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ABSTRACT

Real-world applications often require making use of a range of incidental supervi-
sion signals. However, we currently lack a principled way to measure the benefit
an incidental training dataset can bring, and the common practice of using indirect,
weak signals is through exhaustive experiments with various models and hyper-
parameters. This paper studies whether we can, in a single framework, quantify
the benefit of various types of incidental signals for one’s target task without go-
ing through combinatorial experiments. We propose PABI, a unified informative-
ness measure motivated by PAC-Bayesian theory, characterizing the reduction in
uncertainty that indirect, weak signals provide. We demonstrate PABI’s use in
quantifying various types of incidental signals including partial labels, noisy la-
bels, constraints, cross-domain signals, and combinations of these. Experiments
with various setups on two natural language processing (NLP) tasks, named en-
tity recognition (NER) and question answering (QA), show that PABI correlates
well with learning performance, providing a promising way to determine, ahead
of learning, which supervision signals would be beneficial.

1 INTRODUCTION

The supervised learning paradigm, where direct supervision signals are assumed to be available
in high-quality and large amounts, has been struggling to fulfill the needs in many real-world AI
applications. As a result, researchers and practitioners often resort to datasets that are not collected
directly for the target task but, hopefully, capture some phenomena useful for it (Pan & Yang, 2009;
Vapnik & Vashist, 2009; Roth, 2017; Kolesnikov et al., 2019). However, it remains unclear how
to predict the benefits of these incidental signals on our target task beforehand, so the common
practice is often trial-and-error: do experiments with different combinations of datasets and learning
protocols, often exhaustively, to achieve improvement on a target task (Liu et al., 2019; Khashabi
et al., 2020). Not only this is very costly, this trial-and-error approach can also be hard to interpret:
if we don’t see improvements, is it because the incidental signals themselves are not useful for our
target task, or is it because the learning protocols we have tried are inappropriate?

The difficulties of foreshadowing the benefits of various incidental supervision signals are two-fold.
First, it is hard to provide a unified measure because of the intrinsic differences among different
signals (e.g., how do we predict and compare the benefit of learning from noisy data and the benefit
of knowing some constraints for the target task?). Second, it is hard to provide a practical measure
supported by theory. Previous attempts are either not practical or too heuristic (Baxter, 1998; Ben-
David et al., 2010; Thrun & O’Sullivan, 1998; Gururangan et al., 2020). In this paper, we propose
a unified PAC-Bayesian motivated informativeness measure (PABI) to quantify the value of inci-
dental signals. We suggest that the informativeness of various incidental signals can be uniformly
characterized by the reduction in the original concept class uncertainty they provide. Specifically,
in the PAC-Bayesian framework1, the informativeness is based on the Kullback–Leibler (KL) di-
vergence between the prior and the posterior, where incidental signals are used to estimate a better
prior (closer to the gold posterior) to achieve better generalization performance. Furthermore, we
provide a more practical entropy-based approximation of PABI. In practice, PABI first computes
the entropy of the prior estimated from incidental signals, and then computes the relative decrease
to the entropy of the prior without any information, as the informativeness of incidental signals.

1We choose the PAC-Bayes framework here because it allows us to link PABI to the performance measure.
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Figure 1: An example of NER with various incidental supervision signals: partial labels (some
missing labels in structured outputs), noisy labels (some incorrect labels), auxiliary labels (labels of
another task, e.g. named entity detection in the figure), and constraints in structured learning (e.g.
the BIO constraint where I-X must follow B-X or I-X (Ramshaw & Marcus, 1999) in the figure).

We have been in need of a unified informativeness measure like PABI. For instance, it might be
obvious that we can expect better learning performance if the training data are less noisy and more
completely annotated, but what if we want to compare the benefits of a noisy dataset and that of a
partial dataset? PABI enables this kind of comparisons beforehand, on a wide range of incidental
signals such as partial labels, noisy labels, constraints2, auxiliary signals, cross-domain signals, and
some combinations of them, for sequence tagging tasks in NLP. A specific example of NER is shown
in Fig. 1, and the advantages of PABI are in Table 1.

Finally, our experiments on two NLP tasks, NER and QA, show that there is a strong positive
correlation between PABI and the relative improvement for various incidental signals. This strong
positive correlation indicates that the proposed unified, theory-motivated measure PABI can serve
as a good indicator of the final learning performance, providing a promising way to know which
signals are helpful for a target task beforehand.

Organization. We start with related work in Section 1.1. Then we derive informativeness measure
PABI in Section 2. We show examples on how to compute PABI using various incidental signals
in Section 3. We verify the effectiveness of PABI in Section 4. Section 5 concludes this paper.

1.1 RELATED WORK

There are lots of practical measures proposed to quantify the benefits of specific types of signals.
For example, a widely used measure for partial signals in structured learning is the partial rate (Cour
et al., 2011; Hovy & Hovy, 2012; Liu & Dietterich, 2014; Van Rooyen & Williamson, 2017; Ning
et al., 2019); a widely used measure for noisy signals is the noise ratio (Angluin & Laird, 1988;
Natarajan et al., 2013; Rolnick et al., 2017; Van Rooyen & Williamson, 2017); Ning et al. (2019)
propose to use the concaveness of the mutual information with different percentage of annotations
to quantify the strength of constraints in the structured learning; others, in NLP, have quantified the
contribution of constraints experimentally (Chang et al., 2012; 2008). Bjerva (2017) proposes to
use conditional entropy or mutual information to quantify the value for auxiliary signals. As for
domain adaptation, domain similarity can be measured by the performance gap between domains
(Wang et al., 2019) or measures based on the language model in NLP, such as the vocabulary overlap
(Gururangan et al., 2020). Among them, the most relevant work is (Bjerva, 2017). However, their
conditional entropy or mutual information is based on token-level label distribution, which cannot be
used for incidental signals involving multiple tokens or inputs, such as constraints and cross-domain
signals. At the same time, for the cases where both PABI and mutual information can handle, PABI
works similar to the mutual information as shown in Fig. 2, and PABI can further be shown to be a
strictly increasing function of the mutual information. The key advantage of our proposed measure
PABI is that PABI is a unified measure motivated by the PAC-Bayesian theory for a broader range
of incidental signals compared to these practical measures for specific types of incidental signals.

There also has been a line of theoretical work that attempts to exploit incidental supervision signals.
Among them, the most relevant part is task relatedness. Ben-David & Borbely (2008) define the

2Constraints are used to model the dependency among words and sentences, which are considered in a lot
of work, such as CRF (Lafferty et al., 2001) and ILP (Roth & Yih, 2004).

2



Under review as a conference paper at ICLR 2021

Incidental Supervision Signals Unified Measure Support
Measures partial noisy constraints auxiliary cross-domain cross-type mixed-type Theoretical Empirical

