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ABSTRACT

Low-Rank Adapters (LoRA) are lightweight components that have made fine-
tuning large models on domain-specific tasks inexpensive. This has resulted in an
abundance of adapters in a growing open-source public community. We ask the
question: can these adapters be used to inform and further streamline adaptation to
new tasks? We introduce EigenLoRA, a parameter-efficient fine-tuning method
that uses trained adapters to perform fast adaptation on new domains with orders
of magnitude fewer parameters than LoRA. Our method finds a principal subspace
that aligns with the domain of the trained adapters. This allows for efficient and
fast adaptation to new tasks in this domain by simply learning coefficients on the
principal components of this subspace. Furthermore, EigenLoRA makes inference
time task-switching memory efficient. Instead of saving and loading whole LoRAs,
EigenLoRA can simply load lightweight coefficients. EigenLoRA1 works across a
variety of domains and tasks and is a viable solution for edge-based and efficient
personalization applications.

1 INTRODUCTION

Rapid progress in the fields of natural language processing (Touvron et al., 2023) and computer
vision (Rombach et al., 2021) has fueled the development of ever-growing large-scale models where
training billions of parameters has become commonplace. The size and complexity of these models
have made it infeasible for the average researcher to train or finetune them on downstream tasks and
datasets. In order to overcome these challenges, there has been an increased interest in parameter-
efficient fine-tuning (PEFT) methods like adapters (Houlsby et al., 2019; Chen et al., 2022; Luo et al.,
2023), low rank adaptation (LoRA) methods (Hu et al., 2021; Kopiczko et al., 2023; Liu et al., 2024),
prompt-based methods (Lester et al., 2021; Razdaibiedina et al., 2023; Fischer et al., 2024), etc.

In particular, LoRA and related follow-up works (Meng et al., 2024; Liu et al., 2024) have garnered
significant interest due to their simplicity and effectiveness. This simplicity of usage has led to a
proliferation of low-rank adapters within an expanding open-source community. These adapters
contain compressed information from their training data, which may or may not be publicly available,
inspiring an examination of whether adapter weights can be used to inform and enhance the efficiency
of adaptation to new tasks. Recent work has shown that weight updates to deep neural networks
occurs in low-dimensional invariant subspaces (Kwon et al., 2024). This raises a possible hypothesis
that these LoRA adapters may also share such a principal subspace that could be reused without
having to search for it from scratch during the training of new adapters. We introduce EigenLoRA,
a PEFT method that extracts a set of information-dense principal components defining a subspace,
by decomposing the weights of a given set of trained adapters. This allows us to reduce the number
of learnable parameters (extending up to 100× less than LoRA) and achieve faster optimization
(upto 2×) of new adapters. Moreover, EigenLoRA allows for more memory-efficient inference
using multiple task adapters, especially benefiting edge devices (Liu et al., 2022). We also present a
theoretical analysis of our method providing an approximation bound on reconstruction error when
projecting to principal subspaces; and our experiments across a wide range of vision and language
related tasks demonstrate its wide applicability.

Figure 1 shows an overview of how our method works. In summary, we propose EigenLoRA – a
method to recycle trained adapters by identifying a task-invariant weight subspace that is shared by

1We will release code compatible with HuggingFace PEFT and Diffusers library for EigenLoRA.
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Figure 1: LoRA uses low rank matrices (r ≪ n) for task adaptation. We observe that domain-specific
tasks may share a subspace even in the smaller LoRA weight space. This allows us to extract task-
invariant principal components defining this subspace. Using these fixed components, each LoRA
can be represented using an even smaller number of task-specific coefficients (K ≪ n), making
adapter training fast, and more parameter efficient; and inference more memory efficient.

all tasks in the adapter domain. We hypothesize (and validate through experiments) that weights for
different tasks in a domain are restricted to this subspace. This restriction allows for more efficient
training of new adapters as they can be learned faster with fewer task-specific parameters; and
multiple adapters can be served with lower memory footprint, improving inference efficiency. Our
key contributions are as follows:

• (Training): EigenLoRA uses significantly fewer number of parameters (up to 100×) to
train than LoRA, and converges faster (up to 2×) than comparable methods, while reaching
similar or better performance.

• (Inference): EigenLoRA improves the memory efficiency of inference (≈ 18×) on
multiple tasks, by reducing the number of switchable parameters between tasks.

• (Applicability): We empirically demonstrate the effectiveness of EigenLoRA on a range of
aligned and diverse domains across different modalities of data (text/image). This validates
the existence of shared principal subspaces in modalities across the board.

2 RELATED WORKS

Low-Rank Adaptation refers to modeling neural network weight updates as a function of low-rank
matrices instead of training the entire weight matrix. This is a well-established line of research
starting from Burer-Monteiro factorization (Burer & Monteiro, 2003), with a recent resurgence by Hu
et al. (2021) (LoRA), who used it as a technique to finetune LLMs; and other related variants (Ma
et al., 2024; Chi et al., 2019; Kwon et al., 2024). However, with rapid growth in the scale of models,
Low-Rank Adaptation has also become relatively expensive; for example, LoRA with a rank of
16 on GPT-3 Brown et al. (2020) requires 75.5 million parameters. Consequently, more efficient
low-rank fine-tuning methods are being developed. Mixture of experts models (Huang et al., 2023;
Wu et al., 2024; Diao et al., 2023; Zhong et al., 2024; Zhou et al., 2018) have been proposed as a
method to adapt to new domains using a mixture of low-rank modules. But these approaches typically
require a substantial number of high-quality adapters to work efficiently (Ku et al., 2024), which can
significantly increase the model memory requirements (Zhou et al., 2022). Furthermore, complex
gating or weighting mechanisms utilized with these models can exhibit training instability (Zoph
et al., 2022).

