Re-Temp: Relation-Aware Temporal Representation Learning for
Temporal Knowledge Graph Completion

Anonymous EMNLP submission

Abstract

Temporal Knowledge Graph Completion
(TKGC) under extrapolation setting aims to
predict the missing entity from a fact in the
future, which is challenging and more aligned
with the real-world prediction issue. Most exist-
ing research encodes the entities and relations
via applying a sequential graph neural network
on the recent snapshots. However, they tend to
not consider skipping the irrelevant snapshots
according to the entity-related relation in the
query and neglect the importance of explicit
temporal information. Motivated by this, we
proposed our model, Re-Temp (Relation-Aware
Temporal Representation Learning), which ap-
plies explicit temporal embedding as the input
and a skip information flow after each times-
tamp to skip the unnecessary information for
prediction. In addition to this, we propose
a two-phase forward propagation method to
avoid information leakage. We evaluated our
model on six TKGC (extrapolation) datasets
and found that it significantly outperformed all
eight recent state-of-the-art models.

1 Introduction

A Knowledge Graph (KG) is a graph-structure
database composed of facts represented by triplets,
in the form of (Subject Entity, Relation, Object
Entity) such as (Alice, Is a Friend of, Bob). The
entities serve as nodes while the relations serve as
direct edges connecting nodes in the graph. How-
ever, facts are not static but continuously update
over time. Temporal Knowledge Graphs (TKG) are
introduced by adding the extra temporal informa-
tion of each fact, by extending each triple with a
timestamp as a quadruplet (Subject Entity, Relation,
Object Entity, Timestamp). A Temporal Knowl-
edge Graph can be represented as a sequence of
snapshots, and each snapshot represents a static
knowledge graph for one timestamp.

Temporal Knowledge Graph Completion
(TKGC) aims to predict the missing entity from a

2018-08-02

} Threaten with
| administrative sanctions?

\
Qr’ ,

Figure 1: A case study of temporal knowledge graph
completion under the extrapolation setting

query (Subject Entity, Relation, ?, Timestamp) or
(?, Relation, Object Entity, Timestamp). TKGC is
difficult and even large-scale pretrained language
models such as ChatGPT(OpenAl, 2022) are prone
to making factual errors(Borji, 2023). There are
two main settings: interpolation and extrapolation
setting. TKGC under the interpolation setting
completes the facts in history, while TKGC
under the extrapolation setting predicts facts at
future timestamps. In this paper, we focus on the
TKGC in the extrapolation settings, which is more
challenging and still has too much to improve(Jin
et al., 2020).

Enormous attention has been paid to static KGC
problems, and numerous models were applied to
encode the entities and relations. There remains a
question: how to extend a static KGC model into
a TKGC model by encoding the temporal informa-
tion? Recent works(Jin et al., 2020; Li et al., 2021,
2022a,b) have applied a sequential Graph Neural
Network (GNN) to the previous snapshots for en-
coding the entities and relations. Then, they use a

static score function as the decoder to measure the
score of each candidate. The main reason for using
a sequential GNN is that the facts shown in recent
history can be helpful when making predictions
in the future. An example is shown in Figure 1,
the previous facts (Kim Jong-Un, criticize, United
States) three days before and (Kim Jong-Un, Make
Statement, Donald Trump) one day before may im-
ply (Donald Trump, Threaten with administrative
sanction, Kim Jong-Un) today. Since no explicit
timestamp value is used, we can call it “implicit
temporal information”.

However, to effectively encode the timestamp,
two more things should be considered: (1) Explicit
temporal information also matters: The score mea-
suring the validity of (Donald Trump, Threaten
with administrative sanction, Kim Jong-un) can be
different in 2018 and 2023 because Trump was the
president in 2018 but not the president in 2023,
which makes him unable to threaten another nation
with administrative sanctions in 2023. The nature
of entities may change over time. Thus, the model
should consider the explicit temporal information
to encode the time-dependent factor. (2) Not all
the facts in the recent history are helpful: Given
the historical facts (Kim Jong-un, criticize, United
States, 2018-08-01),(Donald Trump, Make a visit,
Switzerland, 2018-08-02) and (Kim Jong-un, Make
Statement, Donald Trump, 2018-08-03), to calcu-
late the score of (Donald Trump, Threaten with ad-
ministrative sanction, Kim Jong-un, 2018-08-01),
the second quadruplet visiting Switzerland does not
contribute to the prediction of the relation between
Donald Trump and Kim Jong-un since Switzerland
is neutral. In this case, the model should find a way
to skip the irrelevant snapshots according to the
entity-related relation in the query. According to
the above points, an optimal TKGC model should
consider (1) explicit temporal information and (2)
implicit temporal information with skipping irrele-
vant snapshots by considering the query.

Hence, we propose Re-Temp, a new relation-
aware temporal representation learning model for
TKGC under the extrapolation settings. The en-
coder takes the explicit temporal embedding of
each entity which is a combination of static embed-
ding and dynamic embedding. In the encoder, a
sequential GNN is used for capturing the implicit
temporal information with a skip information flow
applied after each timestamp by considering the
entity-related relation in the query.

The main contributions of this paper can be sum-
marised as follows:

* We propose Re-Temp, a precise TKGC model,
which utilises both explicit and implicit tem-
poral information and adopts a relation-aware
skip information flow to skip irrelevant in-
formation, together with a two-phase forward
propagation method to avoid information leak-
age!

* We compare our Re-Temp with eight state-of-
the-art baseline models from recent years on
six publicly available TKGC datasets under
the extrapolation setting. Our Re-Tmp greatly
outperforms all of the baselines.

