
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS REALISTIC HYPERPARAMETER
OPTIMIZATION IN CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In continual learning (CL)—where a learner trains on a stream of data—standard
hyperparameter optimisation (HPO) cannot be applied, as a learner does not have
access to all of the data at the same time. This has prompted the development of
CL-specific HPO frameworks. The most popular way to tune hyperparameters in
CL is to repeatedly train over the whole data stream with different hyperparameter
settings. However, this end-of-training HPO is unrealistic as in practice a learner
can only see the stream once. Hence, there is an open question: what HPO frame-
work should a practitioner use for a CL problem in reality? This paper answers
this question by comparing several realistic HPO frameworks. We find that none
of the HPO frameworks considered, including end-of-training HPO, perform con-
sistently better than the rest on popular CL benchmarks. We therefore arrive at
a twofold conclusion: a) on the popular CL benchmarks examined, a CL prac-
titioner should select the HPO framework based on other factors, for example
compute efficiency and b) to be able to discriminate between HPO frameworks
there is a need to move beyond the current most commonly used CL benchmarks.

1 INTRODUCTION

Sequentially updating deep learning systems on a non-stationary data stream is a challenging prob-
lem which continual learning (CL) methods aim to address. The standard CL setup is when a learner
sees a sequence of tasks one-by-one and at the end of learning is evaluated on how well it performs
across all tasks. There have been many methods (Delange et al., 2021; Parisi et al., 2019; Wang
et al., 2023) designed for this problem and CL scenarios proposed (Hsu et al., 2018; Antoniou et al.,
2020; van de Ven & Tolias, 2019). A key decision when using a CL method is selecting hyperpa-
rameter settings—learning rates, regularisation coefficients, etc. (Feurer & Hutter, 2019; Delange
et al., 2021; Wistuba et al., 2023). The most common way to fit hyperparameters for CL is end-of-
training hyperparameter optimisation (HPO) (Delange et al., 2021; Buzzega et al., 2020)—shown in
Figure 1. This is when the hyperparameters are fit by training over the whole data stream with each
hyperparameter configuration and then selecting the configuration that has the best end-of-training
performance on a held-out validation set. However, end-of-training HPO is unrealistic as in the real
world a learner can only train over the data stream once and must select hyperparameters only using
the data it can currently access. Therefore, determining the best realistic way to perform HPO for
CL is currently an open problem.

In this work, we address the problem of deciding what realistic HPO framework to use in CL. To do
this, we benchmark a variety of approaches for performing HPO across different CL methodologies
(ER (Chaudhry et al., 2020), ER-ACE (Caccia et al., 2021), iCaRL (Rebuffi et al., 2017), ESMER
(Sarfraz et al., 2023) and DER++ (Buzzega et al., 2020)). We investigate both fixed HPO frameworks
where the hyperparameters are kept constant throughout training and dynamic HPO frameworks
where hyperparameters are adapted throughout learning. For fixed HPO we examine (i) end-of-
training HPO as well as (ii) a first-task HPO framework where we fit the hyperparameters only
using data from the first task (see Figure 1), a realistic and computationally efficient method. For
dynamic HPO, we consider (i) using data from the current task, (ii) using data stored in memory, and
(iii) using validation sets from previous tasks to perform HPO for each new task. By comparing these
different HPO frameworks we shed light on what validation signal is sufficient to fit hyperparameters
in CL and whether hyperparameters need to be adapted during training.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Task 1 Task 2 Task T

End-of-Training HPO

HPs

Val Set

Rerun with best
found HPs and

evaluate on test
set

Select new HP values to validate

Training Validation

Task 1 Task 2 Task T

First-Task HPO

HPs

Val Set

Select
new HP

values to
validate

Training
Use best

found HPs

Validation

Evaluate on test
set

Figure 1: Depiction of end-of-training and first-task HPO frameworks, which fix the hyperparame-
ters (HPs) throughout training. End-of-training HPO is the most common HPO framework for CL
and works by training over the whole data stream for each HP configuration and then uses a valida-
tion set consisting of data from each task to select the best HPs. End-of-training HPO is unrealistic
as it assumes you have access to all of the data stream from the start of training. On the other hand,
first-task HPO selects HPs by repeatedly training and validating performance on the first task, which
can be used in the real world and is more efficient.

Our experiments show that all the HPO frameworks tested perform similarly in terms of predictive
performance; no one method is consistently better than the others. This suggests that on the popular
CL benchmarks used in our experiments other factors should be used to select the HPO framework.
For example, if a CL researcher using these benchmarks wanted to maintain performance while re-
ducing compute cost of HPO, they could use the realistic and most computationally efficient method,
first-task HPO. Additionally, it suggests that future work on HPO in CL should move beyond the
use of these standard benchmarks to ones where there is likely a performance difference between
HPO frameworks.

The main contributions of this work are:

• We benchmark a suite of realistic CL HPO frameworks against the commonly used but un-
realistic end-of-training HPO. This is, to the best of our knowledge, the first comprehensive
comparison across several HPO frameworks for CL.

• We show that all HPO frameworks we compare perform similarly in our experiments.
This suggests that, on the benchmarks looked at, there are several realistic HPO frame-
works which can be used instead of the commonly used but unrealistic end-of-training
HPO framework.

• We provide evidence for common CL benchmarks that—as the predictive performance
of HPO frameworks are similar—other factors should be used to select a realistic HPO
framework. For example, to minimise compute cost first-task HPO is a good method.

• Our experiments highlight that to be able to better compare and develop CL HPO frame-
works there is a need to move beyond the current most popular CL benchmarks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES AND RELATED WORK

CL is a large research area where many different settings have been looked at. In this work we look
at the most common CL setting which is known as standard CL, or sometimes offline CL (Prabhu
et al., 2020). In Standard CL, the learner sees a non-stationary sequence of data chunks called tasks
one-by-one, such that it only has access to one chunk at a time and cannot access previously seen
or future chunks. Each task consists of examples which are data instance and label pairs (e.g. pairs
of images and their class) sampled from a subset of the classes. For example, the first task might be
examples of cows and sheep and the second task could be formed of examples of dogs and cats. The
goal of the learner is to classify new examples accurately after training on the whole data stream.
There are two common ways to evaluate a CL learner, task and class incremental learning. Task-
incremental learning is when, at test-time, the learner knows which task a data instance comes from
and so only needs to distinguish between classes within that task. While, class-incremental learning
is when the learner is not given what task a data instance belongs to at test time and must distinguish
between all classes from all the tasks. An important part of the standard CL setting is the assumption
of memory constraints, which is why a learner cannot solve CL by storing previous data chunks in
memory. The memory constraints take the form of only allowing a learner to store a small amount
of previous data in memory and in constraining its use of memory for storing additional networks or
parts of networks (Delange et al., 2021; Wang et al., 2023).