Recent methods have aimed to learn better subspaces for low-rank optimization, primarily by decom-
posing model weights into singular vectors for improved training. Meng et al. (2024) demonstrate
that initializing LoRA with singular vectors is superior to random initialization, while Sharma
et al. (2023) find that removing minor singular components enhances robustness. Using randomly
initialized principal components (Kopiczko et al., 2023) or weight matrices (Koohpayegani et al.,
2024) has also been explored to reduce the number of trainable parameters. However, as shown

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in Section 4, random initialized subspaces may not be very useful. This is intuitive as the random
subspace may not have an overlap with domain-specific principal subspaces. On the other hand,
EigenLoRA uses trained adapters to extract a principal subspace suitable for a given domain of tasks
resulting in a better subspace initialization than and parameter efficiency. Given our focus on resource
and computation efficiency in this work, we focus primarily on LoRA (Hu et al., 2021) as our main
baseline, but EigenLoRA can be used with any PEFT method like Liu et al. (2024); Zhang et al.
(2023) where task-specific weights can be analyzed together.

3 METHOD

In this section, we describe the theoretical motivation and the algorithm of our method, with a
discussion on the hyper-parameters and quantification of practical benefits.

3.1 THEORETICAL MOTIVATION

Let W ∈ Rm×n be a linear transformation matrix from vector space Rm to Rn. If W is a full-rank
(with rank min(n,m)) transformation matrix, then it represents all possible linear mappings between
the two spaces. In contrast, LoRA adapters are defined as two matrices B ∈ Rm×r and A ∈ Rr×n

such that BA has the same size as W but rank r < min(n,m). These matrices combine to yield a
linear transformation between the same spaces Rm to Rn, but cannot span the entire space of such
mappings. Hence, LoRA adapters provide a parameter-efficient (typically, m · r + r · n < m · n)
way to adapt large models by learning only “important” directional updates confined to a subspace.

Moreover, many downstream adapters have been found to reuse the same “important” directions
(Meng et al., 2024; Liu et al., 2024). We hypothesize that LoRA adapters may reuse principal
subspaces that are fundamental for different domains of tasks. Once identified, task-specific weights
can be found in these smaller subspaces rather than the whole weight space. To illustrate this idea
clearly, we first define a space of tasks that are expressible using linear transformation matrices.

Definition 1 (Linear Transformation Tasks). Let T = {t : x ∈ Rn → y ∈ Rr} denote a set of linear
tasks where: ∀ t ∈ T ,∃Wt ∈ Rr×n such that y = Wtx+ ϵt ,∀ x, y. Here, ϵt denotes the noise.

A LoRA weight matrix at any layer does the same transformation. Without loss of generality, assume
r < n and let the transformation matrix Wt ∈ Rr×n be interpreted as r n-dimensional vectors:
w1

t , ...,w
r
t ∈ Rn. Finding LoRA weights is equivalent to finding sets of these r vectors in Rn. Next,

we define a subspace in Rn.

Definition 2 (Subspace). Let Sk,n = {a1, ...,ak} (k ≤ n) be a set of linearly independent vectors
∈ Rn. Denote Ŝk,n = span(Sk,n) = {

∑k
i=1 αiai ∀i, αi ∈ R} as the subspace elicited by Sk,n.

Vectors in a subspace Ŝk,n lie in Rn but are constrained to a smaller region. Similar to Tripuraneni
et al. (2021), we use the following metric to measure distances between subspaces and vectors.

Definition 3 (Distance between subspace and a vector). Denote distance between a vector v and
subspace Ŝk,n as sin θ(v, Ŝk,n), the sine of the principal angle θ between them. The principal angle
is the smallest possible angle between a vector in the subspace and v.

Next, we introduce the idea of domain-specific subspaces.

Definition 4 (Principal Subspace). A subset of tasks Td ⊆ T constitutes a domain if, ∃ Sk,n
d , ∀

t ∈ Td, such that sin θ(wi
t, Ŝ

k,n
d ) = 0 ∀i ∈ 1, ..., r. Denote Ŝk,n

d as the principal subspace of Td.

Here, sin θ(wi
t, Ŝ

k,n
d ) = 0 implies that all the vectors constituting the weight matrix Wt for all tasks

t, lie inside the subspace spanned by Sk,n
d . The existence of principal subspaces (PS) is trivially

guaranteed for all domains d, e.g., when k = n. But, domains whose principal subspaces exist for
k ≪ n would be practically useful. Even an Approximate Principal Subspace (APS), where the
distance is small, i.e., sin θ(wi

t, Ŝ
k,n
d ) < δ for some δ ≈ 0, would be useful, as we illustrate in

Section 4. First, we present a theorem bounding the approximation error for recovering weights of
new linear transformation tasks using a given APS characterized by δ.
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Theorem 1. Given an APS (Ŝk,n
d ; δ), ∃W ′

t ∈ Ŝk,n
d , ∀Wt ∈ Rr×n of tasks t ∈ Td such that,

∥Wt −W ′
t∥F < δ∥Wt∥F = tan(sin−1 δ)∥W ′

t∥F (1)