CST’11, HH’12, LD’14 X × × × × × × X X
AL’88, NDRT’13, RVBS’17 × X × × × × × X X

VW’17, WNR’20 X X × × × × × X ×
NHFR’19 X × X × × × × × X

B’17 × × × X × × × × X
GMSLBDS’20 × × × × X × × × X
PABI (ours) X X X X X X X X X

Table 1: Comparison between PABI and prior works: (1) Cross-type: PABI is a unified measure
which can measure the benefit of different types of incidental signals (e.g., comparing a noisy dataset
and a partially annotated dataset). (2) Mixed-type: PABI can measure the benefit of mixed incidental
signals (e.g., a dataset that is both noisy and partially annotated). (3) PABI is derived from PAC-
Bayesian theory but also easy to compute in practice; PABI is shown to have similar or better
predicting capability of signals’ benefit (see Figs. 2 and 3 and Sec. 3.1).4

task relatedness based on the richness of transformations between inputs for different tasks, but their
analysis is limited to cases where data is from the same classification problem but the inputs are in
different subspace. Juba (2006) proposes to use the joint Kolmogorov complexity (Li et al., 2008)
to characterize relatedness, but it is still unclear how to compute the joint Kolmogorov complexity
in real-world applications. Mahmud & Ray (2008) further propose to use conditional Kolmogorov
complexity to measure the task relatedness and provide empirical analysis for decision trees, but it
is unclear how to use their relatedness for other models, such as deep neural networks. Thrun &
O’Sullivan (1998) propose to cluster tasks based on the similarity between the task-optimal distance
metric of k-nearest neighbors (KNN), but their analysis is based on KNN and it is unclear how to use
their relatedness for other models. A lot of other works provide quite good qualitative analysis to
show various incidental signals are helpful but they did not provide quantitative analysis to quantify
to what extent these types of incidental signals can help (Balcan & Blum, 2010; Abu-Mostafa, 1993;
Natarajan et al., 2013; Van Rooyen & Williamson, 2017; Baxter, 1998; London et al., 2016; Ciliberto
et al., 2019; Ben-David et al., 2010; Wang et al., 2020). Compared to these theoretical analyses,
PABI can be easily used in practice to quantify the benefits of a broader range of incidental signals.

2 PABI: A UNIFIED PAC-BAYESIAN INFORMATIVENESS MEASURE

We start with notations and preliminaries. Let X be the input space, Y be the label space, and Ŷ be
the prediction space. LetD denote the underlying distribution onX ×Y . Let ` : Y×Ŷ → R+ be the
loss function that we use to evaluate learning algorithms. A set of training samples S = {xi, yi}mi=1
is generated i.i.d. from D. In the common supervised learning setting, we usually assume the
concept that generates data comes from the concept class C. In this paper, we assume C is finite,
and its size is | C |, which is common in NLP. We want to choose a predictor c : X → Ŷ from C
such that it generalizes well to unseen data with respect to `, measured by the generalization error
RD(c) = Ex,y∼D[`(y, c(x))]. The training error over S is RS(c) = 1

m

∑m
i=1 `(yi, c(xi)).

More generally, instead of predicting a concept, we can specify a distribution over the concept
class. Let P denote the space of probability distributions over C. General Bayesian learning algo-
rithms (Zhang et al., 2006) in the PAC-Bayesian framework (McAllester, 1999a;b; Seeger, 2002;
McAllester, 2003b;a; Maurer, 2004; Guedj, 2019) aim to choose a posterior πλ ∈ P over the
concept class C based on a prior π0 ∈ P and training data S, where λ is a hyper parameter that
controls the tradeoff between the prior and the data likelihood. In this setting, the training er-
ror and the generalization error need to be generalized, to take the distribution into account, as
LS(πλ) = Ec∼πλ [RS(c)] and LD(πλ) = Ec∼πλ [RD(c)] respectively. One can easily see that when
the posterior is one-hot (exactly one entry of the distribution is 1), we have the original definitions
of training error and generalization error, as in the PAC framework (Valiant, 1984).

4Papers are denoted by abbreviations of author names as: CST’11 (Cour et al., 2011), HH’12 (Hovy &
Hovy, 2012), LD’14 (Liu & Dietterich, 2014), AL’88 (Angluin & Laird, 1988), NDRT’13 (Natarajan et al.,
2013), RVBS’17 (Rolnick et al., 2017), VW’17 (Van Rooyen & Williamson, 2017), WNR’20 (Wang et al.,
2020), NHFR’19 (Ning et al., 2019), B’17 (Bjerva, 2017), GMSLBDS’20 (Gururangan et al., 2020).
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2.1 INFORMATIVENESS MEASURES IN THE PAC-BAYESIAN FRAMEWORK

We are now ready to derive the proposed informativeness measure PABI motivated by PAC-Bayes.
The generalization error bound in the PAC-Bayesian framework (Guedj, 2019; Catoni, 2007) says

that with probability 1 − δ over S, LD(πλ∗) ≤ LD(π∗) +

√
8B(DKL(π∗||π0)+ln

2 ln(mC)
δ )

m , where

πλ∗ is the posterior distribution with the optimal λ∗ =

√
2m(DKL(π∗||π0)+ln 2

δ )

B , π∗ ∈ P is the gold
posterior that generates the data, DKL(π∗||π0) denotes the KL divergence from π0 to π∗, B and C
are two constants. This is based on the Theorem 2 in Guedj (2019).

As shown in the generalization bound, the generalization error is bounded by the KL divergence
DKL(π∗||π0) from the prior distribution to the gold posterior distribution. Therefore, we propose
to utilize incidental signals to improve the prior distribution from π0 to π̃0 so that it is closer to the
gold posterior distribution π∗. Correspondingly, we can define PABI, the informativeness measure
for incidental supervision signals, by measuring the improvement with regard to the gold posterior,
in KL divergence sense.

Definition 2.1 (PABI). Suppose we use incidental signals to improve the prior distribution from π0
to π̃0. The informativeness measure for incidental signals, PABI, is defined as

S(π0, π̃0) ,

√
1− DKL(π∗||π̃0)

DKL(π∗||π0)
(1)

Remark. Note that S(π0, π̃0) = 0 if π̃0 = π0, while if π̃0 = π∗, then S(π0, π̃0) = 1. This result is
consistent with our intuition that the closer π̃0 is to π∗, the more benefits we can gain from incidental
signals. The square root function is used in PABI for two reasons: first, the generalization bounds in
both PAC-Bayesian and PAC (see Sec. 2.2) frameworks have the square root function; second, in our
later experiments, we find that square root function can significantly improve the Pearson correlation
between the relative performance improvement and PABI. It is worthwhile to note that the square
root is not crucial for our framework, because our goal is to compare the benefits among different
incidental supervision signals, where the relative values are expressive enough. In this sense, any
strictly increasing function in [0, 1] over the current formulation would be acceptable.

In our paper, we focus on the setting that the gold posterior π∗ is one-hot, which means π∗ concen-
trates on the true concept c∗ ∈ C, though the definition of PABI can handle general gold posterior.
However, π∗ is unknown in practice, which makes Eq. (1) hard to be computed in reality. In the
following, we provide an approximation Ŝ of PABI.

Definition 2.2 (Approximation of PABI). Assume that the original prior π0 is uniform, and the
gold posterior π∗ is one-hot concentrated on the true concept c∗ in C, as we have assumed that C is
finite. Let H(·) be the entropy function. The approximation Ŝ of PABI is defined as

Ŝ(π0, π̃0) ,

√
1− H(π̃0)

H(π0)
=

√
1− H(π̃0)

ln | C |
(2)

The uniform prior π0 is usually used when we do not have information about the prior on which
concept in the class that generates data. The intuition behind Ŝ is that, it measures how much entropy
incidental signals reduce, compared with non-informative prior π0. Ŝ can be computed through
data and thus is practical. To see how this approximation works, first note DKL(π∗||π0) = ln | C |
because π∗ is one-hot and π0 is uniform over the finite concept class C. Let πc be the one-hot
distribution concentrated on concept c for each c ∈ C. The approximation is that we estimate π∗ by
πc, where c follows π̃0: DKL(π∗||π̃0) ≈ Ec∼π̃0DKL(πc||π̃0). It turns out Ec∼π̃0DKL(πc||π̃0) =
H(π̃0). Therefore,

Ŝ(π0, π̃0) =

√
1− H(π̃0)

ln | C |
=

√
1− Ec∼π̃0DKL(πc||π̃0)

ln | C |
≈

√
1− DKL(π∗||π̃0)

DKL(π∗||π0)
= S(π0, π̃0).