* We conduct a case study and statistical anal-
ysis to show the different natures of each
dataset and explain it with our experiment re-
sults.

2 Related Work

KGC models normally adopt an encoder-decoder
framework(Hamilton et al., 2017), where the en-
coder generates the embedding of entities and re-
lations and the score function plays as a decoder.
Most of the existing works extend the static KGC
models into TKGC models by introducing temporal
information.

2.1 TKGC(Interpolation)

To integrate the temporal information in the
decoder, TTransE(Jiang et al., 2016) extends
TransE(Bordes et al., 2013) with the summation of
an extra timestamp embedding, and ConT(Ma et al.,
2019) extends Tucker(Balazevi¢ et al., 2019) by re-
placing the learnable weight with the timestamp
embedding. Some methods also focus on com-
bining temporal information in the encoder: TA-
DistMult(Garcia-Duran et al., 2018) encodes the
temporal information into relation embedding by
using LSTM, while DE-SimplE(Goel et al., 2020)
encodes a diachronic entity embedding with tempo-
ral information. with decoders as DistMult(Yang
et al., 2015) and SimplE(Kazemi and Poole, 2018)
accordingly. These models produced relatively
lower performance on TKGC under the extrapo-
lation setting tasks since they are unable to capture
unseen temporal information.

!Code will be available after the paper acceptance.

Table 1: Summary of TKGC(extrapolation) models and our proposed model. The column ‘“Temporal’ presents the
trend of the approach to how the temporal information is used, and the column ‘Query’ shows the summary of the

approach to how the model utilises query.

Method Core idea

Temporal | Query

RE-NET(Jin et al., 2020)
CyGNet(Zhu et al., 2021)
xERTE(Han et al., 2020)

REGCN(Li et al., 2021)

TANGO(Han et al., 2021)
TITER(Haohai Sun, 2021) | path-based reinforcement learning
CEN(Li et al., 2022a)

estimate the future graph distribution
identify facts with repetition

sample subgraph according to query
relation-GCN + GRU

neural ODE on continuous-time reasoning

ensemble model with different history lengths
HiSMatch(Li et al., 2022b) | two separated encoders for entity and query information

implicit N/A

explicit repetitive queries
implicit query-related subgraph
implicit | N/A

implicit | N/A

implicit | query-related path
implicit | N/A
implicit | repetitive queries

Re-Temp (Ours)

skip irrelevant information according to entity-related relations | both

query-related skip information flow

2.2 TKGC(extrapolation)

For the last few years, more attention has been
paid to TKGC tasks under the extrapolation set-
ting. GNNs are typically used as the encoder: RE-
NET(Jin et al., 2020) applies sequential neighbour-
hood aggregators such as R-GCN(Schlichtkrull
et al., 2018) to get the distribution of the tar-
get timestamp snapshot, REGCN(Li et al., 2021)
adopts CompGCN(Vashishth et al., 2020) at each
timestamp and GRU for sequential information.
CEN(Li et al., 2022a) uses an ensemble model
of sequential GNNs with different history lengths,
TANGO(Han et al., 2021) solves Neural Ordinary
Equations and makes it as the input of a Multi-
Relational GCN, and HiSMatch(Li et al., 2022b)
builds two GNN encoders modelling the sequential
candidate graph and query-related subgraphs sepa-
rately and combines the representation from both
sides into a matching function. Meanwhile, some
methods do not follow the traditional encoder and
decoder framework. XERTE(Han et al., 2020) ex-
tracts subgraph according to queries, CyGNet(Zhu
et al., 2021) identifies the candidates with repeti-
tion, and TITer(Haohai Sun, 2021) uses reinforce-
ment learning methods to search for the temporal
evidence chain for prediction. To conclude, RE-
NET, REGCN, and CEN adopt the entity evolve-
ment information, while XERTE, CyGNet and
TITer focus on the query. HiSMatch combines
these two types of information with two separate
encoders. However, none of the previous works
encoded sequential and query-related information
in one precise encoder. In addition to this, none
of these methods considers explicit temporal infor-
mation, except for CyGNet, which generates an
independent timestamp vector but does not encode
it into the entity or relation. Table 1 presents the
summary of TKGC(extrapolation) models and em-
phasises the contribution of our proposed model.

3 Re-Temp

The overall architecture of Re-Temp can be found
in Figure 2. Section 3.1 describes the notations of a
TKGC task. The input of the model is represented
by a combination of static and dynamic entity em-
bedding, in Section 3.2, showing explicit temporal
information. The encoder in Section 3.3 uses a
sequential multi-relational GNN to learn implicit
temporal information and after each timestamp, a
relation-aware skip information flow mechanism
is applied to retain the necessary information for
prediction. The ConvTransE decoder together with
the loss function is introduced in Section 3.4. To
avoid information leaking, we apply a two-phase
forward propagation method in Section 3.5.

3.1 Problem Formulation

To denote the set of entities, relations, timestamps
and facts, £, R, T and F are selected. A tempo-
ral knowledge graph G can be treated as |7 se-
quential snapshots, G = {Gy, G1, ..., G}, where
Gr = {€,R,F:} is a directed multi-relational
graph at timestamp ¢. For each fact, a quadruplet
is represented as (e, 1, €,, t), Where es, e, € £ are
the subject and object entities, r € R represents
the relation and ¢ € T is the timestamp. The tar-
get of the temporal knowledge graph completion
under the extrapolation setting is that for a query
g, predicting (es, 7,7,) or (7,7, e,,t,) given pre-
vious snapshots {Go,G1, ..., Gy, —1}. Normally,
the inverse of each quadruplet is added into the
dataset, making all subject entity prediction prob-
lem (7,7, e,,t,) into object entity prediction prob-
lem (e,, 771, 7, t,).

