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Abstract

Binary classification with imbalanced classes is a common and fundamental task,
where standard machine learning methods often struggle to provide reliable pre-
dictive performance. Although numerous approaches have been proposed to ad-
dress this issue, classification in low-sample-size and high-dimensional settings
still remains particularly challenging. The abundance of noisy features in high-
dimensional data limits the effectiveness of classical methods due to overfitting,
and the minority class is even difficult to detect because of its severe underrepresen-
tation with low sample size. To address this challenge, we introduce Quantile-based
Discriminant Analysis (QuanDA), which builds upon a novel connection with quan-
tile regression and naturally accounts for class imbalance through appropriately
chosen quantile levels. We provide comprehensive theoretical analysis to validate
QuanDA in ultra-high dimensional settings. Through extensive simulation studies
and high-dimensional benchmark data analysis, we demonstrate that QuanDA
overall outperforms existing classification methods for imbalanced data, including
cost-sensitive large-margin classifiers, random forests, and SMOTE.

1 Introduction

High-dimensional binary classification is a fundamental yet challenging machine learning task,
particularly in problems where sample sizes are small and class distributions are heavily imbalanced.
The situation commonly arises in many application fields, such as disease diagnostics (Krawczyk
et al., 2016; Bae and Yoon, 2015; Azari et al., 2015), where data acquisition is costly due to the
involvement of human and animal experiments in clinical studies (Evans and Ildstad, 2001). As
a result, the number of features often far exceeds the number of data points, leading to the so-
called high-dimensional-low-sample-size (HDLSS) problem (Hall et al., 2005; Aoshima et al., 2018).
Besides data scarcity, class imbalance further complicates the challenge: the positive class, such as
disease occurrence, is typically much rarer than the negative one. Similar challenges are prevalent in
many other applications such as image detection (Kubat et al., 1997), cybersecurity (Cieslak et al.,
2006), fraud detection (Wei et al., 2013; Sanz et al., 2014), text categorization (Wu et al., 2014), and
fault diagnostics (Wu et al., 2018; Zhu and Song, 2010; Santos et al., 2018).
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When data are highly imbalanced, identifying the minority class becomes no easier than finding a
needle in a haystack. Standard machine learning methods often become ineffective, as they tend
to bias heavily toward the majority class and struggle to capture decisive patterns in the minority
class. This bias can lead to poor generalization and unreliable prediction, and the challenge is further
exacerbated in the HDLSS setting, where the minority class is severely underrepresented with the
limited sample size compared to the data dimension. To address this challenging issue, many methods
have been proposed in the literature to adjust for the class imbalance. Generally speaking, those
methods fall mainly into three categories: (1) data-level adjustment, (2) algorithm-level adjustment,
and (3) a combination of the first two categories. Comprehensive reviews include, but are not limited
to Weiss (2004); He and Garcia (2009); Fernández (2018); Feng et al. (2021); Rezvani and Wang
(2023).

Two straightforward methods falling within the category of data-level adjustment are oversampling
and undersampling, where the imbalance is mitigated by randomly duplicating samples from the
minority class or eliminating samples from the majority class (Paula et al., 2015). However, in
the HDLSS setting, neither approach is suitable. Undersampling can yield an excessively small
data set, as too many majority class samples must be discarded to match the minority class size.
On the other hand, oversampling often leads to model overfitting, as individual data points may
be replicated too many times, thereby distorting the classification boundary (Devi et al., 2020).
Rather than replicating the minority class, an alternative strategy is to generate synthetic data to
decrease the risk of overfitting. One well-known example of this strategy is the so-called Synthetic
Minority Over-sampling TEchnique (SMOTE, Chawla et al., 2002). Many of its variants have also
been developed in the literature, such as FSMOTE (Gosain and Sardana, 2019), MSMOTE (Hu
et al., 2009), SMOTE-ENN (Muntasir Nishat et al., 2022), and SMOTE-RSB (Ramentol et al.,
2012), among others. SMOTE can be further integrated with ensemble learning techniques, such
as SMOTEBoost (Chawla et al., 2003) and WSMOTE (Abedin et al., 2023). However, SMOTE
has been shown to not perform well in the HDLSS setting due to a strong bias toward the minority
class (Blagus and Lusa, 2013).

For algorithm-level adjustment, a widely adopted framework is cost-sensitive learning, which assigns
a higher cost for data points that are misclassified in the minority class. This approach is commonly
employed in large-margin classifiers, such as the support vector machines (SVMs, Cortes and Vapnik,
1995; Vapnik, 1995). Cost-sensitive SVMs (Lin et al., 2002; Zeng and Zhang, 2023) place a different
weight on each data point in empirical hinge loss, and the resulting classifiers are known to be Fisher
consistent in terms of cost-sensitive Bayes risk (Lin, 2002, 2004). In the literature, most studies on
cost-sensitive large-margin classifiers focus on standard classifiers or kernel machines, for example,
Zhang et al. (2016); Shin et al. (2017); Fu et al. (2018), while their performance on the HDLSS
setting may not be reliable due to the so-called data pilling issue (Marron et al., 2007; Wang and Zou,
2018). Moreover, the introduction of varying weights also affects the efficiency of their optimization
algorithms. In addition to large-margin classifiers, ensemble learning, such as random forest and
boosting, can also deal with imbalanced data through algorithm-level adjustments (Chen et al., 2004;
Khalilia et al., 2011; Galar et al., 2011; Sağlam and Cengiz, 2022). Adjustments for imbalanced
classification at both the data and algorithm levels have been extended to the deep learning framework
as well, a survey of which can be found in Johnson and Khoshgoftaar (2019). However, deep
learning-based approaches typically require a sufficiently large sample size, which is not the case in
the HDLSS setting. Consequently, deep learning is not applicable in this context.

Despite extensive research on imbalanced classification, a critical gap remains: few approaches
perform well when the sample size is extremely small and the number of features is extremely large.
In the HDLSS setting, overly complex models are prone to overfitting, whereas an underfit model
may fail to handle class imbalance and high dimensionality simultaneously. To this end, it is essential
to develop a direct yet effective classification method that can handle these challenges simultaneously
without relying on too much data.

In this paper, we propose Quantile-based Discriminant Analysis (QuanDA) for imbalanced classi-
fication in the HDLSS setting. This method is based on quantile regression, which is widely used
in statistics and econometrics to estimate the conditional quantiles of a continuous response given
a set of features, providing a comprehensive view of the underlying distribution. The theoretical
properties of quantile regression have been extensively studied (Belloni and Chernozhukov, 2011;
Wang et al., 2012; Zheng et al., 2015) in the context of high-dimensional regression. Although it
may seem counterintuitive to apply quantile regression directly to a classification problem, we show
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Figure 1: AUC scores comparing QuanDA with direct sparse discriminant analysis (dsda), logistic
regression, random forest (RF), and SMOTE on simulated data with Σ = AR5, n = 400 and class
imbalance π0 = 0.9. See details on data generation in Section 4. The x-axis is plotted with evenly
spaced positions for clarity, and we label it with the original values of p to preserve interpretability.

that the population minimizer of the cost-sensitive Bayes risk can be obtained from a conditional
quantile of the binary class label. Building upon this connection, we propose QuanDA which directly
fits quantile regression to the label for imbalanced classification. This idea echoes the established
connection between least-squares regression and linear discriminant analysis (Hastie et al., 2009;
Mai et al., 2012), which is studied mainly for balanced classification. A pivotal component that
enables QuanDA to perform effectively in the HDLSS setting is the jittering step, which introduces
random noise to discrete class labels. This perturbation helps stabilize the algorithm and enhances
its robustness when the sample size is limited. While a conceptually related idea was explored by
Papandreou and Yuille (2011),the underlying motivations and implementations differ substantially. In
their work, stochastic perturbations were applied to continuous energy potentials to induce a discrete
label random field derived from an energy-based formulation. We also impose a sparse penalty, such
as the lasso (Tibshirani, 1996), to automatically discard irrelevant features.

To give a quick demonstration of our proposed method QuanDA in the HDLSS setting, Figure 1
presents AUC scores that compare QuanDA with several popular classifiers. When the number
of features p is small, all the methods achieve satisfactory AUC scores. However, as p increases,
QuanDA, dsda, and logistic regression, which are specifically designed for high-dimensional data,
exhibit slightly reduced performance but remain relatively stable. In contrast, RF and SMOTE
struggle with high-dimensional data, and their performance deteriorates significantly. Overall,
QuanDA consistently delivers the highest AUC scores and robustness to increasing dimensionality.

There are several notable features of QuanDA. First, by fitting quantile regression, we can select
an appropriate quantile level to account for class imbalance, which is intuitive and straightforward.
Second, QuanDA is flexible enough to incorporate various sparse penalties, for example, the group
lasso (Yuan and Lin, 2006) or fused lasso (Tibshirani et al., 2005), to handle grouped or spatially
structured features. Third, by formulating the problem into a standard quantile regression, QuanDA
can be directly fitted using off-the-shelf algorithms for sparse quantile regression, such as hdqr (Tang
et al., 2024) and fhdqr (Gu et al., 2018), which eliminates the need to design a specialized solver.
We demonstrate through extensive simulations and benchmark data analyzes that QuanDA is highly
competitive with the representative classifiers for imbalanced classification in the HDLSS setting,
including cost-sensitive large-margin classifiers, random forests, and SMOTE.

