., 2024; Liu et al., 2024). We hypothesize that LoRA adapters may reuse principal
subspaces that are fundamental for different domains of tasks. Once identified, task-specific weights
can be found in these smaller subspaces rather than the whole weight space. To illustrate this idea
clearly, we first define a space of tasks that are expressible using linear transformation matrices.

Definition 1 (Linear Transformation Tasks). Let T = {t : x ∈ Rn → y ∈ Rr} denote a set of linear
tasks where: ∀ t ∈ T ,∃Wt ∈ Rr×n such that y = Wtx+ ϵt ,∀ x, y. Here, ϵt denotes the noise.

A LoRA weight matrix at any layer does the same transformation. Without loss of generality, assume
r < n and let the transformation matrix Wt ∈ Rr×n be interpreted as r n-dimensional vectors:
w1

t , ...,w
r
t ∈ Rn. Finding LoRA weights is equivalent to finding sets of these r vectors in Rn. Next,

we define a subspace in Rn.

Definition 2 (Subspace). Let Sk,n = {a1, ...,ak} (k ≤ n) be a set of linearly independent vectors
∈ Rn. Denote Ŝk,n = span(Sk,n) = {

∑k
i=1 αiai ∀i, αi ∈ R} as the subspace elicited by Sk,n.

Vectors in a subspace Ŝk,n lie in Rn but are constrained to a smaller region. Similar to Tripuraneni
et al. (2021), we use the following metric to measure distances between subspaces and vectors.

Definition 3 (Distance between subspace and a vector). Denote distance between a vector v and
subspace Ŝk,n as sin θ(v, Ŝk,n), the sine of the principal angle θ between them. The principal angle
is the smallest possible angle between a vector in the subspace and v.

Next, we introduce the idea of domain-specific subspaces.

Definition 4 (Principal Subspace). A subset of tasks Td ⊆ T constitutes a domain if, ∃ Sk,n
d , ∀

t ∈ Td, such that sin θ(wi
t, Ŝ

k,n
d) = 0 ∀i ∈ 1, ..., r. Denote Ŝk,n

d as the principal subspace of Td.

Here, sin θ(wi
t, Ŝ

k,n
d) = 0 implies that all the vectors constituting the weight matrix Wt for all tasks

t, lie inside the subspace spanned by Sk,n
d . The existence of principal subspaces (PS) is trivially

guaranteed for all domains d, e.g., when k = n. But, domains whose principal subspaces exist for
k ≪ n would be practically useful. Even an Approximate Principal Subspace (APS), where the
distance is small, i.e., sin θ(wi

t, Ŝ
k,n
d) < δ for some δ ≈ 0, would be useful, as we illustrate in

Section 4. First, we present a theorem bounding the approximation error for recovering weights of
new linear transformation tasks using a given APS characterized by δ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 1. Given an APS (Ŝk,n
d ; δ), ∃W ′

t ∈ Ŝk,n
d , ∀Wt ∈ Rr×n of tasks t ∈ Td such that,

∥Wt −W ′
t∥F < δ∥Wt∥F = tan(sin−1 δ)∥W ′

t∥F (1)

Proof. Let the weight matrix for task t, Wt ∈ Rr×n be composed of vectors {wi
t}ri=1. By definition

of APS, ∀i, sin θ(wi
t, Ŝ

k,n
d) < δ. This implies that there exists a vector wi

t
′ ∈ Ŝk,n

d such that
sin θ(wi

t,w
i
t
′
) < δ, where wi

t
′ is the projection of wi

t on Ŝk,n
d with an angle θ(wi

t,w
i
t
′
), or simply θ

between them. Here, sin(θ) = ∥wi
t−wi

t
′∥2

∥wi
t∥2

< δ, and tan(θ) =
∥wi

t−wi
t
′∥2

∥wi
t
′∥2

< tan(sin−1 δ).

Then,

∥Wt −W ′
t∥F =

√√√√ r∑
i=1

(∥wi
t −wi

t
′∥2)2 <

√√√√ r∑
i=1

(δ∥wi
t∥2)2 = δ∥Wt∥F or,

<

√√√√ r∑
i=1

(tan(sin−1 δ)∥wi
t
′∥2)2 = tan(sin−1 δ)∥W ′

t∥F

Figure 2: Projection on the prin-
cipal subspace may incur an ap-
proximation error described by δ.

Theorem 1 shows that for all task transformations that lie within the
principal subspace of a domain, i.e. δ = 0, we can recover them
exactly using a linear combination of its principal components. For
transformations outside this domain, i.e. δ ̸= 0, we can still find a
transformation with bounded approximation error. In the worst case,
when the transformation needs a component which is orthogonal to
the principal subspace, i.e. δ = 1, the approximation error can be
unbounded (see Figure 2). Next, we present an algorithm to find
principal subspaces using trained adapters and our experiments in
Section 4 show that in most practical cases, the above approximation
error is small.

3.2 ALGORITHM

Assume that we have N LoRA adapters (sets of A,B matrix pairs for each adapted layer), trained on
various tasks in some domain Td, for some base pre-trained model M. We present Algorithm 1 to
calculate a list of principal components (eigenvectors that we call EigenLoRA PCs) which defines
an approximate principal subspace (APS) for this domain. The algorithm stacks LoRA matrices
(with variable ranks) at a particular layer to be analyzed for overlap. By treating each matrix as a
list of vectors and decomposing this stack of vectors from across tasks, we find the most important
components that can be linearly combined to approximate original weight matrices. We illustrate our
algorithm using generic weight matrices (Wt). In practice, we apply the algorithm to all LoRA layer
A/B matrices.

