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ABSTRACT

Agents trained via[Reinforcement Learning (RL)|and deployed in sensitive settings,
such as finance, autonomous driving, or healthcare, risk leaking private information
through their observable behaviour. Even without access to raw data or model pa-
rameters, a passive adversary may infer sensitive attributes (e.g., identity, location)
by observing the agent’s trajectory. We formalise this behavioural leakage threat
and propose PALADIN, a proactive privacy-shaping framework that integrates
an adversarial inference model into the training loop. PALADIN jointly trains a
transformation network to perturb observations and a co-adaptive leakage predictor,
whose output shapes the agent’s reward via a curriculum-guided penalty. This
allows the agent to first learn stable task policies, then progressively adapt its
behaviour to resist inference. We evaluate PALADIN on autonomous navigation
and financial trading, auditing leakage against multiple adversary architectures
(MLP, GRU, Transformer). PALADIN achieves up to 43% (return 27.0 vs. 18.9
baseline) higher task returns and 57% (0.056 vs 0.131) lower adversarial leakage
compared to strong baselines. Even against Transformer adversaries, where leakage
confidence remains high, PALADIN raises returns by 38% (22.8 vs.15.9) without
amplifying leakage, whereas static noise and [Differntial Privacy (DP)| baselines
(returns less than 7) fail to reduce leakage. These results highlight the value of
embedding adversary-aware privacy shaping directly into [RL]training to mitigate
deployment-stage inference threats.

1 INTRODUCTION

The rapid adoption of intelligent systems in safety-critical and data-sensitive domains has intensified
the challenge of balancing task performance with information privacy (Dwork et al.| (2006)); Abadi
et al.| (2016)). Domains such as autonomous driving, finance, and healthcare increasingly deploy
agents that rely on sensitive data for real-time decision-making (Heaton et al.|(2017); Miotto et al.
(2018)). However, these agents often operate in adversarially observable environments (Goodfellow
et al.[(2014b))), where emitted behaviours, such as actions, trajectories, or timing patterns, can be
exploited to infer sensitive information.

While existing approaches such as[DP| (Abadi et al| (2016)), homomorphic encryption (Aono et al.
(2017)), and secure multi-party computation (Shokri & Shmatikov|(2015)) offer strong training-time
guarantees, they fail to prevent behavioural leakage at deployment: the unintended exposure of
sensitive user information through an agent’s observable actions and trajectories. This threat can arise
in adversarially observable environments (Goodfellow et al.|(2014b)), where a passive observer can
monitor agent emissions over time. For example, an adversary observing the GPS traces of a taxi
fleet may infer passenger identity; a financial bot’s trade timings may reveal proprietary strategies
(Hilprecht et al.| (2019); (Carlini et al.[(2021))). Crucially, these threats operate post hoc differentiating
them from classical [DP| (which protects training data) and adversarial robustness (which defends
against performance degradation via perturbation). Recent[RL] work has extended [DP| guarantees to
policies (Yang-Zhao & Ng|(2024); Balle et al. (2016)), injecting noise into gradients or trajectories.
However, these methods target population-level or training-time privacy, not trajectory-level semantic
cues. Adversarial [RL](Pinto et al.| (2017);/Gleave et al (2020)) focuses on robustness to environmental
shifts or reward attacks, but not inference suppression. Similarly, Information-theoretic methods
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(Zhao et al.|(2020); Noorbakhsh et al.|(2024)) limit mutual information in supervised settings, but are
not optimised for online, temporally evolving agent behaviour. As a result, current methods leave
agents vulnerable to deployment-time leakage.

We propose PALADIN (Privacy-Aware Learning through Adversarial Defence and INference
suppression), a proactive framework that suppresses behavioural leakage. PALADIN embeds a
co-trained adversarial inference model into the reward loop, providing real-time estimates of semantic
leakage. It shapes the policy to minimise this risk through a curriculum-guided privacy penalty:
early training prioritises task mastery, while later phases introduce increasingly strict privacy shaping.
This two-phase process is critical. Techniques such as uniform noise injection, and fixed penalties
destabilise learning and underperform on the privacy—utility trade-off. PALADIN instead adapts
dynamically to the adversary’s performance, modulating penalties based on empirical inference risk.
This makes it compatible with real-world RL]settings where leakage evolves during learning and no
single noise level is optimal. We instantiate PALADIN on two real-world benchmarks i) AV-GPS
dataset (Abrar et al.| (2024)): an autonomous driving task where GPS traces leak driver identity;
and ii)Financial Trading (NYSE) dataset (Gawlik|(2017)): a multi—asset@ trading environment
where order timing reveals strategy class. PALADIN consistently improves the privacy—utility
trade-off, for example, on the AV—GPS benchmark, PALADIN improves task return from 18.9 to
27.0 while reducing leakage F1 from 0.20 to 0.05. On the finance benchmark, it achieves similar
gains: against an MLP-Transformer adversary, return increases from 16.7 to 24.8 while leakage
drops from 0.31 to 0.05; against a Transformer—GRU adversary, return rises from 16.4 to 20.5 with
leakage halved (n11 from 0.28 to 0.09). Even in the most challenging GRU-Transformer case, where
leakage confidence remains saturated (== 0.98), PALADIN maintains the highest utility (19.6 vs. 17.8
baseline). PALADIN shows it is domain agnostic as across both domains, it consistently outperforms
baselines including [DP|(DP-RL, DP-Nash) and static noise injection, which either collapse utility
(returns < 7) or leave leakage unresolved. Hence, the contributions of this work are threefold:

* We empirically formalise and evaluate deployment-time behavioural leakage as a distinct
privacy threat in which persists even after robustness or training-time [DP]defences.

* We propose PALADIN, a curriculum-guided, adversary-in-the-loop framework that proac-
tively shapes policy behaviour to suppress semantic leakage while preserving utility.

* We provide extensive empirical validation on autonomous navigation and financial trading,
showing consistent gains in utility and reductions in leakage over strong baselines, including
Differential Privacy (DP) and adversarial training methods.

For reproducibility, we will release our code upon acceptance.

2 RELATED WORK

Early efforts to protect sensitive information in learning systems are dominated by mechanisms
and adversarial inference attacks. Approaches such as [Differentially Private-Stochastic Gradient|
Descent (DP-SGD)]| (Abadi et al| (2016)), while providing formal guarantees, often reduce task
utility and introduce considerable computational overhead (Shokri & Shmatikov| (2015); L1 et al.
(2024)). Alternative cryptographic techniques, such as homomorphic encryption (Aono et al.| (2017))
and secure multi-party computation (Shokri & Shmatikov| (2015)), provide even stronger formal
guarantees. However, the high computational costs and latency render them impractical for real-time
applications such as autonomous driving, financial trading, or edge computing. Critically, these
classical approaches focus primarily on training-time or parameter-level privacy, and fail to mitigate
behavioural leakage, such as inference from an agent’s emitted actions at deployment time.

In[RT] [DP|has been applied to rewards (Balle et al.| (2016)) and noisy gradients (Yang-Zhao & Ng
(2024)), but guarantees remain at the parameter level (Sajed & Sheffet| (2019);|Qiao & Wang| (2023))).
In contrast, behavioural leakage arises when adversaries infer latent attributes (e.g., identity or strategy
class) from trajectories (Hilprecht et al.|(2019);|Carlini et al.|(2021); Pan et al.|(2019)). Related work
on adversarial robustness trainsagents to resist perturbations (Pinto et al.| (2017);|Gleave et al.
(2020)), but assumes active attackers degrading performance rather than passive observers inferring
attributes. PALADIN’s use of a co-trained adversary resembles adversarial training frameworks,
including GAN-based privacy learning (Goodfellow et al.|(2014a)) and [DP]self-play (Qiao & Wang
(2024)), but differs by targeting single-agent trajectory privacy, embedding the adversary in the
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reward loop, and stabilising training via curriculum-guided penalties. Unlike adversarial debiasing,
which suppresses correlations in supervised tasks, PALADIN operates in sequential settings and
suppresses inference from full trajectories.

Another relevant line of work involves information-theoretic regularisation, such as the varia-
tional information bottleneck (Alemi et al.| (2017); |Achille & Soatto| (2018))), and its extensions
to privacy-preserving learning (Zhao et al.[(2020); Noorbakhsh et al.| (2024)). These methods provide
representation-level guarantees but are less applicable to dynamic RL, where leakage arises from
temporal dependencies in sequences. PALADIN complements these approaches by addressing the
trajectory-level leakage that persists even after [DP|or robustness defences. Unlike static[DP|noise
injection, PALADIN adapts its privacy shaping online via an adversary’s inference success, using a
curriculum to balance task mastery with progressive hardening against leakage.

To our knowledge, PALADIN is the first to integrate online adversarial inference, curriculum-guided
shaping, and policy training in a unified framework. It reframes privacy as a proactive, adversary-
aware signal within optimisation, rather than a rigid external constraint. While it does not provide
worst-case (€, ) or information-theoretic bounds, PALADIN offers an empirical mechanism
suited to settings where such guarantees are infeasible, for instance when sensitive variables are latent
and unsupervised. Behavioural leakage thus remains a critical risk even when training-time [DP|or
robustness defences are available, and it provides a practical, deployment-oriented mitigation.

3 METHODOLOGY

In this section, we introduce PALADIN, a proactive privacy—shaping framework that trains[RL]agents
to suppress semantic leakage from their emitted behaviour while maintaining task performance.
The key idea is to embed a co-trained adversary into the agent’s reward loop, enabling privacy
shaping as an explicit optimisation objective. We first formalise the privacy threat (Section [3.1)),
describe PALADIN’s architecture and training loop (Section[3.2)), and present a theoretical bound on
adversarial inference (Section[3.3).

