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Abstract

Temporal Knowledge Graph Completion001
(TKGC) under extrapolation setting aims to002
predict the missing entity from a fact in the003
future, which is challenging and more aligned004
with the real-world prediction issue. Most exist-005
ing research encodes the entities and relations006
via applying a sequential graph neural network007
on the recent snapshots. However, they tend to008
not consider skipping the irrelevant snapshots009
according to the entity-related relation in the010
query and neglect the importance of explicit011
temporal information. Motivated by this, we012
proposed our model, Re-Temp (Relation-Aware013
Temporal Representation Learning), which ap-014
plies explicit temporal embedding as the input015
and a skip information flow after each times-016
tamp to skip the unnecessary information for017
prediction. In addition to this, we propose018
a two-phase forward propagation method to019
avoid information leakage. We evaluated our020
model on six TKGC (extrapolation) datasets021
and found that it significantly outperformed all022
eight recent state-of-the-art models.023

1 Introduction024

A Knowledge Graph (KG) is a graph-structure025

database composed of facts represented by triplets,026

in the form of (Subject Entity, Relation, Object027

Entity) such as (Alice, Is a Friend of, Bob). The028

entities serve as nodes while the relations serve as029

direct edges connecting nodes in the graph. How-030

ever, facts are not static but continuously update031

over time. Temporal Knowledge Graphs (TKG) are032

introduced by adding the extra temporal informa-033

tion of each fact, by extending each triple with a034

timestamp as a quadruplet (Subject Entity, Relation,035

Object Entity, Timestamp). A Temporal Knowl-036

edge Graph can be represented as a sequence of037

snapshots, and each snapshot represents a static038

knowledge graph for one timestamp.039

Temporal Knowledge Graph Completion040

(TKGC) aims to predict the missing entity from a041

Figure 1: A case study of temporal knowledge graph
completion under the extrapolation setting

query (Subject Entity, Relation, ?, Timestamp) or 042

(?, Relation, Object Entity, Timestamp). TKGC is 043

difficult and even large-scale pretrained language 044

models such as ChatGPT(OpenAI, 2022) are prone 045

to making factual errors(Borji, 2023). There are 046

two main settings: interpolation and extrapolation 047

setting. TKGC under the interpolation setting 048

completes the facts in history, while TKGC 049

under the extrapolation setting predicts facts at 050

future timestamps. In this paper, we focus on the 051

TKGC in the extrapolation settings, which is more 052

challenging and still has too much to improve(Jin 053

et al., 2020). 054

Enormous attention has been paid to static KGC 055

problems, and numerous models were applied to 056

encode the entities and relations. There remains a 057

question: how to extend a static KGC model into 058

a TKGC model by encoding the temporal informa- 059

tion? Recent works(Jin et al., 2020; Li et al., 2021, 060

2022a,b) have applied a sequential Graph Neural 061

Network (GNN) to the previous snapshots for en- 062

coding the entities and relations. Then, they use a 063
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static score function as the decoder to measure the064