There have been many methods proposed for CL (Delange et al., 2021; Parisi et al., 2019; Wang
et al., 2023). One of the most popular and performant approaches to standard CL are replay meth-
ods (Wang et al., 2023). This is especially true for class-incremental learning, where they are com-
monly the best performing methods (van de Ven & Tolias, 2019; Wu et al., 2022; Mirzadeh et al.,
2020; Lee & Storkey, 2024). Replay methods use a memory buffer to store a set of examples from
previous tasks to regularise the updates on new tasks such that the learner does not forget previous
task knowledge. For example, the stereotypical replay method is experience replay (ER) (Chaudhry
et al., 2020; 2019b; Aljundi et al., 2019a) which for each learning step appends a sample of data from
the replay buffer to the batch of current task data to be trained on. More complex replay methods
often use a form of knowledge distillation on a sample of data from the replay buffer. For example,
DER++ (Buzzega et al., 2020), ESMER (Sarfraz et al., 2023) and iCaRL (Rebuffi et al., 2017) are
replay methods which use a method-specific knowledge distillation term. For each of these methods
the most common hyperparameters that are tuned are the learning rate and regularisation coeffi-
cients, which need to be tuned to get good performance (see Appendix B). While other potential
hyperparameters are often not tuned in CL, e.g. momentum (Buzzega et al., 2020).

While the most common HPO framework used in standard CL is end-of-training HPO, there have
been several other HPO frameworks suggested (Kilickaya & Vanschoren, 2023; Parisi et al., 2019;
Cai et al., 2021). For example, Delange et al. (2021) propose a dynamic HPO framework. The
method adapts the hyperparameters for each task by first training with the hyperparameter config-
uration which is assumed to have the least impact on previous task performance. Then the method
incrementally changes hyperparameter values to improve performance on the current task to a pre-
specified value, while decreasing performance on previous tasks. However, this method assumes
that the direction to change hyperparameters to increase performance on the current task is known
and that the interaction between different hyperparameters is understood. In this work we look at
a similar HPO framework, current-task HPO, which does not need the above assumptions. Also,
for the online CL scenario—which is different to standard CL—another HPO framework has been
proposed whereby end-of-training HPO is used on the first (or first k) tasks and then the hyper-
parameters are fixed after that (Chaudhry et al., 2019a). To the best of our knowledge, this HPO
framework has been rarely used in standard CL up to this point. Here, we look at it in the form
of the first-task HPO framework and examine how it performs in the commonly used standard CL
setting. There has also been work on making dynamic HPO frameworks more efficient by sampling
fewer HPO configurations, for example using bandit methods (Liu et al., 2023) and analysis of vari-
ance techniques (Semola et al., 2024). However, for simplicity, we only look at the more expensive
dynamic HPO frameworks which are an upper bound to the performance of these more efficient
methods. While as shown above there has been work on HPO for CL, to the best of our knowledge
there has not been a comprehensive comparison between the main HPO frameworks proposed. This
is one of the key contributions of this work, shedding light on the relative performances of HPO
frameworks for CL.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Train Set

HPs

Val Set

Select
new HP

values to
validate

Validation

Training

For Task 𝑖

Current-Task HPO

Retrain on Train +
Val with best
found HPs

Train Set

HPs

Val Set

Select
new HP

values to
validate

Validation

Training

For Task 𝑖

Seen-Tasks (Val) HPO

Do not
retrain

Previous Val
sets

+

Train Set

HPs

Val Set

Select
new HP

values to
validate

Validation

Training

For Task 𝑖

Seen-Tasks (Mem) HPO

Retrain on Train +
Val with best
found HPs

Sample
from

memory

+

Figure 2: Depiction of current-task, seen-tasks (Mem) and seen-tasks (Val) HPO frameworks, which
dynamically adapt hyperparameters (HPs) for each task. Each methods splits the data of the current
task into train and validation sets. Then, current-task HPO uses this validation set to fit the HPs for
the current task. While, seen-tasks (Mem) and seen-tasks (Val) use a combination of this validation
set and either a sample of data from previous tasks stored in memory or validation sets of previous
tasks, respectively. Then current-task and seen-tasks (Mem) HPO retrain on the combined validation
and train sets to complete the learning process on that task. Seen-tasks (Val) does not retrain, instead
it takes the model fitted using the best found hyperparameters as the final model for the current
task. This is to ensure that the current task’s validation set has not been trained on when fitting
hyperparameters for future tasks.

3 STANDARD CL

While the setting we look at, standard CL, is mentioned above, we describe it more formally here.
In standard CL a learner sees a sequence of tasks, D1, . . . , DT , where each task consists of a chunk
of data. The chunks of data consist of a set of examples, where an example is a pair formed of
a data instance x ∈ X and label y ∈ C. Each task only contains examples from a given subset
of the classes, in other words for all (x, y) ∈ Di we have that y ∈ Ci and Ci ⊆ C is the subset
of classes the examples of that task can belong to. In this work we look at the most common
setting, where no two tasks have examples from the same class. This means that for any two task
i and j we have that Ci ∩ Cj = ∅. Additionally, learners can have a memory buffer of previous
examples which consists at task i of the set Mi. Training consists of the learner sequentially seeing
each task in order and it cannot access the data from previous or future tasks. For each task, its
data chunk is split into training and validations sets, Traini ⊆ Di and Vali ⊆ Di, to enable the
use of HPO frameworks. Then after fitting the hyperparameters the learner usually retrains on the
combination of the training and validation sets, Di = Traini ∪ Vali. After training the learner is
tested by evaluating its performance on a held-out set of data which consists of an equal number
of examples from all the classes. We look at two evaluation scenarios, task-incremental learning
and class-incremental learning. Task-incremental learning is where the learner receives with each
test data instance the task it belongs to and therefore the subset of classes that the data instance
can belong to. While for class-incremental learning, no indication is given of what task a test data
instance belongs to.