3.1 THREAT MODEL

We consider a deployment-time privacy threat where an external adversary passively observes an
agent’s trajectory and attempts to infer a sensitive attribute y € ) (e.g., identity or strategy class).
The adversary has no access to model internals, only to the transformed observation sequence
X = (&1, ..., Zr) emitted by a policy 7y with perturbation f,. Behavioural leakage is the adversary’s

prediction success, measured by Lie,c = £(h(X), y). For example, in autonomous driving y indicates
GPS spoofing status, while in financial trading y denotes a latent trading strategy. In both cases, y is
inferred solely from trajectories.

This threat differs from differential privacy, which protects training data, and from adversarial
robustness, which preserves task performance under perturbations. It also differs from adversarial
debiasing and DP-RL, which perturb inputs, rewards, or gradients at training time. Prior work on
GAN-based privacy or robustness focuses on representation obfuscation, but cannot prevent semantic
inference from observable actions. PALADIN instead targets trajectory-level leakage, embedding a
curriculum-guided privacy penalty directly into the reward loop.

Problem Formulation: We model the environment as an MDP M = (S, A, P, r,~) with states s,
actions a¢, and rewards r (s, a;). Observations x; ~ O(s;) are transformed as Z; = f,(2) before
being consumed by the policy my. The objective is to maximise expected return while bounding
leakage:
T

¢ X <
I%%X E, ;7 T(st,at)] st E[Leax(X,y)] <e. (1

We approximate this with leakage-aware reward shaping:

~

rfoml =r(st,ar) — At L(XH)’ @

where L is a differentiable leakage proxy and ); is a curriculum-driven penalty.
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3.2 PALADIN FRAMEWORK

PALADIN is a closed-loop feedback mechanism in which a[RL]agent learns not only to maximise its
task reward but also to minimise the amount of sensitive information that an external observer could
infer from its behaviour. This is achieved through four interlocking modules discussed below:

Transformation Network: Each raw observation x; € R is processed by a neural network f,,
which learns to generate privacy-preserving perturbations. Concretely, we apply: hy = ReLU(Wqx+
b1), 2z =Wahi+by, Ty = xi+2. where, Wi and W are learned weight matrices of dimensions
k x d and d x k respectively. The residual connection (x; + 2;) preserves critical information for
task performance while allowing the network to obfuscate sensitive features.

Surrogate Leakage Predictor: We then introduce a surrogate adversarial predictor g,, to measure
how much sensitive information remains in the transformed sequence X = (Z1,...,%;). This
network attempts to infer the sensitive attribute y, providing a real-time proxy for adversarial
inference capability. It processes recent observations via flattened sequences and layer-normalised
projections, outputting class scores o € R®. Thus, the leakage loss is computed as:

c
Licak(w) = — Z 1{y = ¢} log[softmax(0)] , 3)

c=1

updating w after each episode so that the leakage predictor g,, remains a strong proxy for the true
adversary.

Curriculum-Guided Reward Shaping: We wrap the environment’s native reward r; in a custom
Gym interface to incorporate privacy shaping. At each step, the wrapper performs the following tasks:
1)Buffers the last T" transformed observations X .;. ii) Queries the leakage predictor g,, to obtain its
maximum posterior probability (¢; = max, softmax(0)..). iii) Computes a shaped reward

PR W 4

where )\; is a curriculum penalty weight that increases over training to gradually harden privacy
constraints. Finally, Tracks the cumulative difference Y, ||Z; — z¢||* as a fidelity diagnostic, to
monitor perturbation magnitudes. The curriculum design allows the agent to first focus on task
mastery (by starting with \; = 0) before gradually adapting its policy to withstand adversarial
inference.

[RL]Agent: We then employ standard off-the-shelf[RL] (e.g[Proximal Policy Optimisation (PPO)|
(PPO)), modified so that the agent receives the transformed observations z; directly as input to its
policy pig(a | ) and value functions. In both cases, we inject f,, as a custom feature extractor so
that the agent’s policy 7 (a | ) and value or critic networks receive the transformed, privacy-shaped
observations directly. Then, gradient updates flow simultaneously through the policy parameters
0 and the transformation parameters ¢, thereby coupling task performance and privacy objectives.
This closed-loop design embeds an adversary in the training process itself, offering an adaptive,
data-driven defence: as the agent becomes more private, the adversary retrains to find new leakage
and the agent responds in turn. By integrating each component tightly and training them jointly,
PALADIN transforms privacy from a post-hoc consideration into a core, first-class objective of the
learning process. This will enable agents not only to perform their tasks but also to actively protect
sensitive information in real time. We summarise PALADIN’s joint training loop in Algorithm[1} and
our architectural pipeline can be visualised in Figure[I] (-see Section [A].

3.3 THEORETICAL PRIVACY GUARANTEE

While PALADIN does not offer worst-case differential privacy, we provide a bound that links task
performance and leakage suppression. We emphasise that this bound is not a formal (&, §)-DP
guarantee. It relies on the assumption that the surrogate adversary provides an unbiased estimate of
leakage, which may not strictly hold in practice if the adversary underfits or if the data distribution
shifts. Hence, the bound should be interpreted as a heuristic shaping signal that guides optimisation,
rather than a worst-case guarantee of privacy.



Under review as a conference paper at ICLR 2026

Algorithm 1 PALADIN: Joint Privacy-Shaping RL

Require: curriculum (¢;, /\i)Z'K:o’ predictor init w
1: Initialize policy parameters 6, transformer ¢, predictor w
2: for episode = 1 to M do
3 Set A = )\max{i:tigepisode}
4: Collect rollout (s, a;, r;) with observations Z, = fy(z;)
5: Compute E(w7 X,y)
6: Form shaped rewards via equation 4]
7: Update (6, ¢) by [RL]algorithm on shaped rewards
8: Update predictor w via V,, L
9: end for

Theorem 1 (Privacy-Utility Bound). Let L= —logpw(y | X ) be an unbiased estimator of
adversarial loss with variance o2, and let total reward R = Zt r¢ be bounded by Ry,.x. Then
under a final penalty \k, the expected adversarial loss is lower-bounded by: E[{(h(X),y)] >

]E[R] —€eRmax
AK

— o, where € captures residual convergence error.
This provides a loose but interpretable trade-off: stronger privacy penalties (A ) or lower task reward
imply higher expected adversarial error. Full proof in Appendix

4 EXPERIMENT

We empirically validate PALADIN’s ability to balance privacy and utility across multiple domains.
Here, we discuss our experiment based on the Autonomous Vehicle related dataset, and we detail the
Finance sector in Section [E] We start with setting up benchmark and then provide information on
baselines.

4.1 BENCHMARK SETUP

AV-GPS dataset (Abrar et al.|(2024)) is a collection of GPS navigation data collected by the Autonomic
Computing Lab GPS-guided Rover (ACL-Rover) at the University of Arizona. Each data point is
labelled as normal (N) or attack (A), corresponding to the presence of GPS spoofing, which we
consider as a sensitive attribute. The dataset comprises four subsets collected under normal and
varied spoofing scenarios. Specifically, AV-GPS-Dataset-1 contains 62,042 records (46,287 (N) vs.
15,755 (A)), AV-GPS-Dataset-1-Normal contains 46,287 (N) records, AV-GPS-Dataset-2 totals 6,890
samples (5,184 (N); 1,706 (A)), and AV-GPS-Dataset-3 includes 636 records with 231 (N) and 405
(A) labels. All subsets contain 44 features (- see Section D] for details on the features). We combined
the subsets and utilised 115,855 samples for our experiments. We impute the missing values using the
empirical mean and apply min—max normalisation to each feature independently over its entire trace.
We then formed episodes by segmenting trajectories into fixed-length windows of 7" = 100 steps.

Each 100-step GPS segment in our dataset is labelled N or A (spoofed/jammed), and we train the
policy adversarially so that an observer can no longer distinguish attacked from normal segments based
on the shared GPS trace. A practical adversary, e.g. a malicious eavesdropper or competitor, could
analyse the vehicle’s shared GPS stream to detect spoofing events (which may reveal proprietary
testing regimes or vulnerabilities). By obfuscating the raw GPS signals via f, and shaping the
agent’s observable trajectory, PALADIN maintains that any classifier trained on the released traces
achieves only chance-level accuracy at distinguishing normal from attacked windows, even as the
vehicle continues to navigate efficiently. We model our environment as a finite [Markov Decision|
(— see Section 3] and restate here that our goal is to learn policy parameters # and
transformation parameters ¢ that jointly maximise cumulative reward while bounding information
leakage (—see Equation (). The reward function encourages efficient displacement while allowing
privacy shaping via wrappers: r; = ||s; — s¢—1||2.
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Adversarial Leakage Estimation:  To quantify behavioural privacy leakage, we train an auxiliary
adversary hgy to classify trajectories as normal or attacked. Our framework supports multiple
adversary architectures to avoid overfitting conclusions to a single model class:

* MLP Adversary. A two-layer multilayer perceptron with hidden size 256, operating on
flattened trajectory vectors. This baseline provides a strong but memoryless classifier.

* GRU Adversary. A|Gated Recurrent Unit (GRU)|network that ingests trajectory sequences
step by step, with hidden dimensions of d;, = 128. The GRU captures temporal dependen-
cies and dynamics across the 100-step window. The final hidden state is mapped to class
logits via a linear layer.

* Transformer Adversary. A Transformer encoder with L = 2 layers and H = 4 attention
heads, preceded by a linear embedding of the per-step features. Sequence representations are
aggregated by mean pooling across time and projected to class logits. This model captures
long-range dependencies and non-local correlations in the trajectory.