Algorithm 1 EigenLoRA PCs extraction
Input: LoRA matrices {Wt ∈ Rrt×n}Nt=1 , number of Principal (Eigen) Components (K)

Output: EigenLoRA PCs set EK,n
d , Mean M̂ for translation.

Ŵ = STACK({Wt}Nt=1, dim = 0) ∈ RR×n ▷ Stack all matrices. Here R =
∑

t rt.
M = Ŵ − M̂ ▷ Zero-center them. Here M̂ = MEAN(Ŵ , dim = 0)
U, S, V T = SVD(M) ▷ Perform Singular Value Decomposition.
EK,n
d = V T [: K] ▷ Choose top K Eigen components.

return EK,n
d , M̂

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Learning new adapters Given a set of EigenLoRA PCs EK,n
d = {Ek ∈ R1×n}Kk=1 (denoted

simply by E ∈ RK×n from here), an approximation W ′
t to any task matrix Wt can be found by

optimizing:

min
α

∥Wt −W ′
t∥F ,

where α ∈ RK×r is a coefficient matrix that linearly combines the K EigenLoRA PCs in r different
ways producing W ′

t = STACK({SUM(αjEk, dim = 0) + M̂}rj=1, dim = 0) ∈ Rr×n. In fact, we can
analytically compute αT = (Wt − M̂)ET for any weights Wt to find the least distant projection W ′

t
(which minimizes the above objective) on the subspace spanned by E . However, we do not know the
weights Wt for new tasks in advance. In LoRA, both A and B which have r ·n number of parameters
need to be learned. But using EigenLoRA PCs, we can learn α instead. This replaces the original
LoRA computation

h = W0x+BA(x) with h = W0x+ αT
BEBαT

AEA(x) .

Here, W0 are the pre-trained weights and EB , EA are EigenLoRA PCs that remain fixed during
training. The corresponding αT

B and αT
A are learned. This reduces the number of learnable parameters

from O(rn) to O(rK), by a factor of n
K (assuming rank r to be fixed, which could also be changed).

This provides a trade-off between subspace coverage (higher K) and parameter efficiency (increases
learnable parameters).

0 16 32 48 64 80 96 112 128
Principal Component

0

1

2

3

4

Si
ng

ul
ar

 V
al

ue

Singular Values of top 128 PCs

Figure 3: The top 16 compo-
nents are most information dense
(A matrices from layer 1, Lo-
RAHub, see Section 4.2.2).

How to choose K? The number of EigenLoRA PCs to be ex-
tracted is a hyperparameter chosen on the basis of diversity of tasks.
The more aligned the weight matrices of a domain are, the fewer
EigenLoRA PCs we need to achieve a low approximation error.
However, this also restricts the space of weight matrices this set
of EigenLoRA PCs could represent. More diverse weight matrices
would need a higher number of EigenLoRA PCs to represent them,
with the advantage of being able to represent a bigger space of tasks.
A practical way to quantify the diversity of tasks is to look at the
singular values of the EigenLoRA PCs. In Figure 3, we show a
case where most of the information is contained in a handful of top
EigenLoRA PCs. The percentage of cumulative singular values can
be used as a threshold to decide K. More empirically, performance
of reconstructed weight matrices on a validation set of tasks can be
used to decide a suitable K.

Memory-efficient Inference In an application where multiple adapters are used (for example,
image generation in multiple styles like photorealistic, sketch, etc.) frequently swapping between
LoRA adapters adapters can be expensive. Either all adapters need to be loaded in GPU memory
together (requiring larger memory) or they need to be loaded from CPU memory/disk (slow). With
EigenLoRA, the EigenLoRA PCs are task-invariant while task-specific coefficients are lighter weight,
allowing for more efficiency. For N LoRAs, the memory footprint is O(Nrn). For EigenLoRAs, it is
O(Kn+NrK). As r,K ≪ n, EigenLoRA becomes n

K times more memory efficient asymptotically.
For example, serving N = 8 LoRAHub adapters (Section 4.2.2) would require ≈ 5× less adapter
memory than LoRA. This would be especially beneficial for mobile devices with small memory.

Extreme Parameter Efficiency Instead of stacking LoRA weight matrices, we can flatten them
and treat them as vectors. In this case, the EigenLoRA (we call it EigenLoRAflat) PCs are r · n
dimensional (instead of n) and α is a K dimensional vector that linearly combines these EigenLoRA
PCs to produce an approximation of our weight matrix. This results in an additional reduction factor
r (the rank of each adapter needs to be fixed) in the number of parameters to learn but comes at
an expense of some more model memory. This is analogous to a mixture-of-experts setting (where
experts are EigenLoRAflat PCs). More details are deferred to Appendix A.2.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS AND ANALYSIS

In this section, we demonstrate the efficacy and versatility of EigenLoRA in a wide range of task
complexities, modalities, and model architectures. We evaluated EigenLoRA on a simpler aligned
domain setting with image classification tasks (Section 4.1); and a difficult diverse domain setting
with NLP tasks (Section 4.2). We show that EigenLoRA requires substantially fewer parameters to
achieve parity with or even exceed the performance of LoRA (Tables 1, 2, 3). Furthermore, it achieves
loss convergence at a similar or faster rate (Figure 4), serving as a cost-effective alternative to random
initialization (LoRA) and other existing initialization methods (Meng et al., 2024). Finally, we
illustrate its memory-efficient inference capabilities with a text-to-image generation Stable Diffusion
model (Rombach et al., 2021) (Section 4.3).