4 HPO FRAMEWORKS FOR CL

In this work, we examine several HPO frameworks for CL to see which should be the preferred
choice to use in CL. We look both at fixed HPO frameworks which keep the values of hyperparam-
eters constant throughout training and dynamic HPO which adapts the hyperparameters per task.
The fixed HPO frameworks we look at are end-of-training HPO and first-task HPO and the dynamic
HPO frameworks we look at are current-task HPO, seen-tasks HPO (Mem) and seen-tasks HPO
(Val). Each of these frameworks are described in turn below and we present an overview of their
advantages and disadvantages in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Advantages and disadvantages of different HPO frameworks. Where, for time complexity,
K refers to the number of hyperparameter configurations looked at and T is the number of tasks in
the data stream. The asterisk (*) for seen-tasks HPO (Val) denotes that, while it does not require
knowledge of future tasks like end-of-training HPO, it does require additional storage compared to
other methods. The additional memory is needed to store the validation sets of previous tasks.

HPO Framework Realistic? Efficient? (Time Complexity)

End-of-training HPO ✗ ✗ (O(T ×K))
First-task HPO ✓ ✓ (O(T +K))
Current-task HPO ✓ ✗ (O(T ×K))
Seen-tasks HPO (Val) ✓* ✗ (O(T ×K))
Seen-tasks HPO (Mem) ✓ ✗ (O(T ×K))

End-of-training HPO is the most common HPO framework for CL (shown in Figure 1). It selects
hyperparameters by first training each hyperparameter configuration on the whole data stream. Sec-
ond, it evaluates the final model fitted using each hyperparameter configuration on a validation set
formed of each task’s held-out validation set, and selects the configuration with the highest valida-
tion performance. Last, it retrains using the selected configuration on the whole data stream where
the validation data for each task is added to the training data. The model fitted at the end of this
training run is the final model to be evaluated. This HPO framework is expensive as it needs to
perform a training run over all the data stream for each hyperparameter configuration looked at. Ad-
ditionally, it is unrealistic as it requires running through the data stream multiple times, which is not
possible in many real-world settings. It might be thought that to make end-of-training more realistic
the learner could store a network for each hyperparameter configuration: updating each network on
every task and performing selection at the end of training. This idea would remove the requirement
of running through the data stream multiple times. However, it would also require a large amount of
extra memory. Additionally, the learner would have to store and not train on the validation data for
each previous task. Therefore, because of underlying constraints on memory usage in standard CL,
it is not possible to use such an idea.

First-task HPO is a fixed HPO framework which is illustrated in Figure 1. It selects hyperpa-
rameters by training each hyperparameter configuration on the first task. Next, it measures the
performance of each configuration on the held-out validation set of the first task. The configuration
with the highest validation accuracy is then used to retrain on the first task using both the training
and validation data and thereafter for all of the future tasks. First-task HPO is computationally effi-
cient as it trains using each hyperparameter configuration solely on the first task and then only trains
using one configuration for the rest of the tasks. This is much less costly than end-of-training HPO,
which for all tasks must train using each hyperparameter configuration. Additionally, first-task HPO
can be used in real-world settings as it only assumes access to data available at the start of training,
the first task, and not future tasks like end-of-training HPO.

Current-task HPO is a dynamic HPO framework which selects hyperparameters for each task
using the validation set of the current task (shown in Figure 2). This is a greedy strategy, selecting
the hyperparameters that maximise the validation performance of the current task. It is roughly
as computationally expensive as end-of-training HPO, as it has to validate each hyperparameter
configuration for each task. However, it is more realistic than end-of-training HPO as it only needs
access to the current task’s data.

Seen-tasks HPO (Mem) and seen-tasks HPO (Val) are dynamic HPO frameworks (shown in
Figure 2). They select hyperparameters for each task by a validation set formed of current task
validation data along with some historic data from the stream. We consider two ways to integrate
historic task data. Seen-tasks HPO (Mem) uses a sample of data from the current memory buffer.
Seen-tasks HPO (Val) uses the validation sets of previous tasks. So, unlike current-task HPO, the
hyperparameters are fit using both current and previous task data. This should aid the HPO pro-
cedure in selecting hyperparameters that ensure previous tasks are not forgotten. Like current task
HPO, both seen-tasks HPO (Mem) and seen-tasks HPO (Val) are as computationally expensive as
end-of-training HPO. Seen-tasks HPO (Val) assumes it is possible to access the validation sets of
previous tasks which makes it less realistic than current or first task HPO. This is unlike seen-tasks

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

HPO (Mem) which does not assume this as it uses data stored in the memory buffer to measure
performance on the previous tasks. But, this comes at the cost of biasing its validation performance
as the data in the memory buffer has been trained on in previous tasks.

For seen-tasks HPO (Mem), three additional details are important to mention. First, to ensure we
are not training on validation data, the sample from memory used in the validation set is not trained
on for the current task. Second, as the memory buffer contains different amounts of data for each
task, we sample the same proportion of examples from each task to add to the validation set. Last,
unlike for the other HPO frameworks, the validation set combined with the sample from memory
might be class imbalanced. Therefore, unlike other methods which use validation accuracy as the
performance metric, for seen-tasks HPO (Mem) we use the median of per class accuracies to reduce
the impact of class imbalance.