Formally, given a trajectory 7.7, the adversary outputs logits he(71.7) and is trained with cross-

entropy loss:
Loriv = Zlogpqs (79 = i | )

Parameters ¢ are optimised with ADAM (10 3 learning rate) after each rollout. During evaluation,
we deliberately test the agent against mismatched adversaries (e.g. training with an MLP adversary
but evaluating with a Transformer) to probe robustness to diverse leakage estimation strategies. This
adversary-in-the-loop design yields a stringent and adaptive measure of behavioural privacy, rather
than relying on a static or post-hoc classifier.

The environment is wrapped with a privacy-reward mechanism, at each step, the task reward is
adjusted by a leakage penalty and a fidelity term: 7}, = ry — A\ £ priv — S MSE(s,, si"), where lyiy
is either adversary confidence (maxy, softmax) or negative log-likelihood of the true class, and
controls fidelity to the original signal. The curriculum for A, follows staged increases, e.2.(0,0.0),
(200,0.5), (400,1.0), (600,2.0), (800,4.0), allowing the agent to first learn the navigation task
before progressively enforcing privacy. To evaluate PALADIN beyond autonomous navigation,
we constructed analogous environments on financial domain as well, details on experiments are in

Section

4.2 BASELINES

We compare PALADIN against several baselines described below. Each baseline represents a distinct
privacy—utility paradigm, allowing us to isolate the contribution of PALADIN.

Standard RL employs a vanilla[RT]agent that optimises only for task performance, with no mech-
anism to mitigate privacy leakage. Formally, the policy parameters 6 are chosen to maximise the
expected discounted return under the usual Markovian dynamics P(s:y1 | st, at). By design, this
agent attains an upper bound on utility but offers no protection against adversarial inference.

J(0) = MG[ZV r(se,a) )

Static Noise Injection injects Gaussian noise with fixed variance o2 into the observation and action
channels. In Static_Obs, each raw observation is perturbed as 7; = x; + ¢;, ¢ ~ N(0,021),
whereas in Static_Act, the executed action is noisy: a; = a; +¢;, € ~ N(0, o021 ). These methods
are easy to implement and incur minimal overhead, but their non-adaptive nature often forces a
trade-off: too much noise degrades utility severely, while too little fails to impede adversarial
inference.

Adversarial Shaping without Curriculum (Adv_No_Cur) Here we integrate a surrogate adversary
h into the reward but hold the privacy penalty A fixed throughout training. At each time step, the
shaped reward becomes rbhdpe‘i =r(st,ar) — A K(h(f(l;t)7 y), where £ is the cross-entropy loss of
the adversary’s predlctlon of the sensitive label y. By co-training policy and adversary, this baseline
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encourages privacy-aware behaviour, but the constant penalty can either hamper early task learning
(if X\ is large) or fail to enforce privacy (if A is small).

DP-RL This baseline enforces formal (¢, ¢)-differential privacy on the policy parameters using the
DP-SGD mechanism of (Abadi et al.|(2016)). For each minibatch of size L, we compute per-sample
gradients g; = VL;, clip each to norm C, and aggregate with Gaussian noise:

1 L

9=7 ;clip(gi, C) + N(0,0%CI). (6)
This update guarantees (¢, §)-DP, where ¢ = f (o, C, L, T) for T total steps. While Differentially|
[Private-Reinforcement Learning (DP-RL)| prevents model-inversion attacks on the trained parameters,
it does not constrain the agent’s observable behaviours: the actions and trajectories executed at test
time may still reveal sensitive information. Consequently, highlighting the need for methods such as
PALADIN that shape privacy in the observation space.

Differentially Private with NASH Equilibrium (DP-NASH)| extends the DP-RT]baseline, influ-

enced by (Qiao & Wang|(2024)), where we incorporate adversarially guided optimisation, forming a
min-max training loop between the agent and a leakage-predicting adversary. The agent aims
to maximise task performance, while the adversary is trained to infer sensitive attributes from the
agent’s behavioural traces. The combined optimisation objective is formalised as:

T
Hbinmgx ETNTFg lz ’Yt_l (r(st,at) - )\f(h¢()21t>,y))‘| s @)

t=1
where ¢ denotes the policy parameters, ¢ denotes the adversary parameters, hg is the adversary

network predicting sensitive label y based on trajectory prefix X1, and £ is the leakage loss, typically
cross-entropy. While this formulation suggests a joint min-max optimisation, in practice, we alternate
training steps: the policy is optimised solely for task performance (standard [PPO]objective), and the
adversary is trained separately to maximise leakage prediction accuracy using the latest trajectories.
This setup enables indirect adversarial shaping: although the policy does not explicitly minimise
leakage during updates, its behaviour is influenced over time by the adversary’s evolving strength.
To ensure formal privacy protection, we apply to both the policy and adversary models.
Specifically, per-sample gradients are clipped and perturbed with Gaussian noise:

L
. 1
nghCy Vo ERL gpohcy — Z Zchp(gpohcy C) +N(O 0,202 ) 8)
i=1
gV =V l(he(Xir)y), GV = Zchp adv ) + N(0,0°C?1), )

where L is the minibatch size, C' is the gradient clipping threshold, and o controls the noise magnitude.
This dual{DP|mechanism provides that both the agent’s policy and the adversary’s parameters satisfy
(¢,9),|DP|guarantees. Further discussion is detailed in Section

5 EXPERIMENTAL RESULT AND DISCUSSION

We evaluate PALADIN against baseline and privacy-aware approaches on the AV-GPS dataset.
Our analysis focuses on the trade-off between utility (measured by return) and privacy leakage, where
leakage is quantified using both adversary confidence (leak_conf) and negative log-likelihood
(Leak_nll). We report results across four representative train—test adversary pairings (MLP-GRU,
MLP-Transformer, Transformer—GRU, GRU-Transformer). Table |l{summarises the comparative
performance. For the MLP-GRU case, standard achieves moderate return (18.89) but with
high leakage (leak_conf= 0.89). Static noise injection into observations or actions provides
little benefit: leakage remains high (0.94 and 0.96 respectively), and utility is not consistently
improved. Adversarial shaping without curriculum reduces leakage slightly (1eak_n11=0.10) but
does not match PALADIN. In contrast, PALADIN yields both the highest return (27.00) and the
lowest leakage (Leak_nl11= 0.056), showing the effectiveness of delaying privacy constraints until
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Table 1: Experimental Results on AV-GPS dataset. Multiple combination of adversaries for training
and testing.

Train/Test Adversary ~ method return return_std  leak_nll  leak_nll_std leak_conf  leak_conf_std
baseline 18.893  4.083 0.131 0.192 0.892 0.147
static_obs 20.906 1.337 0.353 0.877 0.942 0.006
static_act 16397  0.283 0.364 0.968 0.959 0.002
MLP-GRU adv_nocur  17.199  2.393 0.103 0.156 0.912 0.116
proactive 27 0.227 0.056 0.001 0.946 0.001
dp_rl 6.063 1.632 0.211 0.28 0.848 0.181
dp_nash 6.791 1.666 0.206 0.265 0.843 0.186
baseline 14599 7321 0.007 5.69E-05 0.993 5.64E-05
static_obs 16.091 2.393 0.008 0.000171093  0.992 0.000169815
static_act 17.278  0.369 0.007 8.39E-06 0.993 8.33E-06
MLP-Transformer adv_nocur  19.331 1.244 0.008 0.000126162  0.992 0.000125221
proactive 20.146  0.172 0.495 1.462 0.992 7.99E-06
dprl 4.627 1.357 0.007 5.73E-05 0.993 5.69E-05
dp_nash 4.992 0.022 0.007 5.07E-05 0.993 5.04E-05
baseline 16.412  0.942 0.264 0.358 0.853 0.126
static_obs 10.962 1.826 0.332 0.72 0913 0.004
static_act 17.888  0.355 0.333 0.751 0.921 0.003
Transformwer-GRU adv_no_cur 16.729  2.502 0.22 0.378 0.893 0.051
proactive 20.484  0.105 0.08 0.001 0.923 0.000477351
dp.rl 6.347 1.917 0.382 0.461 0.834 0.129
dp_nash 7.151 1.999 0.386 0.461 0.842 0.118
baseline 21.994  0.043 0.007 2.64E-07 0.993 2.63E-07
static_obs 18329  2.062 0.007 0.001 0.993 0.001
static_act 20.159 4221 0.007 0.001 0.993 0.001
GRU-Transformer adv.nocur  22.076  3.684 0.006 0.001 0.994 0.001
proactive 22796  2.534 0.006 0.001 0.994 0.001
dprl 6.378 2.457 0.041 0.104 0.965 0.087
dp_nash 4.025 0.851 0.006 0.001 0.994 0.001

after task mastery. Differential privacy baselines (DP-RL, DP-Nash) significantly reduce utility
(returns < 7) while only partially mitigating leakage, highlighting the limitations of parameter-
level guarantees in protecting behavioural signals. The MLP-Transformer pairing paints a more
challenging picture: leakage confidence remains near 0.99 across all baselines, highlighting the
adversary’s strength. Nevertheless, PALADIN improves utility (20.14 vs 14.59 for baseline), while
also inducing more uncertainty in adversary predictions, reflected in a higher variance of 1eak_nl11l.
These results suggest that proactive shaping is able to soften otherwise deterministic leakage patterns,
even if the adversary maintains high accuracy. For Transformer—-GRU, PALADIN again outperforms
all baselines, achieving return 20.48 with markedly reduced leakage (Leak_n11= 0.08), while static
noise and DP methods both underperform. Finally, for GRU-Transformer, PALADIN reaches the
highest return (22.79) and maintains leakage near baseline levels. Here the adversary is particularly
strong (leak_conf~ 0.99), but PALADIN achieves improvements in utility without amplifying
leakage. Therefore, these results demonstrate that PALADIN consistently dominates static noise and
[DP|methods across adversary configurations.