We later show that the approximation of PABI and PABI is equivalent in the non-probabilistic cases
with the finite concept class, indicating the quality of this approximation. Furthermore, the effec-
tiveness of this approximation in NLP applications also indicates the quality of this approximation.
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2.2 PABI IN THE PAC FRAMEWORK

We have derived PABI in the PAC-Bayesian framework. Here, we discuss briefly on what PABI
reduces to in the PAC framework and what limitations are when PABI is restricted to the PAC frame-
work. The generalization bound in the PAC framework (Mohri et al., 2018) says with probability

1− δ over S, RD(c) ≤ RS(c) +

√
ln | C |+ln 2

δ

2m . We propose to reduce the concept class from C to C̃
by using incidental signals. Then PABI in the PAC framework can be written as

S(C, C̃) =

√
1− ln |C̃|

ln | C |
(3)

It turns out that Eq. (3) is a special case of Eq. (1) when π∗ is one-hot over C, π0 is uniform over C
and π̃0 is uniform over C̃ (See Appx. A.1 for the derivation). As shown in Appx. A.1, we can see
that the three informativeness measures, PABI in Eq. (1), the approximation of PABI in Eq. (2),
and PABI in the PAC framework in Eq. (3), are equivalent, i.e. S(π0, π̃0) = Ŝ(π0, π̃0) = S(C, C̃),
in the non-probabilistic cases with the finite concept class. The equivalence among three measures
further indicates that both PABI and the approximation of PABI are reasonable.

However, PABI restricted to the PAC framework cannot handle the probabilistic cases. For exam-
ple, incidental signals can reduce the probability of some concepts, though the concept class is not
reduced. In this example, S(C, C̃) is zero, but we actually benefit from incidental signals. Some
analysis on the extensions and general limitations of PABI can be found in Appx. A.2 and A.3. We
need to notice that the size of concept class also plays an important role in the lower bound on the
generalization error (more details in Appx. A.4), indicating that PABI based on the reduction of the
concept class is a reasonable measure.

3 EXAMPLES FOR PABI

In this section, we show some examples of sequence tagging tasks5 in NLP for PABI. Similar to the
categorization of transfer learning (Pan & Yang, 2009), we use inductive signals to denote the signals
with a different conditional probability distribution (P (y |x)) from gold signals, such as noisy and
auxiliary signals, and transductive signals to denote the signals with the same task (P (y |x)) as gold
signals but a different marginal distribution of x (P (x)) from gold signals, such as cross-domain and
cross-lingual signals. In our following analysis, we study the tasks with finite concept class which
is quite common in NLP. For simplicity, we focus on simple cases where the number of incidental
signals is large enough. How different factors (including base model performance, size of incidental
signals, data distributions, algorithms, cost-sensitive losses) affect PABI are discussed in Appx.
A.5. We derive the PABI for partial labels in detail and the derivations for others are similar. More
examples and details can be found in Appx. A.6.

3.1 EXAMPLES WITH INDUCTIVE SIGNALS

Partial labels. The labels for each example in sequence tagging tasks is a sequence and some of
them are unknown in this case. Assuming that the ratio of the unknown labels in data is ηp ∈ [0, 1] ,
the size of the reduced concept class will be |C̃| = | L |n| V |nηp . Therefore, Ŝ(π0, π̃0) = S(π0, π̃0) =

S(C, C̃) =
√

1− ln |C̃|
ln | C | =

√
1− | L |

n| V |nηp

| L |n| V |n =
√

1− ηp. It is consistent with the widely used
partial rate because it is a monotonically decreasing function of the partial rate.

Noisy labels. For each token, P (y|ỹ) is determined by the noisy rate ηn ∈ [0, 1], i.e. P (y =
ỹ) = 1 − ηn and the probability of other labels are all ηn

| L |−1 . We can get the corresponding
probability distribution of labels over the tokens in all inputs (π̃0 over the concept class). In this

way, Ŝ(π0, π̃0) =
√

1− ηn ln(| L |−1)−ηn ln ηn−(1−ηn) ln(1−ηn)
ln | L | . It is consistent with the widely used

noise rate because it is a monotonically decreasing function of the noisy rate. In practice, the noisy

5Given an input x ∈ X = Vn generated from a distribution D, the task aims to get the corresponding label
y ∈ Ŷ = Y = Ln, where V is the vocabulary of input words, L is the label set for the task, and n is the length
of the input sentence.
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rate can be easily estimated with some aligned data6, and the noise with more complex patterns (e.g.
input dependent) is postponed as our future work.

3.2 EXAMPLES WITH TRANSDUCTIVE SIGNALS

For transductive signals, such as cross-domain signals, we can first extend the concept class C to the
extended concept class Ce with the corresponding extended input space X e. After that, we can use
incidental signals to estimate a better prior distribution π̃e0 over the extended concept class Ce, and
then get the corresponding π̃0 over the original concept class by restricting the concept from X e to
X . In this way, the informativeness of transductive signals can still be measured by S(π0, π̃0) or
Ŝ(π0, π̃0). The restriction step is similar to Roth & Zelenko (2000).

However, how to compute H(π̃0) is still unclear. We now provide a way to estimate it. To better
illustrate the estimation process for transductive signals, we provide the summary of core notations
in Table 3 as shown in Appx. A.11. For simplicity, we use c(x) to denote the gold system on the
gold signals, c̃(x) to denote the perfect system on the incidental signals, and ĉ(x) to denote the silver
system trained on the incidental signals. Source domain (target domain) is the domain of incidental
signals (gold signals). We use D to denote the target domain and D̃ to denote the source domain.
PD(x) is the marginal distribution of x under D, and similar definition for PD̃(x). In our analysis,
we assume c̃(x) is a noisy version of c(x) with the noisy rate η, and ĉ(x) is a noisy version of
c̃(x) with the noisy rate η1 (η′1) in the source (target) domain : η1 = Ex∼PD̃(x)1(ĉ(x) 6= c̃(x))

(η′1 = Ex∼PD(x)1(ĉ(x) 6= c̃(x))).

In practice, η is unknown but it can be estimated by η1 in the source domain and η2 =
Ex∼PD(x)1(ĉ(x) 6= c(x)) (the noisy rate of the silver system compared to the gold system on
the target domain) as follows:

η = Ex∼PD(x)1(c(x) 6= c̃(x)) =
(| L | − 1)(η′1 − η2)

1− |L |(1− η′1)
=

(| L | − 1)(η1 − η2)

1− |L |(1− η1)
. (4)

Here we add an assumption: η′1 in the target domain is equal to η1 in the source domain.7 In
Appx. A.7, we can see that Eq. (4) serves as an unbiased estimator for η under some as-
sumptions, but the concentration rate will depend on the size of source data. It requires finer-
grained analysis on the estimator in Eq. (4), which we postpone as our future work. Similar to
noisy labels, the corresponding informativeness of transductive signals can be then computed as

Ŝ(π0, π̃0) =
√

1− η ln(| L |−1)−η ln η−(1−η) ln(1−η)
ln | L | . Note that we treat cross-domain signals as a

special type of noisy data, when η is estimated.

To justify the use of η in the informativeness measure for transductive signals, we show in Theorem
A.2 (see Appx. A.8) that (informally speaking) the generalization error of a learner that is jointly
trained on data from both source and target domains can be upper bounded by η (plus a function
of the size of the concept class and the number of samples). Finally we note that although the
computation cost of PABI for transductive signals is higher than that for inductive signals, it is
still much cheaper than building combined models with joint training. For example, given T source
domains and T target domains, the goal is to select the best source domain for each target domain. If
we use the joint training, we need to train T × T = T 2 models. However, with PABI, we only need
to train T +T = 2T models. Furthermore, for each model, joint training on the combination of two
domains requires more time than the training on a single domain used in PABI. In this situation, we
can see that PABI is much cheaper than building combined models with joint training.