Proof. Let the weight matrix for task t, Wt ∈ Rr×n be composed of vectors {wi
t}ri=1. By definition

of APS, ∀i, sin θ(wi
t, Ŝ

k,n
d ) < δ. This implies that there exists a vector wi

t
′ ∈ Ŝk,n

d such that
sin θ(wi

t,w
i
t
′
) < δ, where wi

t
′ is the projection of wi

t on Ŝk,n
d with an angle θ(wi

t,w
i
t
′
), or simply θ

between them. Here, sin(θ) = ∥wi
t−wi

t
′∥2

∥wi
t∥2

< δ, and tan(θ) =
∥wi

t−wi
t
′∥2

∥wi
t
′∥2

< tan(sin−1 δ).

Then,

∥Wt −W ′
t∥F =

√√√√ r∑
i=1

(∥wi
t −wi

t
′∥2)2 <

√√√√ r∑
i=1

(δ∥wi
t∥2)2 = δ∥Wt∥F or,

<

√√√√ r∑
i=1

(tan(sin−1 δ)∥wi
t
′∥2)2 = tan(sin−1 δ)∥W ′

t∥F

Figure 2: Projection on the prin-
cipal subspace may incur an ap-
proximation error described by δ.

Theorem 1 shows that for all task transformations that lie within the
principal subspace of a domain, i.e. δ = 0, we can recover them
exactly using a linear combination of its principal components. For
transformations outside this domain, i.e. δ ̸= 0, we can still find a
transformation with bounded approximation error. In the worst case,
when the transformation needs a component which is orthogonal to
the principal subspace, i.e. δ = 1, the approximation error can be
unbounded (see Figure 2). Next, we present an algorithm to find
principal subspaces using trained adapters and our experiments in
Section 4 show that in most practical cases, the above approximation
error is small.

3.2 ALGORITHM

Assume that we have N LoRA adapters (sets of A,B matrix pairs for each adapted layer), trained on
various tasks in some domain Td, for some base pre-trained model M. We present Algorithm 1 to
calculate a list of principal components (eigenvectors that we call EigenLoRA PCs) which defines
an approximate principal subspace (APS) for this domain. The algorithm stacks LoRA matrices
(with variable ranks) at a particular layer to be analyzed for overlap. By treating each matrix as a
list of vectors and decomposing this stack of vectors from across tasks, we find the most important
components that can be linearly combined to approximate original weight matrices. We illustrate our
algorithm using generic weight matrices (Wt). In practice, we apply the algorithm to all LoRA layer
A/B matrices.

Algorithm 1 EigenLoRA PCs extraction
Input: LoRA matrices {Wt ∈ Rrt×n}Nt=1 , number of Principal (Eigen) Components (K)

Output: EigenLoRA PCs set EK,n
d , Mean M̂ for translation.

Ŵ = STACK({Wt}Nt=1, dim = 0) ∈ RR×n ▷ Stack all matrices. Here R =
∑

t rt.
M = Ŵ − M̂ ▷ Zero-center them. Here M̂ = MEAN(Ŵ , dim = 0)
U, S, V T = SVD(M) ▷ Perform Singular Value Decomposition.
EK,n
d = V T [: K] ▷ Choose top K Eigen components.

return EK,n
d , M̂
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Learning new adapters Given a set of EigenLoRA PCs EK,n
d = {Ek ∈ R1×n}Kk=1 (denoted

simply by E ∈ RK×n from here), an approximation W ′
t to any task matrix Wt can be found by

optimizing:

min
α

∥Wt −W ′
t∥F ,

where α ∈ RK×r is a coefficient matrix that linearly combines the K EigenLoRA PCs in r different
ways producing W ′

t = STACK({SUM(αjEk, dim = 0) + M̂}rj=1, dim = 0) ∈ Rr×n. In fact, we can
analytically compute αT = (Wt − M̂)ET for any weights Wt to find the least distant projection W ′

t
(which minimizes the above objective) on the subspace spanned by E . However, we do not know the
weights Wt for new tasks in advance. In LoRA, both A and B which have r ·n number of parameters
need to be learned. But using EigenLoRA PCs, we can learn α instead. This replaces the original
LoRA computation

h = W0x+BA(x) with h = W0x+ αT
BEBαT

AEA(x) .

Here, W0 are the pre-trained weights and EB , EA are EigenLoRA PCs that remain fixed during
training. The corresponding αT

B and αT
A are learned. This reduces the number of learnable parameters

from O(rn) to O(rK), by a factor of n
K (assuming rank r to be fixed, which could also be changed).

This provides a trade-off between subspace coverage (higher K) and parameter efficiency (increases
learnable parameters).

0 16 32 48 64 80 96 112 128
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Singular Values of top 128 PCs

Figure 3: The top 16 compo-
nents are most information dense
(A matrices from layer 1, Lo-
RAHub, see Section 4.2.2).

