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ABSTRACT

We consider multiple agents competing to acquire stakes in some costly divisible
resource (e.g. shares of a financial asset, compute resources, or commodities) over
time. We propose a novel game-theoretic model for this problem that generalizes
settings studied in diverse literatures, and analyze it under different assumptions
on agent information. Given complete-information, we establish the existence
and uniqueness of a pure Nash equilibrium (NE) in this generalized setting. This
is shown to be efficiently computable but has worst-case unbounded price of an-
archy. Alternatively, under partial-information with a common prior, we establish
the existence and uniqueness of a Bayesian Nash equilibrium (BNE), which is also
efficiently computable. Finally, we propose a more realistic learning setting for
the game, where agents have partial information but no common prior. Instead,
they must learn how to act given online contextual feedback from interactions
in stochastically sampled game instances. We provide sufficient conditions on
agents doing simultaneous no-regret learning for convergence to Bayesian coarse-
correlated equilibrium (BCCE) or last-iterate convergence to the BNE. In each
setting, we provide detailed simulations, which empirically validates our theory
and provides new insights into strategic behavior of resource acquisition.

1 INTRODUCTION

Consider multiple traders attempting to acquire a position in a stock ahead of an earnings release,
under the belief that its price will rise afterward. If each trader were acting in isolation, they might
follow a classical optimal execution strategy – such as that of Almgren & Chriss (2000) – to min-
imize their trading costs. However, if multiple traders are pursuing their strategies simultaneously,
their aggregate activity influences prices and liquidity. This interaction transforms the problem from
one of individual optimization into one of understanding the intra-agent strategic behavior, where
each agent’s decisions affect the market environment faced by others.

This challenge of acquiring costly resources in competitive, dynamically priced environments ex-
tends well beyond financial markets. For instance, a firm training a large machine learning model
may need to secure substantial cloud computing resources within a given time frame. Here too, spot
prices are shaped by aggregate demand across many users, requiring firms to account not only for
their own scheduling and budget constraints but also for how their actions interact with others (Shas-
tri & Irwin, 2018). Further, agents in many such environments may only have partial or incomplete
knowledge of other market participants or the market itself.

While recent works have attempted to capture these strategic perspectives, they do so with several
limitations. Chriss (2024b;c;a) all consider a complete-information setting, which is unrealistic in
all but very limited scenarios. Chriss (2025); Kearns & Shi (2025) more recently consider some
extensions to deal with this, but these also have major limitations, requiring shared common priors
over uncertain information or repeated play of fixed game instances respectively. Furthermore, all
of these works: (1) require agents to acquire a fixed target position, thereby ruling out more general
action constraints; (2) do not allow for custom objectives that agents may wish to optimize alongside
acquisition costs; and most importantly (3) do not address the computational and learning challenges
that arise when agents act under incomplete information without common priors. In addition, these
works are all finance-specific. The broad scope and practical relevance of this problem thus necessi-
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tates a general game-theoretic framework that can gracefully accommodate diverse applications and
practical limitations of real-world markets, which is the foundational premise of our work.

1.1 OUR CONTRIBUTION

• In Section 2 we propose a novel model for this problem, which generalizes and improves on
past settings, by allowing for convex constraints, concave idiosyncratic utility functions, and
unknown or incomplete information available to the agents.

• In Section 3 we characterize the complete-information equilibria properties of this game. Even
within our very general model, the game still has a unique, pure NE that is efficiently computable.
We also show that in the worst-case, the price of anarchy of this game is unbounded.

• In Section 4 we consider the partial-information Bayesian setting: each agent only observes
their own private information (their “type”), but all agents have common knowledge of the prior
distribution over agent types and game parameters. We extend the complete-information results
here, establishing the uniqueness and efficient computability of the Bayesian NE (BNE).

• In Section 5 we further extend our model to a more realistic learning-based setting, where agents
only observe their own type, but do not have any knowledge of the prior distribution over types
and game parameters. Instead, they learn from repeated interaction, where they iteratively de-
cide their strategy conditioned on their realized type. This naturally models learning to acquire
resources in competition, given contextual information. We establish sufficient conditions un-
der which agents engaging in simultaneous no-regret learning either convergence to a Bayesian
coarse-correlated equilibrium (BCCE) on average over rounds, or to the BNE in the final round.

• For each setting, we provide simulations showcasing the respective algorithms.

1.2 RELATED WORK

The most relevant related work to our setting is the recent line of work on optimal position building
under competition in Chriss (2024b;c;a; 2025); Kearns & Shi (2025) that we discussed above. Our
work can be seen as a generalization of these, for both financial and non-financial applications. We
provide a detailed discussion of how our setting relates to and subsumes the settings in these works
in Appendix A.2. To the best of our knowledge, there is no existing work that have considered
strategic aspects of resource application in on-financial settings, although researchers have noted
noted the relevance of such considerations, e.g. in compute markets Shastri & Irwin (2018).

More broadly, our model captures standard notions of market impact in finance, of which there is a
large literature (see e.g. Webster (2023); Li et al. (2024) and citations therein for a recent detailed
overview). These works broadly consider how prices change in response to trading (both theoreti-
cally and empirically from real markets). In this literature, market impact is often decomposed into
permanent and temporary impact (Almgren & Chriss, 2000; Bacry et al., 2015; Moro et al., 2009),
which is the same approach that we take. There are also some more flexible models such as the
propagator model (Bouchaud et al., 2003; Gatheral & Schied, 2013; Obizhaeva & Wang, 2013) that
allow for transient impacts in between these extremes; we do not consider these, but such extensions
would be an interesting direction for future work.