The remainder of this paper is organized as follows. Section 2 begins with the connection between
the quantile regression and imbalanced classification, which is followed by an introduction to the
QuanDA algorithm. Section 3 provides the theoretical analysis. Section 4 presents simulation studies
and real-data applications. All technical proofs are provided in the appendix.
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2 Methodology

2.1 Background and motivation

We consider a binary classification problem with training data, {xi, yi}ni=1, where each xi ∈ Rp and
the binary class label yi ∈ {0, 1}. While {−1, 1} encoding is common in large-margin classifiers for
geometric interpretation, we opt for the {0, 1} encoding for ease of handling class probabilities. The
two coding approaches are essentially equivalent after an appropriate transformation.

Let π1 = P (Y = 1) and π0 = 1− π1 = P (Y = 0) denote the marginal class probabilities. Without
loss of generality, we assume π1 ≪ π0, which means that class 1 forms the minority class, whereas
class 0 represents the majority class. Given the training data, our goal is to build a decision function
that assigns a new test data point xnew to class 1 if ϕ(xnew) = 1 or class 0 if ϕ(xnew) = 0.

2.1.1 Review of Bayes risk

The performance of a classifier is fundamentally dictated by the Bayes risk, the lowest achieveable
classification error given the true underlying distribution. Let I(·) be the indicator function. The
Bayes risk is defined as the expectation of the 0–1 loss on the population level (Lin, 2002):

R(ϕ) =EXY [I(Y = 0, ϕ(X) = 1) + I(Y = 1, ϕ(X) = 0)],

whose minimizer gives the Bayes rule, say the theoretically optimal classifier under the 0–1 loss,

ϕ⋆(X) = argmin
ϕ

R(ϕ) = I(η(X) > 1/2),

where η(X) = P (Y = 1|X) is the conditional probability for class 1.

To illustrate why the Bayes risk is unsuitable for direct application for imbalanced classification, note
that R(ϕ) can be equivalently written as

EX

[
π0g

−(X)

π0g−(X) + π1g+(X)
I(ϕ(X) = 1) +

π1g
+(X)

π0g−(X) + π1g+(X)
I(ϕ(X) = 0)

]
,

where g+(X) and g−(X) are the conditional density of X given Y = 1 and Y = 0, respectively. It
is easily seen that the Bayes risk tends to be biased toward the majority class when π1 ≪ π0.

To address class imbalance, Lin et al. (2002) introduce a weighted Bayes risk:

R(ϕ) = EXY

[ w0

w0 + w1
I(Y = 0, ϕ(X) = 1) +

w1

w0 + w1
I(Y = 1, ϕ(X) = 0)

]
.

With these weights, the corresponding Bayes rule is given by

ϕ⋆(X) = I
(
η(X) >

w0

w0 + w1

)
, (1)

and the optimal Bayes risk is

R(ϕ⋆) = EX

[
w0

w0 + w1
(1− η(X))I

(
η(X) >

w0

w0 + w1

)
+

w1

w0 + w1
η(X)I

(
η(X) ≤ w0

w0 + w1

)]
.

(2)

In the above framework, the most common choice of weights is w0 = π1 and w1 = π0. Given the
class imbalanced, say π1 ≪ π0, a higher penalty is thereby imposed on misclassifying the minority
data. The framework can further extended to account for unequal costs of misclassification between
the two classes. In particular, the weights can be adjusted to w0 = π1c1 and w1 = π0c0, where
c0 and c1 represent the costs of a false positive and a false negative, respectively. In practice, c1
is set to a higher value than c0. Incorporating such costs into the weighting scheme leads to the
mean-within-group-error criterion (Qiao and Liu, 2009; Qiao et al., 2010). Accordingly, the Bayes
rule becomes

ϕ⋆(X) = I
(
η(X) >

w0

w0 + w1
=

π1c1
π0c0 + π1c1

)
. (3)
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2.1.2 From quantile to Bayes risk

We now establish an intuitive connection between the Bayes risk and quantile functions. With
τ ∈ (0, 1), the quantile function is defined as

QY (τ |X) = inf{y : FY |X(y) ≥ τ},
where FY |X denotes the conditional distribution function of Y given X. Since Y is either 0 or 1,
QY (τ |X) is also binary. Moreover, it follows that QY (τ |X) = 1 if and only if P (Y = 1|X) > 1−τ ,
that is,

QY (τ |X) = I(η(X) > 1− τ).

Consequently, setting τ = w1/(w0+w1) = π0, QY (τ |X) exactly coincides with the Bayes rule given
in equation (1). Likewise, the Bayes rule in equation (3) corresponds to using τ = w1/(w0 + w1) =
(π1c1)/(π0c0 + π1c1).

To estimate the quantile function, it is well known that
QY (τ |X = x) ≡ argmin

Q
E [ρτ (Y −Q(X))|X = x] ,

where ρτ (u) = u(τ − I(u < 0)) is the check or pinball loss. Note that the minimum of the objective
function is
E [ρτ (Y −QY (τ |X))|X = x] = ρτ (−I(η(x) > 1− τ))(1− η(x)) + ρτ (I(η(x) ≤ 1− τ))η(x)

=

{
(1− τ)(1− η(x)), if η(x) > 1− τ,

τη(x), if η(x) ≤ 1− τ.

Therefore, setting τ = w1/(w0 + w1), we see that the minimum of the population risk under the
check loss is equivalent to the optimal Bayes risk given in equation (2).

2.2 Quantile-based discriminant analysis

We now introduce QuanDA based on the connection between quantile regression and Bayes risk.
Because quantile regression is designed for continuous responses, directly applying it to binary class
labels may lead to numerical instability. To address this, we propose to apply quantile regression on
jittered class labels, and we shall show intimate connections to the Bayes risk framework.

Specifically, we craft a jittered response Z = Y +U for a uniform random variable U on [0, 1) that is
independent of Y . It can be shown that Z is “almost” continuous, and QY (τ |X) = ⌈QY+U (τ |X)−1⌉,
where ⌈·⌉ is the ceiling function that gives the smallest integer no less than its input. Importantly,
the jittering does not actually affect the classification decision. To see this, for a given τ , we define
z = QY+U (τ), which gives rise to

τ = P (Y + U ≤ z|X) = P (Y = 0|X)P (U ≤ z|X) + P (Y = 1|X)P (U + 1 ≤ z|x)
= (1− η(X))P (U ≤ z|X) + η(X)P (U + 1 ≤ z|X).

(4)

When η(X) ≤ 1− τ , we know z ≤ 1, because otherwise the right-hand side of equation (4) equals
(1− η(X)) + η(X)(z − 1) > α. Therefore, taking z ≤ 1, we see

QY+U (τ |X) = z =
τ

1− η(X)
< 1.

Hence QY+U (τ |X) < 1 is a sufficient condition to give QY (τ |X) = 0.

Likewise, when η(X) > 1− τ , z > 1; otherwise, the right-hand side of equation (4) equals 1− η(x),
which is less than α. Thus, with z > 1, we have

QY+U (τ |X) = z = 1 +
α− (1− η(X))

η(X)
> 1,

which shows that QY+U (τ |X) > 1 is sufficient to give QY (τ |X) = 1.

Consequently, we propose QuanDA by fitting quantile regression on the jitted response Z. To apply
QuanDA to the HDLSS setting, we consider linear quantile regression model QZ(τ |X = x) =
α⋆(τ) + x⊤β⋆(τ) and adopt a sparse assumption on β⋆(τ), where

(α⋆(τ),β⋆(τ)) = argmin
α,β

E[ρτ (Z − α−X⊤β)], (5)
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Algorithm 1 Quantile-based Discriminant Analysis
Input: Training data: {xi, yi}ni=1, τ = π̂1.
for r = 1, 2, . . . , 10 do

Generate U [r] ∼ Uniform(0, 1).
Compute Z [r] = Y + U [r].
for t = τ − 0.05, τ − 0.04, . . . , τ + 0.04, τ + 0.05 do

For each λ1, compute (α̂[r](t, λ1), β̂
[r]
(t, λ1)) from

min
α,β

1

n

n∑
i=1

ρτ (z
[r]
i − α− x⊤

i β) + λ1∥β∥1.

Perform five-fold cross-validation to determine the optimal λ⋆
1(t)

[r] based on the AUC scores.
end for

end for
for t = τ − 0.05, τ − 0.04, . . . , τ + 0.04, τ + 0.05 do

Compute α̂(t) = 1
10

∑10
r=1 α̂

[r](t, λ⋆
1(t)

[r]) and β̂(t) = 1
10

∑10
r=1 β̂

[r]
(t, λ⋆

1(t)
[r]).

Calculate the AUC scores based on (α̂(t), β̂(t)) to select the best t⋆.
end for

and the classification rule of QuanDA is ϕ(X) = 1 if α⋆(τ)+X⊤β⋆(τ) > 1 or ϕ(X) = 0 otherwise.

In the sample version, we fit QuanDA using the training data {(xi, yi)}ni=1. For challenging imbal-
anced HDLSS classification, traditional dimension-reduction techniques such as principal component
analysis (PCA) are often inadequate. Because PCA is unsupervised and does not incorporate class
labels during dimensionality reduction, it may result in substantial information loss, particularly
for the minority class. A more effective strategy, as suggested by Mai et al. (2012), is to employ
supervised methods that impose sparse penalties to perform feature selection directly within the
classification framework. Motivated by this idea, we introduce an ℓ1-penalized formulation to achieve
sparsity in the classifier:

(
α̂τ , β̂

τ
)
= argmin

α,β

1

n

n∑
i=1

ρτ (zi − α− x⊤
i β) + λ1∥β∥1,

where ∥β∥1 is the ℓ1 norm of β. The quantile level τ is determined by w1/(w0 + w1) according
to the weighted Bayes risk. The class proportions π1 and π0 can be estimated by the sample
proportions

∑n
i=1 I(yi = 1)/n and

∑n
i=1 I(yi = 0)/n, respectively. For a new test data point xnew,

the classification rule is ϕ(xnew) = 1 if α̂τ + x⊤
newβ̂

τ
> 1 or ϕ(xnew) = 0 otherwise.