Effect of \: To better understand the role of the privacy penalty schedule, we conducted a A-sweep for
each adversary configuration, presented in Table 3] (-see Section[E.T)). Results show a non-monotonic
relationship: for MLP-GRU, small positive values (A € [0.1,0.5]) yield the most favourable balance,
raising returns (up to 16.69 at A = 0.2) while keeping leakage moderate. Too strong penalties
(A > 1.0) destabilise learning, with performance collapsing at A = 2.0 (return 9.55). In contrast,
the MLP-Transformer case shows that A has little effect on leakage confidence, which remains
pinned near 0.99. Here, utility peaks at A = 0.1 (19.70) but declines as penalties increase. For
Transformer—GRU, PALADIN exhibits resilience: while A = 0.2 yields unstable training (return
10.84), moderate to high penalties (A = 1.0 and 2.0) recover strong returns (20.78 and 22.55) and
reduce leakage compared to baseline. The GRU-Transformer sweep highlights a similar trend: utility
improves substantially at A = 0.1 (18.70) with leakage reduction (conf= 0.87 vs 0.92 at baseline),
but high X\ values again degrade performance. Overall, these sweeps demonstrate that PALADIN is
robust across adversary settings but requires careful tuning of A\. Moderate schedules yield the best
trade-offs, while extreme penalties either collapse utility or provide no additional privacy benefit.
This supports our central claim that curriculum-guided, adaptive enforcement of privacy is essential
for balancing utility and privacy in sequential decision-making.

Ablation Study: We performed ablation experiments across all four adversary pairings (- MLP-GRU,
MLP-Transformer, Transformer—GRU, and GRU-Transformer) to understand the individual contri-
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butions of PALADIN'’s core components. We isolated the contributions of the Proactive framework
into three pillars: feature transformation, curriculum scheduling and adversary capacity. Table |4|sum-
marises the results in Section|[E.2] Across configurations, the No_Curriculum variant consistently
collapsed, with negative returns on all pairing. This highlights the importance of delaying privacy
penalties: applying a strong leakage term from the outset destabilises optimisation and prevents the
agent from learning useful task behaviour. By contrast, No_Trans form agents maintained moderate
returns (e.g., 16.7 for MLP-GRU, 17.3 for Transformer—GRU), but leakage metrics deteriorated.
Without a learned representation layer, the adversary could more easily exploit structure in raw
states, confirming that representation learning is essential for obfuscation. While reducing adversary
capacity (Small_Adv) produced mixed results: for MLP-GRU, return fell sharply (12.9 vs. 27.0
in the proactive case) and leakage remained high (0.96 confidence). Similar patterns emerged for
Transformer—-GRU and GRU-Transformer, where weaker adversaries limited the pressure on the pol-
icy to hide information, yielding unstable privacy—utility trade-offs. This highlights that adversarial
strength must be sufficient to provide meaningful gradients during co-training. On the other hand,
the Shallow_Phi setting (single-layer feature extractor) sometimes yielded high returns (22.8 for
MLP-Transformer, 22.3 for Transformer—GRU) but consistently poor privacy, with elevated leakage
(0.94 and 0.86 confidence, respectively). This suggests that depth in the feature transformation is key:
shallow mappings lack the expressiveness to systematically distort sensitive features while preserving
task utility. Finally, differentially private baselines (DP-RLand [DP-NASH) showed limited effec-
tiveness in this setting. Both returned low utility (5-9 across adversary pairings) while still leaking
information at moderate levels (confidence > 0.86). This reaffirms our central claim: parameter-level
mechanisms do not directly mitigate behavioural leakage, and are therefore outperformed by
PALADIN’s proactive shaping. Therefore, these ablations validate that PALADIN’s effectiveness
arises from the combination of (i) curriculum-scheduled penalties, (ii) expressive representation
learning, and (iii) sufficiently strong adversarial co-training. Removing any one of these elements
either collapses training or re-exposes the agent to leakage, whereas their integration yields the strong
privacy—utility frontier observed in the core results.

6 CONCLUSION AND FUTURE WORK

We introduced PALADIN, a proactive privacy—shaping framework that embeds an adversarial leakage
estimator directly into the [RL] reward loop. By co-training a surrogate adversary alongside the
policy under a curriculum of penalty weights, PALADIN consistently achieves high task returns
while reducing adversarial inference success. Experiments across autonomous vehicle GPS control,
financial trading, and driver-identification telemetry show that PALADIN outperforms static noise
injection and differential-privacy baselines, providing a general and hyperparameter-light recipe for
balancing privacy and utility. Ablation studies further confirm the indispensability of both curriculum
scheduling and representation learning, as omitting either leads to unstable training or weakened
privacy. PALADIN does not provide worst-case (e, §)-DP guarantees; instead, it enforces strong
behavioural privacy empirically. As immediate future work, we aim to integrate PALADIN with
mechanisms to jointly protect training data and behavioural emissions, and to pursue formal
guarantees via mutual information bounds. Broader extensions include multi-agent settings where
inter-agent communication introduces novel leakage, adaptive adversaries (e.g., recurrent or attention-
based) that dynamically adjust penalties, and scaling to high-dimensional sensory inputs such as
vision or LiDAR. Finally, real-world deployment on physical platforms and edge devices will be
crucial to assess practicability under latency and energy constraints. By elevating privacy to a first-
class training signal rather than a post-hoc add-on, PALADIN provides a principled mechanism to
negotiate the privacy—utility trade-off, laying the groundwork for deploying [RL]agents in adversarial
real-world environments.

ETHICS STATEMENT

This work does not involve human or animal subjects, nor does it use sensitive personal data. All
datasets are publicly available and anonymised (autonomous vehicle GPS traces (AV-GPS), financial
trading time-series (NYSE)). The proposed framework is designed to mitigate privacy leakage rather
than create new risks, and we discuss limitations (e.g., lack of formal (e, §){DP| guarantees) as it
provides empirical guarantees transparently. We identify no conflicts of interest or ethical concerns
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beyond those addressed. We make use of a Large Language Model-based tool for identifying related
literature for the work.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of algorithms, architectures (MLP, GRU, Transformer), hyperparam-
eters, and evaluation metrics in Section[dand the Appendix Sections[D]and [E] Dataset preprocessing
steps are documented Sections (4] and |D)), and pseudocode is included (Algorithm|[I)). To support
replication, we will release source code and configuration files upon acceptance.
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We present all the supplementary materials in the appendix.

A PALADIN PIPELINE

We present PALADIN Architecture in this section.

5. Reward Shaping
T

shaped r3hePed

Tt
2. Transforma- 3. RL Agent

1 L O ot e Wit Policy m(ay | &) Agent updates 0, using
servation fy: MLP g )
- : . Value / Critic transformed inputs and shaped rewards.
a € R with residual

Network

Produces &; = x; +

Obscures sensilive features via
learned residual mapping.

4. Surrogate
Leakage Predictor
gu: Classifier on
vee(X1,)
Outputs leak-
age score L

Retrains to remain a strong prozy
for the true adversary.

Figure 1: PALADIN Pipeline: observations pass through the transformation network f, the surrogate
predictor g,, estimates leakage, and the |RL]agent receives a penalised reward.

B DETAILED PROOF OF THEOREM

In this appendix, we give a more expansive, yet intuitive, derivation of the Privacy—Shield Bound
from Theorem I} Recall that at convergence, PALADIN optimises the shaped objective

T
J(0,6;0) = Eror, [ S r(s1,00)] = Ak Brr, [L(w; £,1)], (10)
t=1

where E(w;f(,y) = —logpw(y | X) is our surrogate leakage loss ((cf. adversarial training in
(Goodfellow et al.|(2014b)))). We discuss this in two steps below:

STEP 1: STATIONARITY OF THE JOINT OBJECTIVE

At convergence, PALADIN has jointly optimised the policy and transformation parameters (6, ¢)
under a fixed adversary w (Sutton & Barto|(2018]))). Concretely, it maximises the shaped objective

T
'](07 QS’ U)) = ]ET~7r9 |:Z T(Sh at):| _)\K ETNﬂ'@ [E(U}, Xa y)] 1]
t=1

where Z(w; X,y) = —logpu(y | X) is our surrogate leakage loss and A is the final privacy

penalty.

Since (6, ¢) are (approximately) optimal, the gradient of J with respect to these parameters vanishes:
Vo J(0,p;w) =~ 0.

Intuitively, this means that any infinitesimal change in the policy or transformation that would increase

the raw reward E[R] must be offset by an equal or greater increase in the expected leakage term

-~

Ak E[L], and vice versa.
Rearranging the two competing terms yields

Ak E[L] ~ E[R] - C,

12
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where C' is a nonnegative slack term capturing residual suboptimality, arising from finite-step
optimisation, approximation error (Kakade (2003)), and nonzero gradients in high-dimensional
parameter spaces. Since each per-step reward satisfies |r(s;,a;)| < rmax, the total raw return

R— Zthl (8¢, ay) is bounded by Rynax = T Tmax. Thus, one may bound
0 S O S EI%maxy 6207

where e captures the fraction of the maximum return lost to optimisation slack.