Our work also relates to the literature on learning in games more broadly. Of particular note, our
setting in Section 5 is very similar in spirit to the setting of Hartline et al. (2015), who provide a gen-
eral framework for no-regret learning in repeated Bayesian games. Although our model is slightly
outside their framework (as it allows continuous market types), and has some specific structure that
we can leverage (strongly monotone) our Theorem 4 is very motivated by their theory.

Our strategic setup is conceptually related to resource allocation — or more generally, congestion —
games, where agents share resources, and the cost of any resource depends on its demand (Rosen-
thal, 1973). In contrast to this setting, our work studies behavior under time-varying prices, which
endogenously adjusts based on supply and demand. Lastly, while we study competitive resource
acquisition in a market setting, a non-market variant has long been studied in the context of fair
division (Moulin, 2004) for both divisible and indivisible goods. Recent literature here has extended
this problem to an online setting (see Aleksandrov & Walsh (2020) for a survey), and often incorpo-
rates learning and predictions (Banerjee et al., 2023), spiritually motivating our model in Section 5.
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2 MODEL

Preliminaries: We consider a market consisting of n strategic agents looking to trade (buy/sell)
some costly, divisible resource (stock, bond, compute time, etc.) over a period of T rounds. In the
simplest setting, each strategic agent i’s action is a T -dimensional vector hi, where hi,t denotes how
much they purchased at time t ∈ [T ]. Note that hi is a signed vector, and we conventionally denote
positive values as buying and negative values as selling throughout. We assume that each agent has
some set of convex constraints on their allowable actions, which we represent by a feasible set of
trajectories Gi ⊆ RT . For example, if agent i wants to procure at most Vi equity shares without
short selling or over-buying, they could represent their constraints via Gi = {hi : 0 ≤

∑t
l=1 hi,l ≤

Vi ∀t ∈ [T ]}. We also assume that each agent has some idiosyncratic utility function on their
strategy, which can capture (1) the utility of their final position and/or any preferences on their
acquisition schedule. For an agent i, we represent this via a concave function fi : RT → R (with
the same units as price)1. For example, if agent i wishes to impose a concave utility function ϕi on
their final position and penalize selling, their idiosyncratic utility could be fi(hi) = ϕi(1

⊤hi) −
ζ
∑T

t=1 |hi,t|I{hi,t < 0} with ζ ≥ 0, which is clearly concave. If an agent has a private valuation
ri for the asset, they could use ϕi(x) = rix. In settings like compute markets or optimal trade
execution, where the agents’ goal is to acquire a fixed target position as cheaply as possible, one can
set fi = 0 and include a hard constraint on 1⊤hi in Gi. Lastly, and inspired by the seminal work
of Kyle (1985), we allow the market to contain a non-strategic (possibly random) exogenous agent,
which captures all non-strategic trade flow. Following our convention, the exogenous agent’s action
is given by a signed vector s ∈ RT where positive values indicate buying.

Price Model: Core to understanding how agents strategically interact in acquiring costly resources
is how their demand/supply levels influence resource prices. We assume the following dynamic
model for determining resource prices from agents’ trading schedules:
Assumption 1 (Price Dynamics). All agents pay the same price pt for each share of the resource at
time t, where pt is determined from the total trading schedule of all agents up to and including time
t according to the following equations:

pt = pwt + β

(
n∑

i=1

hi,t + st

)
; pwt = pwt−1 + α

(
n∑

i=1

hi,t + st

)
, (1)

where p0 = pw0 is the initial price, and α, β ≥ 0 are some problem parameters.

The dynamic process for pwt can be seen as a discretization of the Walrasian price dynamics from
general equilibrium theory, which posits that prices evolve from an imbalance of supply and demand:
dpt = α(demandt − supplyt)dt, where α is a sensitivity factor (Walker, 1987). The additional
β (
∑n

i=1 hi,t + st) term in pt accounts for additional costs imposed by market makers who provide
liquidity to balance supply and demand, causing temporary deviations from the Walrasian price
process (β controls the strengths of this impact). This also maps to how prices are modeled within
the theory of optimal trade execution, with α and β corresponding to permanent and temporary
impact coefficients, respectively (Almgren & Chriss, 2000). We discuss in detail in Appendix A.1.

Game Payoff Structure: We model the total utility for each agent according to their personal
utility fi, minus the total cost they incur buying and selling. Formally:
Definition 1 (Game Payoffs). Let the price parameters p0, α, and β, and exogenous action s,
be given. In addition, let h−i denote the trading schedules of all strategic agents other than i,
and p(hi,h−i, p0,λ) ∈ RT denote the sequence of prices under Assumption 1 for hi, h−i, and
λ = (f1, . . . , fn, p0, α, β, s). Then, the overall utility for agent i is:

ui(hi;h−i,λ) = fi(hi)− p(hi,h−i,λ)
⊤hi . (2)

We note that these payoff (utility) functions, along with the constraint sets Gi for each agent i, fully
define the strategic game for fixed game parameters. In addition, we note that these payoff functions

1This allows general concave utility on final position, which corresponds to diminishing marginal utility
and is a natural restriction in economics and game theory. See (Mas-Colell et al., 1995; Debreu, 1959).
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can easily be shown to be equivalent the linear/quadratic cost cost-function considered in Chriss
(2024b;c), in the case where fi = 0 for all i; we provide details of this in Appendix A.2.