In our implementation of QuanDA, we use the elastic net penalty (Zou and Hastie, 2005), λ1∥β∥1 +
λ2∥β∥22, instead to stabilize the algorithm.

Remark 1. In the implementation phase, to optimally tune the parameter τ , we first determine the
proportion of the minority class, π0, in the training data set. Next, we define a sequence ranging from
π0 − 0.05 to π0 + 0.05, with increments of 0.01 between consecutive points. The optimal τ value is
then selected using five-fold cross-validation. Details are summarized in Algorithm 1.

Remark 2. Another line of research called quantitative classifiers (Hennig and Viroli, 2016; Pritchard
and Liu, 2020; Berrettini et al., 2024) is conceptually related but fundamentally different from
QuanDA. These methods are distance-based classifiers, which assign class labels by computing a
distance between each data point and each class, and extend the idea of median-based classifiers (Hall
et al., 2009) by using quantiles of these distances to make predictions. Although QuanDA shares the
term “quantile-based” classification, its quantile regression perspective differs from these distance-
based frameworks. In the appendix, we shall compare QuanDA with quantileDA, a representative
quantile-based classifier, and show that QuanDA consistently outperforms quantileDA.
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3 Theoretical Studies

By construction, the distribution function of Z = Y + U is continuous, but not smooth. In fact, it
does not have continuous derivatives only at {0, 1, 2}. The standard theory for a quantile estimator
would become problematic when the quantile turns out to be one. This can be resolved by assuming
that the set of x for which QZ(τ |x) = 1 has measure zero. This is feasible when there exists at least
one continuously distributed covariate and that the conditional quantiles QZ(τ |x) are measurable
functions of that covariate. We make the following assumptions to show the estimation consistency
of the quantile regression for the high-dimensional model.

(C1) Y is a binary random variable supported on {0, 1} and X is a random vector in Rp. The
mean function of Y given X, η(x) = E(Y |X = x), is strictly between 0 and 1 for almost
every realization X = x.

(C2) The exists at least one continuously distributed covariate in X.

(C3) Make Z = Y + U , where U ∼ Unif(0, 1) is independent of Y and X. The following
restriction on the quantile process of Z given X = x holds:

QZ(τ |x) = α∗(τ) + x⊤β∗(τ) for τ ∈ (0, 1),

where α∗(τ) ∈ R and β∗(τ) ∈ Rp. Furthermore, if β∗
(c)(τ) denotes the components of

β∗(τ) corresponding to the continuous covariates in X, then X⊤
(c)β

∗
(c)(τ) ̸= 0.

(C4) For a.e. x, the density fε|x(·|x) of ετ ≡ Z −x⊤β∗(τ) given X = x satisfies: (1) fε|x(u|x)
is continuously differentiable almost everywhere, and fε|x(u|x) ≤ f̄ and f ′

ε|x(u|x) ≤ f̄ ′ for
a.e. u in the support of ετ ; (2) fε|x(α∗(τ)+u|x) ≥ f > 0 for all u in a small neighborhood
of zero.

(C5) Let A = {j ∈ {1, . . . , p} : β∗
j (τ) ̸= 0} and s = card(A). The covariates X satisfy

κm(u, v) = inf
(δ,∆)∈Cu,v, (δ,∆)̸=0

E[(δ +X⊤∆)2]

∥∆A∪A(∆,m)∥22 + δ2
> 0,

where Cu,v =
{
(δ,∆) : δ ∈ R, ∆ ∈ Rp, ∥∆Ac∥1 ≤ u∥∆A∥1 + v|δ|

}
for some u, v > 0,

A(∆,m) ⊂ Ac is the support of the m largest in absolute value components of ∆Ac for
integer m ≥ 0. When m = 0, we take A(∆,m) = ∅.

(C6) The covariates X satisfy

q =
3

8

f3/2

f̄ ′ inf
(δ,∆)∈Cu,v, (δ,∆)̸=0

[
E(δ +X⊤∆)2

]3/2
E|δ +X⊤∆|3

> 0.

Assumption (C1) is standard and ensures that classification is feasible. Assumptions (C2)–(C3)
ensure that QZ(τ |x) has zero probability of taking integer values. Assumption (C4) is standard for
quantile regression and works for a more general U than a uniform. Indeed, it is also possible to
take U to have a beta distribution on [0, 1). Assumption (C5) serves as the sparse identifiability
condition or restricted eigenvalue condition, which is commonly imposed in the high-dimensional
statistical literature (Candes and Tao, 2007; Bickel et al., 2009). The sparsity nonlinearity coefficient
q in Assumption (C6) controls the quality of minorization of the quantile regression empirical loss
by a quardratic function over sparse neighborhoods of the true parameter. It is often assumed in the
high-dimensional quantile regression (Belloni and Chernozhukov, 2011).
Theorem 3.1. Under conditions (C1)–(C6), with probability at least 1− p(λ), where

p(λ) = 2 exp
(
−nλ2

2

)
+ 2p exp

(
− nλ2

2M0

)
+ exp

[
−16M0

s(1 + log p)

κ0(3, 1)

]
,

the lasso estimator (α̂λ, β̂λ) of the quantile regression satisfies

∥α̂λ − α∗∥2 ≤ 8

f
√
κm(3, 1)

[
16

√
2M0

κ0(3, 1)

√
1 + log p

n
(2
√
s+ 1) + λ

√
s

κ0(3, 1)

]
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and

∥β̂λ−β∗∥2 ≤ 8

f
√

κm(3, 1)

√
1 +

18s

m
+

2

m
·

[
16

√
2M0

κ0(3, 1)

√
1 + log p

n
(2
√
s+1)+λ

√
s

κ0(3, 1)

]
,

provided that the growth condition

32

√
2M0

κ0(3, 1)

√
1 + log p

n
(2
√
s+ 1) + 2λ

√
s

κ0(3, 1)
≤ f1/2q

holds, where M0 = max1≤j≤p E[X2
j ].

By Theorem 3.1, one can typically choose the parameter λ = C
√

log p/n for the quantile lasso
estimator, where C >

√
2M0 is some constant. For example, one can set C = 2

√
M0. Note that

given the design X, M0 can readily be obtained. Therefore, in principle, the parameter λ in the
quantile lasso regression is tuning free. This is in similar spirit to square-root lasso Belloni et al.
(2011). With such choice of λ, we can see that p(λ) = o(1) as n, p → ∞, which leads to

∥β̂λ − β∗∥2 = OP

(
1

√
κ0κs

√
s log p

n

)
provided q−1

√
s log p/(nκ0) = o(1) and κ0(s log p)

−1 = o(1), by taking m = s. When κ0 and κs

are both positive constants, the quantile lasso estimator achieves the near-optimal rate
√
s log p/n,

which implies that p can be of exponential order of n, i.e., log p = O(nγ) for some 0 < γ < 1,
provided s log p = o(n).

4 Numerical Studies

The goal is to demonstrate that QuanDA consistently outperforms all competing methods, including
logistic regression (implemented in the R package glmnet(Friedman et al., 2010)), the direct sparse
discriminant analysis (dsda) (implemented in the R package dsda (Mai et al., 2012)), random forest
(RF) (implemented in the R package randomForest (Liaw et al., 2002)) and SMOTE (implemented
in the R package smotefamily (Siriseriwan, 2019)). In particular, we show that the performance of
QuanDA remains robust even in highly imbalanced scenarios, where other classifiers collapse.

While many other methods have been developed for imbalanced classification, they are not tailored
to the HDLSS setting and tend to collapse as illustrated in Figure 1. Hence, we focus our comparison
only on a representative set of methods that are either commonly used or designed for HDLSS data.

4.1 Simulations

In the simulations, the dimension p is set to 10,000, with a sample size n of 400 and randomly
generated class labels. The data set is highly unbalanced, and the majority class (π0) comprises 85%,
90%, or 95% of the total, leaving the minority class (π1) at 15%, 10%, or 5%. The simulation data
we generate following the methodology described by Wang et al. (2006). The positive class follows a
normal distribution with mean vector µ+ and covariance matrix Σ. The mean vector µ+ is set to 0.7
for the first five features and 0 for the others. The covariance matrix Σ is defined as:

Σ =

(
Σ⋆

5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)

)
,

where Σ⋆
5×5 takes the form of an autoregressive structure (ARρ) defined as (ρ|i−j|), or a compound

symmetric structure (CSρ) expressed as (ρ+ (1− ρ)I(i = j)), for ρ ∈ {0.2, 0.5, 0.7}. The negative
class has the same distribution except for the mean vector µ− = −µ+.

We randomly split the simulation data into a training set of size 200 and a test set of size 200. In
QuanDA method, we tuned the parameter λ by five-fold cross-validation and used the optimal τ from
the candidate list given in Algorithm 1. To address imbalanced classification, we perform weighted
logistic regression and weighted random forest, where the weights are determined based on the class
proportions. Specifically, the weight for the majority class is set to 1/π0 and for the minority class, it
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Table 1: The AUC scores of QuanDA for different combinations of λ1 and λ2, based on simulated
data with Σ = AR5, n = 400, and p = 10,000. These scores represent the average results obtained
over 50 independent runs with standard errors given in parentheses.