3.3 EXAMPLES WITH MIXED INCIDENTAL SIGNALS

The mix of partial and noisy labels. The corresponding informativeness for the mix of partial

and noisy labels is Ŝ(π0, π̃0) =
√

(1− ηp) ∗ (1− ηn ln(| L |−1)−ηn ln ηn−(1−ηn) ln(1−ηn)
ln | L | ), where

ηp ∈ [0, 1] denotes the ratio of unlabeled tokens, and ηn ∈ [0, 1] denotes the noise ratio.
6If there is no jointly annotated data, we can use similar methods as Bjerva (2017) to create some approxi-

mate jointly annotated data.
7We add this assumption mainly because we want to estimate the η only based on η1 and η2, which can be

easily computed in practice.
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(a) Partial labels (b) Noisy labels (c) Auxiliary labels

(e) The mix of partial labels 
and constraints

(f) Various inductive signals(d) The mix of partial and noisy labels

Figure 2: Correlations between informativeness and relative performance improvement for NER
with various inductive signals. On one hand, as shown in (a)-(c), PABI has similar foreshad-
owing ability with measures for specific signals. On the other hand, as shown in (d)-(f), PABI
can measure the benefits of mixed inductive signals and compare different types of inductive
signals, which cannot be handled by existing frameworks. For individual inductive signals, the
baselines (gray points) are, i.e. one minus partial rate for partial labels (Cour et al., 2011; Hovy
& Hovy, 2012; Liu & Dietterich, 2014; Van Rooyen & Williamson, 2017; Ning et al., 2019), one
minus noisy rate for noisy labels (Angluin & Laird, 1988; Natarajan et al., 2013; Rolnick et al.,
2017; Van Rooyen & Williamson, 2017), and entropy normalized mutual information for auxiliary
labels (Bjerva, 2017). For NER with various inductive signals (f) (with all PABI points from (a)-
(e)), Pearson’s correlation and Spearman’s rank correlation are 0.92 and 0.93. Note that the relative
improvement for NER (with informativeness 0.90 but relative improvement 0.70) in auxiliary labels
(c) is smaller than expected mainly due to the imbalanced label distribution (88% O among all
BIO labels). More discussions about the imbalanced distribution can be found in Appx. A.5.

The mix of partial labels and constraints. For BIO constraints with partial labels, we can use
dynamic programming with sampling as Ning et al. (2019) to estimate ln |C̃| and Ŝ(π0, π̃0).

4 EXPERIMENTS

In this section, we verify the effectiveness of PABI on various inductive signals and transductive
signals on NER and QA. More details about experimental settings are in Appx. A.9.

Learning with various inductive signals. In this part, we analyze the informativeness of inductive
signals for NER. We use Ontonotes NER (18 types of named entities) (Hovy et al., 2006) as the main
task. We randomly sample 10% sentences (30716 words) of the development set as the small gold
signals, 90% sentences (273985 words) of the development set as the large incidental signals. We
use a two-layer NNs with 5-gram features as our basic model. The lower bound for our experiments
is the result of the model with small gold Ontonotes NER annotations and bootstrapped on the
unlabeled texts of the large gold Ontonotes NER, which is 38 F1, and the upper bound is the result
of the model with both small gold Ontonotes NER annotations and the large gold Ontonotes NER
annotations, which is 61 F1. To utilize inductive signals, we propose a new bootstrapping based
algorithm CWBPP (Algorithm 1 in Appx. A.10), where inductive signals are used to improve the
inference stage by approximating a better prior. It is an extension of CoDL (Chang et al., 2007) with
various inductive signals.

We experiment on NER with various inductive signals, including three types of individual signals,
partial labels, noisy labels, auxiliary labels, and two types of mixed signals: signals with both partial

7
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(a) Joint-training NER with 
baselines and PABI

(b) Joint-training QA with 
baselines and PABI

(b) Pre-training QA with 
baselines and PABI

Figure 3: Correlation between informativeness measures (baselines or the PABI) and relative per-
formance improvement (via joint training or pre-training) for cross-domain NER and cross-domain
QA. We can see that the correlation between the relative improvement and PABI is stronger
than other baselines. Red results with the PABI which is based on η in Eq. (4); Gray points in-
dicate the results with the naive informativeness measure η2; Black points indicate the results with
the vocabulary overlap baseline (Gururangan et al., 2020). The Pearson’s correlation of three in-
formativeness measure in the three cases are: 0.96/0.19/−0.85, 1.00/0.88/−0.40, 0.99/0.85/−0.30,
indicating the quality of the PABI measure. Similarly, the corresponding Spearman’s rank correla-
tion are: 1.00/−0.50/−1.00, 1.00/0.82/−0.30, 1.00/0.82/−0.30.

and noisy labels, and signals with both partial labels and constraints. As shown in Fig. 2, we find
that there is a strong correlation between the relative improvement and PABI for various inductive
signals. For individual signals in Fig. 2(a)-2(c), we find that PABI have similar foreshadowing
ability comparing to the measures for specific signals, i.e., 1− ηp for partial labels, 1− ηn for noisy

labels, and entropy normalized mutual information8 ( I(Y ;Ỹ )
H(Y ) ) for auxiliary labels. For mixed signals

in Fig. 2(d)-2(e), the strong correlation is quite promising because the benefits of mixed signals
cannot be quantified by existing frameworks. Finally, the strong positive correlation for different
types of signals in Fig. 2(f) indicates that it is feasible to compare the benefits of different incidental
signals with PABI, which cannot be addressed by existing frameworks.

Learning with cross-domain signals. In this part, we consider the benefits of cross-domain signals
for NER and QA. For NER, we consider four NER datasets, Ontonotes, CoNLL, twitter (Strauss
et al., 2016), and GMB (Bos et al., 2017). We aim to detect the person names here because the only
shared type of the four datasets is the person9. In our experiments, the twitter NER serves as the
main dataset and other three datasets are cross-domain datasets. There are 85 sentences in the small
gold training set, 756 sentences (9 times of the gold signals) in the large incidental training set, and
851 sentences in the test set. We tried larger datasets for both gold and incidental signals (keeping
the ratio between two sizes as 9) and the results are similar as long as the number of gold signals is
not too large. For QA, we consider SQuAD (Rajpurkar et al., 2016), QAMR (Michael et al., 2017),
QA-SRL Bank 2.0 (FitzGerald et al., 2018), QA-RE (Levy et al., 2017), NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017). In our experiments, the SQuAD dataset serves as the main
dataset and other datasets are cross-domain datasets. We randomly sample 700 QA pairs as the
small gold signals, about 6.2K QA pairs as the large incidental signals (9 times of the small gold
signals), and 21K QA pairs as the test data.

We use BERT as our basic model and consider two strategies to make use of incidental signals: joint
training and pre-training. For NER, the lower bound is the result with only small gold twitter anno-
tations, which is 61.51 F1, and the upper bound is the result with both small gold twitter annotations
and large gold twitter annotations, which is 78.31. For QA, the lower bound is the result with only
small gold SQuAD annotations, which is 26.45 exact match. The upper bound for the joint training
is the result with both small gold SQuAD annotations and large SQuAD annotations, which is 50.72
exact match. Similarily, the upper bound for the pre-training is 49.24 exact match.

8 In Bjerva (2017), they propose to use mutual information or conditional entropy to measure the informa-
tiveness, so we normalize the mutual information with the entropy to make the value between 0 and 1.