5 EXPERIMENTS

Benchmarks In our experiments we look at two settings, the commonly used split-task setting
(Buzzega et al., 2020; Delange et al., 2021) and the heterogeneous task setting. We look at these
settings using the datasets CIFAR-10, CIFAR-100, CORe50 and Tiny ImageNet (Krizhevsky, 2009;
Lomonaco & Maltoni, 2017; Wu et al., 2015). We chose to use these datasets and the split-task
setting due to their commonplace use in the CL literature (Wang et al., 2023) and hence to maximise
the insights our results can have on current practice. In the split-task setting, each task has the same
number of classes associated with it and no two tasks share a class. For CIFAR-10 and CORe50, the
dataset is split into five tasks, each containing the data from two or ten of the classes, respectively.
For CIFAR-100 and Tiny ImageNet, the datasets are split into ten tasks, where each task contains
the data of 10 or 20 classes, respectively. In the heterogeneous task setting, instead of each task
having the same number of classes associated with it they have a varying amount, from two to ten,
but still no two tasks share a class (see Appendix A for more details). This is to make the tasks
have differing amounts of data and difficulty. We only look at CIFAR-100 and Tiny ImageNet for
the heterogeneous task setting due to computational cost. Additionally, for the heterogeneous task
setting we divide the datasets into twenty tasks to test how HPO frameworks perform on longer task
sequences. For both settings, if required by the HPO framework, we split the data of the task into
train and validations sets, where the validation set contains 10% of the task’s data evenly sampled
from each class associated with the task.

We evaluate the methods at the end of training using a standard performance metric for CL, average
accuracy (Chaudhry et al., 2019a). The average accuracy of a method is the mean accuracy over
each task on a held-out test set which contains an equal amount of data from each task. For class-
incremental learning, the learner must classify between all classes at test time as it is not told what
task a test data instance comes from. For task-incremental learning, the learner knows what task
each test data instance comes from, meaning only classes from that task will be predicted.

CL methods To evaluate how well each HPO framework performs we look at applying them to
fit the hyperparameters of several common and well performing CL methods. More specifically, we
utilise the CL methods: ER (Chaudhry et al., 2020), ER-ACE (Caccia et al., 2021), iCaRL (Rebuffi
et al., 2017), ESMER (Sarfraz et al., 2023) and DER++ (Buzzega et al., 2020). For these methods we
fit the learning rate and any regularisation coefficients they have using each HPO framework. While
all HPO frameworks looked at can be used with any underlying sampler/selector of hyperparameter
configurations, for simplicity and to be consistent with common practice in CL (Buzzega et al.,
2020; Boschini et al., 2022; Sarfraz et al., 2023) we use grid search. We look at the combination
of ten different learning rate values and for each regularisation coefficient three different values.
This means for DER++ we search across 90 different hyperparameter configurations (learning rate
and two regularisation coefficients) and for ESMER we search across 30 different configurations
(learning rate and the loss margin coefficient). While, for ER, iCaRL and ER-ACE we look at 10
different configurations as they have no regularisation coefficients to fit. The hyperparameter grid
used is very similar to the ones looked at in several popular works on CL (Buzzega et al., 2020;
Boschini et al., 2022) and is given in full in Appendix A. Moreover, for each method we use: a
ResNet18 (He et al., 2016) as the underlying backbone network; random crop and horizontal flip
data augmentations when training; and a memory buffer of size 5120, in common with previous
work (Buzzega et al., 2020).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results of using different HPO frameworks for ER, iCaRL, ER-ACE, ESMER and DER++
on the standard split-task CIFAR-10 and CIFAR-100 benchmarks. We report mean average accuracy
over three runs with their standard errors and, to highlight effect size, bold results which are greater
by +0.5% average accuracy than any other for that CL method. The table shows that all HPO
frameworks perform similarly; none perform consistently better than the rest.

CIFAR-10 CIFAR-100

CL Method HPO Framework Class-IL. Task-IL. Class-IL. Task-IL.