π0 λ1 λ2 AUC λ1 λ2 AUC
0.85 0.1 0.1 0.873 (0.041) 0.1 0.01 0.870 (0.042)

0.01 0.1 0.798 (0.048) 0.01 0.01 0.805 (0.048)
0.9 0.1 0.1 0.843 (0.087) 0.1 0.01 0.834 (0.098)

0.01 0.1 0.750 (0.065) 0.01 0.01 0.758 (0.070)
0.95 0.1 0.1 0.506 (0.043) 0.1 0.01 0.506 (0.043)

0.01 0.1 0.682 (0.118) 0.01 0.01 0.674 (0.111)

Table 2: The comparison of AUC scores using simulated data with n = 400 and p = 10000. These
scores are averaged over 50 independent runs with standard errors given in parentheses. More
comparison results based on F1, G-means, and PRAUC are shown in the supplemental file.

QuanDA dsda logistic RF SMOTE
π0 = 0.85

AR2 0.923 (0.032) 0.922 (0.032) 0.915 (0.036) 0.786 (0.057) 0.770 (0.068)
AR5 0.872 (0.042) 0.861 (0.047) 0.842 (0.069) 0.763 (0.055) 0.767 (0.051)
AR7 0.849 (0.045) 0.840 (0.048) 0.821 (0.069) 0.749 (0.056) 0.746 (0.063)
CS2 0.947 (0.028) 0.949 (0.025) 0.945 (0.029) 0.786 (0.061) 0.791 (0.056)
CS5 0.907 (0.037) 0.907 (0.036) 0.893 (0.043) 0.770 (0.051) 0.774 (0.050)
CS7 0.874 (0.042) 0.868 (0.046) 0.846 (0.070) 0.757 (0.056) 0.756 (0.057)

π0 = 0.9
AR2 0.913 (0.041) 0.908 (0.046) 0.890 (0.075) 0.723 (0.075) 0.730 (0.087)
AR5 0.855 (0.059) 0.852 (0.061) 0.811 (0.122) 0.718 (0.075) 0.726 (0.069)
AR7 0.830 (0.065) 0.821 (0.082) 0.778 (0.122) 0.711 (0.080) 0.715 (0.087)
CS2 0.938 (0.037) 0.938 (0.038) 0.923 (0.073) 0.743 (0.080) 0.746 (0.071)
CS5 0.894 (0.048) 0.890 (0.051) 0.869 (0.078) 0.730 (0.068) 0.728 (0.073)
CS7 0.856 (0.061) 0.854 (0.062) 0.810 (0.122) 0.719 (0.074) 0.730 (0.067)

π0 = 0.95
AR2 0.827 (0.115) 0.813 (0.143) 0.714 (0.175) 0.661 (0.102) 0.675 (0.107)
AR5 0.770 (0.116) 0.738 (0.148) 0.660 (0.169) 0.658 (0.095) 0.648 (0.098)
AR7 0.740 (0.118) 0.715 (0.150) 0.645 (0.155) 0.649 (0.092) 0.652 (0.101)
CS2 0.850 (0.118) 0.850 (0.132) 0.750 (0.184) 0.657 (0.098) 0.662 (0.101)
CS5 0.803 (0.121) 0.791 (0.149) 0.695 (0.170) 0.659 (0.097) 0.646 (0.103)
CS7 0.772 (0.109) 0.744 (0.146) 0.668 (0.160) 0.645 (0.098) 0.653 (0.101)

is set to 1/π1. For both logistic regression and dsda, we also employ five-fold cross-validation to
select the optimal parameter λ1, given that λ2 = 0.01.

Tables 2 summarizes the simulation results, averaged from 50 independent runs. We observe that our
method consistently achieves the highest AUC scores in the all the simulation settings. Moreover, the
advantages of our approach become increasingly evident as the imbalance ratio grows. The empirical
performance confirms the effectiveness of QuanDA in addressing imbalanced classification.

We then conduct a sensitivity analysis of the hyperparameters in our algorithm. QuanDA involves
two regularization parameters λ1 and λ2. We begin by evaluating the AUC scores of QuanDA under
various combinations of λ1 and λ2, using simulated data generated with an AR5 covariance structure,
n = 400, and p = 10,000. To assess performance under different levels of class imbalance, we
consider π0 ∈ {0.85, 0.9, 0.95}. Table 1 show that, for a fixed value of λ1, changes in λ2 have
little impact on QuanDA’s performance. In contrast, varying λ1 while holding λ2 fixed has a more
noticeable effect. Based on our numerical experiments, cross-validation typically provides a reliable
choice for tuning λ1.

Additional simulation results are provided in the supplementary materials, including comparisons
of QuanDA with other widely used methods based on PRAUC, F1 score, and G-mean; see Tables
S.1–S.7.
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Table 3: The comparison of AUC scores on benchmark HDLSS data. The method achieving the
highest AUC for each data set is italicized.

QuanDA dsda logistic RF SMOTE
breast(42,22283) 0.949 (0.066) 0.926 (0.116) 0.944 (0.088) 0.891 (0.101) 0.895 (0.096)
leuk(72,7128) 0.993 (0.016) 0.987 (0.044) 0.991 (0.028) 0.997 (0.007) 0.996 (0.009)
LSVT(126,309) 0.909 (0.047) 0.901 (0.054) 0.898 (0.052) 0.884 (0.060) 0.884 (0.058)
ovarian(253,15154) 1.000 (0.000) 1.000 (0.002) 1.000 (0.002) 1.000 (0.001) 1.000 (0.001)
prostate(102,6033) 0.969 (0.029) 0.965 (0.025) 0.963 (0.027) 0.942 (0.047) 0.940 (0.049)

4.2 Benchmark Data Applications

In this section, we demonstrate the performance of QuanDA using seven benchmark high-dimensional
data (Mai and Zou, 2015; Sorace and Zhan, 2003; Graham et al., 2010; Alon et al., 1999; Golub
et al., 1999; Singh et al., 2002; Tsanas et al., 2013). All the benchmark data are available at the UCI
Machine Learning Repository (Kelly et al., 2023). Those data sets have a varying dimensionality,
ranging from 309 to 22,283. Each data set is partitioned into two parts: 70% is used for training and
the remaining 30% for testing. The model fitting and parameter tuning are performed on the training
set, after which the classification accuracy of the model is assessed on the test set.

Table 3 reports the average AUC scores from 50 independent repetitions. It shows that our method
QuanDA overall outperforms all the other four methods in both metrics in those benchmark data
examples.

5 Conclusion and Limitations

In this work, we have developed Quantile-based Discriminant Analysis (QuanDA), a method specifi-
cally designed to address imbalanced classification problems in high-dimensional, low-sample-size
(HDLSS) settings. Extensive numerical studies demonstrate that QuanDA overall outperforms widely
used imbalanced classification solvers, including cost-sensitive large-margin classifiers, random
forests, and SMOTE. This shows that QuanDA is competitive in the challenging HDLSS scenarios.

Although this work focuses on binary classification, QuanDA can be naturally extended to multi-class
settings. One straightforward approach is the one-vs-one method (Friedman, 1996; Hastie and Tibshi-
rani, 1998), which decomposes a K-class problem into K(K − 1)/2 pairwise binary classification
tasks. A binary classifier is applied to each pair, and predictions are aggregated using majority voting.
Another potential direction involves adapting the multiclass sparse discriminant analysis (msda)
framework proposed by Mai and Zou (2015). Some preliminary results are presented in Section S2 in
the supplementary material, while a comprehensive study including rigorous theoretical analysis is
left for future work.

The strong empirical performance of QuanDA results in part from its simple structure, which makes
it particularly suited for the HDLSS setting. Extending QuanDA to kernel learning and deep learning
frameworks would be some promising future work for handling unstructured data.

In addition, a key contribution of this work is a novel connection between quantile regression and
imbalanced classification. This connection enables the direct application of extensive quantile
regression variants on imbalanced classification problems. For example, Qiao et al. (2023) proposed
transfer learning to leverage external information for fitting quantile regression. The same framework
can be directly integrated into our Algorithm 1 to transfer information to improve classification
accuracy. Meta-learning for quantile regression (Fakoor et al., 2023) also shows promise for extending
meta-learning techniques to imbalanced classification through quantile regression.
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SUPPLEMENTARY MATERIAL

S1 Additional Numerical results

S1.1 Simulations

All numerical experiments in this work were carried out on an Intel(R) Xeon(R) Gold 6430 (3.40
GHz) processor.

For high-dimensional imbalanced classification problems, relying solely on the AUC score is insuffi-
cient to fully evaluate the effectiveness of a method. To offer a more comprehensive assessment, we
compare our proposed approach with several baseline methods using additional performance metrics,
including the area under the precision-recall curve (PRAUC), the F1 score, and the geometric mean
(G-mean). Tables S.1 to S.3 show that QuanDA consistently outperforms all competing methods
across all evaluation metrics. Notably, quantileDA is excluded from AUC and PRAUC comparisons,
as it only produces predicted class labels rather than probability scores. Consequently, AUC and
PRAUC cannot be computed for this method. Furthermore, random forest, SMOTE, and quantileDA
yield F1 scores and G-means of zero in certain settings, as they predict all samples as belonging to
the majority class, failing to identify any instances of the minority class.

Tables S.4–S.7 report the AUC, PRAUC, F1, and G-mean scores for QuanDA and several widely
used methods for imbalanced classification, evaluated on simulated data with n = 400 and p = 5000.
QuanDA consistently achieves superior performance across all evaluation metrics compared to the
competing methods.