9Note that our focus here is cross-domain signals, the divergent set of classes for different domains is a mix
of cross-domain and auxiliary signals, which is our future work.
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The relation between the relative improvement (pre-training or joint training) and informativeness
measures (baselines or the PABI) is shown in Fig. 3. We can see that there is a strong positive
correlation between the relative improvement and PABI for cross-domain signals. Comparing to the
naive baseline η2, we can see that the adjustment from η1 is crucial (Eq. (4)), indicating that directly
using η2 is not a good choice. We also show the vocabulary overlap baseline as in (Gururangan
et al., 2020) where we compute the overlap over the top 1K most frequent unigrams (excluding stop
words and punctuations) between different domains. The results for this baseline are quite bad, and
the fact that our data is not so large makes this baseline more valueless.

5 CONCLUSION AND FUTURE WORK

Motivated by PAC-Bayesian theory, this paper proposes a unified framework, PABI, to characterize
incidental supervision signals by how much uncertainty they can reduce in the hypothesis space. We
demonstrate the effectiveness of PABI in foreshadowing the benefits of various signals, i.e., partial
labels, noisy labels, auxiliary labels, constraints, cross-domain signals and combinations of them,
for solving NER and QA. To our best knowledge, PABI is the first informativeness measure that
can handle various incidental signals and combinations of them; PABI is motivated by PAC-Bayes
and can be easily computed in real-world tasks. As the recent success of natural language modeling
has given rise to many explorations in knowledge transfer across tasks and corpora (Bjerva, 2017;
Phang et al., 2018; Zhu et al., 2019; Liu et al., 2019; He et al., 2020; Khashabi et al., 2020) , PABI
is a concrete step towards explaining some of these observations.

We conclude our work by pointing out several interesting directions for our future work.

First, PABI can also provide guidance in designing learning protocols. For instance, in a B/I/O
sequence chunking task,10 missing labels make it a partial annotation problem, while treating miss-
ing labels as O introduces noise. Since the informativeness of partial signals is larger than that of
noisy signals with the same partial/noisy rate (see details in Sec. 3.1), PABI suggests us not to treat
missing labels as O, and this is exactly what Mayhew et al. (2019) prove to us via their experiments.
We plan to explore more in this direction to apply PABI in designing better learning protocols.

Second, we need to acknowledge that our current exploration for auxiliary labels is still limited. The
results for auxiliary labels with a different label set (Fig. 2(c)) is blocked by the imbalanced label
distribution (Appx. A.5). For more complex cases, such as part-of-speech tagging (PoS) for NER,
we can only treat them as cross-sentence constraints now and the results are also limited (Appx.
A.6). In future, we will work more in this direction to better quantify the value of auxiliary signals.

Another interesting direction is to link PABI with the generalization bound. It might be too hard
to directly link PABI with the generalization bound for all types of incidental signals, but it is
possible to link it to the generalization bound for some specific types. For example, for partial and
noisy labels, PABI can directly be expressed in the generalization bound as in (Cour et al., 2011;
Natarajan et al., 2013; Van Rooyen & Williamson, 2017; Wang et al., 2020). The main difficulties
are in constraints and auxiliary signals, and we postpone it as our future work.

Finally, we plan to evaluate PABI in more applications, such as textual entailment and image clas-
sification, and more types of signals, such as cross-lingual and cross-modal signals.
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A APPENDIX

A.1 PABI IN THE PAC FRAMEWORK

Suppose π∗ is one-hot over C, π0 is uniform over C and π̃0 is uniform over C̃. We have
DKL(π∗||π0) = ln | C | and DKL(π∗||π̃0) = ln |C̃|. It follows that

S(π0, π̃0) =

√
1− DKL(π∗||π̃0)

DKL(π∗||π0)
=

√
1− ln |C̃|

ln | C |
= S(C, C̃).

At the same time, we have

Ŝ(π0, π̃0) =

√
1− H(π̃0)

H(π0)
=

√
1− H(π̃0)

ln | C |
=

√
1− ln |C̃|

ln | C |
= S(C, C̃).

Therefore, in the non-probabilistic cases with the finite concept class, the three informativeness
measures are equivalent as:

S(π0, π̃0) = Ŝ(π0, π̃0) = S(C, C̃).
The equivalence among three measures further indicates that both PABI and the approximation of
PABI are reasonable.

A.2 INFORMATIVENESS MEASURES IN PARAMETRIC CONCEPT CLASS

In practice, algorithms are often based on parametric concept class. The two informativeness mea-
sures in the PAC-Bayesian framework, S(π0, π̃0) and Ŝ(π0, π̃0), can be easily adapted to handle the
cases in parametric concept class. Given parametric space Cw, we can easily change the probability
distribution π(Cw) over the parametric concept class to the probability distribution π(C) over the
finite concept class C = {c : Vn → Ln} by clustering concepts in the parametric space according
to their outputs on all inputs. The concepts in each cluster have the same outputs on all inputs as
outputs of one concept in the finite concept class C. We then merge the probabilities of concepts in
the same cluster to get the probability distribution π(C) over the finite concept class C. This merging
approach can be applied to any concept class which is not equal to the finite concept class C, includ-
ing non-parametric and semi-parametric concept class. In practice, we can use sampling algorithms,
such as Markov chain Monte Carlo (MCMC) methods, to simulate this clustering strategy.

A.3 LIMITATIONS OF INFORMATIVENESS MEASURES

Different informativeness measures are based on different assumptions, so we analyze their limita-
tions in detail to understand their limitations in applications.

For the informativeness measure S(C, C̃), it cannot handle probabilistic signals or infinite concept
classes. There are various probabilistic incidental signals, such as soft constraints and probabilis-
tic co-occurrences between an auxiliary task and the main task. An example of probabilistic co-
occurrences between part-of-speech (PoS) tagging and NER is that the adjectives have a 95% prob-
ability to have the label O in NER. As for the infinite concept class, most classifiers are based on
infinite parametric spaces. Thus, S(C, C̃) cannot be applied to these classifiers.

The informativeness measure S(π0, π̃0) is hard to be computed for some complex cases. In practice,
we can use the estimated posterior distribution over the gold data, which is asymptotically unbiased,

to estimate it. Another approximation is to use the informativeness measure Ŝ =
√

1− H(π̃0)
H(π0)

.
However, it is not directly linked to the generalization bound, so more work is needed to guarantee its
reliability for some complex probabilistic cases. We postpone to provide the theoretical guarantees

for Ŝ =
√

1− H(π̃0)
H(π0)

on more complex cases as our future work.

A.4 LOWER BOUND IN THE PAC FRAMEWORK

In the following theorem, we show that the VC dimension (size of concept class) also plays an
important role in the lower bund for the generalization error, indicating that PABI based on the
reduction of the concept class is a reasonable measure.
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Theorem A.1. Let C be a concept class with VC dimension d > 1. Then, for any m ≥ 1 and any
learning algorithm A, there exists a distribution D over X and a target concept c ∈ C such that

PS∼Dm [RD(cS) >
d− 1

32m
] ≥ 1/100

where cS is a consistent concept with S returned by A. This is the Theorem 3.20 in Chapter 3.4 of
Mohri et al. (2018).

A.5 DISCUSSION OF SOME OTHER FACTORS IN PABI

In this subsection, we consider the impact of the following factors in PABI: base model perfor-
mance, the size of incidental signals, data distribution, algorithm and cost-sensitive loss.

Base model performance. In the generalization bound in both PAC and PAC-Bayesian, we can see
that the relative improvement in the generalization bound from reducing C is small if m is large.
In practice, the relative improvement is the real improvement with some noise. Therefore, we can
see that the real improvement is dominant if m is small and the noise is dominant if m is large.
Therefore, PABI may not work well when m is large and when the performance on the target task
is already good enough.