ER

End-of-training HPO 83.55±0.44 97.18±0.14 51.03±0.43 85.68±0.29

First-task HPO 84.38±0.45 96.82±0.17 49.61±0.34 84.97±0.19

Current-task HPO 82.10±2.21 96.39±0.50 50.64±0.40 85.47±0.18

Seen-tasks HPO (Val) 83.67±0.73 96.84±0.21 51.46±0.36 85.65±0.06

Seen-tasks HPO (Mem) 79.49±0.63 95.93±0.09 47.39±0.24 84.83±0.22

iCaRL

End-of-training HPO 77.79±0.23 98.52±0.03 54.30±0.36 85.74±0.45

First-task HPO 77.83±0.22 95.31±0.12 52.56±0.10 84.60±0.09

Current-task HPO 76.15±0.75 93.29±0.61 54.26±0.02 85.74±0.06

Seen-tasks HPO (Val) 77.58±0.49 94.32±1.01 51.89±0.39 84.02±0.68

Seen-tasks HPO (Mem) 76.67±0.44 95.41±0.28 49.16±0.23 82.43±0.23

ER-ACE

End-of-training HPO 82.34±0.30 96.74±0.01 55.58±0.39 85.73±0.09

First-task HPO 83.20±0.79 96.67±0.18 56.36±0.29 86.11±0.154

Current-task HPO 83.99±0.22 96.58±0.15 56.46±0.36 86.35±0.02

Seen-tasks HPO (Val) 81.94±1.55 95.90±0.51 54.37±0.25 85.02±0.14

Seen-tasks HPO (Mem) 81.61±0.15 96.40±0.13 53.76±0.21 84.56±0.31

ESMER

End-of-training HPO 80.73±0.15 96.50±0.01 56.16±0.54 88.69±0.35

First-task HPO 77.89±0.46 96.15±0.12 56.61±0.20 89.05±0.10

Current-task HPO 81.69±0.25 96.03±0.05 55.11±0.13 88.96±0.08

Seen-tasks HPO (Val) 81.29±0.03 96.46±0.06 53.81±0.44 87.26±0.13

Seen-tasks HPO (Mem) 70.95±0.94 95.79±0.14 57.50±0.14 89.27±0.16

DER++

End-of-training HPO 84.40±0.94 95.75±0.33 56.04±3.67 83.13±2.69

First-task HPO 85.22±0.08 96.14±0.10 55.20±0.78 81.68±0.66

Current-task HPO 84.90±0.11 95.92±0.11 55.00±1.21 83.14±0.76

Seen-tasks HPO (Val) 85.44±0.38 96.22±0.15 56.59±0.64 83.61±0.42

Seen-tasks HPO (Mem) 82.18±0.26 94.75±0.28 56.94±0.66 83.08±0.21

5.1 RESULTS

For the split-task setting, the results of our experiments show that none of the HPO frameworks
looked at perform much better than the rest. The results are presented in Table 2 and 3 and we have
bolded the results which are better by +0.5% than any of the other HPO frameworks results for a
given CL method. The reason we chose to bold results in this way is to be able to draw attention
to and reference observed effect sizes. We want to do this because if the observed effect sizes are
small it suggests that no method performs much better than any other and hence that other factors
become more important when selecting a HPO framework, e.g. compute cost. In Table 2 there are
few bolded results and for those that exist, the HPO framework which achieves it varies. This shows
that, for the datasets shown in Table 2, there is only a small difference in performance between HPO
frameworks. While in Table 3 there are more bolded results indicating a slightly greater variance in
the performance of HPO frameworks—perhaps due to the greater complexity of the datasets looked
at. However, as in Table 2, in Table 3 the HPO framework that performs the best differs across
datasets and CL methods. These results show that no HPO framework performs consistently better
than the rest. For instance, on CIFAR-100, no HPO framework improves accuracy over the other
methods by more than +0.5% for all CL methods but ESMER in class-incremental learning. This
suggest that for the split-task setting there is no general advantage in using one HPO framework over
another in terms of predictive performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Results of using different HPO frameworks for ER, iCaRL, ER-ACE, ESMER and DER++
on the standard split-task CORe50 and Tiny ImageNet benchmarks. We report mean average accu-
racy over three runs with their standard errors and, to highlight effect size, bold results which are
greater by +0.5% average accuracy than any other for that CL method. The table shows that all
HPO frameworks perform similarly; none perform consistently better than the rest.

CORe50 Tiny ImageNet

CL Method HPO Framework Class-IL. Task-IL. Class-IL. Task-IL.

ER

End-of-training HPO 37.37±1.03 55.51±0.41 28.01±0.09 68.17±0.06

First-task HPO 38.37±0.38 56.95±0.62 28.51±0.18 68.72±0.13

Current-task HPO 35.97±0.24 53.40±1.01 25.79±0.21 66.96±0.15

Seen-tasks HPO (Val) 39.12±0.64 57.32±0.63 28.45±0.28 68.16±0.26

Seen-tasks HPO (Mem) 36.10±1.15 54.28±0.77 29.58±0.25 68.02±0.14

iCaRL

End-of-training HPO 54.30±0.36 85.74±0.45 37.09±0.27 70.37±0.36

First-task HPO 52.56±0.10 84.60±0.09 36.42±0.22 70.11±0.13

Current-task HPO 54.26±0.02 85.74±0.06 37.17±0.28 70.67±0.03

Seen-tasks HPO (Val) 51.89±0.39 84.02±0.68 34.81±0.42 68.42±0.41

Seen-tasks HPO (Mem) 49.16±0.23 82.43±0.23 36.79±0.13 70.46±0.08

ER-ACE

End-of-training HPO 39.33±0.79 58.14±1.29 38.94±0.47 70.18±0.23

First-task HPO 37.81±0.71 56.02±0.60 36.94±0.67 68.16±0.30

Current-task HPO 43.59±0.09 61.33±0.33 37.63±0.38 68.25±0.41

Seen-tasks HPO (Val) 44.32±0.69 62.28±0.51 36.06±0.37 67.69±0.26

Seen-tasks HPO (Mem) 37.60±0.69 56.01±1.17 32.37±0.34 64.37±0.47

ESMER

End-of-training HPO 45.08±1.06 62.05±0.45 47.33±0.30 76.18±0.22

First-task HPO 47.07±1.18 63.69±0.95 46.69±0.56 75.72±0.24

Current-task HPO 46.01±0.90 63.32±0.59 45.20±0.53 74.93±0.29

Seen-tasks HPO (Val) 43.29±1.11 60.77±0.80 44.82±0.16 74.27±0.11

Seen-tasks HPO (Mem) 42.15±1.24 58.78±1.10 44.26±0.20 74.54±0.31

DER++

End-of-training HPO 51.87±0.44 63.48±0.61 39.89±0.27 70.41±0.17

First-task HPO 46.07±1.58 58.07±1.18 35.98±0.63 65.86±0.37

Current-task HPO 51.58±0.77 64.19±046 36.64±0.33 66.43±0.49

Seen-tasks HPO (Val) 49.19±0.37 62.10±0.65 31.88±5.36 64.20±3.00

Seen-tasks HPO (Mem) 41.08±1.91 54.73±2.16 33.54±0.13 63.68±0.17

In the heterogeneous task setting we also see that none of the HPO frameworks perform consistently
better than the rest. The results for this setting are presented in Table 4 and we have again bolded the
results which are better by +0.5% than any of the other HPO frameworks for a given CL method.
Like the results for the split-task setting, there are many columns for each CL method which have
no bolded result and for the three which do the HPO framework which achieves it is different.
Therefore, we conclude that in the heterogeneous task setting it is also the case that there is no one
best HPO framework. The reason we look at the heterogeneous task setting is because we expected
a greater benefit from adapting hyperparameters per task, given that unlike the split-task setting each
task is quite different. However, our results show that this is not the case and that it is possible to
use the same hyperparameters across all the tasks and still perform well.

Performance of first-task HPO Our results show that all of the HPO frameworks tested perform
similarly. Therefore, we conclude that other factors should be used when deciding what realistic
HPO framework to use on these common CL benchmarks. For example, taking computational cost
into account would mean that first-task HPO would be a good method to use as it is the most com-
putationally efficient. Given this, we describe here in more detail its relative performance compared
to the other HPO frameworks tested. In the split-task setting, we see from Table 2 and 3, that for ER
some of its results are bolded. Thus, first-task HPO sometimes achieves the best performance. Ad-
ditionally, for the spilt task setting, there is an average performance difference from end-of-training
HPO to first-task HPO of −0.62% in class-incremental learning and −0.91% in task-incremental
learning. While, for the heterogeneous tasks setting there is an average performance difference from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Results of using different HPO frameworks for ER, iCaRL, ER-ACE, ESMER and DER++
on heterogeneous task benchmarks. We report mean average accuracy over three runs with their
standard errors and, to highlight effect size, bold the results which are greater by +0.5% accuracy
than any other for that CL method. The table shows that no HPO framework is consistently better
than the rest.