Bayesian Game Extension: In addition to considering fixed instances of the strategic resource
acquisition game, as defined above (which we analyze in detail in Section 3,) we also consider a
Bayesian game extension, where there is uncertainty in the game parameters, and each agent only
observes some private information that may be correlated with these. This is needed for the partial-
information settings we consider in Section 4 and Section 5.
Definition 2 (Bayesian Game). The Bayesian extension of our game is formalized by the following:

1. Market Type: We define the market type as λ = (f1, . . . , fn, p0, α, β, s), as in Definition 1.

2. Agent Type: We let θi denote the type of agent i, which is the set of all information known to
them prior to acting. Θi denotes the possible type space for agent i, where |Θi| = ki <∞.

3. Agent Constraints: Alayer types θi fully determines their constraints, which we denote Gi(θi).

4. Distribution over game instances: Letting I = (θ1, . . . , θn,λ) denote a full game instance,
there exists a joint probability distribution P (θ1, . . . , θn,λ) over the components of I.

5. Agent Strategy: In this extended model, the strategy for agent i is a function hi : Θi → RT ,
which determines how they would behave under each possible type.

6. Feasible Strategy Sets: We let Hi denote the set of feasible strategies for each agent i, which we
formally define as Hi = {h : h(θ) ∈ Gi(θ) ∀θ ∈ Θi}.

7. Agent Utility: Each agent i defines their utility given strategy hi and opponent strategies h−i as
the expected utility over I ∼ P , which is given by Eθi,θ−i,λ∼P [ui(hi(θi);h−i(θ−i),λ)].

It is trivial to verify that the goal of all agents maximizing their overall expected utility is equivalent
to each agent maximizing their conditional expected utility given their private information, given
by Eθ−i,λ∼P |θi [ui(hi(θi);h−i(θ−i),λ)]. In this model, the only requirement of the agent types θi
is that they specify the agent’s constraints Gi(θi). Other that this, the information specified by the
type may be generic; it may either completely determine, be partially correlated with, or completely
uninformative of any given component in λ. In particular, we do not generally assume that θi
specifies fi, since we allow for idiosyncratic utilities to depend on uncertain market valuations. In
addition, the structure of agent types may be generic, but in practice we may often think of them
as defined by some structured set of features that the respective agent uses to decide their trading
schedule. Finally, we note that the types for different agents may have very different strengths of
correlation with other agent types and components of λ, which allows for information asymmetry.

3 COMPLETE INFORMATION SETTING

In the complete information setting, the market type λ and agent constraints G1, . . . , Gn are ob-
served by all n strategic agents. Therefore, it is unnecessary to consider agent types or the distri-
bution P , so we instead just analyze an arbitrary fixed game instance I defined by G1, . . . , Gn,λ.
Recall from Section 2 that for fixed game instances, we let hi denote a fixed trading schedule (i.e.
hi ∈ RT ) rather than a function of agent types.

Complete information games are routinely studied in game theoretic models, since: (1) they provide
clearer intuitions on the strategic dynamics of the problem; and (2) they are the basis for common
solution concepts, namely Nash Equilibria (NE) and Price of Anarchy (PoA) (Roughgarden, 2010):
Definition 3. For a complete information instance I, the strategies (heq

1 , . . . ,h
eq
n ) are a Pure Nash

Equilibrium if and only if: for all buyers i and any strategy h′
i: ui(h

eq
i ;heq

−i,λ) ≥ ui(h
′
i;h

eq
−i,λ).

Definition 4. For a complete information instance I, let NE(I) denote the set of all NE strategies,
and let welf(h1, . . . ,hn,λ) =

∑n
i=1 ui(h1;h−i,λ) denote the welfare function. The Price of

Anarchy ratio is then defined as: suph1∈G1,...,hn∈Gn,heq∈NE(I)
welf(h1,...,hn,λ)

welf(heq
1 ,...,heq

n ,λ)
.
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Informally, the NE are the set of strategies such that no agent has any incentive to unilaterally deviate,
and the PoA characterizes the ratio of the best obtainable welfare if agents were to cooperate to the
worst obtainable welfare obtainable from NE. We begin with an explicit expression of agent utility,
which we show to be strictly concave, allowing us to characterize the above notions. We provide
details and derivation of the lemma in Appendix B.

Lemma 1. By unrolling the auto-regressive price definition in Equation (1), the utility of agent i in
instance I for joint strategy (h1, . . . ,hn) is strictly concave in their strategy, and is given by:

ui(hi;h−i,λ) = fi(hi)−
1

2
hT
i Qhi −

∑
j ̸=i

(Ahj)
Thi − sAhi − p0(1

Thi) ,

where Q and A are n×n matrices defined in terms of α and β, and Q is symmetric and strictly PD.