The size of incidental signals. Our previous analysis is based on a strong assumption that incidental
signals are large enough (ideally m̃ → ∞). A more realistic PABI is based on C̃ with m̃ examples

as S(C, C̃) =
√

ln | Cm̃ |−ln |C̃m̃|
ln | C | =

√
ln | Cm̃ |−ln |C̃m̃|

ln | Cm̃ | × ln | Cm̃ |
ln | C | =

√
(1− ln |C̃m̃|

ln | Cm̃ | )×
ln | Cm̃ |
ln | C | =√

(1− ln |C̃|
ln | C | )×

ln | Cm̃ |
ln | C | , where Cm̃ denotes the restricted concept class of C on the m̃ examples,

and so does C̃m̃. Note that the ratio of the intrinsic information in incidental signals is indepen-
dent of the size m̃, so ln |C̃m̃|

ln | Cm̃ | = ln |C̃|
ln | C | holds for our signals. For example, ln |C̃m̃|

ln | Cm̃ | = ηp for
partial data with unknown ratio ηp, doesn’t depend on the size m̃. (1) When m̃ is large enough,

S(C, C̃) =
√

1− ln |C̃|
ln | C | . (2) When the sizes of different incidental signals are all m̃, the relative im-

provement is independent of m̃ because ln | Cm̃ |
ln | C | is the same constant for different incidental signals.

Our experiments are based on this case and does not really rely on the assumption that incidental
signals are large enough. (3) The incidental signals we are comparing are not large enough and have

different sizes, we need to use S(C, C̃) =
√

(1− ln |C̃|
ln | C | )×

m̃
| V |n to incorporate that difference. We

can replace |V|n with some reasonable M , e.g. the largest size of incidental signals, to make PABI
in a larger range of values in [0, 1]. In future, we need to explore more in this direction.

Data distribution. As for the distribution of examples, both PAC and PAC-Bayesian are
distribution-free (see more in Chapter 2.1 of Mohri et al. (2018)). However, if we consider the
joint distribution between examples and labels, such as imbalanced label distribution, the situation
will be different. Specific types of joint data distribution refer to a restricted concept class C′. There-
fore, PABI is expected to work well if the reduction from C is similar to the reduction from C′ with

incidental signals, i.e. S(C′, C̃′) =
√

1− ln |C̃′|
ln | C′ | ≈

√
1− ln |C̃|

ln | C | .

Algorithm. Different algorithms make different assumptions on the concept class. For example,
SVM aims to find the maximum-margin hyperplane (see more in Chapter 5.4 of Mohri et al. (2018)).
Therefore, a specific algorithm actually is based on a restricted concept class C′ (e.g. concepts
with margin in SVM case). Similarly, PABI is expected to work well if the reduction from C is
similar to the reduction from C′ with incidental signals. We also cannot compare the benefits from
various incidental signals with different algorithms. If the algorithm is not expressive enough to take
advantage of incidental signals, we may also not be able to use PABI there.

Cost-sensitive Loss. For different loss functions other than 0-1 loss, there are still some similar
generalization bounds in PAC and PAC-Bayesian (using complexity of concept class and sample
size) (Bartlett et al., 2006; Ciliberto et al., 2016). Therefore, PABI can also be used (possibly with
some minor modifications) for cost-sensitive loss functions.
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k-gram 1 2 3 4 5 6 7 8 9 10
word-pos 8.68 49.45 84.08 96.22 98.96 99.54 99.69 99.73 99.75 99.76
word-ner 27.65 76.23 92.98 98.04 99.37 99.74 99.84 99.88 99.89 99.90
pos-ner 0.20 6.65 13.78 25.36 41.50 60.14 77.04 88.61 95.01 97.92
ner-pos 0.00 0.01 0.03 0.07 0.17 0.39 0.80 1.47 2.45 3.71

Table 2: K-gram co-occurrence analysis for PoS and NER in the whole Ontonotes dataset. For
example, word-pos represents the percentage of k-gram words that have the unique k-gram PoS
labels.
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Figure 4: The correlations between the informativeness and the relative performance improvement
for NER with cross-sentence constraints.

A.6 MORE EXAMPLES WITH INCIDENTAL SIGNALS

In this subsection, we show more examples with incidental signals, including within-sentence con-
straints, cross-sentence constraints, auxiliary labels, cross-lingual signals, cross-modal signals, and
the mix of cross-domian signals and constraints.

Within-Sentence Constraints. As for within-sentence constraints, we show three types of common
constraints in NLP, which are BIO constraints, assignment constraints, and ranking constraints.

• BIO constraints are widely used in sequence tagging tasks, such as NER. For BIO con-
straints, I-X must follow B-X or I-X, where “X” is finer types such as PER (person) and
LOC (location). We consider a simple case here: there are only B, I, O three labels. We have
ln |C̃| = | V |n(ln | L |n+ln[

∑b(n+1)/2c
m=0

(
m

n−m+1

)
( −1| L |2 )m]) for the BIO constraint. There-

fore, Ŝ(π0, π̃0) = S(π0, π̃0) = S(C, C̃) =

√
1−

ln | L |n+ln[
∑b(n+1)/2c
m=0 ( m

n−m+1)(
−1

| L |2
)m]

ln | L |n .
This value can be approximated by the dynamic programming as Ning et al. (2019).

• Assignment constraints can be used in various types of semantic parsing tasks, such as
semantic role labeling (SRL). Assume we need to assign d agents with d′ tasks such that the
agent nodes and the task nodes form a bipartite graph (without loss of generality, assume
d ≤ d′). Each agent is represented by a feature vector in Vf . We have Ŝ(π0, π̃0) =

S(π0, π̃0) = S(C, C̃) =
√

1− ln |C̃|
ln | C | =

√
1− ln ( dd′)

d ln d′ . This informativeness doesn’t rely
on the choice of Vf where that Vf denotes discrete feature space for arguments.
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• Ranking constraints can be used in ranking problems, such as temporal relation extraction.
For a ranking problem with t items, there are d = t(t−1)/2 pairwise comparisons in total.
Its structure is a chain following the transitivity constraints, i.e., if A < B and B < C,

then A < C. In this way, we have Ŝ(π0, π̃0) = S(π0, π̃0) = S(C, C̃) =
√

1− ln |C̃|
ln | C | =√

1− ln t!
ln 2d

≈
√

1− 2 ln t−2
(t−1) ln 2 . This informativeness doesn’t rely on the choice of Vf

where Vf denotes discrete feature space for events.

Cross-sentence Constraints. For cross-sentence constraints, we consider a common example,
global statistics based on 2-tuple of tokens, i.e. pairs of tokens in different sentences must have
the same labels. We can group words into K groups with probability p. In this way, we have

Ŝ(π0, π̃0) =
√

1− −p ln p−(1−p) ln(1−p)+p ln | L |
K+(1−p) ln(| L |n| V |n−|L |K))

ln | C | ≈ √p. The approxi-
mation holds as long as | L |, V , and n are not all too small. For example, as shown in Table 2, the
percentage of 5-gram words with unique NER labels is 99.37, so ideally the corresponding PABI
will be

√
0.9937 = 0.9968. It is worthwhile to note that the k-gram words with unique labels can

also be caused by the low frequency of the appearance of the k-grams. In our experiments, we
only consider the k-grams with unique labels that appear at least twice in the data. We experiment
on NER with three types of cross-sentence constraints: uni-gram words with unique NER labels,
bi-gram words with unique NER labels, and 5-gram part-of-speech (PoS) tags with unique NER
labels11. The results are shown in Fig. 4.

Auxiliary labels. For auxiliary labels, we show two examples as follows:

• For a multi-class sequence tagging task, we use the corresponding detection task as aux-
iliary signals. Given a multi-class sequence tagging task with C labels in the BIO format
(Ramshaw & Marcus, 1999), we will have 3 labels for the detection and 2C + 1 labels for

the classification. Thus, Ŝ(π0, π̃0) = S(π0, π̃0) = S(C, C̃) =
√

1− (1−po) lnC
ln(2C+1) , where po

is the percentage of the label O among all labels.