4.1 ALIGNED DOMAIN – IMAGE CLASSIFICATION

In this experiment, we test EigenLoRA with a pre-trained Vision Transformer (ViT) (Dosovitskiy
et al., 2021) which is adapted for image classification on 3 data sets. The datasets are randomly
divided into 5-6 sub-datasets with no overlap in categories, similar to continual learning (Kaushik
et al., 2021) and federated learning (Shenaj et al., 2023) setups. Since the sub-datasets originate
from a common dataset, their tasks are more aligned corresponding to the case where δ is small (see
Section 3.1). For adaptation, we used LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) to
compare with our EigenLoRA. For completeness, we evaluated each method under multiple settings
and report the mean performance across all sub-datasets.

Setup We used the Huggingface PEFT library Mangrulkar et al. (2022) for the implementations for
LoRA and VeRA, and followed their respective hyperparameter recommendations to train adapters
for each sub-dataset from scratch. For EigenLoRA, we use all but one LoRA trained on individual
sub-datasets to calculate EigenLoRA PCs (Algorithm 1) (leave-one-out). We then learn the coefficient
matrix α for the left-out task using the method described in Section 3.2. Each method is finetuned for
10 epochs. Other experimental details are available in Appendix A.1.

Parameter Efficiency Table 1 summarizes the results of our experiment. Note that all models
require training of the last linear layer (with ≈15K parameters) since the pre-trained ViT has a
different number of categories. For the Base Model, no other parameter is trained. For other models,
some additional parameters are trained. EigenLoRA is capable of adapting to new sub-datasets
using only two principal components (or 96 additional trainable parameters). In fact, this small
number of additional parameters for EigenLoRA help it match or outperform both LoRA and VeRA
(both with considerably higher number of parameters). Lastly, we tested zero-shot EigenLoRA
weights initialized randomly within the principal subspace and trained only the last layer (like the
base model). The performance of this model exceeds that of the base model with no additional
parameters, highlighting the effectiveness of extracting the principal subspaces. The list of trainable
parameters and more details are available in appendix A.1.

Table 1: Aligned domain image classification with Vision Transformer. ZS refers to zero-shot.
EigenLoRA matches or increases performance with drastically fewer number of parameters.

Trainable
Parameters CIFAR100 Food101 Flowers102

Full Training 86M 97 96.64 98.82
Base Model 15K 90.07 90.8 80.71
LoRA 17 (r = 4) +147K 93.79 95.73 95.03
LoRA (r = 1) +36K 92.45 91.07 90.14
VeRA 21 +18K 90.87 91.75 91.25
EigenLoRA (K = 2) +96 94.8 95.14 98.44
EigenLoRAZS +0 91.4 92.48 95.7

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 DIVERSE DOMAIN – NATURAL LANGUAGE UNDERSTANDING

4.2.1 GLUE BENCHMARK

Next, we evaluate EigenLoRA on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019) datasets using the RoBERTabase model (Liu et al., 2019). We use 6
different tasks: MRPC, SST-2, CoLA, QNLI, RTE and STS-B. Following the setup of VeRA, we
omit time-intensive MNLI and QQP tasks, thus avoiding the use of MNLI initialization for MRPC,
RTE, and STS-B tasks. In this setting, LoRAs are trained not on sub-datasets but on these different
datasets representing the diverse domain setting, where δ may be larger than in the aligned domain
setting. We follow the previous leave-one-out evaluation setup, where EigenLoRA PCs are calculated
using LoRAs of all but one task, and α is learnt for the left-out task. Refer to Appendix A.2.1 for all
hyperparameters and implementation details.

Faster Convergence Our findings in Table 2 indicate that similar to the aligned domain experiments,
EigenLoRA (K = 32) is able to match LoRA performance with 100× fewer trainable parameters,
while outperforming VeRA. EigenLoRA can effectively extract a useful principal subspace even
from diverse domains and robustly adapt to new domains. In this setup, we also evaluate the weight
initialization speed-up capability of EigenLoRA. This was recently studied by Meng et al. (2024)
(PiSSA) who initialize their LoRA matrices with the principal directions of the pre-trained weight
matrix (W0). In contrast, we randomly initialize weights in our extracted principal subspace and
compare its training convergence with other methods. The training loss graphs in Figure 4 demonstrate
that EigenLoRA achieves faster convergence than PiSSA and VeRA and is slightly faster than
LoRA, underscoring the importance of our extracted principal subspace. The reason for VeRA’s poor
performance as well as convergence maybe due to random initialization. It can be hard to optimize
these random yet fixed weight components that may not align with task-critical principal components.