How to choose K? The number of EigenLoRA PCs to be ex-
tracted is a hyperparameter chosen on the basis of diversity of tasks.
The more aligned the weight matrices of a domain are, the fewer
EigenLoRA PCs we need to achieve a low approximation error.
However, this also restricts the space of weight matrices this set
of EigenLoRA PCs could represent. More diverse weight matrices
would need a higher number of EigenLoRA PCs to represent them,
with the advantage of being able to represent a bigger space of tasks.
A practical way to quantify the diversity of tasks is to look at the
singular values of the EigenLoRA PCs. In Figure 3, we show a
case where most of the information is contained in a handful of top
EigenLoRA PCs. The percentage of cumulative singular values can
be used as a threshold to decide K. More empirically, performance
of reconstructed weight matrices on a validation set of tasks can be
used to decide a suitable K.

Memory-efficient Inference In an application where multiple adapters are used (for example,
image generation in multiple styles like photorealistic, sketch, etc.) frequently swapping between
LoRA adapters adapters can be expensive. Either all adapters need to be loaded in GPU memory
together (requiring larger memory) or they need to be loaded from CPU memory/disk (slow). With
EigenLoRA, the EigenLoRA PCs are task-invariant while task-specific coefficients are lighter weight,
allowing for more efficiency. For N LoRAs, the memory footprint is O(Nrn). For EigenLoRAs, it is
O(Kn+NrK). As r,K ≪ n, EigenLoRA becomes n

K times more memory efficient asymptotically.
For example, serving N = 8 LoRAHub adapters (Section 4.2.2) would require ≈ 5× less adapter
memory than LoRA. This would be especially beneficial for mobile devices with small memory.

Extreme Parameter Efficiency Instead of stacking LoRA weight matrices, we can flatten them
and treat them as vectors. In this case, the EigenLoRA (we call it EigenLoRAflat) PCs are r · n
dimensional (instead of n) and α is a K dimensional vector that linearly combines these EigenLoRA
PCs to produce an approximation of our weight matrix. This results in an additional reduction factor
r (the rank of each adapter needs to be fixed) in the number of parameters to learn but comes at
an expense of some more model memory. This is analogous to a mixture-of-experts setting (where
experts are EigenLoRAflat PCs). More details are deferred to Appendix A.2.2.
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4 EXPERIMENTS AND ANALYSIS

In this section, we demonstrate the efficacy and versatility of EigenLoRA in a wide range of task
complexities, modalities, and model architectures. We evaluated EigenLoRA on a simpler aligned
domain setting with image classification tasks (Section 4.1); and a difficult diverse domain setting
with NLP tasks (Section 4.2). We show that EigenLoRA requires substantially fewer parameters to
achieve parity with or even exceed the performance of LoRA (Tables 1, 2, 3). Furthermore, it achieves
loss convergence at a similar or faster rate (Figure 4), serving as a cost-effective alternative to random
initialization (LoRA) and other existing initialization methods (Meng et al., 2024). Finally, we
illustrate its memory-efficient inference capabilities with a text-to-image generation Stable Diffusion
model (Rombach et al., 2021) (Section 4.3).

4.1 ALIGNED DOMAIN – IMAGE CLASSIFICATION

In this experiment, we test EigenLoRA with a pre-trained Vision Transformer (ViT) (Dosovitskiy
et al., 2021) which is adapted for image classification on 3 data sets. The datasets are randomly
divided into 5-6 sub-datasets with no overlap in categories, similar to continual learning (Kaushik
et al., 2021) and federated learning (Shenaj et al., 2023) setups. Since the sub-datasets originate
from a common dataset, their tasks are more aligned corresponding to the case where δ is small (see
Section 3.1). For adaptation, we used LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) to
compare with our EigenLoRA. For completeness, we evaluated each method under multiple settings
and report the mean performance across all sub-datasets.

Setup We used the Huggingface PEFT library Mangrulkar et al. (2022) for the implementations for
LoRA and VeRA, and followed their respective hyperparameter recommendations to train adapters
for each sub-dataset from scratch. For EigenLoRA, we use all but one LoRA trained on individual
sub-datasets to calculate EigenLoRA PCs (Algorithm 1) (leave-one-out). We then learn the coefficient
matrix α for the left-out task using the method described in Section 3.2. Each method is finetuned for
10 epochs. Other experimental details are available in Appendix A.1.

Parameter Efficiency Table 1 summarizes the results of our experiment. Note that all models
require training of the last linear layer (with ≈15K parameters) since the pre-trained ViT has a
different number of categories. For the Base Model, no other parameter is trained. For other models,
some additional parameters are trained. EigenLoRA is capable of adapting to new sub-datasets
using only two principal components (or 96 additional trainable parameters). In fact, this small
number of additional parameters for EigenLoRA help it match or outperform both LoRA and VeRA
(both with considerably higher number of parameters). Lastly, we tested zero-shot EigenLoRA
weights initialized randomly within the principal subspace and trained only the last layer (like the
base model). The performance of this model exceeds that of the base model with no additional
parameters, highlighting the effectiveness of extracting the principal subspaces. The list of trainable
parameters and more details are available in appendix A.1.

Table 1: Aligned domain image classification with Vision Transformer. ZS refers to zero-shot.
EigenLoRA matches or increases performance with drastically fewer number of parameters.