score of each candidate. The main reason for using065

a sequential GNN is that the facts shown in recent066

history can be helpful when making predictions067

in the future. An example is shown in Figure 1,068

the previous facts (Kim Jong-Un, criticize, United069

States) three days before and (Kim Jong-Un, Make070

Statement, Donald Trump) one day before may im-071

ply (Donald Trump, Threaten with administrative072

sanction, Kim Jong-Un) today. Since no explicit073

timestamp value is used, we can call it “implicit074

temporal information”.075

However, to effectively encode the timestamp,076

two more things should be considered: (1) Explicit077

temporal information also matters: The score mea-078

suring the validity of (Donald Trump, Threaten079

with administrative sanction, Kim Jong-un) can be080

different in 2018 and 2023 because Trump was the081

president in 2018 but not the president in 2023,082

which makes him unable to threaten another nation083

with administrative sanctions in 2023. The nature084

of entities may change over time. Thus, the model085

should consider the explicit temporal information086

to encode the time-dependent factor. (2) Not all087

the facts in the recent history are helpful: Given088

the historical facts (Kim Jong-un, criticize, United089

States, 2018-08-01),(Donald Trump, Make a visit,090

Switzerland, 2018-08-02) and (Kim Jong-un, Make091

Statement, Donald Trump, 2018-08-03), to calcu-092

late the score of (Donald Trump, Threaten with ad-093

ministrative sanction, Kim Jong-un, 2018-08-01),094

the second quadruplet visiting Switzerland does not095

contribute to the prediction of the relation between096

Donald Trump and Kim Jong-un since Switzerland097

is neutral. In this case, the model should find a way098

to skip the irrelevant snapshots according to the099

entity-related relation in the query. According to100

the above points, an optimal TKGC model should101

consider (1) explicit temporal information and (2)102

implicit temporal information with skipping irrele-103

vant snapshots by considering the query.104

Hence, we propose Re-Temp, a new relation-105

aware temporal representation learning model for106

TKGC under the extrapolation settings. The en-107

coder takes the explicit temporal embedding of108

each entity which is a combination of static embed-109

ding and dynamic embedding. In the encoder, a110

sequential GNN is used for capturing the implicit111

temporal information with a skip information flow112

applied after each timestamp by considering the113

entity-related relation in the query.114

The main contributions of this paper can be sum- 115

marised as follows: 116

• We propose Re-Temp, a precise TKGC model, 117

which utilises both explicit and implicit tem- 118

poral information and adopts a relation-aware 119

skip information flow to skip irrelevant in- 120

formation, together with a two-phase forward 121

propagation method to avoid information leak- 122

age1 123

• We compare our Re-Temp with eight state-of- 124

the-art baseline models from recent years on 125

six publicly available TKGC datasets under 126

the extrapolation setting. Our Re-Tmp greatly 127

outperforms all of the baselines. 128

• We conduct a case study and statistical anal- 129

ysis to show the different natures of each 130

dataset and explain it with our experiment re- 131

sults. 132

2 Related Work 133

KGC models normally adopt an encoder-decoder 134

framework(Hamilton et al., 2017), where the en- 135

coder generates the embedding of entities and re- 136

lations and the score function plays as a decoder. 137

Most of the existing works extend the static KGC 138

models into TKGC models by introducing temporal 139

information. 140

2.1 TKGC(Interpolation) 141

To integrate the temporal information in the 142

decoder, TTransE(Jiang et al., 2016) extends 143

TransE(Bordes et al., 2013) with the summation of 144

an extra timestamp embedding, and ConT(Ma et al., 145

2019) extends Tucker(Balažević et al., 2019) by re- 146

placing the learnable weight with the timestamp 147

embedding. Some methods also focus on com- 148

bining temporal information in the encoder: TA- 149

DistMult(Garcia-Duran et al., 2018) encodes the 150

temporal information into relation embedding by 151

using LSTM, while DE-SimplE(Goel et al., 2020) 152

encodes a diachronic entity embedding with tempo- 153

ral information. with decoders as DistMult(Yang 154

et al., 2015) and SimplE(Kazemi and Poole, 2018) 155

accordingly. These models produced relatively 156

lower performance on TKGC under the extrapo- 157

lation setting tasks since they are unable to capture 158

unseen temporal information. 159

1Code will be available after the paper acceptance.
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Table 1: Summary of TKGC(extrapolation) models and our proposed model. The column‘Temporal’ presents the
trend of the approach to how the temporal information is used, and the column ‘Query’ shows the summary of the
approach to how the model utilises query.

Method Core idea Temporal Query
RE-NET(Jin et al., 2020) estimate the future graph distribution implicit N/A
CyGNet(Zhu et al., 2021) identify facts with repetition explicit repetitive queries
xERTE(Han et al., 2020) sample subgraph according to query implicit query-related subgraph
REGCN(Li et al., 2021) relation-GCN + GRU implicit N/A
TANGO(Han et al., 2021) neural ODE on continuous-time reasoning implicit N/A
TITER(Haohai Sun, 2021) path-based reinforcement learning implicit query-related path
CEN(Li et al., 2022a) ensemble model with different history lengths implicit N/A
HiSMatch(Li et al., 2022b) two separated encoders for entity and query information implicit repetitive queries
Re-Temp (Ours) skip irrelevant information according to entity-related relations both query-related skip information flow