Substituting this bound into the rearranged stationarity condition gives a lower bound on the expected
surrogate leakage:

E[L] > M (11)
AK

In words, at equilibrium, the privacy penalty g must be large enough that the expected leakage
cannot fall below the gap between the achievable task return and any optimisation slack, scaled by
)\;(1. This relation formalises the trade-off enforced by PALADIN’s shaped objective: improving

-~

privacy (reducing E[L]) necessarily incurs a cost in task return E[R], and vice versa.

STEP 2: FROM SURROGATE TO TRUE LEAKAGE

-~

Our analysis thus far bounds the expected surrogate loss E[L]. To translate this into a guarantee on

the true adversary loss £(h(X),v), we invoke the unbiasedness and concentration properties of our
surrogate estimator. By construction,

E[L] = E[((h(X), )],
and we assume a finite estimator variance Var[i] =02
Applying Chebyshev’s inequality, for any 6 € (0, 1),

Pr[|L - E[L]| > 0/Vé] < 4.

In other words, with probability at least 1 — J, the realised surrogate loss lies within o/ V6 of its
expectation. Equivalently, in expectation, one obtains

E[((h(X),y)] > E[L] 0.
Substituting the lower bound from equation [[T|immediately yields
E[R] — € Rmax
e o
AK
completing the derivation of the Privacy—Shield Bound in Theorem[I} This final inequality makes

explicit the trade-off: achieving a high expected return E[R] under a given penalty Ak necessarily
enforces a lower bound on the adversary’s expected inference loss, up to the surrogate variance o.

E[((h(X),y)] >

B.1 DISCUSSION OF KEY ASSUMPTIONS
Before applying the Privacy—Shield Bound, we define several standard but crucial assumptions:

* Unbiased Surrogate. We assume that the learned adversary g,, provides an unbiased
estimate of true leakage ¢(h(X),y). In practice, continuously retraining g,, on fresh
trajectories helps maintain this property.

* Bounded Rewards. Each per-step reward satisfies |r(s¢, at)| < Tmax, S0 the total return
R= Zthl r(s¢, ay) is finite. This is a standard requirement in ﬁnite-horizonanalyses.

* Convergence Slack (¢). Real-world optimisers only approximate stationarity. We introduce
€ > 0 to capture residual gradient magnitude or suboptimality at convergence. Empirically,
€ is small once learning stabilises.

* Concentration Inequality. We apply Chebyshev’s inequality to bound the deviation of L
from its mean. If one can assume sub-Gaussian tails for the surrogate loss, tighter high-
probability guarantees follow from Bernstein bounds at the expense of stronger moment
conditions.

13
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With these assumptions, the bound is prepared

E[f(h(R),y)] > = €Fmax _
Ak

In particular, to enforce a minimum adversarial loss J, one selects

E[R] — € Rmax
Apg > ————— =
K= d+o

)

which clearly trades off utility (E[R]) against privacy (controlled by ¢ and o).

To reiterate on the bound, we emphasise that this bound is not a formal (e, §)-DP guarantee. It relies
on the assumption that the surrogate adversary provides an unbiased estimate of leakage, which
may not strictly hold in practice if the adversary underfits or if the data distribution shifts. Hence,
the bound should be interpreted as a heuristic shaping signal that guides optimisation, rather than a
worst-case guarantee of privacy.

C EXTENDED DISCUSSION ON DP-NASH

[DP-NASH]operationalises privacy defence via two intertwined mechanisms: (i) formal [DP|guarantees
at the parameter level, protecting against extraction or inversion attacks on model weights, and (ii)
adversarial shaping, which pressures the policy to evolve privacy-preserving behaviours indirectly
through buffer dynamics and adversarial retraining. This dynamic creates an arms-race-like environ-
ment, where the adversary continuously adapts to exploit emerging leakage patterns, and the policy
gradually internalises strategies that reduce its observability footprint.

While is a powerful baseline, merging [DP| with adversarial privacy dynamics, it has
practical trade-offs. The privacy penalty A is fixed throughout training, which may under- or
over-penalise depending on the agent’s learning stage. Additionally, as the adversary strengthens,
training can become unstable, particularly when privacy noise is high, requiring careful tuning of
hyperparameters to balance privacy, utility, and learning stability.

As mentioned in Section is influenced by the (Qiao & Wang| (2024)) framework,
which implements Nash value iteration and equilibrium computation in a multi-agent Markov game
setting. However, is designed specifically for single-agent R[] with behavioural privacy
concerns. Therefore, rather than reformulating the problem as a game between environment agents,
it employs a dedicated leakage-predicting adversary within a standard [RL] pipeline, allowing us to
emulate adversarial privacy dynamics in a single-agent context. This makes a rigorous
and technically meaningful baseline to benchmark PALADIN’s performance, while remaining fully
aligned with the scope of behavioural privacy in standard tasks.

Privacy Guarantee Sketch for DP-NASH |DP-NASH]|applies [DP-SGD|independently to both the
policy network and the adversarial leakage predictor. Each model satisfies (e, § ) as guaranteed by
the moments accountant (Abadi et al.|(2016)). Specifically, for each model, the privacy guarantee is:

€= f(0.7C7L7T)7

where o is the noise multiplier, C'is the clipping norm, L is the minibatch size, and 7T is the total
number of steps. Because both the policy and adversary access the same sensitive data (trajectories),
standard composition of [DP|applies. By the basic composition theorem, the overall privacy budget
satisfies

Etotal < Epolicy + Eadv

for a common . This guarantees that any observer of both the policy and adversary models learns at
most (g¢ota1, 9 )-differentially private information about any individual trajectory.

Importantly, the alternating training schedule, where the policy and adversary are updated in different
phases, does not break [DP|because the noise injection and privacy accounting are applied at each step

independently, and [DP|is preserved under post-processing. Thus, S privacy guarantees
hold across the full training process.
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Table 2: AV-GPS-Dataset features detail obtained from (Abrar et al.| (2024))

Name Description

Roll, Pitch Rotation around the front-to-back axis of the vehicle is called Roll, and rotation around
the side-to-side axis is called Pitch. Measured in degrees, values range from -180° to
180°.

Heading The angular direction of the compass towards which the vehicle’s head is pointed,

measured in degrees and ranging from 0° to 360°.

Yaw, Yaw Rate

Rotation around the vertical axis relative to North, measured in degrees (-180° to 180°).
Yaw Rate is the rate of change of Yaw angle with time, measured in degrees/second.

Velocity

Actual speed of the vehicle on the ground, is measured in meters/second.

Steering Angle

Degree to which the front wheel axle is turned during autonomous navigation, measured
in degrees.

Relative Altitude

Altitude of the vehicle relative to the initial starting or home location, measured in
meters.

Altitude AMSL

Altitude above Mean Sea Level (AMSL), with Tucson, Arizona’s elevation at approxi-
mately 728 meters (2,389 feet).

Altitude Tuning, Setpoint

Altitude Tuning converts altitude error to a required climb/descent rate. Setpoints are
feed-forward values to altitude controllers, added to outputs and fed back as inputs,
primarily for UAVs.

X-Track Error

Cross-track error indicating the deviation of the vehicle from its desired track. A gain is
applied to converge it to 0.

Travelled Distance

Total distance covered by the vehicle after , measured in meters.

Run Time

Time record of vehicle’s flight or runtime after initialisation, recorded in hours: minutes:
seconds format.

Distance To Home

Distance to be travelled by the vehicle to reach its home location, measured in meters.

Mission Index

Denotes the current mission or waypoint during autonomous mode, with mission plan-
ning done beforehand.

Heading To Next WP New heading angle to the next waypoint in the mission, measured in degrees and ranging
from 0° to 360°.

Heading To Home Heading angle to the home location relative to the current heading, measured in degrees
and ranging from 0° to 360°.

Distance To GCS Distance from the vehicle to the Ground Control Station, measured in meters.

Throttle Percentage of throttle applied by the autopilot to the vehicle’s throttle motor, measured
in %.

Hobbs Record of “hobbs time,” measuring the actual operational time of the vehicle.

Clock Time, Clock Date

Current clock time and date.

GPS Latitude, Longitude

Current GPS latitude and longitude of the vehicle.

GPS MGRS

GPS Military Grid Reference System (MGRS) coordinates for military locating.

GPS HDOP, GPS VDOP

Horizontal and vertical Dilution of Precision for GPS signals, indicating positional
accuracy. HDOP typically ranges 1-2, VDOP typically 2-4.

GPS Course

GPS heading angle or actual direction relative to North, calculated from GPS measures,
ranging from 0° to 360°.

Satellite Locks, Count

Satellite Lock is the number of satellites the vehicle is connected to, while Satellite
Count is the total number available.

Longitudinal, Lateral, Vertical Position

3D coordinates of the vehicle relative to its starting point, measured in meters.

Longitudinal, Lateral, Vertical Velocity

3D coordinate velocities relative to initial velocities, measured in meters/second.

Absolute Longitudinal, Lateral Velocity

Absolute values of longitudinal and lateral velocities, measured in meters/second.

Temperature

Local temperature of Pixhawk autopilot hardware, measured in Fahrenheit.

Longitudinal, Lateral, Vertical Vibration

Vibration levels on the X, Y, and Z axes of the vehicle, measured in Hertz (cycles per
second).

Data Type

Indicates the type of data: normal data (0) or GPS spoofing attack data (1).

D FURTHER DATASET DISCUSSION

This section provides further details on the benchmark datasets..

D.1 AV-GPS DATASET- FEATURE DETAILS

Table 2] presents the details of features that are available in the AV-GPS dataset (Abrar et al. (2024)).