# Trainable
Parameters CIFAR100 Food101 Flowers102

Full Training 86M 97 96.64 98.82
Base Model 15K 90.07 90.8 80.71
LoRA 17 (r = 4) +147K 93.79 95.73 95.03
LoRA (r = 1) +36K 92.45 91.07 90.14
VeRA 21 +18K 90.87 91.75 91.25
EigenLoRA (K = 2) +96 94.8 95.14 98.44
EigenLoRAZS +0 91.4 92.48 95.7

6
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4.2 DIVERSE DOMAIN – NATURAL LANGUAGE UNDERSTANDING

4.2.1 GLUE BENCHMARK

Next, we evaluate EigenLoRA on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019) datasets using the RoBERTabase model (Liu et al., 2019). We use 6
different tasks: MRPC, SST-2, CoLA, QNLI, RTE and STS-B. Following the setup of VeRA, we
omit time-intensive MNLI and QQP tasks, thus avoiding the use of MNLI initialization for MRPC,
RTE, and STS-B tasks. In this setting, LoRAs are trained not on sub-datasets but on these different
datasets representing the diverse domain setting, where δ may be larger than in the aligned domain
setting. We follow the previous leave-one-out evaluation setup, where EigenLoRA PCs are calculated
using LoRAs of all but one task, and α is learnt for the left-out task. Refer to Appendix A.2.1 for all
hyperparameters and implementation details.

Faster Convergence Our findings in Table 2 indicate that similar to the aligned domain experiments,
EigenLoRA (K = 32) is able to match LoRA performance with 100× fewer trainable parameters,
while outperforming VeRA. EigenLoRA can effectively extract a useful principal subspace even
from diverse domains and robustly adapt to new domains. In this setup, we also evaluate the weight
initialization speed-up capability of EigenLoRA. This was recently studied by Meng et al. (2024)
(PiSSA) who initialize their LoRA matrices with the principal directions of the pre-trained weight
matrix (W0). In contrast, we randomly initialize weights in our extracted principal subspace and
compare its training convergence with other methods. The training loss graphs in Figure 4 demonstrate
that EigenLoRA achieves faster convergence than PiSSA and VeRA and is slightly faster than
LoRA, underscoring the importance of our extracted principal subspace. The reason for VeRA’s poor
performance as well as convergence maybe due to random initialization. It can be hard to optimize
these random yet fixed weight components that may not align with task-critical principal components.

# Trainable MRPC SST-2 CoLA QNLI RTE STS-B Avg.Method Parameters
Full Training 125M 88.97 91.28 59.81 92.29 79.78 90.89 83.84
PISSA [34] 1.2M 86.52 94.15 61.32 92.15 71.84 90.25 82.70
EigenLoRAinit 1.2M 89.71 93.35 61.58 92.2 74.73 89.56 83.52
LoRA (r = 32) 1.2M 86.76 94.72 59.56 92.53 77.61 90.81 83.67
VeRA (r = 256) 25K 75.98 93.23 54.14 89.21 66.78 87.03 77.72
EigenLoRA 12K 87 94.15 59.81 92.73 77.62 90.58 83.65

Table 2: GLUE benchmark results. We report Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for the remaining tasks. In all cases, higher values indicate better performance.

Figure 4: Fast Covergence and Better Initialization EigenLoRA demonstrates fast convergence
compared to LoRA and VeRA. EigenLoRA achieves a speedup of up to 1.5× against LoRA and up to
2× compared to PISSA. This experiment was carried out on the CoLA task of the GLUE benchmark.
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4.2.2 LORAHUB

Finally, we also tested our method in settings where the adapters may be trained on significantly
diverse domains. LoRAHub (Huang et al., 2023) is a collection of 196 adapters of the FLAN T5
Large model (Chung et al., 2024), trained on a variety of task domains like Reading Comprehension
(Adversarial QA (Bartolo et al., 2020), DuoRC (Saha et al., 2018), etc.), Text Classification (BoolQ
(Clark et al., 2019), etc.), Math (Hendrycks et al., 2021), Text Generation (Maas et al., 2011), etc.
LoRAHub represents the realistic setting where we directly use publicly available trained adapters,
which may present significant diversity in terms of quality and task domain.

Setup Not all publicly available adapters are useful. After filtering out bad adapters (see Ap-
pendix A.2.2), we were left with 68 adapters, where the performance of the LoRA model exceeded
base model substantially. As running leave-one-out experiments are expensive, we split the 68
adapters randomly into two sets (53, 15). EigenLoRA PCs were calculated using the larger “training”
set and evaluations were done on the smaller “test” set. We evaluated EigenLoRA under different
settings: EigenLoRAflat (Section 3.2) for extreme parameter efficiency, zero-shot (ZS) (randomly
selecting weights from the principal subspace) and Analytical reconstruction (AL) (calculated using
the already available adapter weights, no training). The performance on two individual datasets along
with the average across the 15 test domains is reported in Table 3. Some other results are defered to
Appendix A.2.2.

EigenLoRA outperforms LoRA with 32× fewer parameters. In fact, the smallest possible LoRA
with r = 1 still uses 2× more parameters than EigenLoRA while gaining no performance over
the base model. Zero-shot results highlight the significance of identifying the principal subspace.
Even randomly selected weights within that subspace achieve better performance than base model.
Although EigenLoRAflat is memory-extensive when training, it uses even fewer number of parameters
and achieves similar performance. Finally, the analytically calculated EigenLoRA weights represent
the projection of original LoRA weights on the identified principal subspace. Our trained EigenLoRAs
reach close to or even surpass the performance of these weights showing that α can be easily
optimized.