S1.2 Real-data analysis

We further evaluate QuanDA against other methods using real-world datasets, focusing on PRAUC,
F1, and G-mean scores. As shown in Tables ?? and ??, QuanDA consistently demonstrates superior
performance across all metrics, while quantileDA exhibits the least effective results among the
compared methods.

16



Table S.1: The PRAUC scores for five imbalanced classification solvers were evaluated using
simulated data with n = 400 and p = 10000. These scores represent the average results obtained
over 50 independent runs with standard errors given in parentheses.

QuanDA dsda logistic RF SMOTE
π0 = 0.85

AR2 0.756 (0.086) 0.750 (0.088) 0.733 (0.100) 0.431 (0.098) 0.413 (0.110)
AR5 0.626 (0.103) 0.600 (0.108) 0.572 (0.123) 0.390 (0.088) 0.380 (0.100)
AR7 0.573 (0.101) 0.552 (0.107) 0.525 (0.120) 0.378 (0.086) 0.361 (0.092)
CS2 0.829 (0.072) 0.827 (0.075) 0.819 (0.086) 0.439 (0.100) 0.451 (0.118)
CS5 0.713 (0.100) 0.707 (0.098) 0.683 (0.115) 0.412 (0.101) 0.428 (0.086)
CS7 0.629 (0.103) 0.613 (0.112) 0.580 (0.133) 0.389 (0.108) 0.382 (0.105)

π0 = 0.9
AR2 0.657 (0.136) 0.638 (0.160) 0.604 (0.174) 0.272 (0.083) 0.286 (0.098)
AR5 0.588 (0.140) 0.501 (0.144) 0.456 (0.182) 0.269 (0.105) 0.274 (0.101)
AR7 0.452 (0.140) 0.443 (0.149) 0.396 (0.172) 0.265 (0.096) 0.263 (0.088)
CS2 0.737 (0.129) 0.734 (0.149) 0.696 (0.178) 0.294 (0.103) 0.296 (0.093)
CS5 0.600 (0.145) 0.589 (0.163) 0.551 (0.174) 0.288 (0.115) 0.280 (0.097)
CS7 0.508 (0.142) 0.503 (0.154) 0.453 (0.188) 0.264 (0.101) 0.273 (0.086)

π0 = 0.95
AR2 0.353 (0.211) 0.368 (0.224) 0.262 (0.239) 0.129 (0.081) 0.144 (0.104)
AR5 0.243 (0.151) 0.243 (0.176) 0.184 (0.181) 0.120 (0.071) 0.116 (0.066)
AR7 0.211 (0.147) 0.207 (0.152) 0.150 (0.144) 0.122 (0.071) 0.121 (0.079)
CS2 0.406 (0.228) 0.452 (0.258) 0.321 (0.271) 0.121 (0.078) 0.141 (0.091)
CS5 0.302 (0.197) 0.336 (0.216) 0.219 (0.205) 0.140 (0.089) 0.118 (0.070)
CS7 0.248 (0.141) 0.243 (0.183) 0.184 (0.177) 0.132 (0.086) 0.124 (0.070)

Table S.2: The F1 scores for six imbalanced classification solvers were evaluated using simulated data
with n = 400 and 10000. These scores represent the average results obtained over 50 independent
runs with standard errors given in parentheses. Notably, random forest, SMOTE, and quantileDA
yield F1 scores of zero in this setting.

QuanDA dsda logistic
π0 = 0.85

AR2 0.663 (0.069) 0.648 (0.109) 0.635 (0.079)
AR5 0.561 (0.071) 0.500 (0.097) 0.531 (0.084)
AR7 0.528 (0.072) 0.440 (0.107) 0.494 (0.087)
CS2 0.724 (0.072) 0.730 (0.085) 0.711 (0.078)
CS5 0.634 (0.076) 0.608 (0.104) 0.600 (0.089)
CS7 0.563 (0.074) 0.513 (0.094) 0.528 (0.095)

π0 = 0.9
AR2 0.586 (0.088) 0.512 (0.199) 0.539 (0.126)
AR5 0.482 (0.097) 0.376 (0.161) 0.447 (0.112)
AR7 0.444 (0.085) 0.334 (0.143) 0.404 (0.104)
CS2 0.655 (0.084) 0.599 (0.201) 0.614 (0.118)
CS5 0.538 (0.089) 0.472 (0.185) 0.503 (0.124)
CS7 0.486 (0.091) 0.389 (0.168) 0.448 (0.103)

π0 = 0.95
AR2 0.399 (0.161) 0.193 (0.238) 0.309 (0.189)
AR5 0.314 (0.136) 0.126 (0.169) 0.225 (0.172)
AR7 0.288 (0.134) 0.109 (0.157) 0.196 (0.172)
CS2 0.453 (0.179) 0.290 (0.271) 0.370 (0.203)
CS5 0.358 (0.151) 0.175 (0.219) 0.265 (0.189)
CS7 0.313 (0.141) 0.141 (0.178) 0.225 (0.177)
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Table S.3: The G-mean scores for six imbalanced classification solvers were evaluated using simulated
data with n = 400 and p = 10000. These scores represent the average results obtained over 50
independent runs with standard errors given in parentheses. Notably, random forest, SMOTE, and
quantileDA yield G-mean scores of zero in this setting.

QuanDA dsda logistic
π0 = 0.85

AR2 0.844 (0.047) 0.747 (0.093) 0.808 (0.072)
AR5 0.788 (0.052) 0.629 (0.084) 0.747 (0.087)
AR7 0.761 (0.053) 0.576 (0.097) 0.721 (0.091)
CS2 0.872 (0.047) 0.813 (0.072) 0.854 (0.071)
CS5 0.828 (0.055) 0.716 (0.090) 0.787 (0.088)
CS7 0.783 (0.056) 0.640 (0.079) 0.740 (0.100)

π0 = 0.9
AR2 0.812 (0.069) 0.632 (0.205) 0.775 (0.123)
AR5 0.757 (0.070) 0.513 (0.179) 0.719 (0.133)
AR7 0.730 (0.073) 0.473 (0.163) 0.685 (0.166)
CS2 0.848 (0.062) 0.700 (0.205) 0.811 (0.103)
CS5 0.789 (0.078) 0.598 (0.189) 0.750 (0.127)
CS7 0.758 (0.088) 0.522 (0.181) 0.723 (0.124)

π0 = 0.95
AR2 0.690 (0.152) 0.262 (0.306) 0.572 (0.310)
AR5 0.602 (0.188) 0.194 (0.244) 0.456 (0.327)
AR7 0.592 (0.150) 0.165 (0.222) 0.399 (0.334)
CS2 0.705 (0.162) 0.381 (0.332) 0.596 (0.317)
CS5 0.657 (0.158) 0.246 (0.287) 0.502 (0.319)
CS7 0.623 (0.126) 0.213 (0.249) 0.446 (0.328)

Table S.4: The AUC scores for five imbalanced classification solvers were evaluated using simulated
data with n = 400 and p = 5000. These scores represent the average results obtained over 50
independent runs with standard errors given in parentheses.

QuanDA dsda logistic RF SMOTE
π0 = 0.85

AR2 0.931 (0.025) 0.925 (0.028) 0.919 (0.029) 0.830 (0.051) 0.829 (0.051)
AR5 0.882 (0.034) 0.871 (0.036) 0.861 (0.041) 0.801 (0.049) 0.804 (0.051)
AR7 0.857 (0.038) 0.845 (0.042) 0.831 (0.048) 0.781 (0.059) 0.782 (0.065)
CS2 0.956 (0.018) 0.953 (0.020) 0.949 (0.023) 0.845 (0.044) 0.838 (0.054)
CS5 0.916 (0.029) 0.909 (0.031) 0.901 (0.034) 0.818 (0.047) 0.816 (0.057)
CS7 0.882 (0.035) 0.874 (0.039) 0.863 (0.044) 0.806 (0.055) 0.804 (0.055)

π0 = 0.9
AR2 0.923 (0.039) 0.908 (0.052) 0.891 (0.081) 0.793 (0.066) 0.793 (0.075)
AR5 0.874 (0.047) 0.849 (0.073) 0.827 (0.098) 0.769 (0.071) 0.767 (0.075)
AR7 0.846 (0.060) 0.816 (0.092) 0.794 (0.105) 0.744 (0.085) 0.755 (0.080)
CS2 0.948 (0.031) 0.940 (0.039) 0.930 (0.055) 0.804 (0.071) 0.790 (0.089)
CS5 0.907 (0.043) 0.888 (0.061) 0.868 (0.096) 0.777 (0.081) 0.786 (0.071)
CS7 0.873 (0.050) 0.853 (0.072) 0.830 (0.098) 0.755 (0.084) 0.763 (0.070)

π0 = 0.95
AR2 0.874 (0.081) 0.833 (0.125) 0.760 (0.159) 0.706 (0.120) 0.690 (0.115)
AR5 0.821 (0.090) 0.780 (0.129) 0.698 (0.147) 0.689 (0.103) 0.683 (0.112)
AR7 0.793 (0.094) 0.747 (0.133) 0.674 (0.142) 0.681 (0.105) 0.680 (0.107)
CS2 0.901 (0.079) 0.871 (0.108) 0.792 (0.163) 0.713 (0.108) 0.687 (0.104)
CS5 0.855 (0.088) 0.813 (0.131) 0.745 (0.149) 0.689 (0.125) 0.693 (0.104)
CS7 0.821 (0.089) 0.778 (0.137) 0.693 (0.141) 0.675 (0.108) 0.676 (0.105)
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Table S.5: The PRAUC scores for five imbalanced classification solvers were evaluated using
simulated data with n = 400 and p = 5000. These scores represent the average results obtained over
50 independent runs with standard errors given in parentheses.