Hetero-CIFAR-100 Hetero-TinyImg

CL Method HPO Framework Class-IL. Class-IL.

ER

End-of-training HPO 50.41±0.21 39.41±0.57

First-task HPO 50.33±0.50 40.77±0.34

Current-task HPO 49.77±0.21 40.65±0.97

Seen-tasks HPO (Val) 51.70±0.23 40.55±0.22

Seen-tasks HPO (Mem) 45.52±0.41 44.62±0.18

iCaRL

End-of-training HPO 51.54±0.38 37.17±0.48

First-task HPO 49.81±0.10 37.47±0.26

Current-task HPO 51.34±0.32 37.07±0.07

Seen-tasks HPO (Val) 48.15±0.09 35.70±0.23

Seen-tasks HPO (Mem) 47.87±0.15 35.27±1.12

ER-ACE

End-of-training HPO 51.96±0.60 45.47±0.42

First-task HPO 51.37±0.16 43.62±1.09

Current-task HPO 51.78±0.30 43.87±0.20

Seen-tasks HPO (Val) 51.94±0.12 43.15±0.63

Seen-tasks HPO (Mem) 48.15±0.28 42.19±0.84

ESMER

End-of-training HPO 50.54±0.16 44.87±0.26

First-task HPO 50.43±0.34 45.84±0.50

Current-task HPO 50.68±0.31 44.50±0.31

Seen-tasks HPO (Val) 47.96±0.61 42.18±0.22

Seen-tasks HPO (Mem) 50.56±0.40 46.00±0.43

DER++

End-of-training HPO 54.12±0.70 46.41±0.77

First-task HPO 54.87±0.39 43.45±3.55

Current-task HPO 55.10±0.52 45.95±0.93

Seen-tasks HPO (Val) 54.67±0.57 46.51±0.49

Seen-tasks HPO (Mem) 49.06±3.90 25.78±7.40

end-of-training HPO to first-task HPO of −0.39%. These results indicate, compared to standard
practice, that by using first-task framework it is possible to perform realistic HPO for much less
computation with only a small expected cost to performance. However, it is important to point out
that first-task HPO has a failure case of when the first task is not informative for the hyperparameter
choices of subsequent tasks. This failure case does not happen on the standard CL benchmarks used
in this work nor in the heterogeneous task setting where the tasks are designed to be more different.
Therefore, it is an open question whether such a failure case will arise if the standard CL benchmarks
used by the community change to be different, hopefully more realistic, data streams.

One of the potential reasons that the performance is similar between HPO frameworks is that there is
little variation between the performance of different hyperparameter configurations. To see whether
this is the case, we have plotted in Figure 3 histograms of the performance of using different fixed
HPO configurations for DER++. The histograms show that hyperparameter configurations achieve a
wide range of average accuracies. Therefore, the performance of different HPO configurations is not
the reason why the HPO frameworks have similar results. Additionally, in Appendix B, we examine
whether using default hyperparameters performs as well as selecting hyperparameters using HPO.
We found that using default hyperparameters in most cases performed worse than using a HPO
framework. Hence, our results suggest that HPO is necessary but that out of the HPO frameworks
tested there is no one best performing method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

70 75 80 85
Average Accuracy

0.0

2.5

5.0

7.5

10.0

12.5

Fr
eq

ue
nc

y

CIFAR-10

47.5 50.0 52.5 55.0 57.5
Average Accuracy

0

2

4

6

8

Fr
eq

ue
nc

y

CIFAR-100

30 35 40
Average Accuracy

0

2

4

6

8

Fr
eq

ue
nc

y

Tiny ImageNet

35 40 45 50 55
Average Accuracy

0

2

4

6

8

Fr
eq

ue
nc

y

Hetero CIFAR-100

30 35 40 45 50
Average Accuracy

0.0

2.5

5.0

7.5

10.0

12.5

Fr
eq

ue
nc

y

Hetero Tiny ImageNet

Figure 3: Histograms of the validation accuracy at the end of training for each hyperparameter
setting searched over for DER++. We look at standard CL benchmarks and heterogeneous task
benchmarks, which are identified by having a ‘Hetero’ in their name. The histograms show that
different hyperparameter settings give a varying range of performances and only a few achieve near
to the top performance.

6 CONCLUSIONS

In this paper we have benchmarked several hyperparameter optimisation (HPO) frameworks for CL
which are more realistic than the currently commonly used end-of-training HPO framework. We
benchmarked both fixed HPO frameworks, which fix the hyperparameters throughout training, and
dynamic HPO frameworks that continually adapt the hyperparameters. Our results show for com-
monly used CL benchmarks that all the HPO frameworks achieve similar performances and none
consistently outperforms the others. Because of this, we recommend that practitioners using these
benchmarks should select a realistic HPO framework using other factors—for example compute
cost, for which first-task HPO is a good choice. Our results also suggest that future work on HPO
for CL should move towards the use of new benchmarks where a difference in performances across
HPO frameworks could arise.

REPRODUCIBILITY STATEMENT

To make our experiments reproducible, we provide in Section 5 a description of the setup used in
this work, which is in common with many other works in CL (Buzzega et al., 2020), and provide
more specific experimental details in Appendix A. Additionally, we provide the code used in the
supplementary material.

REFERENCES

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online Continual Learning with Maximal Interfered Retrieval. In Proceedings
of the 33rd Conference on the Advances in Neural Information Processing Systems, pp. 11849–
11860, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient Based Sample Selection
for Online Continual Learning. In Proceedings of the 33rd Conference on the Advances in Neural
Information Processing Systems, pp. 11816–11825, 2019b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining Bench-
marks for Continual Few-shot Learning. arXiv preprint arXiv:2004.11967, 2020.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter
Optimization. In Proceeding of the 25th Conference on the Advances in Neural Information
Processing Systems, 2011.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
Incremental Continual Learning into the Extended DER-verse. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(5):5497–5512, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
Experience for General Continual Learning: a Strong, Simple Baseline. In Proceedings of the
33rd Conference on the Advances in Neural Information Processing Systems, pp. 15920–15930,
2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New Insights on Reducing Abrupt Representation Change in Online Continual Learning. In Pro-
ceedings of the 10th International Conference on Learning Representations, 2021.