Table 3: Evaluation of our methods on LoRAHub (Diverse domain).
# Trainable Amazon Wiki Average
Parameters Review Polarity Generate Subject (15 tasks)

Base Model 0 34.02 9.03 50.83
LoRA (r = 16) 4.7M 96.18 39.97 63.10
LoRA (r = 1) 295K (↓ 16×) 34.02 9.03 50.83
EigenLoRA (K = 32) 147K (↓ 32×) 96.18 40.97 63.50
EigenLoRAflat (K = 8) 2K (↓ 2400×) 96.18 11.37 60.52
EigenLoRAZS 0 39.59 9.03 51.29
EigenLoRAZS-flat 0 69.16 9.03 53.50
EigenLoRAAL (K = 32) 0 96.66 38.63 64.04

4.3 MEMORY-EFFICIENT INFERENCE – TEXT-TO-IMAGE MODELS

As adapters become more common, we see a new challenge in efficiently hosting multiple adapters
at the same time for different tasks. An example application domain is image generation, where
multiple adapters correspond to different generation styles. If we want to quickly change between
styles, we would need to swap an active adapter with another, potentially from CPU memory or disk.
This can significantly slow down inference and can be performance critical in edge devices. We
know that EigenLoRA can reduce the number of in-memory parameters by extracting and reusing
a task-invariant subspace. Instead of using EigenLoRA to train new adapters, we can also use it to
perform memory-efficient inference.

Analytical Reconstruction To show EigenLoRA’s efficacy, we extracted K = 14 EigenLoRA
PCs from N = 20 Stable Diffusion-XL (Podell et al., 2023) LoRA adapters (rank r = 32) taken
from HuggingFace diffusers library von Platen et al. (2022). We use r ∈ {16, 32} in α ∈ Rr×K to
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Figure 5: Analytical reconstruction of LoRAs using EigenLoRA can result in substantial reduction in memory
usage without much degradation in visual quality. See Appendix A.3 for more examples.

analytically calculate the projected weights of original LoRAs on the extracted principal subspace.
The number of denoising steps during image generation was set to 30 and the seed was set to 0.
Images from these EigenLoRAs and their corresponding original LoRAs can be seen in Figure 5.
This reconstruction reduces the number of parameters to store all adapters from 4.6GB to 261MB.
This results in approximately 18× reduction in number of low-rank parameters needed to
be stored in memory. This is significant, especially if the LoRA size and number is large . With
EigenLoRA, a large number of adapters can be stored at once in GPU memory and easily swapped.

Figure 6: Comparison of images generated by LoRA and EigenLoRA trained on Torino Aqua anime style
images. For EigenLoRA, we utilized 12 components with only trainable coefficients to finetune the base model.

Trained EigenLoRAs Lastly, we also show the results of trainable EigenLoRAs in this domain.
In this setup, we use a version of Stable-Diffusion-XL 1 model as our base model and use publicly
available LoRA adapters from the HuggingFace diffusers (von Platen et al., 2022) repository which
have been trained on different anime styles to extract the EigenLoRA PCs.. We train coefficients

9
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Figure 7: Failure Case: EigenLoRA may struggle if a task-critical principal component is not present in the
extracted principal subspace. In this case, the model loses the important “mosaic” property in the generated
image for the prompt: “mosiac picture of a dog”.

for K = 12 EigenLoRA PCs to adapt the model to a new domain using publicly available digital
anime art data by a digital artist, Torino Aqua, whose work is defined by a unique blend of colorful
palettes, intricate linework, and expressive character designs. The objective is to generate images in
the similar artistic style. We show the results in Figure 6. We compare the results of a LoRA and our
EigenLoRA (K=12) trained on similar data on the same base model 1 and observe that EigenLoRAs
are able to get visual quality similar to LoRA at a fraction of the compute cost.

5 CONCLUSION, LIMITATIONS AND OPPORTUNITIES

We introduce EigenLoRA, a PEFT method that recycles trained adapters by finding a task-invariant
principal subspace. This allows for more efficient training of new adapters and inference with multiple
adapters. Through experiments, we showed that EigenLoRA works and provides practical benefits in
a wide range of scenarios. Our method has the potential to mitigate the perpetually widening compute
resource gap (Ahmed & Wahed, 2020; Besiroglu et al., 2024) and reduce the environmental cost of
training and using AI models (Wu et al., 2021; Ligozat et al., 2021). It also holds promise for training
personalized models (Tan et al., 2024) on low-resource devices, in privacy-critical use-cases.

However, there are some potential limitations of our method. Figure 7 presents a failure case, where it
fails to achieve a key property of the desired image. As mentioned in Section 3.1, the approximation
error in a subspace projection depends on components orthogonal to that subspace, even if all tasks
may share a principal subspace. If these orthogonal components are critical for a task, performance
will suffer. This is because EigenLoRA does not search for weights outside of the principal subspace.
However, a simple extension of EigenLoRA which frees a small number of rank-1 weights to be
trainable outside of the principal subspace, can avoid this problem. This would change the EigenLoRA
computation from h = W0x+ αT