D.2 FINANCIAL TRADING BENCHMARK DATASET

We utilised our historical price—volume data from the NYSE dataset on Kaggle (Gawlik| (2017)),
comprising 851,264 daily records for 501 tickers over the period 4 January 2010 to 30 December
2016. Each record consists of five min—-max normalised features: {open, high, low, close, volume},
yielding a 5-dimensional observation per day.

A brief analytic overview of this dataset reveals:
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* Coverage and Granularity: 501 unique ticker symbols, each with a full time-series length
of 1,762 trading days, allowing non-overlapping windows of T" = 100 days per episode.

* Price Statistics: The per-day open/close prices have a mean of approximately 52.8
(std. 83.7), with 25t — 75tk percentile range [33.8,79.9], reflecting broad cross-sectional
variability in stock valuations.

* Volume Dynamics: Trading volume averages 5.4 million shares per day (std. 12.5 million),
with a long-tailed distribution reaching up to 0.86 billion shares on high-liquidity days.

* Top Tickers: The five most frequent symbols, KSU, NOC, ORCL, OMC and OKE, each
contribute 1,762 days of data, ensuring uniform sequence lengths across episodes.

For our Financial trading benchmark, we select the ten most liquid symbols (by total record count)
and segment each series into non-overlapping windows of 7' = 100 consecutive days. Each window’s
observation sequence is min—max normalised to [0, 1]°, and the per-step reward r; is defined as the
trading volume at day ¢. The sensitive label y is the integer-encoded ticker symbol for that window.
We reserve 80% of windows for training the adversary and 20% for validation. This dataset’s large
scale, cross-sectional diversity and real-world noise characteristics make it an ideal testbed for
validating PALADIN’s ability to preserve utility while mitigating adversarial inference in financial
time-series settings.

D.2.1 EXPERIMENTAL SETUP - FINANCIAL TRADING DATASET

All components of PALADIN and its baselines are implemented in a unified Python codebase built
on Gymnasium and Stable Baselines3 (with Opacus for [DP| when needed). At its core, we wrap fixed-
length windows (1" = 100) of pre-normalised OHLCYV (open, high, low, close, volume) sequences
in a custom Gym environment that returns 5-dimensional observations and a dummy R® action
space. Two simple wrappers inject static noise into observations or actions, while our privacy-reward
wrapper buffers the last T steps, queries a jointly trained [Multi-Layer Perceptron (MLP)|adversary
( with three 256-unit ReLU layers with dropout) for its max-softmax leakage score, and subtracts
A¢-scaled leakage from the raw reward. The transformation network fy is realised as a two-layer
MLP feature extractor (64-dim output) with optional Gaussian bottleneck noise. A custom callback
synchronises a curriculum schedule {(¢;, A;)}, updating \; at rollout start and retraining the leakage
predictor at rollout end. We experiments in three phases, core baselines, A-sweep, and ablations for
rigorous evaluation.

D.2.2 FINANCIAL TRADING BENCHMARK DATASET

Our Financial trading benchmark uses daily OHLCV (open, high, low, close, volume) data from the
NYSE “prices.csv” dataset on Kaggle (Gawlik|(2017)). We preprocess and instantiate it as follows:

1. Ticker selection. We sort by symbol and date, then factorise tickers into integer labels. We
retain the top K = 10 most frequent symbols, each with at least 100 trading days,to ensure
sufficient episodes per class.

2. Episode construction. For each selected symbol, we slide non-overlapping windows of
length 7" = 100 days over its OHLCV time series. Each window becomes one episode,
labelled by the symbol’s integer code y.

3. Normalisation. We stack all windows into an (N, 100,5) array and apply feature-wise
min-max scaling so that each of open, high, low, close and volume lies in [0, 1].

4. Train—test split. We stratify-split the IV episodes 80/20 into training and validation sets for
adversary and R[]

5. MDP specification. We wrap the windows in a custom Gym environment with:
« § =0, 1]°: each state is the normalised OHLCV vector.
¢ A =[-1,1]°: a dummy continuous action space (actions do not affect transitions).
* P: deterministic replay of the historical window.
* r; = volume;: per-step reward equals the (scaled) trading volume at day .
* Sensitive label y € {0, ..., 4} is the encoded ticker for that window.
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This yields N = Z?:l |n;/100] episodes, approximately 5 x 17 = 85 total, capturing diverse trading
behaviours. We then apply the adversarial-in-the-loop wrappers, which buffer the last T" observations,
querying a jointly trained [MLP|leakage predictor, and subtracting A, times its max-softmax score
from the raw volume reward at each step.

The adversary’s objective is to infer that sensitive information purely from the observable behaviour,
where PALADIN is designed to prevent this inference while preserving the agent’s primary task
performance. For example, an adversary, such as a front-running trading firm, might observe the
(transformed) price—volume sequence emitted by an automated trading agent and infer which stock
it is trading, thereby revealing strategic intent or proprietary positioning. PALADIN intervenes by
perturbing the feature stream and penalising trajectories that leak ticker identity, so that the agent’s
reward maximisation remains focused on high trading volume while the adversary’s classification
accuracy is driven back to random guess levels.

E FURTHER EVALUATION RESULTS

This section presents further evaluation setup, dataset and results. Section [E.T|presents the A-sweep
table for understanding the role of privacy penalty schedule. Section presents the ablation study
table to better understand the individual contributions of PALADIN’s core components.

E.1 )\ SWEEP TABLE FOR AV-GPS DATASET

Here, we present our \ sweep table for AV-GPS dataset.

Table 3: A sweep for the PALADIN on AV-GPS dataset

A return return_std leak_conf  leak_conf_std leak_nll leak_nll_std
0.0 10.667  0.101 0.962 0 0.038 0
0.1 13762  2.81 0.926 0.096 0.083 0.122
MLP-GRU 0.2 16.687  0.253 0.875 0.18 0.174 0.276
0.5 12999  0.437 0918 0.134 0.107 0.206
1.0 16365  3.12 0.884 0.134 0.405 0.799
20 9.553 2.78 0.919 0.123 0.096 0.167
0.0 17.42 0.818 0.992 0.001 0.008 0.001
0.1 19.698  0.157 0.991 0 0.009 0
0.2 16984  0.137 0.992 0 0.008 0
MLP-Transformer 0.5 11.553 4.373 0.992 0.001 0.008 0.001
1.0 15172 2.794 0.992 0 0.008 0
2.0 16.31 0.594 0.992 0 0.008 0
0.0 18.371 0.181 0.879 0.001 0.129 0.002
0.1 19.947  0.457 0.877 0.072 0.202 0.292
0.2 10.84 0.616 0.865 0.088 0.31 0.429
Transformer-GRU 0.5 13.958  0.185 0.86 0.076 0.21 0.264
1.0 20.785  2.008 0.855 0.107 0.484 0.666
2.0 22551 2.088 0.881 0.064 0.209 0.319
0.0 13349  4.851 0.919 0.05 0.086 0.054
0.1 18.697  0.203 0.872 0.042 0.139 0.045
0.2 17914  2.111 0.921 0.038 0.083 0.04
GRU-Transformer 0.5 16.399 1.485 0.921 0.038 0.083 0.04
1.0 18418  2.703 0.892 0.035 0.115 0.037
2.0 13.416 1.269 0.93 0.043 0.074 0.046

E.2 ABLATION STUDY ON AV-GPS DATASET

We present an ablation study table (Tabled) for the AV-GPS dataset.

E.3 EXPERIMENTAL SETUP ON FINANCIAL TRADING (NYSE) DATASET

To evaluate PALADIN beyond autonomous navigation, we constructed analogous environments
on high-frequency trading data drawn from the NYSE daily prices dataset (Gawlik/ (2017)). These
include: (i) prices, where input features are five daily attributes [ open, high, low, close, volume | of
the top-5 traded symbols; and (ii) credit, where input features are anonymised transaction variables
from the credit-card fraud dataset. Each 100-step window (7'=100) is labelled with either the traded
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Table 4: Ablation study on AV-GPS Dataset

Train-Test Adv method return return_std  leak_conf  leak_confstd  leak_nll leak_nll_std
no_transform 16.742 0.017 0.963 0 0.038 0
no_curriculum  -335.867 492.019 0.87 0.181 0.432 0.8
small_adv 12.931 0.162 0.958 0 0.043 0
MLP-GRU shallow_phi 12.203 2.951 0.841 0.185 0.202 0.25
weak_adv 18.609 0.454 0.917 0.111 0.096 0.147
dp.rl 7.627 0.005 0.919 0.137 0.101 0.193
dp-nash 7.369 0.633 0.876 0.169 0.156 0.232
no_transform 15.039 9.006 0.971 0.063 0.032 0.072
no_curriculum -232.221 451.214 0.992 0 0.008 0
small_adv 13.678 0.159 0.992 0 0.484 1.429
MLP-Transformer  shallow_phi 22.809 1.858 0.94 0.107 0.07 0.126
weak_adv 16.996 0.539 0.992 0 0.008 0
dp.rl 6.272 0.585 0.992 0.001 0.008 0.001
dp-nash 6.866 2.907 0.991 0.003 0.009 0.003
no_transform 17.324 0.006 0.904 0 0.101 0
no_curriculum  -1015.973 1587.826 0.862 0.092 0.522 0.717
small_adv 12.289 0.163 0913 0.002 0.091 0.002
Transformer-GRU shallow_phi 22.251 9.948 0.858 0.076 0.473 0.574
weak_adv 16.358 0.714 0.866 0.077 0.148 0.102
dprl 5.759 0.535 0.878 0.072 0.201 0.294
dp-nash 6.496 0.575 0.86 0.089 0.309 0.418
no_transform 10.891 5.028 0913 0.042 0.092 0.044
no_curriculum  -277.009 20.34 0.824 0.101 0.213 0.176
small_adv 17.241 4.038 0.886 0.037 0.122 0.039
GRU-Transformer  shallow_phi 16.176 0.949 0.895 0.034 0.112 0.036
weak_adv 17.504 1.491 0.889 0.036 0.314 0.593
dprl 5.848 1.12 0914 0.041 0.091 0.044
dp-nash 9.29 1.578 0.867 0.12 0.163 0.192

symbol (prices) or the fraud class (credit). In each case, we adversarially train policies such that an
external observer cannot infer sensitive attributes (e.g., the traded asset identity or whether a sequence
contains fraud) from the shared trajectories.