Our definitions and statements so far have been framed with respect to pure (deterministic) strate-
gies. In general, strategic agents may use mixed (randomized) strategies, which begs the following
question: could mixed strategies appear in NE? In the following lemma (proof in Appendix B),
we answer this question in the negative by characterizing an agent’s best response – their optimal
strategy for a fixed set of others’ strategies – as being pure.

Lemma 2. For any fixed game instance I, the best response of any agent i is always unique and
deterministic, even when others are playing some mixed (possibly correlated) strategies.

Next, we turn to the first of our two central results in this section, regarding characterization and
computation of the NE, which we address via the following theorem. The proof is technical and
stems from casting the equilibrium conditions as a variational inequality, and then proving that the
operator for this variational inequality is strongly monotone. This proprety immediately implies
uniqueness of the NE, and gives us an efficient gradient-based algorithm algorithm for computing
it. We formalize these results below, with the proof and full algorithm details given in Appendix B.

Theorem 1. For every fixed game instance I, there is a unique pure NE. In addition, the extra-
gradient algorithm (Korpelevich, 1976) converges linearly to this equilibirum.

Finally, we turn to the question of characterizing the PoA, which we show in general is unbounded.
The proof is based on an explicit counterexample, whose intuition is as follows: consider two agents
with differing valuation on their final position, where one agent wants to buy and other wants to sell.
If they coordinate, they can can provide liquidity to each other, which eliminates trading frictions
and allows them to trade a large quantity and obtain high welfare. However, if they agreed to do this,
each would have an incentive to cheat by providing less liquidity to the other; by doing so, the trade
imbalance would move the price favorably for them, which they could profit from. Because of this,
the NE involves both agents trading almost nothing, and achieving very low welfare. We provide
full details in Appendix B.

Theorem 2. For any constants α, β, T , and any ξ > 0, there exists an instance I of the complete
information game with PoA ratio at least ξ. Therefore, the PoA is unbounded.

3.1 EMPIRICAL SIMULATIONS OF EQUILIBRIUM

To further understand the agents’ behavior in equilibrium, we empirically compute the NE for a
simple, yet practically motivated setting. Consider 5 strategic agents with a linear final position
utility fi(hi) = ri

∑
t hi,t for some reserve price ri, and constraints −Vi ≤ 1Thi ≤ Vi (i.e. final

position must be in range [−V, V ]). We randomly sample the actions st of the exogenous agent
using i.i.d. zero-mean random variables. In Figure 1 we plot the cumulative positions (

∑t
l=1 hi,l)

of each agent i, for three different sets of problem parameters, where we fix α = 0.1 and vary
β ∈ {0.1, 1, 10}. We observe that, as β increases, the total volume traded decreases, which is
unsurprising since β corresponds to trading frictions. More interestingly, we note a phase transition.
For small β, the NE approaches a pair of block trades – a first at time 0 where all agents purchase
an identical quantity of the resource, and a second at time T where all agents buy or sell to reach
some final position. For large β, the NE approaches all agents trading at a constant rate, with some
interpolation between these for intermediate β.

5
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Figure 1: Cumulative position over time for agents in NE, for fixed α and varying β. The initial price
is p0 = 2, the reserve prices are (4, 5, 6, 7, 8) and the constraint values are V = (10, 15, 20, 25, 30).

4 PARTIAL INFORMATION SETTING WITH COMMON KNOWLEDGE OF PRIOR

We now consider the partial-information setting: all agents have common knowledge of the joint
distribution P of agent and market types, but each agent only observes their own private information
via their type θi. For this setting, we only consider characterization and computation of equilibria,
since the unbounded PoA for complete information settings automatically carries over here. As
discussed in Section 2, we think of the strategy of each agent as an ex-ante mapping from each
possible type θi to a feasible trading schedule in Gi(θi), which we denote by the function hi ∈ Hi.
Game play in this Bayesian setting operates via the following sequence of events: (1) each agent
decides their ex-ante strategy hi; (2) a game instance I ∼ P is sampled and the corresponding type
information θi is privately revealed to each agent; and (3) each agent executes their strategy hi(θi).
This setting can be formally studied within the Bayesian game theory framework, using the standard
equilibrium notion as follows:
Definition 5 (Bayesian Nash Equilibrium). For a Bayesian instance, the strategies (heq

1 , . . . ,h
eq
n )

are in a Bayesian Nash Equilibrium (BNE) if for all agents i, all h′
i ∈ Hi, and all θi ∈ Θi, we have:

Eθ−i,λ∼P |θi [ui(h
eq
i (θi);h

eq
−i(θ−i),λ)] ≥ Eθ−i,λ∼P |θi [ui(h

′
i(θi);h

eq
−i(θ−i),λ)].

As in Section 3, this equilibrium is defined in terms of pure strategies (deterministic trading schedule
for each type). The following lemma, which generalizes Lemma 2 to the Bayesian game setting,
ensures that this restriction does not restrict the BNE (proof details in Appendix C).
Lemma 3. For any Bayesian instance, the best response of any agent i is always unique and de-
terministic (meaning trading schedule hi(θi) for every type θi is deterministic), even if others are
playing some mixed (possibly correlated) set of strategies for each type.