BEBαT
AEA(x) to say, h = W0x+ (α:−1

B )TE :−1
B (α:−1

A )TE :−1
A (x) +

B1A1(x), where E :−1
B , E :−1

A represent top K − 1 fixed EigenLoRA PCs, α:−1
B , α:−1

A their respective
learnable coefficients and B1, A1 represent rank-1 free learnable weights. Moreover, our experiments
do not include empirical optimizations at each layer or individual weight matrix level. Although
we experimented with different values of K, it was fixed for all layers and both A,B matrices in
each experiment. This can be further optimized empirically as discussed in Section 3.2. Lastly,
EigenLoRAflat has potential to be used as a mixture-of-experts model. We defer these extensions and
optimization for future work.
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A APPENDIX

A.1 EXPERIMENTS

A.1.1 IMAGE CLASSIFICATION

Trainable parameters for EigenLoRA The following are the trainable parameters in ViT (Doso-
vitskiy et al., 2021) that are trained for EigenLoRA. We ignore the last linear layer for simplicity
since it is trained for all models and baselines and is constant. The loading parameter has the
shape of [number of EigenLoRA PC, 1] (we only have 2 in each EigenLoRA PC for this experi-
ment). Therefore, the total number of trainable parameters (for the number of components= 2) is
12 (layers) ×4 (set of parameters per layers) ×2 (number of trainable parameter per coefficient) =
96 trainable parameters.

model.encoder.layer.0.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.0.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.0.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.0.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.1.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.1.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.1.attention.attention.value.eigenlora_A.loadings
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model.encoder.layer.1.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.2.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.2.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.2.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.2.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.3.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.3.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.3.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.3.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.4.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.4.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.4.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.4.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.5.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.5.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.5.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.5.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.6.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.6.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.6.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.6.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.7.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.7.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.7.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.7.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.8.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.8.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.8.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.8.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.9.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.9.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.9.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.9.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.10.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.10.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.10.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.10.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.11.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.11.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.11.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.11.attention.attention.value.eigenlora_B.loadings

Hyperparameters LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) implementations are
taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library with hyperparameters of the
default method. For Food101 (Bossard et al., 2014) experiment, we randomly remove 1 class for ease
of compute. Experimental hyperparameters are reported in Table 4 and Table 5.

CIFAR100 Flowers102 Food101
Learning Rate 1e−4 1e−4 1e−4
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Table 4: Hyperparameters for LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2023) for the
Image Classification Experiment
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CIFAR100 Flowers102 Food101
Learning Rate 1e−2 1e−2 1e−2
Weight Decay 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06

Epochs 10 10 10
Number of Subsets 5 6 5
Categories/Subset 20 17 20

Seed 42 42 42
Batch Size 128 64 128

Table 5: Hyperparameters for EigenLoRA for the Image Classification Experiment

Experimental Results The experiments were conducted 5 times utilizing randomly generated
dataset splits. The mean accuracy values are reported in Table 1. Empirical analysis indicates that
without control and annealing of learning rates, the loss for both LoRA and VeRA may diverge or
plateau, particularly with high learning rates. Even with the lower learning rate, Full training or LoRA
can overfit to the training data without proper regularization. In contrast, no such instability was
observed during EigenLoRA training, where a relatively higher learning rate proved advantageous
for rapid convergence.

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.8 97.95 95.55 96.05 96.3 96.93
LoRA (r = 1) 36864 97.6 93.95 93.75 91.75 85.2 92.45
LoRA (r = 4) 147456 98.15 95.2 93.5 92.85 89.25 93.79
VeRA (r = 2) 18480 93.65 89.7 89.5 89.95 91.55 90.87
EigenLoRA (K = 2) 96 97.25 95.05 94.55 93 94.15 94.8

Table 6: Image Classification Accuracy results on CIFAR100 (Krizhevsky et al., 2009)

Trainable
Model Params subset1 subset2 subset3 subset4 subset5 Avg.
FT 86389248 98.64 97 97.36 94.28 95.92 96.64
LoRA (r = 1) 36864 93.36 88.44 94.28 89.4 89.9 91.076
LoRA (r = 4) 147456 98.2 96.96 96.08 92.88 94.52 95.728
VeRA (r = 2) 18480 91.22 88.42 94.42 91.88 92.82 91.752
EigenLoRA (K = 2) 96 97.24 95.96 96 91.88 94.6 95.136

Table 7: Image Classification Accuracy results on Food101 (Bossard et al., 2014)
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Model subset1 subset2 subset3 subset4 subset5 subset6 Avg.
FT 99.7 99.3 98.01 98.22 99.7 98.01 98.82333333
LoRA (r = 1) 85.9 88.47 92.69 91.02 91.7 91.01 90.13
LoRA (r = 4) 96.23 92.76 97.22 95.01 98.24 90.73 95.03
VeRA (r = 2) 99.2 95.4 97.7 94.7 90.9 95 95.48
EigenLoRA (K = 2) 99.686 97.905 97.689 98.291 99.344 97.718 98.43

Table 8: Image Classification Accuracy results on Flowers102 (Nilsback & Zisserman, 2008)

A.2 NATURAL LANGUAGE PROCESSING

A.2.1 NLU - GLUE BENCHMARK

Hyperparameters LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PISSA (Meng et al.,
2024) implementations are taken from the HuggingFace PEFT (Mangrulkar et al., 2022) library.
Refer to Table 9 and Table 10 for hyperparameter details. For LoRA (Hu et al., 2021), we use the
ranks ∈ {8, 16}. For VeRA (Kopiczko et al., 2023), we use rank= 256, and for EigenLoRA, we
use K ∈ {16, 32} and r = 8. Here, r relates to the dimensionality of the trainable coefficients and
not the rank. For both PISSA (Meng et al., 2024) and LoRA, all the parameters of the low rank
matrix are trainable. For the EigenLoRA initialization experiment, we train both the components and
coefficients for a fair comparison with PISSA. In practice, however, we do not need to do so - we
can tune only the sparse coefficients and after the loss converges, finetune the components for a few
training steps.