Trainable MRPC SST-2 CoLA QNLI RTE STS-B Avg.Method Parameters
Full Training 125M 88.97 91.28 59.81 92.29 79.78 90.89 83.84
PISSA [34] 1.2M 86.52 94.15 61.32 92.15 71.84 90.25 82.70
EigenLoRAinit 1.2M 89.71 93.35 61.58 92.2 74.73 89.56 83.52
LoRA (r = 32) 1.2M 86.76 94.72 59.56 92.53 77.61 90.81 83.67
VeRA (r = 256) 25K 75.98 93.23 54.14 89.21 66.78 87.03 77.72
EigenLoRA 12K 87 94.15 59.81 92.73 77.62 90.58 83.65

Table 2: GLUE benchmark results. We report Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for the remaining tasks. In all cases, higher values indicate better performance.

Figure 4: Fast Covergence and Better Initialization EigenLoRA demonstrates fast convergence
compared to LoRA and VeRA. EigenLoRA achieves a speedup of up to 1.5× against LoRA and up to
2× compared to PISSA. This experiment was carried out on the CoLA task of the GLUE benchmark.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2.2 LORAHUB

Finally, we also tested our method in settings where the adapters may be trained on significantly
diverse domains. LoRAHub (Huang et al., 2023) is a collection of 196 adapters of the FLAN T5
Large model (Chung et al., 2024), trained on a variety of task domains like Reading Comprehension
(Adversarial QA (Bartolo et al., 2020), DuoRC (Saha et al., 2018), etc.), Text Classification (BoolQ
(Clark et al., 2019), etc.), Math (Hendrycks et al., 2021), Text Generation (Maas et al., 2011), etc.
LoRAHub represents the realistic setting where we directly use publicly available trained adapters,
which may present significant diversity in terms of quality and task domain.

Setup Not all publicly available adapters are useful. After filtering out bad adapters (see Ap-
pendix A.2.2), we were left with 68 adapters, where the performance of the LoRA model exceeded
base model substantially. As running leave-one-out experiments are expensive, we split the 68
adapters randomly into two sets (53, 15). EigenLoRA PCs were calculated using the larger “training”
set and evaluations were done on the smaller “test” set. We evaluated EigenLoRA under different
settings: EigenLoRAflat (Section 3.2) for extreme parameter efficiency, zero-shot (ZS) (randomly
selecting weights from the principal subspace) and Analytical reconstruction (AL) (calculated using
the already available adapter weights, no training). The performance on two individual datasets along
with the average across the 15 test domains is reported in Table 3. Some other results are defered to
Appendix A.2.2.

EigenLoRA outperforms LoRA with 32× fewer parameters. In fact, the smallest possible LoRA
with r = 1 still uses 2× more parameters than EigenLoRA while gaining no performance over
the base model. Zero-shot results highlight the significance of identifying the principal subspace.
Even randomly selected weights within that subspace achieve better performance than base model.
Although EigenLoRAflat is memory-extensive when training, it uses even fewer number of parameters
and achieves similar performance. Finally, the analytically calculated EigenLoRA weights represent
the projection of original LoRA weights on the identified principal subspace. Our trained EigenLoRAs
reach close to or even surpass the performance of these weights showing that α can be easily
optimized.

Table 3: Evaluation of our methods on LoRAHub (Diverse domain).
Trainable Amazon Wiki Average
Parameters Review Polarity Generate Subject (15 tasks)

Base Model 0 34.02 9.03 50.83
LoRA (r = 16) 4.7M 96.18 39.97 63.10
LoRA (r = 1) 295K (↓ 16×) 34.02 9.03 50.83
EigenLoRA (K = 32) 147K (↓ 32×) 96.18 40.97 63.50
EigenLoRAflat (K = 8) 2K (↓ 2400×) 96.18 11.37 60.52
EigenLoRAZS 0 39.59 9.03 51.29
EigenLoRAZS-flat 0 69.16 9.03 53.50
EigenLoRAAL (K = 32) 0 96.66 38.63 64.04

4.3 MEMORY-EFFICIENT INFERENCE – TEXT-TO-IMAGE MODELS

As adapters become more common, we see a new challenge in efficiently hosting multiple adapters
at the same time for different tasks. An example application domain is image generation, where
multiple adapters correspond to different generation styles. If we want to quickly change between
styles, we would need to swap an active adapter with another, potentially from CPU memory or disk.
This can significantly slow down inference and can be performance critical in edge devices. We
know that EigenLoRA can reduce the number of in-memory parameters by extracting and reusing
a task-invariant subspace. Instead of using EigenLoRA to train new adapters, we can also use it to
perform memory-efficient inference.

Analytical Reconstruction To show EigenLoRA’s efficacy, we extracted K = 14 EigenLoRA
PCs from N = 20 Stable Diffusion-XL (Podell et al., 2023) LoRA adapters (rank r = 32) taken
from HuggingFace diffusers library von Platen et al. (2022). We use r ∈ {16, 32} in α ∈ Rr×K to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Analytical reconstruction of LoRAs using EigenLoRA can result in substantial reduction in memory
usage without much degradation in visual quality. See Appendix A.3 for more examples.

analytically calculate the projected weights of original LoRAs on the extracted principal subspace.
The number of denoising steps during image generation was set to 30 and the seed was set to 0.
Images from these EigenLoRAs and their corresponding original LoRAs can be seen in Figure 5.
This reconstruction reduces the number of parameters to store all adapters from 4.6GB to 261MB.
This results in approximately 18× reduction in number of low-rank parameters needed to
be stored in memory. This is significant, especially if the LoRA size and number is large . With
EigenLoRA, a large number of adapters can be stored at once in GPU memory and easily swapped.