2.2 TKGC(extrapolation)160

For the last few years, more attention has been161

paid to TKGC tasks under the extrapolation set-162

ting. GNNs are typically used as the encoder: RE-163

NET(Jin et al., 2020) applies sequential neighbour-164

hood aggregators such as R-GCN(Schlichtkrull165

et al., 2018) to get the distribution of the tar-166

get timestamp snapshot, REGCN(Li et al., 2021)167

adopts CompGCN(Vashishth et al., 2020) at each168

timestamp and GRU for sequential information.169

CEN(Li et al., 2022a) uses an ensemble model170

of sequential GNNs with different history lengths,171

TANGO(Han et al., 2021) solves Neural Ordinary172

Equations and makes it as the input of a Multi-173

Relational GCN, and HiSMatch(Li et al., 2022b)174

builds two GNN encoders modelling the sequential175

candidate graph and query-related subgraphs sepa-176

rately and combines the representation from both177

sides into a matching function. Meanwhile, some178

methods do not follow the traditional encoder and179

decoder framework. xERTE(Han et al., 2020) ex-180

tracts subgraph according to queries, CyGNet(Zhu181

et al., 2021) identifies the candidates with repeti-182

tion, and TITer(Haohai Sun, 2021) uses reinforce-183

ment learning methods to search for the temporal184

evidence chain for prediction. To conclude, RE-185

NET, REGCN, and CEN adopt the entity evolve-186

ment information, while xERTE, CyGNet and187

TITer focus on the query. HiSMatch combines188

these two types of information with two separate189

encoders. However, none of the previous works190

encoded sequential and query-related information191

in one precise encoder. In addition to this, none192

of these methods considers explicit temporal infor-193

mation, except for CyGNet, which generates an194

independent timestamp vector but does not encode195

it into the entity or relation. Table 1 presents the196

summary of TKGC(extrapolation) models and em-197

phasises the contribution of our proposed model.198

3 Re-Temp 199

The overall architecture of Re-Temp can be found 200

in Figure 2. Section 3.1 describes the notations of a 201

TKGC task. The input of the model is represented 202

by a combination of static and dynamic entity em- 203

bedding, in Section 3.2, showing explicit temporal 204

information. The encoder in Section 3.3 uses a 205

sequential multi-relational GNN to learn implicit 206

temporal information and after each timestamp, a 207

relation-aware skip information flow mechanism 208

is applied to retain the necessary information for 209

prediction. The ConvTransE decoder together with 210

the loss function is introduced in Section 3.4. To 211

avoid information leaking, we apply a two-phase 212

forward propagation method in Section 3.5. 213

3.1 Problem Formulation 214

To denote the set of entities, relations, timestamps 215

and facts, E ,R, T and F are selected. A tempo- 216

ral knowledge graph G can be treated as |T | se- 217

quential snapshots, G = {G0, G1, ..., GT }, where 218

Gt = {E ,R,Ft} is a directed multi-relational 219

graph at timestamp t. For each fact, a quadruplet 220

is represented as (es, r, eo, t), where es, eo ∈ E are 221

the subject and object entities, r ∈ R represents 222

the relation and t ∈ T is the timestamp. The tar- 223

get of the temporal knowledge graph completion 224

under the extrapolation setting is that for a query 225

q, predicting (es, r, ?, tq) or (?, r, eo, tq) given pre- 226

vious snapshots {G0, G1, ..., Gtq−1}. Normally, 227

the inverse of each quadruplet is added into the 228

dataset, making all subject entity prediction prob- 229

lem (?, r, eo, tq) into object entity prediction prob- 230

lem (eo, r
−1, ?, tq). 231

3.2 Explicit Temporal Representation 232

For sequential snapshots with length k, let heqtq−k ∈ 233

R1×d denotes the input embedding of the subject 234

entity eq from query q, and d is the dimension of 235

3



Figure 2: Illustration of Encoding and Decoding process in Re-Temp with history length as 3. For a query q,
the input vector is h

eq
tq−3. The encoder with relation-aware skip information flow learns the entity and relation

representation h
eq
tq and hrq . Then the decoder measures the score of all the candidates.

the input. In order to encode the explicit temporal236

information, we concatenated two kinds of input237

embedding; static and dynamic embedding. The238

static embedding reveals the nature of an entity that239

does not change through time, while the dynamic240

part reveals the time-dependent information.241

Inspired by ATiSE(Xu et al., 2020), the dynamic242

embedding is decomposed into the trend compo-243

nent and seasonal component, and the trend compo-244

nent can be represented as a linear transformation245

on t while the seasonal component should be a pe-246

riodical function of t. Thus, we model the dynamic247

temporal embedding at timestamp t by the summa-248

tion of trend embedding weq ,0t and seasonal em-249

bedding sin(2πweq ,1t). After concatenation with250

the static embedding, a feed-forward layer is ap-251

plied. Formally, the input of the encoder heqtq−k is252

derived by:253

h
eq ,S
tq−k = heq ,S (1)254

255

h
eq ,D
tq−k = weq ,0(tq−k)+sin(2πweq ,1(tq−k)) (2)256

257

h
eq
tq−k = Wtmp(h

eq ,S
tq−k ⊕ h

eq ,D
tq−k) (3)258

where h
eq ,S
tq−k in Equation 1 and h

eq ,D
tq−k in Equation259

2 denote the static and dynamic embedding for260

subject entity eq at timestamp tq − k, ⊕ denotes261

the concatenation, and heq ,s, weq ,0, weq ,1, Wtmp262

are learnable parameters. The major difference263

between our explicit temporal representation and264

ATiSE lies in the fact that employing a learnable265

feed-forward layer to concatenate the dynamic em-266

bedding and static embedding, enables the model267

to determine the extent to which it should utilise in-268

formation from each embedding rather than simply269

utilising both. Relation embedding hr can simply270

be extracted from a static embedding lookup ta-271

ble since we do not expect the natural of relation 272

evolving through time. 273

3.3 Relation-Aware Skip Information Flow 274

In order to handle implicit temporal information, 275

we use a sequential GNN-based encoder with a new 276

relation-aware skip information flow mechanism. 277

Following recent work(Li et al., 2021, 2022a,b), 278

we adopt a variant of CompGCN(Vashishth et al., 279

2020) at each timestamp to model the multi- 280

relational snapshot, outputting the entity embed- 281

ding he and the relation embedding hr. The details 282

of CompGCN are shown in Appendix A.1. 283

Not all snapshots in the recent history are useful 284

in predicting query q, hence, a relation-aware skip 285

information flow is applied. Two things are consid- 286

ered: (1) Skip connection is used for filtering out 287

the unnecessary information from each timestamp. 288

(2) Relation-aware attention mechanism helps to 289

determine whether some information should be fil- 290

tered. Thus, after getting the output of CompGCN, 291

they will be weighted-summed up with previous 292

timestamps input to partially skip the irrelevant 293

snapshots. The weights of the weighted sum are 294

calculated by considering both the entity and the 295

entity-related relation in the query. 296

Formally, for an entity eq, the relation associated 297

with eq should be considered. To capture the entity- 298

related relation information, mean pooling is ap- 299

plied on all relation embedding associated with eq 300

at timestamp tq. The representation obtained from 301

mean pooling will serve as a reference vector to 302

help the model determines the information to keep 303

or skip. Then, this average relation embedding will 304

be summed with all m previous timestamps one by 305

one, followed by a feedforward layer. This calcula- 306

tion can also be treated as additive attention. After 307
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Table 2: Statistics Details of Benchmark Dataset

ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT WIKI
# Entities 7,128 23,033 10,094 7,128 7,691 12,554
# Relations 230 256 251 230 240 24
# Facts 89,730 468,558 461,329 90,730 2,277,405 669,934
# Snapshots 365 304 4,017 365 2,976 232
# Snapshots in Train/Val/Test set 304/30/31 240/30/34 3,243/404/370 262/52/51 2,304/288/384 211/11/10
# Facts per Snapshot 245.8 1541.3 32.2 248.6 765.3 2887.6
Time Interval 1 day 1 day 1 day 1 day 15 mins 1 year
Total Time Range 1 year 0.83 years 11 years 1 year 0.54 years 232 years

getting the attention weights βeq
j , the weighted sum308

using these attention weights is applied on the cur-309

rent CompGCN output heq ,Lti
and all m previous310

timestamp inputs. The detailed calculation shows311

as follows:312

h
eq
r,tq =

1

|Req
tq |

∑
r∈Req

tq

hr (4)313

314

attn
eq
j =

{
0 j = 0

Wa(h
eq
ti−j + h

eq
r,tq) j ∈ [1,m]

(5)315

316
β
eq
j = softmax(attn

eq
j ), j ∈ [0,m] (6)317

318

h
eq
ti+1 = β

eq
0 h

eq ,L
ti

+
m∑
j=1

β
eq
j h

eq
ti−j (7)319

Note that the output of each timestamp is also the320

input of the next timestamp. Equation 4 shows321

the entity-associated relation embedding and R
eq
tq322

denotes the relation set which connects with entity323

eq at timestamp tq. Equation 5 and 6 denotes the324

attention score and weight calculation where Wa325

is learnable. By applying the relation-aware skip326

information flow, our model is capable of skipping327

irrelevant snapshots by considering the target query328

relations.329

3.4 Decoder330

ConvTransE(Shang et al., 2019) is widely used331

in both static KGC(Malaviya et al., 2020) and332

TKGC(Li et al., 2022b) as the score function, and333

ours is no exception. After getting the score of each334

candidate using ConvTransE, we train the model335

as a classification problem and the loss function for336

each query shows as follows:337

L = −
∑
ec∈E

zclog(s(eq, rq, ec, tq)) (8)338

and zc will be 1 if correctly classified, otherwise339

it is 0. The training target is to minimise the total340

loss for all queries. Appendix A.2 introduces the341

details of ConvTransE.342

3.5 Two-Phase Propagation 343

There is a potential information leakage problem 344

by applying the relation-aware information flow 345

mechanism. Suppose a query in the test set is 346

(A, r,B, t), after adding the inverse of quadruplets, 347

(B, r−1, A, t) will be in the test set. When applying 348

the encoder, with the relation-aware skip informa- 349

tion flow, A and B will contain the information of r 350

and r−1 accordingly. Therefore, when making pre- 351

dictions on (A, r, ?, t) and calculating the score by 352

dot product A and all candidates, there is a chance 353

that the information of r in A can meet the informa- 354

tion of r−1 in B. Since r and r−1 are paired, the 355

model might find a shortcut to determine B is the 356

right answer for (A, r, ?, t). This information leak- 357

age will result in unreasonably high performance 358

during evaluation. 359

To avoid such information leakage, we propose a 360

two-phase forward propagation method. We divide 361

the dataset into two subsets: the original set and 362

the inverse set. The inverse set is the set of inverse 363

quadruplets. The snapshot graph in the history will 364

be built on the whole set, while during forward 365

propagation, the original set and inverse set are 366

used separately. The output of the original set and 367

the inverse set will be collected for loss calculation 368

or performance evaluation. 369

4 Experiments 370

4.1 Experiment Setup 371

Datasets We evaluated our model on six widely- 372

used TKG datasets: ICEWS14(Li et al., 2021), 373

ICEWS18(Jin et al., 2020), ICEWS05-15(Han et al., 374

2020), ICEWS14*(Han et al., 2020), GDELT(Jin 375

et al., 2020), and WIKI(Leblay and Chekol, 2018). 376

The overall statistics of each dataset are presented 377

in Table 2. A detailed description of these datasets 378

can be found in Appendix B.1. 379

Baselines Our Re-Temp is compared with 380

TKGC models under the extrapolation setting. 381
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Table 3: Performance(%) with Baseline models. The highest value is bold and the second highest is underlined.

Model ICEWS14 ICEWS18 ICEWS05-15
MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10

RE-NET(Jin et al., 2020) 37.01 27.02 39.66 54.85 29.02 20.03 33.14 48.60 44.03 34.43 49.03 64.03
CyGNet(Zhu et al., 2021) 35.02 25.72 39.06 53.50 25.03 16.03 29.28 43.42 37.03 27.01 42.23 56.98
xERTE(Han et al., 2020) 40.12 32.11 44.73 56.25 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92
REGCN(Li et al., 2021) 41.50 30.86 46.60 62.47 30.55 20.00 34.73 51.46 46.41 35.17 52.76 67.64
TANGO(Han et al., 2021) 30.12 23.03 35.48 52.32 28.97 19.51 32.61 47.51 42.86 32.72 48.14 62.34
TITer(Haohai Sun, 2021) 41.73 32.74 46.46 58.44 29.96 22.06 33.41 44.92 47.78 38.05 53.11 65.93
CEN(Li et al., 2022a) 42.20 32.08 47.46 61.31 31.50 21.70 35.44 50.59 45.97 35.56 51.45 66.14
HiSMatch(Li et al., 2022b) 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94 52.85 42.01 59.05 73.28
Re-Temp (Ours) 48.04 37.32 53.60 68.90 35.82 25.02 40.36 57.30 56.30 45.49 62.80 77.17