3.2 Explicit Temporal Representation

For sequential snapshots with length &, let hf;_ e €

R'*4 denotes the input embedding of the subject
entity e, from query ¢, and d is the dimension of

Input

Encoder with Relation-Aware Skip Information Flow

Decoder

Embedding

Static

Trend e | fe | _._.-7),

g”}fq;;‘x\mﬁ/l
/\/

P “\ o /- \f’»»
U
€, g €, —~ €, - €,
P q R) L._._ q () Lo__ q hY qa pr
Dynamic htq73 @) > htqu ») > htq—l » / @, htq'hfq
- A A A)
o/ fG

Convolution
Layer

O e l

Feedforward
Layer

Score
Calculation

G o

Figure 2: Illustration of Encoding and Decoding process in Re-Temp with history length as 3. For a query g,
the input vector is hte;‘_ 3. The encoder with relation-aware skip information flow learns the entity and relation

representation h?: and h,.,. Then the decoder measures the score of all the candidates.

the input. In order to encode the explicit temporal
information, we concatenated two kinds of input
embedding; static and dynamic embedding. The
static embedding reveals the nature of an entity that
does not change through time, while the dynamic
part reveals the time-dependent information.

Inspired by ATiSE(Xu et al., 2020), the dynamic
embedding is decomposed into the trend compo-
nent and seasonal component, and the trend compo-
nent can be represented as a linear transformation
on t while the seasonal component should be a pe-
riodical function of ¢. Thus, we model the dynamic
temporal embedding at timestamp ¢ by the summa-
tion of trend embedding we, ot and seasonal em-
bedding sin(2mwe,,1t). After concatenation with
the static embedding, a feed-forward layer is ap-
plied. Formally, the input of the encoder h::_ i 18
derived by:

.S
Piy e = e M

hfj’f,i = We, 0(tg—k)+sin(2mwe, 1(t—Fk)) (2)

e eq,S eq,D
ht;—kz = thp(hts—k ® ht:—k) 3)

where hfj’i in Equation 1 and hf‘l;Dk in Equation
2 denote the static and dynamic embedding for
subject entity e, at timestamp t, — k, © denotes
the concatenation, and h°®%, we, 0, We,,1, Wimp
are learnable parameters. The major difference
between our explicit temporal representation and
ATiSE lies in the fact that employing a learnable
feed-forward layer to concatenate the dynamic em-
bedding and static embedding, enables the model
to determine the extent to which it should utilise in-
formation from each embedding rather than simply
utilising both. Relation embedding A" can simply
be extracted from a static embedding lookup ta-

ble since we do not expect the natural of relation
evolving through time.

3.3 Relation-Aware Skip Information Flow

In order to handle implicit temporal information,
we use a sequential GNN-based encoder with a new
relation-aware skip information flow mechanism.
Following recent work(Li et al., 2021, 2022a,b),
we adopt a variant of CompGCN(Vashishth et al.,
2020) at each timestamp to model the multi-
relational snapshot, outputting the entity embed-
ding h. and the relation embedding h,. The details
of CompGCN are shown in Appendix A.1.

Not all snapshots in the recent history are useful
in predicting query ¢, hence, a relation-aware skip
information flow is applied. Two things are consid-
ered: (1) Skip connection is used for filtering out
the unnecessary information from each timestamp.
(2) Relation-aware attention mechanism helps to
determine whether some information should be fil-
tered. Thus, after getting the output of CompGCN,
they will be weighted-summed up with previous
timestamps input to partially skip the irrelevant
snapshots. The weights of the weighted sum are
calculated by considering both the entity and the
entity-related relation in the query.

Formally, for an entity e, the relation associated
with e, should be considered. To capture the entity-
related relation information, mean pooling is ap-
plied on all relation embedding associated with e,
at timestamp t,. The representation obtained from
mean pooling will serve as a reference vector to
help the model determines the information to keep
or skip. Then, this average relation embedding will
be summed with all m previous timestamps one by
one, followed by a feedforward layer. This calcula-
tion can also be treated as additive attention. After

Table 2: Statistics Details of Benchmark Dataset

ICEWS14 ICEWS18 | ICEWS05-15 | ICEWS14* GDELT WIKI
Entities 7,128 23,033 10,094 7,128 7,691 12,554
Relations 230 256 251 230 240 24
Facts 89,730 468,558 461,329 90,730 2,277,405 669,934
Snapshots 365 304 4,017 365 2,976 232
Snapshots in Train/Val/Test set | 304/30/31 240/30/34 | 3,243/404/370 | 262/52/51 | 2,304/288/384 | 211/11/10
Facts per Snapshot 245.8 1541.3 322 248.6 765.3 2887.6
Time Interval 1 day 1 day 1 day 1 day 15 mins 1 year
Total Time Range 1 year 0.83 years 11 years 1 year 0.54 years 232 years

getting the attention weights B;q, the weighted sum
using these attention weights is applied on the cur-
rent CompGCN output hfiq’L and all m previous
timestamp inputs. The detailed calculation shows

as follows:
1

Y= Db @

‘th | reR;?

q

—0
attn® = o e)
Wa(h§™_ + %) j € [1m)]

B;q = softmax(attn;-q),j € [0,m] (6)

m
Bty = By hyt 3B, (D)

j=1
Note that the output of each timestamp is also the
input of the next timestamp. Equation 4 shows
the entity-associated relation embedding and Rfj
denotes the relation set which connects with entity
eq at timestamp ¢,. Equation 5 and 6 denotes the
attention score and weight calculation where W,
is learnable. By applying the relation-aware skip
information flow, our model is capable of skipping
irrelevant snapshots by considering the target query

relations.