We now present the central result in this setting. Theorem 3 generalizes the result of Theorem 1 to the
Bayesian game setting, namely that there is a unique and efficiently computable equilibrium. Similar
to the complete information setting, this follows by casting the equilibrium problem as a variational
inequality, which we show is strongly monotone; this implies uniqueness of the BNE, and gives an
efficient gradient based algorithm for computing it. We provide full details in Appendix C.
Theorem 3. For every Bayesian game instance (given by distribution P ), there is a unique pure
BNE, and the extra-gradient algorithm (Korpelevich, 1976) converges linearly to this BNE.

4.1 EMPIRICAL SIMULATIONS OF EQUILIBRIUM

We simulate the BNE for a similar scenario as in Section 3.1, where agents’ have linear utility and
inequality constraints on their final positions. We use 2 agents here, each with 3 possible types, and
the type θi determines the final position bounds Vi and expected reserve price ri for each agent. We
set s = 0 in this simulation. As before, we fix α = 0.1, and vary β; in each case, β is continuously
distributed within some bounded range. We provide full details in Appendix C.

We see similar phase transition dynamics as we vary β from small to large as we observed in the
complete information setting. However, in this case, since the cumulative positions in each agent’s

6
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Figure 2: Cumulative position over time for agents under the BNE. Types are distributed uniformly
and correspond to the constraint V . The type conditioned expected reserves are (3, 5, 7) for agent 1,
and (6, 8, 10) for agent 2. p0 = 0, α = 0.1 and the conditional β distribution lies in the given range.

strategy are type-dependent, the strategies do not consistently overlap during early time steps. That
is, the partial information induces a richer, type-dependent dynamic. However, we do observe over-
lap in trade execution between some pairs of types for the two agents, which is interesting and
warrants exploration in future work.

5 PARTIAL INFORMATION SETTING WITH NO PRIOR VIA ONLINE LEARNING

We now move to a more realistic setting, where agents neither have complete information, nor
any a priori knowledge of the prior P . Instead, in this setting agents must learn via interaction.
Specifically, we consider a mode of repeated game play that occurs over R ∈ N+ rounds, where
in each round r the game play follows the sequence of events for Bayesian game play described in
Section 4, and the ex-ante strategy hr

i that each agent i selects in round r is chosen adaptive to their
feedback following rounds 1 through r− 1. The feedback that each agent observes after each round
is formalized by the following assumption:

Assumption 2 (End of Round Feedback). Let hr
i and θri denote the ex-ante strategy and sampled

type for each agent i in round r, and let λr denote the sampled market type. Then, at the end of
round r, each agent observes the cost function cri : Hi → R as feedback, given by

cri (hi) = −ui(hi(θ
r
i );h

r
−i(θ

r
−i),λ

r) .

This feedback is the cost (negative utility) that the agent would have received if they had commited to
a different strategy in that round, letting the strategies of all other agents and game instance be fixed.
Although technically cri could be written in a slightly simpler way with domain Gi(θ

r
i ) rather than

Hi, the latter is more convenient as it ensures that cri is defined on the same domain for all r ∈ [R].
In many applications, the cost function cri could be inferred by performing some regressions on
observed market data to compute the sequence of aggregate outside demands

∑
j ̸=i hj,t + st along

with α and β. Finally, although we assume that agents observe the full cost function cri , in practice
many algorithms only require the gradient ∇hr

i (θ
r
i )
cri (h

r
i ), so in practice this assumption could be

loosened. In particular, this is the case for the algorithm of Jordan et al. (2024) discussed below.

To obtain concrete guarantees, we impose some boundedness regularity conditions, which are re-
strictions on the constraint sets, distribution over exogenous actions, and idiosyncratic utilities.

Assumption 3 (Boundedness). We assume that there exists some finite, fixed values B, S, U , and
U ′, such that for all agents i ∈ [n] and strategies hi ∈ Hi, the following bounds hold almost surely:
(1) ∥hi(θi)∥2 ≤ B; (2) ∥s∥2 ≤ S; (3) |fi(hi(θi))| ≤ U ; and (4) ∥∇fi(hi(θi))∥2 ≤ U ′.

Next, we define an (unobserved) population loss for each agent i in any given round r, as follows:

Definition 6 (Population Loss). Let hr
i denote the ex-ante strategies of agent i in round r for all i.

Then, the expected loss for each agent i in round r is a function ℓri : Hi → R given by:

ℓri (hi) = Eθi,θ−i,λ∼P [−ui(hi(θi);h
r
i (θ−i),λ)] .

7
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In other words, ℓri (hi) = EI∼P [c
r
i (hi)] for all hi ∈ Hi; likewise for its derivatives. Therefore, the

observed losses cri or their gradients can be interpreted as unbiased stochastic estimates of the popu-
lation losses ℓri or their gradients respectively. It is easy to see that if hr

i minimizes ℓri for every agent
i simultaneously in some round r, then the agents are in BNE. Therefore, this intuitively suggests
that we could apply existing theory and algorithms for online convex optimization with stochastic
feedback to establish convergence to equilibrium. We proceed by formalizing this intuition.