Environment. We define an where the state at time ¢ is the feature vector s; € [0, 1]™, with
n =5 forprices and n = 29 for credit. Actions a; € [—1, 1]™ perturb the observed sequence,
and the reward encourages smooth evolution of the observed features while penalising excessive
distortion:

e = |8t = se—1ll2 — 0.01|a][3-
The original unperturbed vector si*V is preserved to compute fidelity losses and leakage penalties.

Adversarial Leakage Estimation. Behavioural privacy leakage is estimated by adversaries trained
to classify trajectories into their sensitive labels. As in the GPS setting, we instantiate three architec-
tures:

e MLP: a two-layer perceptron with hidden size 256 on flattened trajectories.

* GRU: a recurrent model with one GRU layer, hidden dimension 128 by default, mapping
the final hidden state to logits.

* Transformer: a Transformer encoder with L = 2 layers, H = 4 attention heads, and hidden
size 128 by default. Stepwise features are linearly embedded, processed with self-attention,
aggregated by mean pooling, and classified.

Adversaries are optimised by cross-entropy loss

M
Lorv = =1 D 10g s (7 = ik
=1

i)

using ADAM with learning rate 10~3. For robustness, we also evaluate agents against mismatched
adversaries (e.g. training with an MLP adversary but evaluating with a Transformer).

Privacy—Reward Integration and Curriculum. We wrap the environment with a privacy-reward
mechanism. At each step, the shaped reward is

7"2 =Tt — )\t épriv(let) - /BMSE(Sta Siaw)a
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where £y is the negative log-likelihood of the true class, and 3 controls fidelity. A; follows a staged
curriculum, e.g. (0,0.0), (200, 0.5), (400, 1.0), (600, 2.0), (800, 4.0), ensuring that the agent first
learns task dynamics before strong privacy penalties are enforced.

Evaluation. For each dataset, we train a separate “true attacker” adversary (with tunable sequence
length, hidden size, and epochs) to evaluate leakage. We report: mean return and variance, adversary
confidence and negative log-likelihood, and classification accuracy/F1. Baselines mirror those
in Section 4.2} unconstrained RL, static noise (obs/act), adversarial shaping without curriculum,
and two DP variants (dp_r1, dp_-nash). We also conduct A-sweeps and ablations (no transform,
no curriculum, shallow ¢, small adversary, weak adversary) to isolate the contributions of each
PALADIN component.

E.4 EVALUATION RESULTS FOR THE FINANCIAL TRADING (NYSE) DATASET

Table [5|reports the comparative performance across adversary configurations.

For the MLP—GRU setting, the baseline achieves a moderate return (16.80) with high leakage
(leak_conf= 0.88). Adding static noise to observations or actions marginally alters leakage
(remaining > 0.92) while reducing returns to 11.65-14.68. Adversarial training without curriculum
(adv_no_cur) achieves slightly lower leakage (1eak_nl1= 0.44) but still suffers from unstable
performance (return 12.93). In contrast, PALADIN substantially improves both return and privacy: it
reaches the highest utility (21.85) while reducing leakage to near-baseline levels (1leak_nl11= 0.16).
Differential privacy methods (DP-RL, DP-Nash) collapse task returns (10.64 and 6.87) and fail to
suppress leakage confidence (0.85-0.89), illustrating their inadequacy for behavioural protection.

The MLP-Transformer configuration is the most challenging: leakage confidence is consistently
extreme (> 0.97) for all baselines. Still, PALADIN outperforms others in utility (24.77 vs. 16.74
baseline) while modestly softening leakage (Leak_n11= 0.05). Static noise and adversarial shaping
without a curriculum are ineffective: returns remain 15.09—-19.25 with high leakage. Again, DP-based
methods collapse (returns 6.09-6.94) and offer only marginal privacy gains.

For the Transformer—GRU pairing, PALADIN yields clear gains: return increases to 20.48 (from
baseline 16.41), while leakage decreases to 1eak_nll= 0.09. Noise-based approaches perform
inconsistently, with either utility loss (static_obs, 10.96) or weak leakage suppression (static_act,
leak_conf= 0.91). DP methods again fail, producing low returns (6—7) and high leakage variance.
Notably, proactive shaping even outperforms strong baselines with much lower leakage standard
deviation.

Finally, in the GRU-Transformer case, the adversary is strongest: leakage confidence remains ~ 0.98
across all methods, underscoring near-deterministic leakage. Nonetheless, PALADIN achieves the
best utility (19.56), surpassing both baseline (17.77) and noise-based methods, while maintaining
leakage comparable to baseline. Interestingly, the adv_no_cur variant achieves slightly higher
return (18.01) than static methods but fails to reduce leakage. DP baselines collapse again (returns
3.71-6.49) without real leakage protection.

Overall, these results demonstrate that PALADIN consistently dominates static noise and DP-based
methods across all adversary pairings. Its strongest gains occur against GRU-based adversaries,
where curriculum-guided penalties provide both high utility and tangible leakage suppression. In
more adversarially powerful configurations (e.g., Transformer predictors), PALADIN still delivers
the best privacy—utility frontier, raising returns without exacerbating leakage. This supports our claim
that behavioural leakage cannot be reliably mitigated by parameter-level DP, but requires dynamic,
curriculum-scheduled adversarial shaping.

Effect of \ sweep We further investigated the impact of the privacy penalty weight A by sweeping
values from 0.0 to 2.0 across all four adversary pairings (Table [6).

For the MLP-GRU case, performance is highly sensitive to A\. Without penalties (A = 0.0), PALADIN
already achieves strong utility (20.77) with moderate leakage (1eak_n11= 0.09). Small positive
penalties, however, destabilise learning: returns collapse to 12.20-15.17 at A = 0.1-0.2, accompanied
by erratic leakage (leak_-n11= 0.30 at A = 0.1). Larger penalties recover some stability: A = 1.0
yields a return of 18.31 with reduced leakage (leak_nll= 0.07), while overly strong penalties
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(A = 2.0) again degrade utility (11.90). These results confirm that moderate scheduling (A = 1.0)
balances privacy and utility, while aggressive early enforcement hinders task mastery.

The MLP-Transformer setting demonstrates the resilience of PALADIN under strong adversaries.
Returns peak at A = 0.1 (21.01) with softened leakage (leak_nl1l= 0.04 vs. 0.013 at baseline).
Larger \ values (> 0.5) reduce utility (13.94-19.55) while failing to substantially alter leakage
confidence, which remains near-saturated (0.98-0.99). This suggests that when adversaries are
particularly strong, PALADIN primarily benefits from mild penalties that encourage representational
obfuscation without destabilising policy learning.

For the Transformer—GRU pairing, a more favourable pattern emerges. Small penalties (A = 0.1)
already improve returns (19.95 vs. 17.67 at A = 0.0), though leakage remains moderate. Interestingly,
increasing A continues to enhance both utility and privacy: the best outcome occurs at A = 2.0, where
return reaches 22.55 (the highest observed across sweeps) with reduced leakage (Leak_nl1= 0.20).
These results highlight PALADIN’s robustness in this configuration, where stronger penalties directly
reinforce privacy without collapsing task performance.

Finally, in the GRU-Transformer case, the adversary is so strong that leakage metrics remain pinned
(Leak_conf= 0.98 for all \). Returns fluctuate considerably: mild penalties (A = 0.0-0.5) yield
moderate returns (14.50-14.95), while stronger penalties destabilise training (e.g., return 8.57 at
A = 0.2 or 11.56 at A = 1.0). This highlights the difficulty of suppressing deterministic leakage
under near-omniscient adversaries: PALADIN can still recover utility, but privacy gains remain
minimal.

Together, the sweeps confirm the central role of curriculum-guided penalties. For weaker adversaries
(MLP-GRU, T-GRU), moderate to high A values (= 1.0-2.0) provide strong privacy—utility trade-
offs. In contrast, for strong adversaries (MLP-Transformer, GRU-Transformer), the best results
arise from gentle penalties (A ~ 0.1), which preserve task returns while softening leakage variance.
Across all cases, overly strong penalties (A > 2.0) tend to collapse learning or provide no additional
privacy benefit.

E.4.1 ABLATION STUDY ON NYSE DATASET

We evaluated ablated variants across all adversary pairings (Table |/) to understand the contribu-
tions of PALADIN’s design with NYSE dataset. For the MLP—GRU case, removing curriculum
(no_curriculum) catastrophically destabilises training, with returns collapsing to —371.67. Elim-
inating the transformation module (no_t ransfoxrm) preserves stability (return 14.84) but yields
very high leakage (Leak_conf= 0.97). Reducing adversary pressure (small_adv, weak_adv)
achieves moderate returns (18.84-19.78) but fails to meaningfully reduce leakage. Shallow repre-
sentations (shallow_phi) can produce high utility (21.41) but with severely degraded leakage
performance (leak_nll= 0.53).