Model ICEWS14* GDELT WIKI
MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10

RE-NET(Jin et al., 2020) 38.28 28.68 41.43 54.52 19.63 12.39 21.03 34.02 49.66 46.98 51.23 53.49
CyGNet(Zhu et al., 2021) 33.13 24.16 37.02 51.23 18.98 12.32 20.56 33.89 43.78 39.02 46.12 51.92
xERTE(Han et al., 2020) 40.77 32.65 45.71 57.29 18.07 12.31 20.05 30.32 71.16 68.03 76.15 78.99
REGCN(Li et al., 2021) 41.79 31.55 46.67 61.53 19.31 11.99 20.61 33.59 77.58 73.72 80.39 83.69
TANGO(Han et al., 2021) 26.35 17.33 29.27 44.32 18.03 12.36 19.96 29.31 51.15 49.65 52.26 53.44
TITer(Haohai Sun, 2021) 41.76 32.69 46.35 58.46 17.02 11.23 19.81 26.92 75.51 72.98 77.51 79.32
CEN(Li et al., 2022a) 40.78 31.26 45.26 59.16 19.89 12.61 21.16 34.09 77.65 73.86 80.69 84.00
HiSMatch(Li et al., 2022b) 45.82 35.84 50.79 65.08 22.01 14.45 23.80 36.61 78.07 73.89 81.32 84.65
Re-Temp (Ours) 46.40 35.86 51.69 67.12 25.05 15.70 27.14 44.16 78.51 74.80 81.33 84.50

Table 4: Cases from WIKI Dataset about Lionel Messi
from Year 2003 to Year 2005.

Subject Entity Relation Object Entity Year
Lionel Messi residence Barcelona 2003
Lionel Messi member of sports team FC Barcelona C 2003
Lionel Messi residence Barcelona 2004
Lionel Messi member of sports team FC Barcelona C 2004
Lionel Messi member of sports team FC Barcelona Atlètic 2004
Lionel Messi residence Barcelona 2005
Lionel Messi member of sports team Argentina national

football team
2005

Eight models from recent years are selected as base-382

lines: RE-NET(Jin et al., 2020), RE-GCN(Li et al.,383

2021), CyGNet(Zhu et al., 2021), xERTE(Han et al.,384

2020), TITer(Haohai Sun, 2021), TANGO(Han385

et al., 2021), CEN(Li et al., 2022a), and HiS-386

Match(Li et al., 2022b). Models that are designed387

for static KG completion or TKGC under the in-388

terpolation setting tasks are not compared since389

they naturally perform badly in TKGC under the390

extrapolation setting tasks.391

Evaluation Metrics Following the previous392

works(Han et al., 2020; Zhu et al., 2021; Li et al.,393

2022b), we employ widely used evaluation metrics,394

Mean Reciprocal Rank(MRR), hits@1, hits@3,395

and hits@10, which is explained in Appendix B.3,396

and we report the five-times running average result.397

4.2 Performance Comparison398

We use a history length of 3 for ICES14, ICEWS18,399

ICEWS05-15, ICEWS14* and GDELT, while 1 for400

WIKI. The influence of history length is discussed401

in Section 4.3. Table 3 presents the performance 402

comparison of all baseline models. Our model, 403

Re-Temp, outperforms significantly almost all the 404

baseline models on all datasets, indicating the su- 405

periority of our Re-Temp model. In detail, three 406

points can be observed: 407

Firstly, HiSMatch(Li et al., 2022b) achieved the 408

second-highest performance on most of the datasets 409

by considering both the query subgraph and en- 410

tity subgraph. The concept considering both query 411

and entity of HiSMatch is similar to our relation- 412

aware attention mechanism in the skip information 413

flow. However, HiSMatch only builds the query 414

subgraph using the exact same relation of the query, 415

which ignores the potential similarity between re- 416

lations. For example, in ICEWS14, when making 417

a prediction on (A, provide_aid, ?, tq), relation 418

‘provide_aid’ and ‘provide_military_aid’ share sim- 419

ilarities, but HisMatch only considers the entity 420

with ‘provide_military_aid’ in the recent history 421

while our method uses the embedding of relation 422

to calculate the attention weights, making it gen- 423

eral for different types of relations that are close 424

in the embedding space and outperforming HiS- 425

Match. Meanwhile, HiSMatch builds two separate 426

encoders and fuses the output for the decoder while 427

our model only applies one encoder for better in- 428

formation alignment. 429

Secondly, among four ICEWS datasets, our 430

model achieves more improvement on ICEWS05- 431

15. As shown in Table 2, the snapshots in 432
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Figure 3: MRR(%) change of Re-Temp with the history
lengths. The x-axis is the history length and the y-axis
is the MRR(%) change compared with history length 3.

Figure 4: Proportion(%) of quadruplets shown in exact
one timestamp before for each dataset. The x-axis is the
name of the dataset and the y-axis is the proportion(%).