Figure 6: Comparison of images generated by LoRA and EigenLoRA trained on Torino Aqua anime style
images. For EigenLoRA, we utilized 12 components with only trainable coefficients to finetune the base model.

Trained EigenLoRAs Lastly, we also show the results of trainable EigenLoRAs in this domain.
In this setup, we use a version of Stable-Diffusion-XL 1 model as our base model and use publicly
available LoRA adapters from the HuggingFace diffusers (von Platen et al., 2022) repository which
have been trained on different anime styles to extract the EigenLoRA PCs.. We train coefficients

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Failure Case: EigenLoRA may struggle if a task-critical principal component is not present in the
extracted principal subspace. In this case, the model loses the important “mosaic” property in the generated
image for the prompt: “mosiac picture of a dog”.

for K = 12 EigenLoRA PCs to adapt the model to a new domain using publicly available digital
anime art data by a digital artist, Torino Aqua, whose work is defined by a unique blend of colorful
palettes, intricate linework, and expressive character designs. The objective is to generate images in
the similar artistic style. We show the results in Figure 6. We compare the results of a LoRA and our
EigenLoRA (K=12) trained on similar data on the same base model 1 and observe that EigenLoRAs
are able to get visual quality similar to LoRA at a fraction of the compute cost.

5 CONCLUSION, LIMITATIONS AND OPPORTUNITIES

We introduce EigenLoRA, a PEFT method that recycles trained adapters by finding a task-invariant
principal subspace. This allows for more efficient training of new adapters and inference with multiple
adapters. Through experiments, we showed that EigenLoRA works and provides practical benefits in
a wide range of scenarios. Our method has the potential to mitigate the perpetually widening compute
resource gap (Ahmed & Wahed, 2020; Besiroglu et al., 2024) and reduce the environmental cost of
training and using AI models (Wu et al., 2021; Ligozat et al., 2021). It also holds promise for training
personalized models (Tan et al., 2024) on low-resource devices, in privacy-critical use-cases.

However, there are some potential limitations of our method. Figure 7 presents a failure case, where it
fails to achieve a key property of the desired image. As mentioned in Section 3.1, the approximation
error in a subspace projection depends on components orthogonal to that subspace, even if all tasks
may share a principal subspace. If these orthogonal components are critical for a task, performance
will suffer. This is because EigenLoRA does not search for weights outside of the principal subspace.
However, a simple extension of EigenLoRA which frees a small number of rank-1 weights to be
trainable outside of the principal subspace, can avoid this problem. This would change the EigenLoRA
computation from h = W0x+ αT

BEBαT
AEA(x) to say, h = W0x+ (α:−1

B)TE :−1
B (α:−1

A)TE :−1
A (x) +

B1A1(x), where E :−1
B , E :−1

A represent top K − 1 fixed EigenLoRA PCs, α:−1
B , α:−1

A their respective
learnable coefficients and B1, A1 represent rank-1 free learnable weights. Moreover, our experiments
do not include empirical optimizations at each layer or individual weight matrix level. Although
we experimented with different values of K, it was fixed for all layers and both A,B matrices in
each experiment. This can be further optimized empirically as discussed in Section 3.2. Lastly,
EigenLoRAflat has potential to be used as a mixture-of-experts model. We defer these extensions and
optimization for future work.

REFERENCES

cagliostrolab/animagine-xl-3.1 · Hugging Face — huggingface.co. https://huggingface.
co/cagliostrolab/animagine-xl-3.1, 2024.

Nuri Mahmoud Ahmed and Muntasir Wahed. The de-democratization of ai: Deep learning and the
compute divide in artificial intelligence research. ArXiv, abs/2010.15581, 2020. URL https:
//api.semanticscholar.org/CorpusID:225102971.

10

https://huggingface.co/cagliostrolab/animagine-xl-3.1
https://huggingface.co/cagliostrolab/animagine-xl-3.1
https://api.semanticscholar.org/CorpusID:225102971
https://api.semanticscholar.org/CorpusID:225102971

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus Stenetorp. Beat the
ai: Investigating adversarial human annotation for reading comprehension. Transactions of the
Association for Computational Linguistics, 8:662–678, 2020.

Tamay Besiroglu, Sage Andrus Bergerson, Amelia Michael, Lennart Heim, Xueyun Luo, and Neil
Thompson. The compute divide in machine learning: A threat to academic contribution and
scrutiny? ArXiv, abs/2401.02452, 2024. URL https://api.semanticscholar.org/
CorpusID:266818226.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidefi-
nite programs via low-rank factorization. Mathematical Programming, 95:329–357, 2003. URL
https://api.semanticscholar.org/CorpusID:7691228.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. ArXiv, abs/2205.13535,
2022. URL https://api.semanticscholar.org/CorpusID:249097890.