First, we define some additional central concepts:
Definition 7 (Regret). Fix a agent i ∈ [n] and a sequence of loss functions χr

i : Hi → R for
r ∈ [R]. For any sequence of strategies hr

i for r ∈ [R], we define their (average) regret as

regret(h1
i , . . . ,h

R
i ;χ

1
i , . . . , χ

R
i ) =

1

R

R∑
r=1

χr
i (h

r
i )− min

hi∈Hi

1

R

R∑
r=1

χr
i (hi)

Definition 8 (ϵ-BCCE). Let σ ∈ ∆(H1 × ... × Hn) be a joint distribution over strategy profiles.
Then, σ is an ϵ-approximate Bayesian coarse correlated equilibrium (ϵ-BCCE) if and only if for all
agents i, θi ∈ Θi, and h′

i ∈ Hi:

Ehi,h−i∼σ,θ−i,λ∼P |θi [ui(hi(θi),h−i(θ−i),λ)] ≥ Eh−i∼σ,θ−i,λ∼P |θi [ui(h
′
i(θi),h−i(θ−i),λ)]− ϵ

Regret measures how much we could decrease our average loss by if, retrospectively, we swapped
from the actual sequence of chosen strategies to some fixed alternative strategy. No-regret algorithms
are well studied in the online learning literature; these are algorithms that ensure that the average
regret converges to zero under arbitrarily (possibly adversarially) chosen loss functions. On the other
hand, approximate BCCE is a weaker equilibrium notion than BNE, in two respects: (1) it allows
for correlation between the strategies in equilibrium; and (2) it allows for ϵ-sub-optimality of the
chosen strategies (in conditional expectation given θi).

Although no-regret algorithms and BCCE may seem like unrelated ideas at first, they are deeply
connected since multiple agents simultaneously following no-regret dynamics with a fixed game
objective will induce an approximate coarse correlated equilibrium (CCE) in the game. Although
we are considering Bayesian games and BCCE rather than CCE, similar reasoning gives us the
following theorem (proof in Appendix D).
Theorem 4. Suppose every agent i ∈ [n] selects their strategy hr

i at each round r via some on-
line algorithm Algi, with the following properties: (1) Algi selects strategy hr

i at round i only
using unbiased stochastic cost-function observations χ̃r

i for some true sequence of cost functions
χr
i ∈ Ci, where Ci is a set containing all population losses ℓri almost surely; (2) it ensures that

regret(h1
i , . . . ,h

R
i ;χ

1
i , . . . , χ

R
i ) ≤ ϵi(R) for some ϵi(R) that is independent of the cost functions

χr
i ∈ Ci, which could be adversarially chosen. In addition, let σR ∈ ∆(H1 × . . .×Hn) denote the

uniform distribution over (hr
1, . . . ,h

r
n) across rounds. Then, σR is an ϵ-BCCE, for some ϵ that is

bounded by ϵi(R)
Pr(θi)

for all i ∈ [n], θi ∈ Θi.

We make a few comments on this theorem. First, we note that it is very general, and establishes
convergence to equilbria for agents who simultaneously engage in no-regret learning using any
stochstic-feedback no regret-learning algorithm with thier observed costs cri , and the algorithms
could be different for each agent. Second, the restriction of losses in the theorem statements to some
sets Ci is necessary since adversarial no-regret will generally be impossible without some bounds on
the allowed stochastic/true losses. In general, the constants involved in the regrets ϵi(R) obtainable
by a given algorithm may depend on Ci, the choice of which in practice will depend on the bounds
we can place on cri and ℓri . Finally, the dependence of the result on the worst-case 1/Pr(θi) arises
from bounding the conditional sub-optimality in the definition of BCCE uniformly over all i and θi.
For any given i, θi, we can bound this sub-optimality by ϵi(R)/Pr(θi), so the presence of rarely-
occurring types don’t cause sub-optimality conditional on common types to suffer, and the average
sub-optimality over all types is bounded by ϵi(R) (see proof for details).

Although the guarantees from Theorem 4 are slightly weak in that they only ensure approximate
convergence to a BCCE for the average-iterate strategy, not for the final iterate hR

1 , . . . ,h
R
n , we can

do better if all agents apply a doubly optimal algorithm (Jordan et al., 2024), which is an algorithm

8
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Figure 3: Comparison of Algorithm 2 (over 500 rounds) to exact BNE strategies: (left) we plot the
last-iterate strategies returned by Algorithm 2 (solid lines) along with the true BNE (dashed lines)
for all agents and types; and (right) we show the convergence in mean-squared error between the
strategies from Algorithm 2 and the BNE over the 500 rounds.

that ensures no-regret, as well as last-iterate convergence to a NE if applied by all agents in a strongly
monotone game with stochastic gradient feedback. The specific algorithm proposed by Jordan et al.
(2024) that obtains this property is online gradient descent (OGD) (Zinkevich, 2003) with a specific
stochastic scheme for reducing learning rates. We provide details of this algorithm (Algorithm 2)
and its theoretical guarantees in Appendix D.2. The following theorem establishes that, if all agents
independently follow this algorithm, their joint strategy profile converges to the BNE.