• Coarse-grained NER for Fine-grained NER. We have four types, PER, ORG, LOC and
MISC for CoNLL NER and 18 types for Ontonotes NER. The mapping between CoNLL
NER and Ontonotes NER is as follows: PER (PERSON), ORG (ORG), LOC(LOC, FAC,
GPE), MISC(NORP, PRODUCT, EVENT, LANGUAGE), O(WORF OF ART, LAW,
DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL, O) (Augen-
stein et al., 2017). In the BIO setting, we have Ŝ(π0, π̃0) = S(π0, π̃0) = S(C, C̃) =√

1− Pl ln 3+Pm ln 4+Po ln 19
ln 37 , where pl, pm, po are the percentage of LOC(including B-

LOC and I-LOC), MISC (including B-MISC and I-MISC), and O among all possible la-
bels.

Note that PABI is consistent with the entropy normalized mutual information (see more in footnote

8) because Ŝ(π0, π̃0) =
√

I(Y ;Ỹ )
H(Y ) for auxiliary labels.

Cross-lingual signals. For cross-lingual signals, we can use multilingual BERT to get ĉ in the
extended input space (V ∪V ′)n. After that, η1 and η2 can be computed accordingly.

Cross-modal signals. For cross-modal signals, we only consider the case where labels of gold and
incidental signals are same and inputs of gold and incidental are aligned. A common situation is
that a video has visual, acoustic, and textual information. In this case, the images and speech related
to the texts can be used as cross-modal information. We can use cross-modal mapping between
speech/images and texts (e.g. Chung et al. (2018)) to estimate the η1 and η2 for cross-modal signals.

The mix of cross-domain signals and constraints. Let c̃ denote the perfect system on cross-domain
signals and satisfying constrains on inputs of gold signals, and ĉ denote the model trained on cross-
domain signals and satisfying constraints on inputs of gold signals. In this way, we can estimate η1
and η2 by forcing constraints in their inference stage.

11Here we use PoS tags as a special type of cross-sentence constraints by specifying the labels of tokens
whose PoS tags have unique NER labels, although PoS tags can also be viewed as auxilary signals for NER.
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A.7 DERIVATION OF EQUATION (4)

For simplicity, we use Y to denote c(x), Ỹ to denote c̃(x), and Ŷ to denote Ŷ (x). We then re-
write the definitions of η, η′1 and η2 as η = Ex∼PD(x)1(c(x) 6= c̃(x)) = P (Y 6= Ỹ ), η′1 =

Ex∼PD(x)1(ĉ(x) 6= c̃(x)) = P (Ŷ 6= Ỹ ) and η2 = Ex∼PD(x)1(ĉ(x) 6= c(x)) = P (Ŷ 6= Y ). Note
that L is the label set for the task. Considering all three systems in the target domain, we have

1− η2 = P (Ŷ = Y )

= P (Ŷ = Y, Ỹ = Y ) + P (Ŷ = Y, Ỹ 6= Y )

= P (Ỹ = Y )P (Ŷ = Y |Ỹ = Y ) + P (Ỹ 6= Y )P (Ŷ = Y |Ỹ 6= Y )

= P (Ỹ = Y )P (Ŷ = Ỹ ) + P (Ỹ 6= Y )
P (Ŷ 6= Ỹ )

| L | − 1

= (1− η)(1− η′1) +
ηη′1
| L | − 1

Therefore, we have η =
(| L |−1)(η′1−η2)
1−|L |(1−η′1)

.

A.8 PABI FOR TRANSDUCTIVE SIGNALS

Assumption I: c̃(x) is a noisy version of c(x) with a noise ratio η in both target and source domain:
η = Ex∼PD(x)1(c(x) 6= c̃(x)) = Ex∼PD̃(x)1(c(x) 6= c̃(x)).

Theorem A.2. Let C be a concept class of VC dimension d for binary classification. Let S+

be a labeled sample of size m generated by drawing βm points (S) from D according to c
and (1 − β)m points (S̃) from D̃ (the distribution of incidental signals) according to c̃. If
ĉ′ = arg minc∈C RS+,

1
2
(c) = arg minc∈C

1
2RS(c) + 1

2RS̃(c) is the empirical joint error minimizer,
and c∗T = arg minc∈C RD(c) is the target error minimizer, c∗ = arg minc∈C RD̃(c) + RD(c) is the
joint error minimizer, under assumption I, and assume that C is expressive enough so that both the
target error minimizer and the joint error minimizer can achieve zero errors, then for any δ ∈ (0, 1),
with probability at least 1− δ,

RD(ĉ′) ≤ η + 4

√
1

β
+

1

1− β

√
2d ln 2em

d + 2 ln 8
δ

m

A concept is a function c: X → {0, 1}. The probability according to the distribution D that a
concept c disagrees with a labeling function f (which can also be a concept) is defined as

RD(c, f) = Ex∈D[|c(x)− f(x)|] (5)

Note that here `(y, c(x)) = |y − c(x)| is the loss function and RD(c) = Ex∼D[`(y, c(x))] where y
is the gold label for x. We denote Rα(c) (α ∈ [0, 1]) the corresponding weighted combination of
true source and target errors, measured with respect to D̃ and D as follows:

Rα(c) = αRD(c) + (1− α)RD̃(c)

Lemma A.3. Let c be a concept in concept class C. Then

|Rα(c)−RD(c)| ≤ (1− α)(Λ + τ(c))

where Λ = RD̃(c∗) + RD(c∗), c∗ = arg minc∈C RD̃(c) + RD(c), and τ(c) = |RD̃(c, c∗) −
RD(c, c∗)|.

Proof.

|Rα(c)−RD(c)| = (1− α)|RD̃(c)−RD(c)|
≤ (1− α)[|RD̃(c)−RD̃(c, c∗)|+ |RD̃(c, c∗)−RD(c, c∗)|+ |RD(c, c∗)−RD(c)|]
≤ (1− α)[RD̃(c∗) + |RD̃(c, c∗)−RD(c, c∗)|+RD(c∗)]

= (1− α)(Λ + τ(c))
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Lemma A.4. For a fixed concept c from C with VC dimension d, if a random labeled sample (S+)
of size m is generated by drawing βm points (S) from D and (1 − β)m points (S̃) from D̃, and
labeling them according to fD and fD̃ respectively, then for any δ ∈ (0, 1) with probability at least
1− δ (over the choice of the samples),

|Rα(c)−RS+,α(c)| ≤ 2

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 4
δ

m

where RS+,α = αRS(c) + (1− α)RS̃(c) and e is the natural number.

Proof. Given Lemma 5 in Ben-David et al. (2010), which says for any δ ∈ (0, 1), with probability
1− δ (over the choice of the samples),

P [|RS+,α(c)−Rα(c)| ≥ ε] ≤ 2 exp (
−2mε2

α2

β + (1−α)2
1−β

)

According to the Vapnik-Chervonenkis theory (Vapnik & Chervonenkis, 2015), we have with prob-
ability 1− δ,

|Rα(c)−RS+,α(c)| ≤ 2

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 4
δ

m

This is the standard generalization bound with an adjust term
√

α2

β + (1−α)2
1−β (see more in Chapter

3.3 of Mohri et al. (2018)).