Yuejie Chi, Yue M. Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization:
An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019. doi: 10.1109/
TSP.2019.2937282.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-Domain-Adapters:
Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories. June
2023. doi: 10.48550/arXiv.2306.05406.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Marc Fischer, Alexander Bartler, and Bin Yang. Prompt tuning for parameter-efficient medical image
segmentation. Medical Image Analysis, 91:103024, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

11

https://api.semanticscholar.org/CorpusID:266818226
https://api.semanticscholar.org/CorpusID:266818226
https://api.semanticscholar.org/CorpusID:7691228
https://api.semanticscholar.org/CorpusID:249097890
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Prakhar Kaushik, Alex Gain, Adam Kortylewski, and Alan Yuille. Understanding catastrophic
forgetting and remembering in continual learning with optimal relevance mapping, 2021. URL
https://arxiv.org/abs/2102.11343.

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing loRA using linear combination of random basis. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=TjfXcDgvzk.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix
Adaptation. October 2023. URL https://openreview.net/forum?id=NjNfLdxr3A.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). 2009. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.). Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand,
August 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.acl-long.0.

Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. Efficient compression
of overparameterized deep models through low-dimensional learning dynamics, 2024. URL
https://arxiv.org/abs/2311.05061.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Anne-Laure Ligozat, Julien Lefèvre, Aurélie Bugeau, and Jacques Combaz. Unraveling the hidden
environmental impacts of ai solutions for environment. ArXiv, abs/2110.11822, 2021. URL
https://api.semanticscholar.org/CorpusID:239616423.

Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. Bringing ai to edge:
From deep learning’s perspective. Neurocomput., 485(C):297–320, May 2022. ISSN 0925-
2312. doi: 10.1016/j.neucom.2021.04.141. URL https://doi.org/10.1016/j.neucom.
2021.04.141.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL
https://arxiv.org/abs/2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692, 2019. URL https://api.semanticscholar.org/CorpusID:
198953378.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guangnan Jiang, Zhiyu Wang, and Ron-
grong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

12

https://arxiv.org/abs/2102.11343
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=NjNfLdxr3A
http://www.cs.toronto.edu/~kriz/cifar.html
https://aclanthology.org/2024.acl-long.0
https://aclanthology.org/2024.acl-long.0
https://arxiv.org/abs/2311.05061
https://aclanthology.org/2021.emnlp-main.243
https://api.semanticscholar.org/CorpusID:239616423
https://doi.org/10.1016/j.neucom.2021.04.141
https://doi.org/10.1016/j.neucom.2021.04.141
https://arxiv.org/abs/2402.09353
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cong Ma, Xingyu Xu, Tian Tong, and Yuejie Chi. Provably Accelerating Ill-Conditioned Low-Rank
Estimation via Scaled Gradient Descent, Even with Overparameterization, pp. 133–165. Springer
Nature Switzerland, Cham, 2024. ISBN 978-3-031-66497-7. doi: 10.1007/978-3-031-66497-7 7.
URL https://doi.org/10.1007/978-3-031-66497-7_7.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models, May 2024. URL http://arxiv.org/abs/
2404.02948. arXiv:2404.02948 [cs].

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and
Amjad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparame-
terization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 6740–6757, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.421. URL
https://aclanthology.org/2023.findings-acl.421.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2021. URL https:
//api.semanticscholar.org/CorpusID:245335280.

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra, and Karthik Sankaranarayanan. Duorc: To-
wards complex language understanding with paraphrased reading comprehension. arXiv preprint
arXiv:1804.07927, 2018.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
in Language Models with Layer-Selective Rank Reduction, December 2023. URL http://
arxiv.org/abs/2312.13558. arXiv:2312.13558 [cs].

Donald Shenaj, Marco Toldo, Alberto Rigon, and Pietro Zanuttigh. Asynchronous federated
continual learning. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 5055–5063, 2023. URL https://api.semanticscholar.
org/CorpusID:258041245.

Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democra-
tizing large language models via personalized parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.04401, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.org/
CorpusID:257219404.

Nilesh Tripuraneni, Chi Jin, and Michael Jordan. Provable meta-learning of linear representations. In
International Conference on Machine Learning, pp. 10434–10443. PMLR, 2021.

13

https://doi.org/10.1007/978-3-031-66497-7_7
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2404.02948
http://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2307.01952
https://aclanthology.org/2023.findings-acl.421
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
http://arxiv.org/abs/2312.13558
http://arxiv.org/abs/2312.13558
https://api.semanticscholar.org/CorpusID:258041245
https://api.semanticscholar.org/CorpusID:258041245
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/
diffusers, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
https://arxiv.org/abs/1804.07461.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael K. Gschwind, Anurag Gupta,
Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee,
Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Kumar Jain, Michael G.
Rabbat, and Kim M. Hazelwood. Sustainable ai: Environmental implications, challenges and
opportunities. ArXiv, abs/2111.00364, 2021. URL https://api.semanticscholar.
org/CorpusID:240354766.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628,
2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning, 2023. URL https://arxiv.org/abs/2303.10512.

Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu,
Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. arXiv preprint
arXiv:2402.16843, 2024.