QuanDA dsda logistic RF SMOTE
π0 = 0.85

AR2 0.777 (0.065) 0.763 (0.080) 0.748 (0.075) 0.528 (0.110) 0.524 (0.113)
AR5 0.650 (0.078) 0.627 (0.089) 0.609 (0.090) 0.456 (0.107) 0.468 (0.097)
AR7 0.596 (0.080) 0.574 (0.096) 0.550 (0.095) 0.418 (0.109) 0.423 (0.117)
CS2 0.846 (0.051) 0.842 (0.058) 0.832 (0.061) 0.558 (0.111) 0.544 (0.128)
CS5 0.738 (0.073) 0.723 (0.083) 0.701 (0.085) 0.503 (0.092) 0.489 (0.116)
CS7 0.654 (0.081) 0.635 (0.094) 0.614 (0.096) 0.478 (0.104) 0.470 (0.109)

π0 = 0.9
AR2 0.682 (0.126) 0.655 (0.141) 0.625 (0.152) 0.376 (0.116) 0.373 (0.113)
AR5 0.555 (0.119) 0.507 (0.140) 0.477 (0.156) 0.331 (0.116) 0.323 (0.106)
AR7 0.491 (0.113) 0.449 (0.141) 0.416 (0.151) 0.303 (0.110) 0.291 (0.091)
CS2 0.764 (0.115) 0.751 (0.127) 0.726 (0.141) 0.381 (0.126) 0.381 (0.131)
CS5 0.634 (0.131) 0.603 (0.150) 0.569 (0.163) 0.340 (0.114) 0.351 (0.121)
CS7 0.548 (0.124) 0.514 (0.146) 0.480 (0.159) 0.327 (0.109) 0.308 (0.097)

π0 = 0.95
AR2 0.428 (0.195) 0.390 (0.208) 0.315 (0.210) 0.186 (0.138) 0.167 (0.122)
AR5 0.315 (0.169) 0.281 (0.160) 0.218 (0.173) 0.149 (0.093) 0.144 (0.127)
AR7 0.263 (0.154) 0.248 (0.159) 0.186 (0.160) 0.137 (0.093) 0.142 (0.087)
CS2 0.527 (0.191) 0.471 (0.217) 0.372 (0.227) 0.185 (0.125) 0.167 (0.107)
CS5 0.400 (0.177) 0.346 (0.197) 0.269 (0.188) 0.162 (0.114) 0.165 (0.108)
CS7 0.305 (0.173) 0.286 (0.177) 0.197 (0.163) 0.145 (0.104) 0.146 (0.100)

Table S.6: The F1 scores for six imbalanced classification solvers were evaluated using simulated data
with n = 400 and p = 5000. These scores represent the average results obtained over 50 independent
runs with standard errors given in parentheses. Notably, random forest, SMOTE, and quantileDA
yield F1 scores of zero in this setting.

QuanDA dsda logistic
π0 = 0.85

AR2 0.670 (0.072) 0.648 (0.109) 0.653 (0.071)
AR5 0.562 (0.073) 0.521 (0.090) 0.544 (0.071)
AR7 0.525 (0.069) 0.463 (0.094) 0.500 (0.074)
CS2 0.733 (0.065) 0.732 (0.089) 0.725 (0.059)
CS5 0.632 (0.076) 0.613 (0.091) 0.618 (0.070)
CS7 0.569 (0.076) 0.530 (0.091) 0.550 (0.072)

π0 = 0.9
AR2 0.584 (0.093) 0.547 (0.151) 0.577 (0.108)
AR5 0.478 (0.099) 0.403 (0.160) 0.453 (0.093)
AR7 0.444 (0.101) 0.342 (0.150) 0.419 (0.108)
CS2 0.655 (0.091) 0.626 (0.141) 0.641 (0.116)
CS5 0.548 (0.101) 0.496 (0.159) 0.527 (0.109)
CS7 0.484 (0.101) 0.408 (0.176) 0.456 (0.101)

π0 = 0.95
AR2 0.413 (0.144) 0.279 (0.224) 0.293 (0.180)
AR5 0.337 (0.127) 0.187 (0.177) 0.234 (0.143)
AR7 0.292 (0.122) 0.146 (0.183) 0.200 (0.121)
CS2 0.471 (0.155) 0.325 (0.265) 0.354 (0.201)
CS5 0.393 (0.142) 0.228 (0.212) 0.258 (0.155)
CS7 0.335 (0.134) 0.181 (0.191) 0.222 (0.134)
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Table S.7: The G-mean scores for six imbalanced classification solvers were evaluated using simulated
data with n = 400 and p = 5000. These scores represent the average results obtained over 50
independent runs with standard errors given in parentheses. Notably, random forest, SMOTE, and
quantileDA yield G-means of zero in this setting.

QuanDA dsda logistic
π0 = 0.85

AR2 0.843 (0.037) 0.744 (0.094) 0.820 (0.060)
AR5 0.782 (0.045) 0.644 (0.075) 0.754 (0.070)
AR7 0.754 (0.048) 0.594 (0.078) 0.730 (0.085)
CS2 0.874 (0.033) 0.809 (0.078) 0.855 (0.049)
CS5 0.822 (0.039) 0.718 (0.081) 0.801 (0.058)
CS7 0.787 (0.046) 0.649 (0.076) 0.758 (0.066)

π0 = 0.9
AR2 0.802 (0.072) 0.664 (0.155) 0.793 (0.093)
AR5 0.752 (0.077) 0.535 (0.175) 0.721 (0.103)
AR7 0.731 (0.075) 0.474 (0.183) 0.707 (0.138)
CS2 0.845 (0.066) 0.732 (0.128) 0.821 (0.109)
CS5 0.787 (0.081) 0.621 (0.171) 0.755 (0.102)
CS7 0.744 (0.087) 0.535 (0.200) 0.727 (0.104)

π0 = 0.95
AR2 0.698 (0.124) 0.381 (0.289) 0.568 (0.290)
AR5 0.652 (0.142) 0.280 (0.249) 0.505 (0.287)
AR7 0.610 (0.147) 0.216 (0.256) 0.462 (0.282)
CS2 0.731 (0.134) 0.418 (0.323) 0.581 (0.299)
CS5 0.681 (0.122) 0.320 (0.279) 0.527 (0.296)
CS7 0.652 (0.123) 0.266 (0.260) 0.488 (0.295)
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S2 Extension to Imbalanced Multi-class Classification

Although QuanDA is primarily designed for binary classification tasks, it can be extended to imbal-
anced multi-class classification under HDLSS settings using strategies. In this section, we present a
simple example to illustrate the effectiveness of QuanDA in handling multi-class classification using
the one-vs-one strategy. We leave the development and evaluation of more advanced extensions to
future work.

Motivated by the simulation design described in Section 4, we consider a three-class imbalanced
classification problem in which each class follows a multivariate normal distribution with a common
covariance matrix Σ. The class-specific mean vectors differ only in the first five features, with values
set to 0.7, 0 and -0.7 , respectively. Two imbalance scenarios are examined. In the first scenario, the
majority class ( π0 ) accounts for 80% of the total sample, while each of the two minority classes
represents 10%. In the second scenario, the majority class comprises 90% of the total sample, and
each minority class accounts for 5%. The total sample size is set to n = 100 or n = 400, and the
feature dimension is p = 10, 000. We compare the performance of QuanDA with several competing
methods, including MSDA, weighted random forest, and SMOTE. The macro F1 score (Grandini
et al., 2020) is employed as the evaluation metric to assess the multi-class classification performance
of each method. Table S.8 shows that QuanDA achieves the highest macro F1 score among the
compared methods. In contrast, weighted random forest and SMOTE fails to identify the minority
classes, predicting all samples as belonging to the majority class.

Table S.8: The macro F1 scores for three imbalanced classification solvers were evaluated using
simulated data with p = 10000. These scores represent the average results obtained over 50
independent runs with standard errors given in parentheses.

n = 400 QuanDA msda RF SMOTE
8:1:1

AR2 0.515 (0.073) 0.369 (0.031) 0.297 (0.000) 0.297 (0.000)
AR5 0.490 (0.069) 0.334 (0.023) 0.297 (0.000) 0.297 (0.000)
AR7 0.479 (0.071) 0.318 (0.021) 0.297 (0.000) 0.297 (0.000)
CS2 0.524 (0.068) 0.401 (0.029) 0.297 (0.000) 0.297 (0.000)
CS5 0.506 (0.072) 0.346 (0.020) 0.297 (0.000) 0.297 (0.000)
CS7 0.488 (0.061) 0.322 (0.017) 0.297 (0.000) 0.297 (0.000)

9:0.5:0.5
AR2 0.460 (0.067) 0.319 (0.016) 0.317 (0.000) 0.317 (0.000)
AR5 0.438 (0.064) 0.323 (0.028) 0.317 (0.000) 0.317 (0.000)
AR7 0.425 (0.065) 0.324 (0.028) 0.317 (0.000) 0.317 (0.000)
CS2 0.478 (0.068) 0.325 (0.031) 0.317 (0.000) 0.317 (0.000)
CS5 0.460 (0.070) 0.325 (0.033) 0.317 (0.000) 0.317 (0.000)
CS7 0.435 (0.071) 0.322 (0.023) 0.317 (0.000) 0.317 (0.000)

S3 Proof of Theorem 3.1

For ease of notation, we fix τ ∈ (0, 1) and drop all subscript τ wherever no confusion arises. Let

Qn(α,β) =
1

n

n∑
i=1

ρτ (zi − α− x⊤
i β).