3.4 Decoder

ConvTransE(Shang et al., 2019) is widely used
in both static KGC(Malaviya et al., 2020) and
TKGC(Li et al., 2022b) as the score function, and
ours is no exception. After getting the score of each
candidate using ConvTransE, we train the model
as a classification problem and the loss function for
each query shows as follows:

L = — Z chOg(S(6q7rq7 GCth)) (8)
ec€E

and z. will be 1 if correctly classified, otherwise
itis 0. The training target is to minimise the total
loss for all queries. Appendix A.2 introduces the
details of ConvTransE.

3.5 Two-Phase Propagation

There is a potential information leakage problem
by applying the relation-aware information flow
mechanism. Suppose a query in the test set is
(A, r, B,t), after adding the inverse of quadruplets,
(B,r~1, A, t) will be in the test set. When applying
the encoder, with the relation-aware skip informa-
tion flow, A and B will contain the information of r
and 7~ ! accordingly. Therefore, when making pre-
dictions on (A, r, 7, t) and calculating the score by
dot product A and all candidates, there is a chance
that the information of r in A can meet the informa-
tion of »~! in B. Since 7 and r~! are paired, the
model might find a shortcut to determine B is the
right answer for (A, r, 7, ¢). This information leak-
age will result in unreasonably high performance
during evaluation.

To avoid such information leakage, we propose a
two-phase forward propagation method. We divide
the dataset into two subsets: the original set and
the inverse set. The inverse set is the set of inverse
quadruplets. The snapshot graph in the history will
be built on the whole set, while during forward
propagation, the original set and inverse set are
used separately. The output of the original set and
the inverse set will be collected for loss calculation
or performance evaluation.

4 Experiments

4.1 Experiment Setup

Datasets We evaluated our model on six widely-
used TKG datasets: ICEWSI4(Li et al., 2021),
ICEWS18(Jin et al., 2020), ICEWS05-15(Han et al.,
2020), ICEWS14*(Han et al., 2020), GDELT (Jin
et al., 2020), and WIKI(Leblay and Chekol, 2018).
The overall statistics of each dataset are presented
in Table 2. A detailed description of these datasets
can be found in Appendix B.1.

Baselines Our Re-Temp is compared with
TKGC models under the extrapolation setting.

Table 3: Performance(%) with Baseline models. The highest value is bold and the second highest is underlined.

Model ICEWS14 ICEWS18 ICEWS05-15
MRR hits@1 hits@3 hits@10 | MRR hits@1 hits@3 hits@10 | MRR hits@1 hits@3 hits@10
RE-NET(Jin et al., 2020) |37.01 27.02 39.66 5485 |29.02 20.03 33.14 48.60 |44.03 3443 49.03 64.03
CyGNet(Zhu et al., 2021) | 35.02 25.72 39.06 5350 |25.03 16.03 29.28 4342 |37.03 27.01 4223 5698
xERTE(Han et al., 2020) | 40.12 32.11 4473 5625 |29.31 21.03 3351 4648 |46.62 37.84 5231 63.92
REGCN(Li et al., 2021) 4150 30.86 46.60 6247 |30.55 20.00 3473 5146 |46.41 3517 5276 @ 67.64
TANGO(Han et al., 2021) | 30.12 23.03 3548 52.32 | 2897 19.51 3261 4751 |4286 3272 48.14 6234
TITer(Haohai Sun, 2021) | 41.73 32.74 46.46 5844 |29.96 22.06 3341 4492 |47.78 38.05 53.11 65.93
CEN(Li et al., 2022a) 4220 32.08 4746 6131 |31.50 21.70 3544 50.59 |4597 3556 5145 @ 66.14
HiSMatch(Li et al., 2022b) | 46.42 3591 51.63 66.84 |33.99 2391 3790 5394 |52.85 4201 59.05 73.28
Re-Temp (Ours) 48.04 3732 53.60 6890 |35.82 25.02 4036 5730 |56.30 4549 62.80 77.17
Model ICEWS14* GDELT WIKI
MRR hits@1 hits@3 hits@10 | MRR hits@1 hits@3 hits@10 | MRR hits@1 hits@3 hits@10

RE-NET(Jinet al., 2020) | 38.28 28.68 4143 5452 |19.63 1239 21.03 3402 |49.66 4698 5123 53.49
CyGNet(Zhu et al., 2021) | 33.13 24.16 37.02 51.23 | 1898 1232 2056 33.80 |43.78 39.02 46.12 5192
xERTE(Han et al., 2020) | 40.77 32.65 45.71 57.29 |18.07 1231 2005 3032 |71.16 68.03 76.15 7899
REGCN(Li et al., 2021) 41.79 3155 46.67 6153 |19.31 11.99 20.61 33.59 | 7758 7372 8039 83.69
TANGO(Han et al., 2021) | 26.35 17.33 29.27 4432 |18.03 1236 1996 2931 |51.15 49.65 5226 53.44
TITer(Haohai Sun, 2021) |41.76 32.69 4635 5846 |17.02 11.23 19.81 2692 | 7551 7298 7751 79.32
CEN(Li et al., 2022a) 40.78 3126 4526 59.16 |19.89 12.61 21.16 34.09 |77.65 73.86 80.69 84.00
HiSMatch(Li et al., 2022b) | 45.82 35.84 50.79 65.08 |22.01 1445 23.80 36.61 |78.07 73.89 8132 84.65
Re-Temp (Ours) 46.40 3586 51.69 67.12 |25.05 1570 27.14 4416 |7851 74.80 8133 84.50

Table 4: Cases from WIKI Dataset about Lionel Messi
from Year 2003 to Year 2005.