ICEWS05-15 are sparser than others, showing the433

ability of our model to learn sequential information434

with fewer data.435

Thirdly, our model only achieves a compara-436

ble performance with HiSMatch on WIKI, which437

might result from the nature of this dataset. Table438

4 lists some cases of facts about Lionel Messi in439

WIKI. Suppose giving the quadruplets from 2003440

and 2004, it is relatively easy to predict (Lionel441

Messi, residence, ?, 2005) based on his previous442

residence, however, it is almost impossible to have443

a correct prediction on (Lionel Messi, residence, ?444

, 2005) since the previous snapshots don’t provide445

enough information on Argentina national football446

team. This is an issue in WIKI: the predictions are447

either too easy (using the previous facts), or too448

difficult (even humans can not make a correct pre-449

diction without any external knowledge). Thus, a450

relatively better model is not enough to generate an451

undoubtful better performance on WIKI, and our452

model and some previous baseline models (CEN,453

HiSMatch) share similar results on this dataset.454

4.3 Impact of history length 455

To study the impact of history length on different 456

datasets, experiments with different history lengths 457

are conducted. The default value of history length 458

is 3 and the MRR changes in percentage are shown 459

in Figure 3 with history lengths from 1 to 5. Two 460

major points can be noticed: 461

(1) On most of the datasets (ICEWS14, 462

ICEWS18, ICEWS05-15, ICEWS14*, and 463

GDELT), a larger history length results in a 464

higher MRR. Where the history length is small, 465

enlarging the history length can substantially 466

enhance performance. However, when the 467

history length surpasses three, the degree of 468

improvement becomes marginal. This aligns with 469

the expectations that the recent several snapshots 470

can help with inference, while in a long history, 471

the irrelevant information does not contribute 472

to the performance. By considering the model 473

performance and calculation complexity, history 474

length = 3 is selected as the final model for these 475

datasets. 476

(2) An exception occurs on WIKI, where the 477

model achieves the best performance when history 478

length = 1. To investigate the factors, a detailed 479

statistical analysis of the datasets is conducted. Ta- 480

ble 4 in Section 4.2 shows some sample queries 481

in WIKI, where some facts are the same as the 482

facts at previous timestamps, the reason lies in that 483

for a fact (s,r,o,t1 - tn), WIKI generates the same 484

quadruplets across the time range from t1 to tn. 485

Figure 4 shows the proportion of the quadruplets at 486

tq shown in the previous timestamp tq − 1 for all 487

timestamps in the test set on each dataset. 85.68% 488

samples in the WIKI show in the one timestamp be- 489

fore, while fewer than 15% samples in ICEWS14, 490

ICEWS18, ICEWS05-15, ICEWS14*, GDELT are 491

from the previous timestamp. The same quadru- 492

plets shown across different timestamps in WIKI re- 493

sult in similar snapshots(graphs) at different times- 494

tamps. When a larger history length is applied, 495

multiple graph neural network models applied on 496

multiple similar graphs will be approximated to ap- 497

plying a multiple layers GNN model on one graph, 498

which leads to the oversmoothing issue in a deep 499

GNN(Li et al., 2018). Therefore, a large history 500

length may decrease model performance on WIKI. 501

4.4 Ablation Study 502

Table 5 presents the ablation study of different com- 503

ponents of our model. 504
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Table 5: The MRR(%) result of the ablation test of Re-Temp. The highest value is bold.

Model ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT WIKI
Re-Temp 48.04 35.82 56.30 46.40 25.05 78.51
- dynamic 47.52 35.33 55.12 45.89 24.85 76.04
- relation_aware 39.93 30.56 44.95 38.75 19.92 78.14
- skip 36.56 28.07 43.80 36.30 18.61 79.60