For λ > 0, define the lasso estimator of the quantile regression by

(α̂λ, β̂λ) := argmin
α,β

Qn(α,β) + λ

p∑
j=1

|βj |. (6)

Let
νn(α,β) = Qn(α,β)−Qn(α

∗,β∗)− E
[
Qn(α,β)−Qn(α

∗,β∗)
]
.

For some r > 0, set

Gu,v,r = {(δ,∆) ∈ Cu,v : n−1
n∑

i=1

(δ + x⊤
i ∆)2 ≤ r2}.
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Also, define
e(u, v, r) = sup

(δ,∆)∈Gu,v,r

|νn(α∗ + δ,β∗ +∆)|.

Let Fε|x and fε|x be the distribution and density functions of ετ , respectively. We shall write them as
F and f for simplicity of notation in the proofs. The following proofs are based on a given X (i.e.,
conditional on X), but can be easily modified for a stochastic X.
Lemma S3.1. Under conditions (C1)–(C3), with probability at least

1− 2 exp
(
−nλ2

2

)
− 2p exp

(
− nλ2

2M0

)
,

the lasso estimator (α̂λ, β̂λ) of the quantile regression satisfies

(δ̂λ, ∆̂
λ
) ∈ C3,1 = {(δ,∆) : δ ∈ R, ∆ ∈ Rp, ∥∆Ac∥1 ≤ 3∥∆A∥1 + |δ|},

where δ̂λ = α̂λ − α∗ and ∆̂
λ
= β̂λ − β∗.

Proof of Lemma S3.1. Let

ζ = − 1

n

n∑
i=1

[
τ − I(εi ≤ α∗)

]
,

and ξ = (ξ1, . . . , ξp)
⊤, where

ξj = − 1

n

n∑
i=1

[
τ − I(εi ≤ α∗)

]
xij , 1 ≤ j ≤ p.

Note that (ζ, ξ⊤)⊤ ∈ ∂Qn(α
∗,β∗), where the subdifferential is taken with respect to α and β. By

convexity of Qn(α,β) and optimality of (α̂λ, β̂λ), we have

0 ≥ Qn(α̂λ, β̂λ)−Qn(α
∗,β∗) + λ(∥β̂λ∥1 − ∥β∗∥1)

≥ ζ(α̂λ − α∗) + ξ⊤(β̂λ − β∗) + λ(∥β̂λ∥1 − ∥β∗∥1)

≥ − |ζ| · |α̂λ − α∗| − ∥ξ∥∞ · ∥β̂λ − β∗∥1

+ λ

(∑
j∈Ac

|β̂λ,j − β∗
j | −

∑
j∈A

|β̂λ,j − β∗
j |
)
,

which implies that

(λ− ∥ξ∥∞)
∑
j∈Ac

|β̂λ,j − β∗
j | ≤ (λ+ ∥ξ∥∞)

∑
j∈A

|β̂λ,j − β∗
j |+ |ζ| · |α̂λ − α∗|. (7)

Under event E = {|ζ| ≤ λ/2, ∥ξ∥∞ ≤ λ/2}, it follows from (7) that

∥∆̂
λ

Ac∥1 ≤ 3∥∆̂
λ

A∥1 + |δ̂λ|.

The lemma then follows from Hoeffding’s inequality

Pr(E) ≥ 1− Pr
(
|ζ| > λ

2

)
− Pr

(
∥ξ∥∞ >

λ

2

)
≥ 1− Pr

(∣∣∣− 1

n

n∑
i=1

[τ − I(εi ≤ α∗)]
∣∣∣ > λ

2

)
−

p∑
j=1

Pr
(∣∣∣− 1

n

n∑
i=1

xij [τ − I(εi ≤ α∗)]
∣∣∣ > λ

2

)
≥ 1− 2 exp

(
−nλ2

2

)
− 2p exp

(
− nλ2

2M0

)
,

where M0 = max1≤j≤p E
[
X2

j

]
.
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Lemma S3.2. For u, v, r, t > 0, under conditions (C1)–(C6), with probability at least 1 −
exp

[
−nt2/(32r2)

]
, we have

e(u, v, r) ≤ 4

√
2M0

κ0(u, v)

√
1 + log p

n

[
(1 + u)

√
s+ (1 + v)

]
r + t

when p ≥ 3. It follows immediately that, if one takes

t = 4

√
2M0

κ0(u, v)

√
1 + log p

n

[
(1 + u)

√
s+ (1 + v)

]
r,

then with probability at least 1− exp
[
−M0(1 + u)2s(1 + log p)/κ0(u, v)

]
, we have

e(u, v, r) ≤ 8

√
2M0

κ0(u, v)

√
1 + log p

n

[
(1 + u)

√
s+ (1 + v)

]
r.

Proof of Lemma S3.2. First, note that the check loss ρτ (·) is Lipschitz continuous with Lipschitz
constant max(τ, 1− τ). Let δ = α− α∗,∆ = β − β∗, and define

Ui(δ,∆) = ρτ (zi − α− x⊤
i β)− ρτ (zi − α∗ − x⊤

i β
∗)

= ρτ (r
∗
i − δ − x⊤

i ∆)− ρτ (r
∗
i ),

where r∗i = zi − α∗ − x⊤
i β

∗ = εi − α∗, 1 ≤ i ≤ n. It follows immediately that

e(u, v, r) = sup
(δ,∆)∈Gu,v,r

∣∣∣∣ 1n
n∑

i=1

[
Ui(δ,∆)− EUi(δ,∆)

]∣∣∣∣.
By Lipschitz continuity of the check loss, it follows that

|Ui(δ,∆)| ≤ |ρτ (r∗i − δ − x⊤
i ∆)− ρτ (r

∗
i )|

≤ max(τ, 1− τ)|δ + x⊤
i ∆| ≤ |δ + x⊤

i ∆|, 1 ≤ i ≤ n.
(8)

Applying Massart’s concentration inequality Bühlmann and van de Geer (2011), we have

Pr(e(u, v, r) ≥ E[e(u, v, r)] + t) ≤ exp

(
− n2t2

8b2n(u, v, r)

)
, (9)

where b2n(u, v, r) = sup(δ,∆)∈Gu,v,r

∑n
i=1 var(Ui(δ,∆)). First, we derive an upper bound on

b2n(u, v, r). Note that by (8) and the Cauchy–Schwarz inequality

b2n(u, v, r) = sup
(δ,∆)∈Gu,v,r

n∑
i=1

E
[
Ui(δ,∆)− E(Ui(δ,∆))

]2
≤ 4 sup

(δ,∆)∈Gu,v,r

n∑
i=1

(δ + x⊤
i ∆)2 ≤ 4nr2.

Next, we show an upper bound on E
[
e(u, v, r)

]
. Applying the symmetrization procedure van der

Vaart and Wellner (1996) and the contraction principle Ledoux and Talagrand (1991), we have

E[e(u, v, r)] ≤ 2E
[

sup
(δ,∆)∈Gu,v,r

1

n

∣∣∣∣ n∑
i=1

ξiUi(δ,∆)

∣∣∣∣]

≤ 2

n
E
[

sup
(δ,∆)∈Gu,v,r

∣∣∣∣ n∑
i=1

ξi{ρτ (r∗i − δ − x⊤
i ∆)− ρτ (r

∗
i )}

∣∣∣∣]

≤ 4

n
E
[

sup
(δ,∆)∈Gu,v,r

∣∣∣∣ n∑
i=1

ξi(δ + x⊤
i ∆)

∣∣∣∣],
(10)

where ξ1, . . . , ξn are i.i.d. Rademacher random variables that are independent of ε1, . . . , εn and
Pr(ξi = ±1) = 0.5.
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For (δ, ∆) ∈ Gu,v,r, by condition (C1) and Cauchy–Schwarz inequality, we have

r2 ≥ κ0(u, v)(δ
2 + ∥∆A∥22) ≥ κ0(u, v)δ

2 +
κ0(u, v)

s
∥∆A∥21, (11)

which implies that |δ| ≤ r/
√
κ0(u, v) and ∥∆A∥1 ≤ r

√
s/κ0(u, v). Let ξ = (ξ1, . . . , ξn)

⊤. For
any t ∈ R, we have

E exp(tX⊤
j ξ) =

n∏
i=1

[
1

2
(etxij + e−txij )

]

≤
n∏

i=1

exp
(1
2
t2x2

ij

)
= exp

(
t2

2

n∑
i=1

x2
ij

)
, 0 ≤ j ≤ p.

Letting t > 0, by Jensen’s inequality we have

exp
(
tE

[
∥X⊤ξ∥∞

])
= exp

(
tE max

0≤j≤p
|X⊤

j ξ|
)
≤ E exp

(
t max
0≤j≤p

|X⊤
j ξ|

)
= E

[
max
0≤j≤p

exp(t|X⊤
j ξ|)

]
≤ E max

0≤j≤p

(
etX

⊤
j ξ + e−tX⊤

j ξ
)

≤
p∑

j=0

E
(
etX

⊤
j ξ + e−tX⊤

j ξ
)
≤ 2

p∑
j=0

exp
( t2
2
∥Xj∥22

)
≤ 2(1 + p) exp

( t2
2

max
0≤j≤p

∥Xj∥22
)
= 2(1 + p) exp

(nM0

2
t2
)
,

which implies that

E
(
∥X⊤ξ∥∞

)
≤ 1

t

[
log 2 + log(1 + p)

]
+

nM0

2
t, t > 0.