Subject Entity | Relation Object Entity Year
Lionel Messi | residence Barcelona 2003
Lionel Messi | member of sports team | FC Barcelona C 2003
Lionel Messi | residence Barcelona 2004
Lionel Messi | member of sports team | FC Barcelona C 2004
Lionel Messi | member of sports team | FC Barcelona Atletic | 2004
Lionel Messi | residence Barcelona 2005
Lionel Messi | member of sports team | Argentina national | 2005
football team

Eight models from recent years are selected as base-
lines: RE-NET(Jin et al., 2020), RE-GCN(Li et al.,
2021), CyGNet(Zhu et al., 2021), xERTE(Han et al.,
2020), TITer(Haohai Sun, 2021), TANGO(Han
et al.,, 2021), CEN(Li et al., 2022a), and HiS-
Match(Li et al., 2022b). Models that are designed
for static KG completion or TKGC under the in-
terpolation setting tasks are not compared since
they naturally perform badly in TKGC under the
extrapolation setting tasks.

Evaluation Metrics Following the previous
works(Han et al., 2020; Zhu et al., 2021; Li et al.,
2022b), we employ widely used evaluation metrics,
Mean Reciprocal Rank(MRR), hits@1, hits@3,
and hits@10, which is explained in Appendix B.3,
and we report the five-times running average result.

4.2 Performance Comparison

We use a history length of 3 for ICES14, ICEWSI18,
ICEWSO05-15, ICEWS14* and GDELT, while 1 for
WIKI. The influence of history length is discussed

in Section 4.3. Table 3 presents the performance
comparison of all baseline models. Our model,
Re-Temp, outperforms significantly almost all the
baseline models on all datasets, indicating the su-
periority of our Re-Temp model. In detail, three
points can be observed:

Firstly, HiSMatch(Li et al., 2022b) achieved the
second-highest performance on most of the datasets
by considering both the query subgraph and en-
tity subgraph. The concept considering both query
and entity of HiSMatch is similar to our relation-
aware attention mechanism in the skip information
flow. However, HiSMatch only builds the query
subgraph using the exact same relation of the query,
which ignores the potential similarity between re-
lations. For example, in ICEWS14, when making
a prediction on (A, provide_aid, ?, t,), relation
‘provide_aid’ and ‘provide_military_aid’ share sim-
ilarities, but HisMatch only considers the entity
with ‘provide_military_aid’ in the recent history
while our method uses the embedding of relation
to calculate the attention weights, making it gen-
eral for different types of relations that are close
in the embedding space and outperforming HiS-
Match. Meanwhile, HiSMatch builds two separate
encoders and fuses the output for the decoder while
our model only applies one encoder for better in-
formation alignment.

Secondly, among four ICEWS datasets, our
model achieves more improvement on ICEWS05-
15. As shown in Table 2, the snapshots in

()

U

c

2 oob

[. a g

£ ‘/

O 05

B —+— ICEWS14

< ~L0g ICEWS18

= s —e— ICEWS05-15
—o— ICWS14+

—2.0F —%— GDELT

—e— WIKI

1 é é 4 5
History Length

Figure 3: MRR(%) change of Re-Temp with the history
lengths. The x-axis is the history length and the y-axis
is the MRR(%) change compared with history length 3.

100

85.68%

Proportion(%)

201

10.53% 10.79% L114% 11.42%

2.19%

ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT WIKI
Dataset

Figure 4: Proportion(%) of quadruplets shown in exact
one timestamp before for each dataset. The x-axis is the
name of the dataset and the y-axis is the proportion(%).

ICEWSO05-15 are sparser than others, showing the
ability of our model to learn sequential information
with fewer data.

Thirdly, our model only achieves a compara-
ble performance with HiSMatch on WIKI, which
might result from the nature of this dataset. Table
4 lists some cases of facts about Lionel Messi in
WIKI. Suppose giving the quadruplets from 2003
and 2004, it is relatively easy to predict (Lionel
Messi, residence, ?, 2005) based on his previous
residence, however, it is almost impossible to have
a correct prediction on (Lionel Messi, residence, ?
, 2005) since the previous snapshots don’t provide
enough information on Argentina national football
team. This is an issue in WIKI: the predictions are
either too easy (using the previous facts), or too
difficult (even humans can not make a correct pre-
diction without any external knowledge). Thus, a
relatively better model is not enough to generate an
undoubtful better performance on WIKI, and our
model and some previous baseline models (CEN,
HiSMatch) share similar results on this dataset.

4.3 Impact of history length

To study the impact of history length on different
datasets, experiments with different history lengths
are conducted. The default value of history length
is 3 and the MRR changes in percentage are shown
in Figure 3 with history lengths from 1 to 5. Two
major points can be noticed:

(I) On most of the datasets (ICEWSI14,
ICEWSI18, ICEWSO05-15, ICEWSI14*, and
GDELT), a larger history length results in a
higher MRR. Where the history length is small,
enlarging the history length can substantially
enhance performance. However, when the
history length surpasses three, the degree of
improvement becomes marginal. This aligns with
the expectations that the recent several snapshots
can help with inference, while in a long history,
the irrelevant information does not contribute
to the performance. By considering the model
performance and calculation complexity, history
length = 3 is selected as the final model for these
datasets.