Theorem 5. Suppose all agents use Algorithm 2 to decide their strategy in each round r. Then,
letting k = maxi∈[n] |Θi|, the final iterate strategies hR

1 , . . . ,h
R
n are an ϵ-approximate BNE, for

some ϵ that satisfies the following in expectation over the algorithm’s randomness:

E[ϵ] = O

(
poly(n, T, k, α, β, p0, B, S, U ′)

mini∈[n],θi∈Θi
Pr(θi)

· log
3/2(R)√
R

)

Even though this result only establishes convergence to BNE if all agents follow it, by the doubly
optimal property discussed above it is no-regret. Thus, the algorithm is also robust to possibly ad-
versarial environments. Compared with the extra-gradient algorithm (which we previously showed
can efficiently compute the BNE), the benefits of Algorithm 2 are two-fold: (1) each agent’s learning
procedure is prior-independent, since to update their strategies they only need gradient information
about their realized cost; and (2) the procedure is fully decentralized, since agents can run their
learning algorithms independently using only the information privately revealed to them. As with
Theorem 4, our result depends on the worst-case 1/Pr(θi), but the same comments we made there
apply about how this is not a major theoretical limitation. We finally note that the above concept
of double optimality is very new, and it is possible that other decentralized algorithms could obtain
similar guarantees, but this is a question for future research.

5.1 SIMULATIONS

We conclude with an empirical investigation on convergence to equilibrium in actual implementa-
tion, simulating repeated play as described in Section 5, where all agents follow Algorithm 2. We
use the same Bayesian game instance as in Section 4.1, with 2 agents, each having 3 possible types.
We provide full details of this simulation setting in Appendix D.4.

We show the results of this simulation in Figure 3. On the left we directly compare the final iterate
strategies from online learning with the BNE. We see that these almost exactly overlap, with only
very minor discrepancies, which can be explained by noise in the observed market parameters. On
the right we plot the convergence of the agent strategies during online learning to the BNE strategies
in terms of mean-squared error (MSE); we see that the MSE very rapidly approaches 0, even faster
than guaranteed by our theory. Overall, these results are a strong empirical validation of Theorem 5.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Aleksandrov and Toby Walsh. Online fair division: A survey. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 13557–13562, 2020.

Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions. Journal of Risk, 3:
5–40, 2000.

Robert Almgren, Chee Thum, Emmanuel Hauptmann, and Hong Li. Direct estimation of equity
market impact. Risk, 18(7):58–62, 2005.

Emmanuel Bacry, Adrian Iuga, Matthieu Lasnier, and Charles-Albert Lehalle. Market im-
pacts and the life cycle of investors orders. Market Microstructure and Liquidity, 01(02):
1550009, 2015. doi: 10.1142/S2382626615500094. URL https://doi.org/10.1142/
S2382626615500094.

Siddhartha Banerjee, Vasilis Gkatzelis, Safwan Hossain, Billy Jin, Evi Micha, and Nisarg Shah.
Proportionally fair online allocation of public goods with predictions. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence, pp. 20–28, 2023.

Jean-Philippe Bouchaud, Yuval Gefen, Marc Potters, and Matthieu Wyart. Fluctuations and response
in financial markets: thesubtle nature ofrandom’price changes. Quantitative finance, 4(2):176,
2003.

Neil A Chriss. Competitive equilibria in trading. arXiv preprint arXiv:2410.13583, 2024a.

Neil A Chriss. Optimal position-building strategies in competition. arXiv preprint
arXiv:2409.03586, 2024b.

Neil A Chriss. Position-building in competition with real-world constraints. arXiv preprint
arXiv:2409.15459, 2024c.

Neil A Chriss. Position building in competition is a game with incomplete information. arXiv
preprint arXiv:2501.01241, 2025.

Gerard Debreu. Theory of value: An axiomatic analysis of economic equilibrium, volume 17. Yale
University Press, 1959.

Jim Gatheral and Alexander Schied. Dynamical models of market impact and algorithms for order
execution. Handbook on Systemic Risk, Jean-Pierre Fouque, Joseph A. Langsam, eds, pp. 579–
599, 2013.
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STATEMENT ON USAGE OF LLMS

We used LLM tools for the purpose of checking language use in writing our paper, as well as a tool
for suggesting relevant existing results when conducting our research (in particular, for exploring
existing results related to uniqueness of Nash Equilibria, for which it suggested reading literature /
existing results on variational inequalities.) However, all proofs were derived and written completely
by the authors, and the paper was written completely by the authors (outside of the usage of LLMs
for language checking as mentioned above.)

A ADDITIONAL MODEL DISCUSSION

A.1 DERIVATION OF PRICE MODEL

First, we discuss in more detail how our price dynamics in Assumption 1 relate to Walrasian price
dynamics. As mentioned in Section 2, this model positions that (mean) prices evolve according to
the continuous time differential equation

dpt = α(demandt − supplyt)dt ,
for some price-sensitivity factor α. Given this, the dynamic model for pwt can be viewed as a
discretization of this process. In addition, allowing for noise in st, this turns it into a discretization
of the corresponding stochastic differential equation

dpt = α(demandt − supplyt)dt+ σdWt ,

for some noise process dWt (e.g. Brownian motion). The actual price that traders must pay differs
from this Walrasian process by amount β(

∑n
i=1 hi,t + st). We can interpret this difference as a

temporary (instantaneous) price adjustment from pwt driven by the imbalance of supply and demand;
when supply and demand are not balanced, the difference must be met by market makers, who
provide liquidity. These market makers require some spread from pwt in order to account for the
risk they take by providing liquidity. For example, if demand outstrips supply at time t, the market
makers will balance this by selling an equal amount at a slight premium; hence, the instantaneous
market price pt will be slightly higher than pwt . We implicitly assume as part of Assumption 1 that
this difference is linear in the imbalance

∑n
i=1 hi,t + st, with coefficient β.