Qihao Zhou, Kan Zheng, Lu Hou, Jinyu Xing, and Rongtao Xu. X-lora: An open source lpwa
network. arXiv preprint arXiv:1812.09012, 2018.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y Zhao, Andrew M. Dai,
Zhifeng Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=jdJo1HIVinI.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

A APPENDIX

A.1 EXPERIMENTS

A.1.1 IMAGE CLASSIFICATION

Trainable parameters for EigenLoRA The following are the trainable parameters in ViT (Doso-
vitskiy et al., 2021) that are trained for EigenLoRA. We ignore the last linear layer for simplicity
since it is trained for all models and baselines and is constant. The loading parameter has the
shape of [number of EigenLoRA PC, 1] (we only have 2 in each EigenLoRA PC for this experi-
ment). Therefore, the total number of trainable parameters (for the number of components= 2) is
12 (layers) ×4 (set of parameters per layers) ×2 (number of trainable parameter per coefficient) =
96 trainable parameters.

model.encoder.layer.0.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.0.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.0.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.0.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.1.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.1.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.1.attention.attention.value.eigenlora_A.loadings

14

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://arxiv.org/abs/1804.07461
https://api.semanticscholar.org/CorpusID:240354766
https://api.semanticscholar.org/CorpusID:240354766
https://arxiv.org/abs/2303.10512
https://openreview.net/forum?id=jdJo1HIVinI
https://openreview.net/forum?id=jdJo1HIVinI
https://arxiv.org/abs/2202.08906

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

model.encoder.layer.1.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.2.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.2.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.2.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.2.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.3.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.3.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.3.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.3.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.4.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.4.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.4.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.4.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.5.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.5.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.5.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.5.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.6.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.6.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.6.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.6.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.7.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.7.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.7.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.7.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.8.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.8.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.8.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.8.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.9.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.9.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.9.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.9.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.10.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.10.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.10.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.10.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.11.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.11.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.11.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.11.attention.attention.value.eigenlora_B.loadings

Hyperparameters LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) implementations are
taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library with hyperparameters of the
default method. For Food101 (Bossard et al., 2014) experiment, we randomly remove 1 class for ease
of compute. Experimental hyperparameters are reported in Table 4 and Table 5.

CIFAR100 Flowers102 Food101
Learning Rate 1e−4 1e−4 1e−4
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Table 4: Hyperparameters for LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) for the
Image Classification Experiment

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CIFAR100 Flowers102 Food101
Learning Rate 1e−2 1e−2 1e−2
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Table 5: Hyperparameters for EigenLoRA for the Image Classification Experiment

Experimental Results The experiments were conducted 5 times utilizing randomly generated
dataset splits. The mean accuracy values are reported in Table 1. Empirical analysis indicates that
without control and annealing of learning rates, the loss for both LoRA and VeRA may diverge or
plateau, particularly with high learning rates. Even with the lower learning rate, Full training or LoRA
can overfit to the training data without proper regularization. In contrast, no such instability was
observed during EigenLoRA training, where a relatively higher learning rate proved advantageous
for rapid convergence.

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.8 97.95 95.55 96.05 96.3 96.93
LoRA (r = 1) 36864 97.6 93.95 93.75 91.75 85.2 92.45
LoRA (r = 4) 147456 98.15 95.2 93.5 92.85 89.25 93.79
VeRA (r = 2) 18480 93.65 89.7 89.5 89.95 91.55 90.87
EigenLoRA (K = 2) 96 97.25 95.05 94.55 93 94.15 94.8

Table 6: Image Classification Accuracy results on CIFAR100 (Krizhevsky et al., 2009)

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.64 97 97.36 94.28 95.92 96.64
LoRA (r = 1) 36864 93.36 88.44 94.28 89.4 89.9 91.076
LoRA (r = 4) 147456 98.2 96.96 96.08 92.88 94.52 95.728
VeRA (r = 2) 18480 91.22 88.42 94.42 91.88 92.82 91.752
EigenLoRA (K = 2) 96 97.24 95.96 96 91.88 94.6 95.136

Table 7: Image Classification Accuracy results on Food101 (Bossard et al., 2014)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Model subset1 subset2 subset3 subset4 subset5 subset6 Avg.
FT 99.7 99.3 98.01 98.22 99.7 98.01 98.82333333
LoRA (r = 1) 85.9 88.47 92.69 91.02 91.7 91.01 90.13
LoRA (r = 4) 96.23 92.76 97.22 95.01 98.24 90.73 95.03
VeRA (r = 2) 99.2 95.4 97.7 94.7 90.9 95 95.48
EigenLoRA (K = 2) 99.686 97.905 97.689 98.291 99.344 97.718 98.43

Table 8: Image Classification Accuracy results on Flowers102 (Nilsback & Zisserman, 2008)

A.2 NATURAL LANGUAGE PROCESSING

A.2.1 NLU - GLUE BENCHMARK

Hyperparameters LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PISSA (Meng et al.,
2024) implementations are taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library.
Refer to Table 9 and Table 10 for hyperparameter details. For LoRA (Hu et al., 2021), we use the
ranks ∈ {8, 16}. For VeRA (Kopiczko et al., 2023), we use rank= 256, and for EigenLoRA, we
use K ∈ {16, 32} and r = 8. Here, r relates to the dimensionality of the trainable coefficients and
not the rank. For both PISSA (Meng et al., 2024) and LoRA, all the parameters of the low rank
matrix are trainable. For the EigenLoRA initialization experiment, we train both the components and
coefficients for a fair comparison with PISSA. In practice, however, we do not need to do so - we
can tune only the sparse coefficients and after the loss converges, finetune the components for a few
training steps.