(2) An exception occurs on WIKI, where the
model achieves the best performance when history
length = 1. To investigate the factors, a detailed
statistical analysis of the datasets is conducted. Ta-
ble 4 in Section 4.2 shows some sample queries
in WIKI, where some facts are the same as the
facts at previous timestamps, the reason lies in that
for a fact (s,r,0,t1 - t,,), WIKI generates the same
quadruplets across the time range from ¢; to .
Figure 4 shows the proportion of the quadruplets at
t4 shown in the previous timestamp ¢, — 1 for all
timestamps in the test set on each dataset. 85.68%
samples in the WIKI show in the one timestamp be-
fore, while fewer than 15% samples in ICEWS14,
ICEWSI18, ICEWS05-15, ICEWS14*, GDELT are
from the previous timestamp. The same quadru-
plets shown across different timestamps in WIKI re-
sult in similar snapshots(graphs) at different times-
tamps. When a larger history length is applied,
multiple graph neural network models applied on
multiple similar graphs will be approximated to ap-
plying a multiple layers GNN model on one graph,
which leads to the oversmoothing issue in a deep
GNN(Li et al., 2018). Therefore, a large history
length may decrease model performance on WIKI.

4.4 Ablation Study

Table 5 presents the ablation study of different com-
ponents of our model.

Table 5: The MRR(%) result of the ablation test of Re-Temp. The highest value is bold.

Model ICEWS14 ICEWS18 | ICEWSO05-15| ICEWS14* GDELT WIKI
Re-Temp 48.04 35.82 56.30 46.40 25.05 78.51
- dynamic 47.52 35.33 55.12 45.89 24.85 76.04
- relation_aware 39.93 30.56 44,95 38.75 19.92 78.14
- skip 36.56 28.07 43.80 36.30 18.61 79.60

Impact of explicit temporal embedding To
evaluate the efficiency of the explicit temporal
representation, we remove the dynamic embed-
ding from the explicit temporal input, resulting in
only the static embedding of each entity left. For
all six benchmark datasets, removing dynamic em-
bedding leads to worse performance. Compared
with the performance drop in ICEWS14, ICEWS18,
ICEWS14* and GDELT, it is clear that the MRR
decrease more in WIKI and ICEWS05-15. The rea-
son is that the total time range in these two datasets
is large (232 years and 11 years), and the entity
information can evolve over a long period, which
can be captured by explicit temporal embedding.

Impact of relation-aware skip information
flow To demonstrate how the relation-aware skip
information flow contributes to the model perfor-
mance, two ablation tests are conducted. (1)‘-
relation_aware’ means that when calculating the
attention score in skip information flow, the entity-
related relation is omitted, formally, the atten-
tion score is Equation 5 is changed to:attnjq =
Wa(hff_j),j € [1,m]. (2)*-skip’ means removing
the whole skip information flow, making the input
of each timestamp the last timestamp the output:
het = hyot

ti+1 t;

The model performance drops heavily if no
relation-aware attention mechanism is applied,
showing the vital importance of the relation-aware
attention mechanism. We can conclude that the
entity-related relation information actually helps
the model to select necessary information. In most
cases, removing the skip connection worsens the
model performance compared with only removing
the relation-aware attention mechanism. Compare
with ‘-relation_aware’ setting, the models under
the ‘-skip’ setting learn from all the recent snap-
shots for prediction, leading to the involvement of
irrelevant information during prediction.

However, WIKI shows better performance under
this setting, even compared with our original Re-
Temp model. The reason might be the same as that
discussed in Section 4.3: More than 80% of facts
in the WIKI show in the previous timestamp, and

a graph model applied on the previous timestamp
can easily capture that repetitive information for
prediction.

5 Conclusion

We introduced Re-Temp, which integrates both ex-
plicit and implicit temporal information and applies
a relation-aware skip information flow to adopt af-
ter each timestamp to remove unnecessary infor-
mation for prediction by taking the entity-related
relation in the query into consideration. The ex-
perimental results on six TKGC datasets present
the superiority of our model, compared with eight
baseline models. We also conduct a statistical anal-
ysis of the datasets to show the different nature
between WIKI and other datasets. It is hoped that
Re-temp presents insight into the importance of the
relation in the query and both types of temporal
information.

6 Limitations

Re-Temp still follows Knowledge Graph Comple-
tion encoder-decoder framework(Hamilton et al.,
2017) while more frameworks can be explored.
The graph model at each timestamp and the decoder
score function follow the same methods widely
used by other models.

Since we have shown that the explicit tempo-
ral embedding and the skip information flow con-
tribute to model performance, more work can be
done by combining these concepts into the graph
model and score function, for example, combining
the entity-related relation into the graph model at
each timestamp to selectively propagate between
nodes, or combining the explicit temporal embed-
ding into the decoder score function. Also, like
most TKGC models, Re-Temp can not handle new
entities that do not show in the training data. More
methods integrating the text description can be ex-
plored(Lv et al., 2022).

References

Ivana Balazevi¢, Carl Allen, and Timothy Hospedales.
2019. Tucker: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185-5194.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Ali Borji. 2023. A categorical archive of chatgpt fail-
ures. arXiv preprint arXiv:2302.03494.

Alberto Garcia-Duran, Sebastijan Dumanci¢, and Math-
ias Niepert. 2018. Learning sequence encoders for
temporal knowledge graph completion. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4816—4821.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding for
temporal knowledge graph completion. In AAAL

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Representation learning on graphs: Methods
and applications. I[EEE Data Eng. Bull., 40(3):52—
74.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2020. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In International
Conference on Learning Representations.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and
Volker Tresp. 2021. Learning neural ordinary equa-
tions for forecasting future links on temporal knowl-
edge graphs. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-

ing, pages 8352-8364.