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e−4 4e−4 4e−4 5e−4 5e−4 4e−4
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 80 25 80 60 40
Scheduler Linear Linear Linear Linear Linear Linear

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 9: Hyperparameters for LoRA (Hu et al., 2021), VeRA (Kopiczko et al., 2023) and PiSSA (Meng
et al., 2024) for the GLUE benchmark. (Wang et al., 2019)

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e−3 4e−3 4e−3 5e−3 5e−3 4e−3
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 80 25 80 60 40
Scheduler RLrP RLrP RLrP RLrP RLrP RLrP

Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 10: Hyperparameters for EigenLoRA for the GLUE benchmark. (Wang et al., 2019)
(RLrP - ReduceLRonPlateau)

A.2.2 LORAHUB

For filtering LoRAHub adapters, we used a criterion of at least 2% improvement in performance on
adapter training data compared to base model. It is surprising that 128 of the 196 adapters did not
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qualify under this criteria. It is important to filter out such adapters because if some weights do not
add anything meaningful to the base model, they might be noisy and in turn affect the extraction of
good EigenLoRA PCs.

We conducted more experiments with variations of K in both EigenLoRA (K = 16, 32, 64, 128, 256)
and EigenLoRAflat (K = 4, 8, 12, 16). We found that EigenLoRAflat increased in performance with
increasing K but it is difficult to train these models due to excessive memory requirements. We also
found that EigenLoRA performance peaked at K = 32 and remained similar for higher K, indicating
the potential existence of noisy components that are not useful for adaptation. We present some of
these extra results here in Table 11.

Table 11: Evaluation of our methods on LoRAHub (Diverse task domain).
# Trainable Amazon Wiki Average
Parameters Review Polarity Generate Subject (15 tasks)

Base Model 0 34.02 9.03 50.83
LoRA (r = 16) 4.7M 96.18 39.97 63.10
LoRAinit (r = 16) 4.7M 96.34 39.80 63.24
LoRAinit-flat (r = 16) 4.7M 95.87 40.31 63.19
LoRA (r = 1) 295K (↓ 16×) 34.02 9.03 50.83
EigenLoRA (K = 32) 147K (↓ 32×) 96.18 40.97 63.50
EigenLoRAZS 0 39.59 9.03 51.29
EigenLoRAflat (K = 8) 2K (↓ 2400×) 96.18 11.37 60.52
EigenLoRAZS-flat 0 90.94 9.03 58.45
EigenLoRAAL (K = 32) 0 96.66 38.63 64.04
EigenLoRAAL-flat (K = 8) 0 96.34 23.91 62.80

A.3 TEXT-TO-IMAGE GENERATION (STABLE DIFFUSION MODELS)

Figure 8: (Part 1) A single EigenLoRA (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison
between our results and those obtained from multiple LoRAs does not show a noticeable degradation
in visual quality.
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Figure 9: (Part 2) A single EigenLoRA (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL Podell et al. (2023) model. A comparison
between our results and those obtained from multiple LoRAs demonstrates no noticeable degradation
in visual quality.

B METHOD ANALYSIS AND ABLATION

Through a rigorous comparative analysis of EigenLoRAs and their target LoRAs, we identified that
the most pronounced reconstruction discrepancies manifest in the initial and terminal layers of the
neural network, as depicted in Figure 10. Allowing the EigenLoRA PCs in these layers to undergo
fine-tuning alongwith the coefficients can alleviate failure scenarios, thereby alleviating the need for
comprehensive model fine-tuning.

Figure 10: Average reconstruction error between EigenLoRA and a set of LoRAs for all UNet layers in a stable
diffusion model.

We perform an ablation study on the selection of EigenLoRA principal components (K) as presented
in Figure 11 for the MRPC task within the GLUE (Wang et al., 2019) benchmark. The analysis in
Figure 11 shows the training loss in relation to the number of EigenLoRA principal components.
Although substantial improvements are evident up to K = 8, an increase in the number of K yields
only marginal gains, demonstrating diminishing returns as the number of components increases.
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Figure 11: Ablation of Number of EigenLoRA PCs

C BROADER IMPACT AND IMPLICATIONS

This work presents a novel parameter-efficient method for deep learning methods utilizing open source,
pretrained Low-Rank Adaptation (LoRA) models. By substantially reducing the computational
and memory demands of training and inference, our approach creates a more sustainable and
environmentally friendly deep learning paradigm. Our method democratizes accessibility to larger
models, making them accessible to researchers and practitioners with limited resources. Furthermore,
by harnessing pretrained models, our method can accelerate development and diminish the need
for extensive data collection. However, we recognize the inherent risks associated with the use of
pretrained models. These include potential biases (racial, gender, etc.), explicit content, since there is
no guarantee of the data or method used in training the model, and the potential presence of malicious
code. Appropriate caution is advised when using unverified, open-source models.
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