Impact of explicit temporal embedding To505

evaluate the efficiency of the explicit temporal506

representation, we remove the dynamic embed-507

ding from the explicit temporal input, resulting in508

only the static embedding of each entity left. For509

all six benchmark datasets, removing dynamic em-510

bedding leads to worse performance. Compared511

with the performance drop in ICEWS14, ICEWS18,512

ICEWS14* and GDELT, it is clear that the MRR513

decrease more in WIKI and ICEWS05-15. The rea-514

son is that the total time range in these two datasets515

is large (232 years and 11 years), and the entity516

information can evolve over a long period, which517

can be captured by explicit temporal embedding.518

Impact of relation-aware skip information519

flow To demonstrate how the relation-aware skip520

information flow contributes to the model perfor-521

mance, two ablation tests are conducted. (1)‘-522

relation_aware’ means that when calculating the523

attention score in skip information flow, the entity-524

related relation is omitted, formally, the atten-525

tion score is Equation 5 is changed to:attneq
j =526

Wa(h
eq
ti−j), j ∈ [1,m]. (2)‘-skip’ means removing527

the whole skip information flow, making the input528

of each timestamp the last timestamp the output:529

h
eq
ti+1 = h

eq ,L
ti

.530

The model performance drops heavily if no531

relation-aware attention mechanism is applied,532

showing the vital importance of the relation-aware533

attention mechanism. We can conclude that the534

entity-related relation information actually helps535

the model to select necessary information. In most536

cases, removing the skip connection worsens the537

model performance compared with only removing538

the relation-aware attention mechanism. Compare539

with ‘-relation_aware’ setting, the models under540

the ‘-skip’ setting learn from all the recent snap-541

shots for prediction, leading to the involvement of542

irrelevant information during prediction.543

However, WIKI shows better performance under544

this setting, even compared with our original Re-545

Temp model. The reason might be the same as that546

discussed in Section 4.3: More than 80% of facts547

in the WIKI show in the previous timestamp, and548

a graph model applied on the previous timestamp 549

can easily capture that repetitive information for 550

prediction. 551

5 Conclusion 552

We introduced Re-Temp, which integrates both ex- 553

plicit and implicit temporal information and applies 554

a relation-aware skip information flow to adopt af- 555

ter each timestamp to remove unnecessary infor- 556

mation for prediction by taking the entity-related 557

relation in the query into consideration. The ex- 558

perimental results on six TKGC datasets present 559

the superiority of our model, compared with eight 560

baseline models. We also conduct a statistical anal- 561

ysis of the datasets to show the different nature 562

between WIKI and other datasets. It is hoped that 563

Re-temp presents insight into the importance of the 564

relation in the query and both types of temporal 565

information. 566

6 Limitations 567

Re-Temp still follows Knowledge Graph Comple- 568

tion encoder-decoder framework(Hamilton et al., 569

2017) while more frameworks can be explored. 570

The graph model at each timestamp and the decoder 571

score function follow the same methods widely 572

used by other models. 573

Since we have shown that the explicit tempo- 574

ral embedding and the skip information flow con- 575

tribute to model performance, more work can be 576

done by combining these concepts into the graph 577

model and score function, for example, combining 578

the entity-related relation into the graph model at 579

each timestamp to selectively propagate between 580

nodes, or combining the explicit temporal embed- 581

ding into the decoder score function. Also, like 582

most TKGC models, Re-Temp can not handle new 583

entities that do not show in the training data. More 584

methods integrating the text description can be ex- 585

plored(Lv et al., 2022). 586
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A Model Component Details729

A.1 CompGCN730

In CompGCN, at each layer, edges(relations) are731

conducted as the transformation on the connected732

node(entity), and then a weighted sum calculation733

from GCN(Kipf and Welling, 2017) is applied to734

the transformed entity. Self-loop is also calculated735

before the activation function. Formally, for a entity736

node eq at timestamp ti at lth layer, the propagation737

shows as follows:738

h
eq ,l+1
ti

= σ(
1

|N eq
ti
|

∑
en∈N

eq
ti

W l
g,0f(h

en,l
ti

, hr)+W l
g,1h

eq ,l
ti

)

(9)739

where N
eq
ti

is the set of the neighbour entities of740

eq at timestamp ti, σ is the activation function and741

RReLU(Xu et al., 2015) is chosen. W l
g,0 and W l

g,1742

are learnable parameters at layer l, and f is the com- 743

position function for neighbour entity embedding 744

hen,lti
and relation embedding hr, such as summa- 745

tion, subtraction, element-wise product, or circular- 746

correlation(Xu et al., 2015).Summation is selected 747

for better alignment of relation-aware skip informa- 748

tion flow. 749

A.2 ConvTransE 750

By applying ConvTransE, the query subject entity 751

embedding h
eq
tq and query relation embedding hrq 752

are concatenated first, and then a convolutional 753

layer and a feed-forward layer are applied. The 754

score of each candidate is the dot-product of the 755

candidate entity embedding with the representation 756

after the ConvTransE. To denote the process of 757

calculating the score of the candidate entity ec: 758

s(eq, rq, ec, tq) = hectq FC(Conv1d([heqtq ⊕ hrq ]))
(10) 759

where ec is the candidate entity. 760

B Experiment Setup Details 761

B.1 Datasets Details 762

All datasets are split into the Training, Validation 763

and Test sets in chronological order. For example, 764

the timestamps in ICEWS14 are from 1st to 304th, 765

from 305th to 334th and from 335th to 365th for 766

training, validation and test set accordingly. 767

• ICEWS14, ICEWS18, ICEWS05-15, 768

ICEWS14* are extracted from Integrated Cri- 769

sis Early Warning System which is a database 770

system recording political events. 14, 18, 771

05-15 represent the year of the dataset(2014, 772

2018, 2005-2015), and ICEWS14* uses a 773

different split compared with ICEWS14. 774

The time interval of ICEWS is 1 day. A 775

sample from ICEWS datasets is (John_Kerry, 776

Host_a_visit, Benjamin_Netanyahu, 2014-01- 777

01) 778

• GDELT is also a political event tem- 779

poral knowledge graph dataset from the 780

Global Database of Events, Language, and 781

Tone(Leetaru and Schrodt). Compared with 782

ICEWS datasets, its time interval is only 15 783

minutes and GDELT is collected from a wider 784

variety of sources. (Minist, Return, Nigeria, 785

0) is a sample in GDELT. 786

• WIKI is from Wikidata, an open knowledge 787

base and not limited to political events. The 788
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Table 6: Re-Temp running time and number of parameters

ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT WIKI
Running

Time (min)
Training 11.6 22.1 99.5 8.8 112.6 8.1
Inference 0.05 0.1 0.6 0.1 1.1 0.2

Number of
Parameters

Input 4.4M 14.0M 6.2M 4.4M 4.8M 7.6M
Encoder 0.1M 0.1M 0.1M 0.1M 0.1M 0.1M
Decoder 2M 2M 2M 2M 2M 2M
Total 6.6M 16.1M 8.4M 6.6M 6.9M 9.7M

Table 7: MRR(%) of our model with different ensemble methods. The highest value is bold.