Taking t =
√

2[log 2 + log(1 + p)]/(nM0), we obtain

E
(
∥X⊤ξ∥∞

)
≤

√
2nM0[log 2 + log(1 + p)] ≤

√
2M0 ·

√
n(1 + log p) (12)

as long as p ≥ 3. It then follows from (10), (12) and the Hölder’s inequality that

E[e(u, v, r)] ≤ 4

n
E
(
∥X⊤ξ∥∞

)
· sup
(δ,∆)∈Gu,v,r

(
|δ|+ ∥∆∥1

)
≤ 4

√
2M0

n

√
n(1 + log p) sup

(δ,∆)∈Gu,v,r

(
|δ|+ ∥∆∥1

)
≤ 4

√
2M0

n

√
n(1 + log p) sup

(δ,∆)∈Gu,v,r

[
(1 + v)|δ|+ (1 + u)∥∆A∥1

]
≤ 4

√
2M0

κ0(u, v)

√
1 + log p

n

[
(1 + u)

√
s+ (1 + v)

]
r.

The lemma then follows from (9).

Lemma S3.3. Under conditions (C1)–(C6), for any (δ,∆) ∈ Cu,v, we have

E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
≥ min

{
f

4n

n∑
i=1

(δ + x⊤
i ∆)2, f1/2q

[
1

n

n∑
i=1

(δ + x⊤
i ∆)2

]1/2}
.

Proof of Lemma S3.3. By Knight’s identity Knight (1998), we have for any two scalars r and s,

|r − s| − |r| = −s
[
I(r > 0)− I(r < 0)

]
+ 2

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t.
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It follows that for any τ ∈ (0, 1),

ρτ (r − s)− ρτ (r) = (τ − 0.5)
[
(r − s)− r

]
+ 0.5

[
|r − s| − |r|

]
= (0.5− τ)s− 0.5s

[
I(r > 0)− I(r < 0)

]
+

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t

= s
[
I(r < 0)− τ

]
+

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t.

(13)

Let r∗i = zi − α∗ − x⊤
i β = εi − α∗, 1 ≤ i ≤ n. By (13) and the mean value theorem, we have for

some ūi,t between 0 and t,

E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
=

1

n

n∑
i=1

E
[
ρτ (r

∗
i − δ − x⊤

i ∆)− ρτ (r
∗
i )
]

=
1

n

n∑
i=1

E

{[
I(εi ≤ α∗)− τ

]
+

∫ δ+x⊤
i ∆

0

[
I(εi ≤ α∗ + t)− I(εi ≤ α∗)

]
dt

}

=
1

n

n∑
i=1

∫ δ+x⊤
i ∆

0

[
F (α∗ + t)− F (α∗)

]
dt

=
1

n

n∑
i=1

∫ δ+x⊤
i ∆

0

[
tf(α∗) +

t2

2
f ′(α∗ + ūi,t)

]
dt

≥ 1

2n

n∑
i=1

f(α∗)(δ + x⊤
i ∆)2 − f̄ ′

6n

n∑
i=1

|δ + x⊤
i ∆|3

≥ 1

2n
f

n∑
i=1

(δ + x⊤
i ∆)2 − f̄ ′

6n

n∑
i=1

|δ + x⊤
i ∆|3.

(14)

For (δ,∆) ∈ Cu,v, note that if [
1

n

n∑
i=1

(δ + x⊤
i ∆)2

]1/2
≤ 4

f1/2
q, (15)

then by condition (C6) we get

f̄ ′

6n

n∑
i=1

|δ + x⊤
i ∆|3 ≤ 1

4n
f

n∑
i=1

(δ + x⊤
i )

2,

which, together with (14), implies that for all (δ,∆) ∈ Gu, v, 4f−1/2q,

E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
≥

f

4n

n∑
i=1

(δ + x⊤
i ∆)2.

When (15) does not hold, one can similarly apply the technique in the proof of Lemma 4 of Belloni
and Chernozhukov (2011) to show that for any (δ,∆) ∈ Cu,v,

E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
≥ min

{
f

4n

n∑
i=1

(δ + x⊤
i ∆)2, f1/2q

[
1

n

n∑
i=1

(δ + x⊤
i ∆)2

]1/2}
.

This completes the lemma.

Proof of Theorem 3.1. Let G∗ = {(δ,∆) ∈ C(3, 1) : n−1
∑n

i=1(δ + x⊤
i ∆)2 = r2∗}, where

r∗ = 8f−1

[
16

√
2M0

κ0(3, 1)

√
1 + log p

n
(2
√
s+ 1) + λ

√
s

κ0(3, 1)

]
.
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Moreover, let δ̂λ = α̂λ − α∗ and ∆̂
λ
= β̂λ − β∗. If we can show that

min
(δ,∆)∈G∗

Qn(α
∗ + δ,β∗ +∆)−Qn(α

∗,β∗) + λ(∥β∗ +∆∥1 − ∥β∗∥1) > 0, (16)

then by convexity of Qn, this implies that n−1
∑n

i=1(δ̂
λ + x⊤

i ∆̂
λ
)2 ≤ r2∗ under the event E =

{(δ̂λ, ∆̂
λ
) ∈ C(3, 1)}. To show (16), first note that by Lemma S3.2, with probability at least

1− exp
[
−16M0s(1 + log p)/κ0(3, 1)

]
, we have for all (δ,∆) ∈ G∗,

Qn(α
∗ + δ,β∗ +∆)−Qn(α

∗,β∗) + λ(∥β∗ +∆∥1 − ∥β∗∥1)

≥ E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
− e(3, 1, r∗) + λ

(∑
j∈Ac

|∆j | −
∑
j∈A

|∆j |
)

≥ E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
+ λ

(∑
j∈Ac

|∆j | −
∑
j∈A

|∆j |
)

− 16

√
2M0

κ0(3, 1)

√
1 + log p

n

(
2
√
s+ 1

)
r∗.

(17)

On the one hand, by Lemma S3.3, for any (δ,∆) ∈ G∗, we have

E
[
Qn(α

∗ + δ,β∗ +∆)−Qn(α
∗,β∗)

]
≥ min

{
fr2∗/4, f

1/2qr∗
}
.

On the other hand, by condition (C1) and (11), we can see that

∥∆A∥1 ≤ r∗
√
s/κ0(3, 1).

Thus, it follows from (17) and the growth condition that

Qn(α
∗ + δ,β∗ +∆)−Qn(α

∗,β∗) + λ(∥β∗ +∆∥1 − ∥β∗∥1)

≥
f

4
r2∗ −

[
16

√
2M0

κ0(3, 1)

√
1 + log p

n

(
2
√
s+ 1

)
+ λ

√
s/κ0(3, 1)

]
r∗ > 0

for all (δ,∆) ∈ G∗ by our choice of r∗. By Lemma S3.1 and convexity of Qn, this implies that with
probability at least

Pr(E)− exp
[
−16M0s(1 + log p)/κ0(3, 1)

]
≥ 1− p1(λ),

we have (δ̂λ, ∆̂
λ
) ∈ C(3, 1) and

n−1
n∑

i=1

(δ̂λ + x⊤
i ∆̂

λ
)2 ≤ r2∗.

This, by condition (C1), further implies that

r2∗ ≥ κm(3, 1)
[
|δ̂λ|2 + ∥∆̂

λ

A∪A(∆̂
λ
,m)∥22

]
.

As a result, we obtain that
|δ̂λ| ≤ r∗√

κm(3, 1)

and that
∥∆̂

λ

A∪A(∆̂
λ
,m)∥2 ≤ r∗√

κm(3, 1)
. (18)

Note that the jth largest in absolute value component of ∆̂Ac is bounded by ∥∆̂Ac∥1/j. Therefore, it
follows that ∥∥∥∆̂

(A∪A(∆̂
λ
,m))c

∥∥∥2
2
≤

p∑
j=m+1

∥∆̂
λ

Ac∥21
j2

≤ 1

m
∥∆̂

λ

Ac∥21

≤ 1

m

[
3∥∆̂

λ

A∥1 + |δ̂λ|
]2 ≤ 18s

m
∥∆̂

λ

A∥22 +
2

m
|δ̂λ|2

≤ 18s

m
∥∆̂

λ

A∪A(∆̂
λ
,m)∥22 +

2

m
|δ̂λ|2,
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which implies that

∥∆̂
λ
∥22 ≤

(
1 +

18s

m

)
∥∆̂

λ

A∪A(∆̂
λ
,m)∥22 +

2

m
|δ̂λ|2

≤ r2∗
κm(3, 1)

(
1 +

18s

m
+

2

m

)
.

This completes the proof of Theorem 3.1.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The claims presented in the abstract and introduction accurately represent the
contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We discuss the limitations of our work in the last section (Section 5) of the
paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .

Justification: The assumptions needed for theoretical results are included in the Section 3,
and complete proof of each result is given in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: We have included details of the experimental setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: The implementation of QuanDA is available at https://anonymous.4open.
science/status/QuanDA-57FE.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: We have included the details of experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] .
Justification: For the experiments on synthetic data, we report error bars and the experimental
settings for the random data.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We have included the details of the computational resources in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We have conformed to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: Our work does not have a direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The models or the data used in the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: Our work does not use existing assets.881

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Our work does not involve research with human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our work does not involve research with human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: Our work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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