Proof of Theorem A.2. Let α = 1
2 , then ĉ′ = arg minRS+,α(c) = 1

2 (RS̃(c) +RS(c))

RD(ĉ′) ≤ Rα(ĉ′) + (1− α)(Λ + τ(ĉ′)) (Lemma A.3)

≤ Rα(ĉ′) + (1− α)(Λ + |RD̃(ĉ′, c∗)−RD(ĉ′, c∗)|) (Definition of τ(ĉ′))

≤ Rα(ĉ′) + (1− α)(Λ +RD̃(ĉ′) +RD̃(c∗) +RD(ĉ′) +RD(c∗))

≤ Rα(ĉ′) + (1− α)(2Λ + 2Rα(ĉ′))

= (3− 2α)Rα(ĉ′) + 2(1− α)Λ

≤ (3− 2α)(RS+,α(ĉ′) + 2

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 8
δ

m
)

+ 2(1− α)Λ (Lemma A.4 with δ/2 )

≤ (3− 2α)(RS+,α(c∗T ) + 2

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 8
δ

m
)

+ 2(1− α)Λ (ĉ′ = arg minRS+,α(c))

≤ (3− 2α)(Rα(c∗T ) + 4

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 8
δ

m
)

+ 2(1− α)Λ (Lemma A.4 with δ/2)

≤ (3− 2α)(RD(c∗T ) + 4

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 8
δ

m
+ (1− α)(Λ + τ(c∗T )))

+ 2(1− α)Λ (Lemma A.3)

≤ (3− 2α)(RD(c∗T ) + 4

√
α2

β
+

(1− α)2

1− β

√
2d ln 2em

d + 2 ln 8
δ

m
)

+ (2α2 − 7α+ 5)Λ + (2α2 − 5α+ 3)τ(c∗T )

Note that

τ(c∗T ) = |RD̃(c∗T , c
∗)−RD(c∗T , c

∗)| ≤ RD̃(c∗T )+RD̃(c∗)+RD(c∗T )+RD(c∗) = Λ+RD(c∗T )+RD̃(c∗T )
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Therefore,

RD(ĉ′) ≤ RD̃(c∗T ) + 4

√
1

β
+

1

1− β

√
2d ln 2em

d + 2 ln 8
δ

m
+ 3RD(c∗T ) + 3Λ (α =

1

2
)

Also note that L1 loss is equivalent to 0-1 loss in the binary classification, so that RD̃(c∗T ) = η
under assumption I. In addition, assuming that C is expressive enough so that both the target error
minimizer and the joint error minimizer can achieve zero errors (RD(c∗T ) = 0 and Λ = 0), the
generalization bound can be simplified as follows:

RD(ĉ′) ≤ η + 4

√
1

β
+

1

1− β

√
2d ln 2em

d + 2 ln 8
δ

m

Note that the proof of Theorem A.2 is similar to Theorem 3 in Ben-David et al. (2010). Our theorem
is based on binary classification mainly because the error item in Eq. (5) based on the L1 loss
will be equivalent to zero-one loss for binary classification. Although for multi-class classification,
the L1 loss is different from commonly used zero-one loss, Theorem A.2 also indicates the relation
between the generalization bound of joint training and the cross-domain performanceRD(c∗S) (equal
to RD̃(c∗T ) under assumption I). Furthermore, a multi-class classification task can be represented by
a series of binary classification tasks. Therefore, we postpone more accurate analysis for multi-class
classification as our future work.

A.9 DETAILS OF EXPERIMENTAL SETTINGS

In this subsection, we briefly highlight some important settings in our experiments and more details
can be found in our submitted code.

NER with individual inductive signals. For partial labels, we experiment on NER with four differ-
ent partial rates: 0.2, 0.4, 0.6, and 0.8. For noisy labels, we experiment on NER with seven different
noisy rates: 0.1 − 0.7. For auxiliary labels, we experiment on two auxiliary tasks: named entity
detection and coarse NER (CoNLL annotations with 4 types of named entities (Sang & De Meulder,
2003)).

NER with mixed inductive signals. A more complex case is the comparison between the mixed
inductive signals. For the first type of mixed signals, we experiment on the combination between
three unknown partial rates (0.2, 0.4, and 0.6) and four noisy rates (0.1, 0.2, 0.3, and 0.4). As for
the second type of mixed signals, we experiment on the combination between the BIO constraint
and five unknown partial rates (0.2, 0.4, 0.6, 0.8, and 1.0).

NER with various inductive signals. After we put the three types of individual inductive signals
and the two types of mixed inductive signals together, we still see a correlation between PABI and
the relative performance improvement in experiments in Fig. 2(f).

NER with cross-domain signals Because we only focus on the person names, a lot of sentences
in the original dataset will not include any entities. We random sample sentences to keep that 50%
sentences without entities and 50% sentences with at least one entity. η1 and η2 is computed by
using sentence-level accuracy.

QA with cross-domain signals. For consistency, we only keep one answer for each question in all
datasets. Another thing worthwhile to notice is that the most informative QA dataset is not always
the same for different main QA datasets. For example, for NewsQA, the most informative QA
dataset is SQuAD, while the most informative QA dataset for SQuAD is QAMR.

Experimental settings for learning with various inductive signals. The 2-layer NNs we use in
CWBPP (algorithm 1) has a hidden size of 4096, ReLU non-linear activation and cross-entropy loss.
As for the embeddings, we use 300 dimensional Glove embeddings (Pennington et al., 2014). The
size of the training batch is 10000 and the optimizer is Adam (Kingma & Ba, 2015) with learning
rate 3e−4. When we initialize the classifier with gold signals (line 1), the number of training epochs
is 20. After that, we conduct the bootstrapping 5 iterations (line 3-7). The confidence for predicted
labels is exactly the predicted probability of the classifier (line 5). In each iteration of bootstrapping,
we further train the classifier on the joint data 1 epoch (line 7).
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Algorithm 1: Confidence-Weighted Bootstrapping with Prior Probability. The algorithm utilizes
incidental signals to improve the inference stage in semi-supervised learning.
Input: A small dataset with gold signals D = (X1, Y1), and a large dataset with inductive signals

D̃ = (X2, Ỹ2) where X1 ∩X2 = φ
1 Initialize claissifier ĉ = LEARN(D) (initialize the classifier with gold signals)
2 P (Y2|X2, Ỹ2) = PRIOR(D, D̃) (estimate the probability of gold labels for inputs in D̃)
3 while convergence criteria not satisfied do
4 Ŷ = INFERENCE(X2; ĉ;P (Y2|X2, Ỹ2)) (get predicted labels of inputs in D̃)
5 ρ̂ = CONFIDENCE(X2; ĉ, P (Y2|X2, Ỹ2)) (get confidence for predicted labels)
6 D̃ = (X2, Ŷ , ρ̂) (get confidence-weighted incidental dataset with predicted labels)
7 ĉ = LEARN(D + D̃) (learn a classifier with both gold dataset and incidental dataset)
8 return ĉ

Notations Descriptions
D target domain with gold signals
D̃ source domain with incidental signals
c(x) gold system on gold signals
c̃(x) perfect system on incidental signals
ĉ(x) silver system trained on incidental signals
η difference between the perfect system and the gold system in the target domain
η1 difference between the silver system and the perfect system in the source domain
η′1 difference between the silver system and the perfect system in the target domain
η2 difference between the silver system and the gold system in the target domain

Table 3: Summary of core notations in the estimation process for transductive signals.

Experimental settings for learning with cross-domain signals. As for BERT, we use the pre-
trained case-insensitive BERT-base pytorch implementation (Wolf et al., 2019). We use the common
parameter settings for our experiments. Specifically, for NER, the max length is 256, batch size is
8, the epoch number is 4 and the learning rate is 5e−5. As for QA, the max length is 384, bath size
is 16, the epoch number is 4, and the learning rate is 5e−5.

A.10 THE CWBPP ALGORITHM

The CWBPP algorithm is shown in Algorithm 1.

A.11 SUMMARY OF NOTATIONS IN THE ESTIMATION PROCESS FOR TRANSDUCTIVE SIGNALS

The summary of core notations in the estimation process for transductive signals is in Table 3.
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