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribu-
tion shifts: An empirical study with visual data. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8281–8290, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
Lifelong Learning with A-GEM. In Proceedings of the 7th International Conference on Learning
Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On Tiny Episodic Memories in Contin-
ual Learning. arXiv preprint arXiv:1902.10486, 2019b.

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual Learning in Low-
rank Orthogonal Subspaces. In Proceeding of the 34th Conference on the Advances in Neural
Information Processing Systems, pp. 9900–9911, 2020.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
Slabaugh, and Tinne Tuytelaars. A Continual Learning Survey: Defying Forgetting in Classifica-
tion Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385,
2021.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization. Automated machine learning:
Methods, systems, challenges, pp. 3–33, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778, 2016.

Sigrid Passano Hellan, Huibin Shen, François-Xavier Aubet, David Salinas, and Aaron Klein.
Obeying the Order: Introducing Ordered Transfer Hyperparameter Optimisation. arXiv preprint
arXiv:2306.16916, 2023.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating Continual Learn-
ing Scenarios: A Categorization and Case for Strong Baselines. In Proceedings of the 3rd Con-
tinual Learning Workshop, at the 32nd Conference on the Advances in Neural Information Pro-
cessing Systems, 2018.

Mert Kilickaya and Joaquin Vanschoren. What can AutoML do for Continual Learning? arXiv
preprint arXiv:2311.11963, 2023.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Preprint, 2009.

Thomas L Lee and Amos Storkey. Chunking: Forgetting Matters in Continual Learning even without
Changing Tasks. arXiv preprint arXiv:2310.02206, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas L Lee and Amos Storkey. Approximate Bayesian Class-Conditional Models under Con-
tinuous Representation Shift. In Proceedings of the 27th International Conference on Artificial
Intelligence and Statistics, 2024.

Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Online hyperparameter optimization for
class-incremental learning. In Proceedings of the 37th AAAI Conference on Artificial Intelligence,
pp. 8906–8913, 2023.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
object recognition. In Conference on robot learning, pp. 17–26. PMLR, 2017.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the Role of Training Regimes in Continual Learning. In Proceedings of the 33rd confer-
ence on the Advances in Neural Information Processing Systems, pp. 7308–7320, 2020.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
Lifelong Learning with Neural Networks: A review. Neural Networks, 113:54 – 71, 2019.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. GDumb: A Simple Approach that Questions
our Progress in Continual Learning. In Procceding of the 16th European Conference on Computer
Vision, pp. 524–540, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. ICARL:
Incremental Classifier and Representation Learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error Sensitivity Modulation based Experience
Replay: Mitigating Abrupt Representation Drift in Continual Learning. In Proceedings of the
Eleventh International Conference on Learning Representations, 2023.

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, and Davide Bacciu. Adaptive Hyperparameter
Optimization for Continual Learning Scenarios. arXiv preprint arXiv:2403.07015, 2024.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of Machine
Learning Algorithms. In Proceeding of the 26th Conference on the Advances in Neural Informa-
tion Processing Systems, 2012.

Gido M van de Ven and Andreas S Tolias. Three Scenarios for Continual Learning. arXiv preprint
arXiv:1904.07734, 2019.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A Comprehensive Survey of Continual
Learning: Theory, Method and Application. arXiv preprint arXiv:2302.00487, 2023.

Martin Wistuba, Martin Ferianc, Lukas Balles, Cédric Archambeau, and Giovanni Zappella. Renate:
A Library for Real-World Continual Learning. arXiv preprint arXiv:2304.12067, 2023.

Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny Imagenet Challenge (cs231n), http://tiny-
imagenet.herokuapp.com/. Technical report, Stanford, 2015.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari.
Pretrained Language Models in Continual Learning: A Comparative Study. In Proceedings of the
10th International Conference on Learning Representations, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTAL DETAILS

While we have aimed to include all the main experimental details in the main paper there are a few
others to mention here. First, we mostly follow the experimental setup of Buzzega et al. (2020) and
Boschini et al. (2022) and use the Mammoth library produced by those works as the base of our
code. Second, we use as our optimiser SGD with no momentum or weigh decay, as is done in other
works (Aljundi et al., 2019b; Buzzega et al., 2020; Chaudhry et al., 2019a; Lee & Storkey, 2023).
Third, in the heterogeneous tasks setting we look at tasks sequences where each task in order has the
following number of classes associated with it [9, 2, 7, 3, 4, 9, 8, 3, 3, 7, 4, 4, 5, 9, 4, 5, 2, 8, 2, 2] and
all the data of a class is contained in the task associated with it. For Tiny ImageNet we only use the
first 100 classes in the heterogeneous tasks setting to reduce runtime and to make it more comparable
to CIFAR-100 in that setting. In the heterogeneous tasks setting each task has a variable amount of
data. For example, using CIFAR-100, the first task contains nine classes and so it will contain in
total 4500 examples (500 examples per task) while the second task contains two classes so will only
contain 1000 examples. Also, as in each task the learner needs to discriminate between a varying
number of classes the difficultly should vary between tasks. Additionally, in the heterogeneous
tasks setting we only look at class-incremental learning. Finally, the CORe50 dataset consists of
data drawn from multiple different background and lighting environments called sessions and the
test data consists of data from different sessions than the training data. Therefore, to insure that
we more accurately model the covariate shift from the training to test data in our validation signal,
we construct the validation sets for CORe50 differently from the other datasets where it is sampled
randomly. Specifically, we use the data of session 2 contained in the task as the validation data for
that task.

We record here the hyperparameter grid that we sample over when performing HPO. We look at
learning rates in the set {0.2, 0.15, 0.1, 0.075, 0.05, 0.03, 0.01, 0.0075, 0.005, 0.0025}. For DER++,
we perform HPO over both regularisation coefficients where we sample α in the set {0.2, 0.5, 1.0}
and β in the set {0.2, 0.5, 1.0}. For ESMER, we perform HPO over the loss margin coefficient
where we sample over the set {1.5, 1.2, 1.0}. We sample all possible combinations of learning rates
and regularisation coefficients in each of our HPO frameworks. This grid contains the ones used
in the popular works Buzzega et al. (2020), Boschini et al. (2022) and Sarfraz et al. (2023), where
we add additional learning rate settings and, for some datasets, regularisation coefficients settings.
We note here that while we use grid search in this paper to align with common practice in CL
(Buzzega et al., 2020; Delange et al., 2021), any hyperparameter sampling/selecting method can be
used with each of the HPO frameworks looked at. For example, tree-structured Parzen estimators
are a common Bayesian HPO method to sample hyperparameter configurations for neural networks
(Bergstra et al., 2011). Additionally, Gaussian process based HPO methods are also commonly used
(Snoek et al., 2012) and have been looked at in settings related to online learning (Hellan et al.,
2023).