Yunpu Ma Zhen Han Kun He. Haohai Sun, Jialun Zhong.
2021. Timetraveler: Reinforcement learning for tem-
poral knowledge graph forecasting. In EMNLP.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao
Chang, Sujian Li, and Zhifang Sui. 2016. Towards
time-aware knowledge graph completion. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 1715-1724.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren.
2020. Recurrent event network: Autoregressive struc-
ture inference over temporal knowledge graphs. In
EMNLP.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
Advances in neural information processing systems,
31.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In Com-
panion Proceedings of the The Web Conference 2018,
pages 1771-1776.

Kalev Leetaru and Philip A Schrodt. Gdelt: Global data
on events, location, and tone, 1979-2012. Citeseer.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018.
Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI
conference on artificial intelligence.

Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng,
Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng
Guo, and Xueqi Cheng. 2022a. Complex evolutional
pattern learning for temporal knowledge graph rea-
soning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 290-296, Dublin,
Ireland. Association for Computational Linguistics.

Zixuan Li, Zhongni Hou, Saiping Guan, Xiaolong Jin,
Weihua Peng, Long Bai, Yajuan Lyu, Wei Li, Jiafeng
Guo, and Xueqi Cheng. 2022b. Hismatch: Historical
structure matching based temporal knowledge graph
reasoning. arXiv preprint arXiv:2210.09708.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. 2021. Temporal knowledge graph reason-
ing based on evolutional representation learning.

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li,
Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do pre-
trained models benefit knowledge graph completion?
a reliable evaluation and a reasonable approach. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 3570-3581.

Yunpu Ma, Volker Tresp, and Erik A Daxberger. 2019.
Embedding models for episodic knowledge graphs.
Journal of Web Semantics, 59:100490.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
2925-2933.

OpenAl. 2022. Introducing chatgpt.

https://openai.com/blog/chatgpt

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593-607. Springer.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong
He, and Bowen Zhou. 2019. End-to-end structure-
aware convolutional networks for knowledge base
completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 3060-
3067.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015.
Empirical evaluation of rectified activations in convo-
lutional network. arXiv preprint arXiv:1505.00853.

Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed
Yazdi, and Jens Lehmann. 2020. Temporal knowl-
edge graph completion based on time series gaussian
embedding. In International Semantic Web Confer-
ence, pages 654—-671. Springer.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan
Cheng, and Yan Zhang. 2021. Learning from history:
Modeling temporal knowledge graphs with sequen-
tial copy-generation networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 4732-4740.

A Model Component Details

A.1 CompGCN

In CompGCN, at each layer, edges(relations) are
conducted as the transformation on the connected
node(entity), and then a weighted sum calculation
from GCN(Kipf and Welling, 2017) is applied to
the transformed entity. Self-loop is also calculated
before the activation function. Formally, for a entity
node e, at timestamp ¢; at [th layer, the propagation
shows as follows:

eq,l+1 1
ht: - U(|N?q| Z
e

(&)
where NZ,“ is the set of the neighbour entities of
€4 at timestamp ?;, o is the activation function and
RReLU(Xu et al., 2015) is chosen. W ; and W |

en,l eq,l
W of(Re™! he)+WE Rt

are learnable parameters at layer [, and f is the com-
position function for neighbour entity embedding
hfi”’l and relation embedding h,., such as summa-
tion, subtraction, element-wise product, or circular-
correlation(Xu et al., 2015).Summation is selected
for better alignment of relation-aware skip informa-
tion flow.

A.2 ConvTransE

By applying ConvTransE, the query subject entity
embedding hfs and query relation embedding .,
are concatenated first, and then a convolutional
layer and a feed-forward layer are applied. The
score of each candidate is the dot-product of the
candidate entity embedding with the representation
after the ConvTransE. To denote the process of
calculating the score of the candidate entity e.:

s(eq,7q, €c,tq) = hf;FC(Convld([hf{‘; @ hr,)))
(10)
where e, is the candidate entity.

B Experiment Setup Details
B.1 Datasets Details

All datasets are split into the Training, Validation
and Test sets in chronological order. For example,
the timestamps in ICEWS14 are from 1st to 304th,
from 305th to 334th and from 335th to 365th for
training, validation and test set accordingly.

* ICEWS14, ICEWSI18, ICEWS05-15,
ICEWS14* are extracted from Integrated Cri-
sis Early Warning System which is a database
system recording political events. 14, 18,
05-15 represent the year of the dataset(2014,
2018, 2005-2015), and ICEWS14* uses a
different split compared with ICEWS14.
The time interval of ICEWS is 1 day. A
sample from ICEWS datasets is (John_Kerry,
Host_a_visit, Benjamin_Netanyahu, 2014-01-
01)

* GDELT is also a political event tem-
poral knowledge graph dataset from the
Global Database of Events, Language, and
Tone(Leetaru and Schrodt). Compared with
ICEWS datasets, its time interval is only 15
minutes and GDELT is collected from a wider
variety of sources. (Minist, Return, Nigeria,
0) is a sample in GDELT.

* WIKI is from Wikidata, an open knowledge
base and not limited to political events. The

Table 6: Re-Temp running time and number of parameters

ICEWS14 ICEWS18 |ICEWS05-15 | ICEWS14* GDELT WIKI
Running | Training 11.6 22.1 99.5 8.8 112.6 8.1
Time (min) | Inference 0.05 0.1 0.6 0.1 1.1 0.2
Input 4.4M 14.0M 6.2M 4.4M 4.8M 7.6M
Number of | Encoder 0.1IM 0.1M 0.IM 0.1IM 0.1M 0.IM
Parameters | Decoder 2M M M M M 2M
Total 6.6M 16.1M 8.4M 6.6M 6.9M 9.7M

Table 7: MRR(%) of our model with different ensemble methods. The highest value is bold.