In the MLP-Transformer setting, adversarial pressure is stronger. Again, no_curriculum
collapses completely (return —232.22). no_t ransform maintains some task performance (15.04)
but with extreme leakage confidence (0.97). Weak or small adversaries both underperform (returns
13.68-17.22, leakage confidence 0.99). Shallow feature transformations improve utility (18.86) but
with poor leakage suppression (Leak_-nl1= 0.30). DP baselines once more collapse to returns < 7,
with leakage confidence near-saturated (0.99).

For the Transformer—-GRU configuration, no_curriculum collapses training severely (return
—389.49). Removing transformations (no_transform) sustains moderate returns (17.32) but
with leakage confidence 0.91. Smaller or weaker adversaries again fail to improve leakage, and
shallow transformations, while yielding the highest utility (22.25), result in very high leakage
(leak-nll=0.47). DP baselines collapse to 5—6 return with persistent leakage.

Finally, in the GRU-Transformer setting, adversaries are strongest. Curriculum removal destabilises
training entirely (return —311.12). Removing transformations retains utility (18.42) but exposes
leakage (Leak_conf= 0.94). Shallow feature mappings degrade both utility and privacy (return
11.78, leakage confidence 0.92). Smaller or weaker adversaries provide no meaningful privacy
improvements. DP baselines again collapse (returns 4.78-10.14) while maintaining high leakage.

Across all settings, the ablations demonstrate that PALADIN’s effectiveness arises from the
integration of three pillars: (i) curriculum-scheduled penalties, (ii) expressive feature trans-
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Table 5: Experimental Results on NYSE dataset

Train-Test Adv Method return return_std leak_nll leak _nll_std leak_conf  leak_conf_std
MLP-GRU-1 baseline 16797  2.288 0.186 0.306 0.883 0.168
static_obs 11.659  0.294 0.087 0.155 0.926 0.117
static_act 14.675 1.937 0.136 0.31 0.937 0.094
advnocur  12.928  3.709 0.444 1.026 0.923 0.136
proactive 21.847  0.709 0.156 0.255 0.881 0.183
dpl 10.643  0.513 0.193 0.247 0.848 0.185
dp-nash 6.871 0.29 0.137 0.206 0.889 0.155
MLP-Transformer  baseline 16.744  0.632 0.31 0.885 0.981 0.011
static_obs 15.654 1.04 0.018 0.004 0.982 0.004
static_act 19.246  3.411 0.025 0.007 0.975 0.007
advno_cur  15.091 3.075 0.136 0.262 0911 0.151
proactive 24772 1.006 0.049 0.107 0.957 0.089
dprl 6.945 1.123 0.013 0.002 0.987 0.002
dp-nash 6.095 1.021 0.013 0.002 0.987 0.002
Transformer-GRU baseline 16.412 0.942 0.283 0.365 0.846 0.114
static_obs 10.962 1.826 0.221 0.36 0.887 0.053
static_act 17.888  0.355 0.328 0.7 091 0.002
advnocur  16.729  2.502 0.236 0.383 0.882 0.044
proactive 20.484  0.105 0.092 0 0.912 0
dpl 6.347 1.917 0.539 0.731 0.859 0.087
dp-nash 7.151 1.999 0.528 0.703 0.826 0.126
GRU-Transformer  baseline 17.769  7.179 0.015 0.00018843  0.985 0.00018553
static_obs 10.841  0.435 0.015 0.00018707  0.985 0.00018419
static_act 14.611 0.35 0.015 5.04E-06 0.985 4.96E-06
advnocur  18.012  2.694 0.015 3.26E-05 0.985 3.21E-05
proactive 19.565  0.102 0.432 1.2494854 0.985 1.67E-06
dpl 6.498 0.498 0.015 0.00013247  0.985 0.00013043
dp-nash 3.714 0.281 0.015 4.95E-05 0.985 4.88E-05
Table 6: A sweep of PALADIN on NYSE dataset
Train-Test Adv return return_std leak_nll leak_nll_std leak_conf  leak_conf_std
MLP-GRU 0.0 20.77 0.132 0.087 1.896 0.929
0.1 15.169 0.129 0.302 5.685 0.916
0.2 12.205 0.159 0.14 0.551 0.887
0.5 13.768 0.11 0.424 2.397 0.933
1.0 18.314 0.069 0.065 1.918 0.94
2.0 11.902 0.192 0.201 2.536 0.843
MLP-Transformer-t 0.0 19.796 0.001 0.013 2.93 0.987
0.1 21.009 0.018 0.041 2.667 0.96
0.2 14.554 0.002 0.015 1.757 0.985
0.5 19.553 0.003 0.016 0.686 0.984
1.0 14.952 0.001 0.013 5.759 0.987
2.0 13.94 0.001 0.012 8.463 0.988
Transformer-GRU 0.0 17.672 0.001 0.119 0.183 0.888
0.1 19.947 0.076 0.196 0.457 0.879
0.2 10.84 0.093 0.302 0.616 0.866
0.5 13.958 0.08 0.204 0.185 0.862
1.0 20.785 0.109 0.481 2.008 0.858
2.0 22.551 0.068 0.202 2.088 0.884
GRU-Transformer 0.0 14.952 0.001 0.016 3.025 0.984
0.1 14.517 0 0.015 0.099 0.985
0.2 8.566 0 0.015 0.151 0.985
0.5 14.497 0.001 0.016 1.933 0.985
1.0 11.562 0.006 0.017 2.323 0.983
2.0 14.359 0 0.015 4.742 0.985

formations, and (iii) strong adversarial supervision. Removing curriculum causes catastrophic
failure, removing transformations leaves the agent highly leaky, and weakening the adversary pro-
duces fragile trade-offs. Shallow feature mappings highlight that representational depth is critical
for systematically distorting sensitive information. DP baselines consistently fail, reaffirming that

PALADIN’s behavioural shaping offers a qualitatively stronger defence.

PALADIN’s success in the financial trading setting stems from its ability to learn where and when
to obfuscate: it discovers which price-volume fluctuations are most predictive of ticker identity and
selectively masks them only after a reward-focused warmup. This targeted approach contrasts sharply
with blanket noise or parameter-level which cannot discriminate signal from noise in a dynamic
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Table 7: Ablation study on the NYSE Dataset

Train-Test Adv Method return return_std leak_nll leak_nll_std leak_conf  leak_conf_std
no_transform 14.84 0.635 0.382 1.058 0.971 0
no_curriculum -371.674 5.838 0.185 0.246 0.854 0.181
small_adv 18.842 3.111 0.244 0.263 0.81 0.198
MLP-GRU shallow_phi 21.41 2.868 0.525 1.051 0.882 0.179
weak_adv 19.78 3.94 0.213 0.271 0.836 0.197
dp-rl 5.232 0.785 0.173 0.293 0.892 0.156
dp_nash 4.583 0.785 0.085 0.16 0.928 0.12
MLP-Transformer no_transform 15.039 9.006 0.032 0.072 0.971 0.063
no_curriculum -232.221 451.214 0.008 0 0.992 0
small_adv 13.678 0.159 0.484 1.429 0.992 0
shallow_phi 18.862 4.029 0.297 0.853 0.983 0.014
weak_adv 17.223 3.423 0.013 0.002 0.987 0.002
dp-rl 6.865 0.681 0.013 0.002 0.987 0.002
dp-nash 5.791 0.41 0.013 0.001 0.987 0.001
no_transform 17.324 0.006 0.097 0 0.908 0
no_curriculum  -389.485 1.021 0.522 0.715 0.858 0.094
small_adv 12.289 0.163 0.087 0.002 0.917 0.002
Transformer-GRU shallow_phi 22.251 9.948 0.467 0.572 0.86 0.079
weak_adv 16.358 0.714 0.147 0.109 0.868 0.082
dp-rl 5.759 0.535 0.195 0.287 0.88 0.076
dp-nash 6.496 0.575 0.301 0.41 0.862 0.094
no_transform 18.422 1.799 0.082 0.201 0.937 0.144
no_curriculum -311.123 2.248 0.015 0 0.985 0
small_adv 16.126 2.867 0.432 1.25 0.985 0
GRU-Transformer  shallow_phi 11.783 1.359 0.101 0.203 0.92 0.148
weak_adv 12.834 3.568 0.015 0 0.985 0
dp.rl 4.778 0.641 0.016 0.001 0.984 0.001
dp-nash 10.141 2.792 0.021 0.016 0.98 0.016

market environment. Moreover, PALADIN avoids the instability of fixed-penalty adversarial shaping
by ramping up privacy pressure only after the policy has converged to a strong utility baseline.

However, several limitations remain. First, our financial trading benchmark uses pre-normalised
OHLCYV windows and deterministic replay, which simplifies dynamics relative to live trading. Real-
world deployment would require handling non-stationary markets and partial observability. Second,
while we show cross-backbone robustness (PPO), extending PALADIN to multi-asset strategies or
continuous portfolio rebalancing is non-trivial and may require richer transformation networks.

F BROADER IMPACTS

By embedding privacy directly into the [RL}loop, PALADIN offers practitioners a principled way to
mitigate behavioural data leakage in sensitive applications such as autonomous vehicles, personalised
healthcare and financial trading. This proactive defence can enhance user trust, comply with data-
protection regulations (e.g. GDPR), and reduce the risk of surveillance or identity inference from
smart-agent behaviours.

On the other hand, adversarial privacy shaping could be misused to conceal malicious or unsafe agent
behaviours (e.g., evading auditing in critical systems) or to obfuscate policy actions in adversarial
settings such as cybersecurity. Therefore, care must be taken to balance privacy with accountability
and transparency, and to ensure that privacy-preserving agents remain subject to appropriate oversight
and testing before deployment.
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