B EXPERIMENTS USING DEFAULT HYPERPARAMETER VALUES

To test whether HPO is needed in CL and if instead using default hyperparameters is sufficient, we
perform experiments using default hyperparameters. The experimental setup is the same as the main
paper and we use for the default learning rate the default given by PyTorch, 0.001, and use 1.0 as the
default for regularisation coefficients. The results are presented in Tables 5 and 7. The tables show
that using default hyperparameters leads to worse performance than using HPO. Additionally, for
some dataset and CL method combinations the default hyperparameters perform very badly showing
the need to adapt hyperparameters to the dataset and CL method used.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: Comparison of using default hyperparameters versus using a HPO framework on split-task
CIFAR-10 and CIFAR-100, where we only present the most common HPO framework (End-of-
training HPO) and the most efficient (First-task HPO) for readability. We report mean average
accuracies over three runs with their standard errors. The table shows that using default HPs leads
to worse performance than using HPO for standard CL benchmarks.

CIFAR-10 CIFAR-100

CL Method HPO Framework Class-IL. Task-IL. Class-IL. Task-IL.

ER
End-of-training HPO 83.55±0.44 97.18±0.14 51.03±0.43 85.68±0.29

First-task HPO 84.38±0.45 96.82±0.17 49.61±0.34 84.97±0.19

Default HPs 74.60±0.79 94.53±0.13 35.39±0.36 72.83±0.24

iCaRL
End-of-training HPO 77.79±0.23 98.52±0.03 54.30±0.36 85.74±0.45

First-task HPO 77.83±0.22 95.31±0.12 52.56±0.10 84.60±0.09

Default HPs 68.34±0.49 92.98±0.21 11.54±0.25 41.66±0.54

ER-ACE
End-of-training HPO 82.34±0.30 96.74±0.01 55.58±0.39 85.73±0.09

First-task HPO 83.20±0.79 96.67±0.18 56.36±0.29 86.11±0.154

Default HPs 75.46±0.21 94.71±0.06 42.65±0.57 76.28±0.19

ESMER
End-of-training HPO 80.73±0.15 96.50±0.01 56.16±0.54 88.69±0.35

First-task HPO 77.89±0.46 96.15±0.12 56.61±0.20 89.05±0.10

Default HPs 68.86±1.06 93.54±0.20 42.94±0.61 79.64±0.36

DER++
End-of-training HPO 84.40±0.94 95.75±0.33 56.04±3.67 83.13±2.69

First-task HPO 85.22±0.08 96.14±0.10 55.20±0.78 81.68±0.66

Default HPs 77.59±0.45 93.83±0.40 46.11±1.16 78.14±1.28

Table 6: Comparison of using default hyperparameters versus using a HPO framework on split-task
Tiny ImageNet, where we only present the most common HPO framework (End-of-training HPO)
and the most efficient (First-task HPO) for readability. We report mean average accuracies over three
runs with their standard errors. The table shows that using default HPs leads to worse performance
than using HPO for standard CL benchmarks.

TinyImageNet

CL Method HPO Framework Class-IL. Task-IL.

ER
End-of-training HPO 28.01±0.09 68.17±0.06

First-task HPO 28.51±0.18 68.72±0.13

Default HPs 16.27±0.20 50.99±0.41

iCaRL
End-of-training HPO 37.09±0.27 70.37±0.36

First-task HPO 36.42±0.22 70.11±0.13

Default HPs 5.30±0.03 23.97±0.10

ER-ACE
End-of-training HPO 38.94±0.47 70.18±0.23

First-task HPO 36.94±0.67 68.16±0.30

Default HPs 25.84±0.26 56.25±0.13

ESMER
End-of-training HPO 47.33±0.30 76.18±0.22

First-task HPO 46.69±0.56 75.72±0.24

Default HPs 33.11±0.39 63.15±0.17

DER++
End-of-training HPO 39.89±0.27 70.41±0.17

First-task HPO 35.98±0.63 65.86±0.37

Default HPs 25.66±0.16 59.14±0.51

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Comparison of using default hyperparameters versus using a HPO framework on heteroge-
neous task benchmarks, where we only present the most common HPO framework (End-of-training
HPO) and the most efficient (First-task HPO) for readability. We report mean average accuracies
over three runs with their standard errors. The table shows that using default HPs leads to worse
performance than using HPO for heterogeneous task benchmarks.

Hetero-CIFAR-100 Hetero-TinyImg

CL Method HPO Framework Class-IL. Class-IL.

ER
End-of-training HPO 50.41±0.21 39.41±0.57

First-task HPO 50.33±0.50 40.77±0.34

Default HPs 33.76±0.78 26.88±0.45

iCaRL
End-of-training HPO 51.54±0.38 37.17±0.48

First-task HPO 49.81±0.10 37.47±0.26

Default HPs 12.23±0.19 10.6±0.26

ER-ACE
End-of-training HPO 51.96±0.60 45.47±0.42

First-task HPO 51.37±0.16 43.62±1.09

Default HPs 38.11±0.80 32.37±0.53

ESMER
End-of-training HPO 50.54±0.16 44.87±0.26

First-task HPO 50.43±0.34 45.84±0.50

Default HPs 37.92±0.30 34.22±0.41

DER++
End-of-training HPO 54.12±0.70 46.41±0.77

First-task HPO 54.87±0.39 43.45±3.55

Default HPs 44.43±0.51 30.21±1.53

15

	Introduction
	Preliminaries and related work
	Standard CL
	HPO frameworks for CL
	Experiments
	Results

	Conclusions
	Additional experimental details
	Experiments using default hyperparameter values