Ensemble Model ICEWS14 ICEWS18 |ICEWS05-15 | ICEWS14* GDELT
Re-Temp 48.04 35.82 56.30 46.40 25.05
Ensemble (avg pooling) 48.58 36.16 56.72 46.56 25.04
Ensemble (max pooling) 48.69 36.38 56.69 47.06 25.06
Ensemble (min pooling) 47.55 35.72 55.58 46.23 25.03

temporal representation in the facts from Wiki-
data is not a single date/year but a range. For
example, the fact (Wang Shu, educated at,
Southeast University) is valid from 1981 to
1988. To represent a such range, WIKI gener-
ates eight quadruplets across eight snapshots
during 1981-1988.

All the datasets are consistent with their intended
use.

B.2 Running Details

Following the previous works(Li et al., 2022a,b),
the dimension of the input is set to 200, which
is also the hidden dimension of the graph model
and decoder hidden dimension. The number of
graph neural network layers is 2 and the dropout
rate is set to 0.2. Adam(Kingma and Ba, 2015)
with a learning rate of 1e-3 is used for optimisation.
The model is trained on the training set with a
maximum of 30 epochs and we stop training when
the validation performance doesn’t improve in 5
consecutive epochs. Then, the test set is evaluated
using the trained model. All the models are trained
by using 16 Intel(R) Core(TM) i9-9900X CPU @
3.50GHz and NVIDIA Tesla P100 PCle 16 GB.

The number of parameters of Re-Temp can be
decomposed into three parts:

+ Input Entity embedding: 3d|€| + 2d?, Rela-
tion embedding: 2d|R|

 Encoder CompGCN: 2d?, Relation-aware in-
formation flow: d?

* Decoder ConvTransE: ch(2ke+d+2), where
ch is the number of channels and ke is the
kernal size.

11

The running time and number of parameters of
Re-Temp on different datasets under the default
hyperparameters can be found in Table 6.

B.3 Evaluation Metrics

For each query, the model produces a ranked list
of all possible candidates and the reciprocal rank
is the inverse of the rank position of the correct
answer. MRR is calculated by ézgzl ﬁ,
which is the average reciprocal rank of all queries.
Hits@N measures the proportion of results, where
the correct answer is in the top /N ranked results.
N = 1,3,10 are chosen, as all previous works
adopted. The higher value of MRR and hits@N
indicates the better performance of a model. We
adopt the way of filtering out the quadruplets oc-
curring at the query time, followed by Haohai Sun
(2021); Han et al. (2021).

C Additional Experiments

C.1 Ensemble Modelling Evaluation

CEN(Li et al., 2022a) builds an ensemble model
with different history lengths. Inspired by this, we
test our model under an ensemble setting. For a
model with a history length of k, suppose the score
vector of all candidates for query ¢ is s}, a pooling
method is applied on {s{, s, ..., s7} to get the final
score. Three different pooling methods are applied.
Table 7 shows the MRR(%) results of our model
under the ensemble setting. We applied the history
lengths from one (1), and the maximum history
length is set to three (3) as previously defined. We
did not include the experiments on WIKI since the
optimal history length is one (1), and no models
with smaller history lengths can be used. First of
all, our model can benefit under the ensemble set-

Table 8: MRR(%) result of the Encoder and Decoder Variants test. The highest value is bold.

Model Variants ICEWS14 ICEWS18 |ICEWS05-15| ICEWS14* GDELT WIKI
Default 48.04 35.82 56.30 46.40 25.05 78.51
CompGCN (Element-Wise) 47.57 35.24 55.81 45.54 24.98 70.99
CompGCN (Circle-Correlation) 46.69 35.09 56.00 44.65 24.90 74.32
Tucker 46.36 35.14 56.84 44.48 24.65 78.28
DistMult 34.48 22.85 39.8 36.58 18.18 59.35

ting on four of the datasets ICEWS14, ICEWSI18,
ICEWSO05-15, ICEWS14%*), but only achieve sim-
ilar performance on GDELT compared with the
original Re-Temp model (25.05%). Considering
the history length influence shown in Figure 3, the
model achieves similar results with different history
lengths. Therefore, models with different history
lengths on GDELT might be similar making the
ensemble models less effective. However, ICEWS
datasets are history-length sensitive, and ensemble
models can benefit from different models of differ-
ent history lengths. In addition to this, max pooling
usually achieves the best performance as the en-
semble method while min pooling will worsen the
performance.

C.2 Model Varirants Experiments

We adopted CompGCN as a graph model in
the encoder to model the multi-relational snap-
shot, and the transformation function is the sum:
f (hfi"’l, hy) = hf:’l + h,.. Followed by Vashishth
et al. (2020), we tested the default setting with the
element-wise product or circle-correlation as the
transformation function, as shown in Table 8. Even
though good performance can be achieved by re-
placing the summation with other transformation
functions, the summation is the best transforma-
tion function. The reason would be that during
the skip information flow, additive attention is ap-
plied, which can benefit from the alignment of the
entity embedding and relation embedding. More-
over, various decoders aside from ConvTransE
are also experimented followed by TANGO(Han
et al., 2021). As a decoder, Tucker(Balazevic et al.,
2019) achieves much better performance than Dist-
Mult(Yang et al., 2015). This is because DistMult
lacks learnable parameters, while the learnable pa-
rameters in ConvTransE and Tucker give the model
more complexity to have more possibility to find
an optimal solution.

D Responsible Research - Risk

Most temporal knowledge graph datasets focus on
political news, which might raise concerns when

predicting future political events where people have
different political leanings.

12