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e−4 4e−4 4e−4 5e−4 5e−4 4e−4
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 80 25 80 60 40
Scheduler Linear Linear Linear Linear Linear Linear

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 9: Hyperparameters for LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PiSSA (Meng
et al., 2024) for the GLUE benchmark. (Wang et al., 2019)

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e−3 4e−3 4e−3 5e−3 5e−3 4e−3
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 80 25 80 60 40
Scheduler RLrP RLrP RLrP RLrP RLrP RLrP

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 10: Hyperparameters for EigenLoRA for the GLUE benchmark. (Wang et al., 2019)
(RLrP - ReduceLRonPlateau)

A.2.2 LORAHUB

For filtering LoRAHub adapters, we used a criterion of at least 2% improvement in performance on
adapter training data compared to base model. It is surprising that 128 of the 196 adapters did not

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

qualify under this criteria. It is important to filter out such adapters because if some weights do not
add anything meaningful to the base model, they might be noisy and in turn affect the extraction of
good EigenLoRA PCs.

We conducted more experiments with variations of K in both EigenLoRA (K = 16, 32, 64, 128, 256)
and EigenLoRAflat (K = 4, 8, 12, 16). We found that EigenLoRAflat increased in performance with
increasing K but it is difficult to train these models due to excessive memory requirements. We also
found that EigenLoRA performance peaked at K = 32 and remained similar for higher K, indicating
the potential existence of noisy components that are not useful for adaptation. We present some of
these extra results here in Table 11.

Table 11: Evaluation of our methods on LoRAHub (Diverse task domain).
Trainable Amazon Wiki Average
Parameters Review Polarity Generate Subject (15 tasks)

Base Model 0 34.02 9.03 50.83
LoRA (r = 16) 4.7M 96.18 39.97 63.10
LoRAinit (r = 16) 4.7M 96.34 39.80 63.24
LoRAinit-flat (r = 16) 4.7M 95.87 40.31 63.19
LoRA (r = 1) 295K (↓ 16×) 34.02 9.03 50.83
EigenLoRA (K = 32) 147K (↓ 32×) 96.18 40.97 63.50
EigenLoRAZS 0 39.59 9.03 51.29
EigenLoRAflat (K = 8) 2K (↓ 2400×) 96.18 11.37 60.52
EigenLoRAZS-flat 0 90.94 9.03 58.45
EigenLoRAAL (K = 32) 0 96.66 38.63 64.04
EigenLoRAAL-flat (K = 8) 0 96.34 23.91 62.80

A.3 TEXT-TO-IMAGE GENERATION (STABLE DIFFUSION MODELS)

Figure 8: (Part 1) A single EigenLoRA (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison
between our results and those obtained from multiple LoRAs does not show a noticeable degradation
in visual quality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: (Part 2) A single EigenLoRA (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison
between our results and those obtained from multiple LoRAs demonstrates no noticeable degradation
in visual quality.

B METHOD ANALYSIS AND ABLATION

Through a rigorous comparative analysis of EigenLoRAs and their target LoRAs, we identified that
the most pronounced reconstruction discrepancies manifest in the initial and terminal layers of the
neural network, as depicted in Figure 10. Allowing the EigenLoRA PCs in these layers to undergo
fine-tuning alongwith the coefficients can alleviate failure scenarios, thereby alleviating the need for
comprehensive model fine-tuning.

Figure 10: Average reconstruction error between EigenLoRA and a set of LoRAs for all UNet layers in a stable
diffusion model.

We perform an ablation study on the selection of EigenLoRA principal components (K) as presented
in Figure 11 for the MRPC task within the GLUE (Wang et al., 2019) benchmark. The analysis in
Figure 11 shows the training loss in relation to the number of EigenLoRA principal components.
Although substantial improvements are evident up to K = 8, an increase in the number of K yields
only marginal gains, demonstrating diminishing returns as the number of components increases.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 11: Ablation of Number of EigenLoRA PCs

C BROADER IMPACT AND IMPLICATIONS

This work presents a novel parameter-efficient method for deep learning methods utilizing open source,
pretrained Low-Rank Adaptation (LoRA) models. By substantially reducing the computational
and memory demands of training and inference, our approach creates a more sustainable and
environmentally friendly deep learning paradigm. Our method democratizes accessibility to larger
models, making them accessible to researchers and practitioners with limited resources. Furthermore,
by harnessing pretrained models, our method can accelerate development and diminish the need
for extensive data collection. However, we recognize the inherent risks associated with the use of
pretrained models. These include potential biases (racial, gender, etc.), explicit content, since there is
no guarantee of the data or method used in training the model, and the potential presence of malicious
code. Appropriate caution is advised when using unverified, open-source models.

20

	Introduction
	Related Works
	Method
	Theoretical Motivation
	Algorithm

	Experiments and Analysis
	Aligned Domain – Image Classification
	Diverse Domain – Natural Language Understanding
	GLUE Benchmark
	LoRAHub

	Memory-efficient Inference – Text-to-Image Models

	Conclusion, Limitations and Opportunities
	Appendix
	Experiments
	Image Classification

	Natural Language Processing
	NLU - GLUE benchmark
	LoraHub

	Text-to-Image Generation (Stable Diffusion Models)

	Method Analysis and Ablation
	Broader Impact and Implications