Ensemble Model ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT
Re-Temp 48.04 35.82 56.30 46.40 25.05
Ensemble (avg pooling) 48.58 36.16 56.72 46.56 25.04
Ensemble (max pooling) 48.69 36.38 56.69 47.06 25.06
Ensemble (min pooling) 47.55 35.72 55.58 46.23 25.03

temporal representation in the facts from Wiki-789

data is not a single date/year but a range. For790

example, the fact (Wang Shu, educated at,791

Southeast University) is valid from 1981 to792

1988. To represent a such range, WIKI gener-793

ates eight quadruplets across eight snapshots794

during 1981-1988.795

All the datasets are consistent with their intended796

use.797

B.2 Running Details798

Following the previous works(Li et al., 2022a,b),799

the dimension of the input is set to 200, which800

is also the hidden dimension of the graph model801

and decoder hidden dimension. The number of802

graph neural network layers is 2 and the dropout803

rate is set to 0.2. Adam(Kingma and Ba, 2015)804

with a learning rate of 1e-3 is used for optimisation.805

The model is trained on the training set with a806

maximum of 30 epochs and we stop training when807

the validation performance doesn’t improve in 5808

consecutive epochs. Then, the test set is evaluated809

using the trained model. All the models are trained810

by using 16 Intel(R) Core(TM) i9-9900X CPU @811

3.50GHz and NVIDIA Tesla P100 PCIe 16 GB.812

The number of parameters of Re-Temp can be813

decomposed into three parts:814

• Input Entity embedding: 3d|E|+ 2d2, Rela-815

tion embedding: 2d|R|816

• Encoder CompGCN: 2d2, Relation-aware in-817

formation flow: d2818

• Decoder ConvTransE: ch(2ke+d+2), where819

ch is the number of channels and ke is the820

kernal size.821

The running time and number of parameters of 822

Re-Temp on different datasets under the default 823

hyperparameters can be found in Table 6. 824

B.3 Evaluation Metrics 825

For each query, the model produces a ranked list 826

of all possible candidates and the reciprocal rank 827

is the inverse of the rank position of the correct 828

answer. MRR is calculated by 1
Q

∑Q
q=1

1
rankq

, 829

which is the average reciprocal rank of all queries. 830

Hits@N measures the proportion of results, where 831

the correct answer is in the top N ranked results. 832

N = 1, 3, 10 are chosen, as all previous works 833

adopted. The higher value of MRR and hits@N 834

indicates the better performance of a model. We 835

adopt the way of filtering out the quadruplets oc- 836

curring at the query time, followed by Haohai Sun 837

(2021); Han et al. (2021). 838

C Additional Experiments 839

C.1 Ensemble Modelling Evaluation 840

CEN(Li et al., 2022a) builds an ensemble model 841

with different history lengths. Inspired by this, we 842

test our model under an ensemble setting. For a 843

model with a history length of k, suppose the score 844

vector of all candidates for query q is sqk, a pooling 845

method is applied on {sq1, s
q
2, ..., s

q
k} to get the final 846

score. Three different pooling methods are applied. 847

Table 7 shows the MRR(%) results of our model 848

under the ensemble setting. We applied the history 849

lengths from one (1), and the maximum history 850

length is set to three (3) as previously defined. We 851

did not include the experiments on WIKI since the 852

optimal history length is one (1), and no models 853

with smaller history lengths can be used. First of 854

all, our model can benefit under the ensemble set- 855
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Table 8: MRR(%) result of the Encoder and Decoder Variants test. The highest value is bold.

Model Variants ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT WIKI
Default 48.04 35.82 56.30 46.40 25.05 78.51
CompGCN (Element-Wise) 47.57 35.24 55.81 45.54 24.98 70.99
CompGCN (Circle-Correlation) 46.69 35.09 56.00 44.65 24.90 74.32
Tucker 46.36 35.14 56.84 44.48 24.65 78.28
DistMult 34.48 22.85 39.8 36.58 18.18 59.35

ting on four of the datasets (ICEWS14, ICEWS18,856

ICEWS05-15, ICEWS14*), but only achieve sim-857

ilar performance on GDELT compared with the858

original Re-Temp model (25.05%). Considering859

the history length influence shown in Figure 3, the860

model achieves similar results with different history861

lengths. Therefore, models with different history862

lengths on GDELT might be similar making the863

ensemble models less effective. However, ICEWS864

datasets are history-length sensitive, and ensemble865

models can benefit from different models of differ-866

ent history lengths. In addition to this, max pooling867

usually achieves the best performance as the en-868

semble method while min pooling will worsen the869

performance.870

C.2 Model Varirants Experiments871

We adopted CompGCN as a graph model in872

the encoder to model the multi-relational snap-873

shot, and the transformation function is the sum:874

f(hen,lti
, hr) = hen,lti

+ hr. Followed by Vashishth875

et al. (2020), we tested the default setting with the876

element-wise product or circle-correlation as the877

transformation function, as shown in Table 8. Even878

though good performance can be achieved by re-879

placing the summation with other transformation880

functions, the summation is the best transforma-881

tion function. The reason would be that during882

the skip information flow, additive attention is ap-883

plied, which can benefit from the alignment of the884

entity embedding and relation embedding. More-885

over, various decoders aside from ConvTransE886

are also experimented followed by TANGO(Han887

et al., 2021). As a decoder, Tucker(Balažević et al.,888

2019) achieves much better performance than Dist-889

Mult(Yang et al., 2015). This is because DistMult890

lacks learnable parameters, while the learnable pa-891

rameters in ConvTransE and Tucker give the model892

more complexity to have more possibility to find893

an optimal solution.894

D Responsible Research - Risk895

Most temporal knowledge graph datasets focus on896

political news, which might raise concerns when897

predicting future political events where people have 898

different political leanings. 899
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