Alternatively, this model can also be justified from the literature on market impact. For example, the
seminal model of Almgren & Chriss (2000), which is the basis for much of the classical theory on
(non-strategic) optimal trade execution, posits almost exactly the same model for price impact from
trade execution over time, except that they consider a slightly more general offset based on supply
and demand imbalance of the kind ψ(

∑n
i=1 hi,t + st), for some concave function ψ : R+ → R+.

Therefore, our price model is equivalent to theirs in the case of ψ(x) = βx. We note that empirical
research (see e.g. Almgren et al. (2005)) suggests power-law models of the kind ψ(x) = βxγ with
γ ≈ 3/5 to be well supported by real data. Such a model would be more challenging to study under
strategic interaction, as it could break strong monotonicity without some additional assumptions on
fi and/or Gi; we leave the investigation of alternative price models like this to future work.

A.2 RELATION OF MODEL TO EXISTING MODELS

Here, we make some concrete comparisons of our model with the models used in the recent lines of
work on position building under competition Chriss (2024b;c;a; 2025); Kearns & Shi (2025).

Relation to Existing Discrete Time Model First, consider the special case of our model with no
idiosyncratic utilities (fi = 0 for all i), and no exogenous actions (s = 0). In this case, we can
re-formulate the objective for each agent as minimizing a cost function ci(hi,h−i) given by the
negative of the utility ui, which if we unroll the autoregressive price definitions like in the proof of
Lemma 1, we can easily verify is given by

ci(hi;h−i) = α

T∑
t=1

hi,t

t∑
l=1

n∑
j=1

hj,l + β

T∑
t=1

hi,t

n∑
j=1

hj,t +

T∑
t=1

hi,tp0

12
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Now, assume further that the constraints Gi contains a constraint of the kind
∑T

t=1 hi,t = Vi for
some fixed Vi. Then, the third term above can be ignored, as it is always equal to p0Vi for any
feasible hi ∈ Gi. Given this, and with some slight re-arranging of terms, we have that the cost
structure is given by

ci(hi;h−i) = α

T∑
t=1

hi,t

n∑
j=1

xj,t−1 + (α+ β)

T∑
t=1

hi,t

n∑
j=1

hj,t ,

where we define

xi,t =

t∑
l=1

hi,l

as the cumulative position acquired by agent i over the first t time steps. This corresponds exactly to
the kind of cost structure assumed in Kearns & Shi (2025), who considered a discrete time version
of optimal position building, with cost function

cKS
i (hi;h−i) = κ

T∑
t=1

hi,t

n∑
j=1

xj,t−1 +

T∑
t=1

hi,t

n∑
j=1

hj,t .

Following terminology for literature on optimal position building, they denote first term as the
permanent-impact cost, and the second term as the temporary-impact cost, with permanent-impact
coefficient κ, and unit temporary-impact coefficient (which is completely general up to normaliza-
tion of cost). Therefore, if we normalize our cost by α + β, we see that under the above model
restrictions it recovers theirs with κ = α/(α+ β).

Although our model may seem less general given the above reduction, as they allow for any κ ≥ 0
but ours only allows κ ∈ [0, 1], we argue that this restriction does not have much or any material
impact in practice. First, as discussed in Kearns & Shi (2025), if they decompose their cost into
zero-sum and potential (i.e. congestion game-style cost) components, the coefficient in front of
potential cost becomes negative when κ > 2. This implies that agents are rewarded rather than
punished from congestion of their trading schedule, which therefore encourages agents to behave
as aggressively as their constraints will allow (this is reflected e.g. in the unstable dynamics they
observe when agents play no-regret with κ > 2). Given this, we would probably wish to restrict to
κ < 2 in such a discrete model in practice. Second, and perhaps more importantly, to the extent
that their model is justified as a discretization of the continuous time model discussed below, the
convergence of this discretization as we make it more and more fine-grained only works if we let
the ratio of temporary-impact-coefficient to permanent-impact-coefficient (i.e. κ) tend towards zero
as T → ∞. Therefore, no matter the target κ value in the continuous-time cost cNC

i defined below,
the corresponding κ in the discrete-time cost cKS

i that approximates this will be less than 1 if the
discretization is sufficiently fine-grained.

Relation to Existing Continuous Time Model The works by Chriss (2024b;c;a; 2025) consider a
continuous-time version of this problem, where the strategies hi are functions over some continuous
time range (which they normalize to be [0, 1] without loss of generality). In this setting, we assume
the strategies are defined by functions hi : [0, 1] → R, where hi(t) is their instantaneous trading
rate at time t. We also define xi implicitly in terms of hi as the total accumulated position up to
time t, which is mathematically given by

xi(t) =

∫ t

0

hi(l)dl .

Then, the assumed cost structure is

cNC
i (hi;h−i) = κ

∫ 1

0

hi(t)

n∑
j=1

xi(t)dt+

∫ 1

0

hi(t)

n∑
j=1

hj(t)dt ,

which is the continuous-time analogue of the cost structure based on decomposition into permanent-
impact cost and temporary-impact cost mentioned above.2

2In reality, historically this continuous time model was the original one and the above discrete time version
was introduced later, but we present in opposite order since our model is discrete-time.
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Now, suppose we are given a problem instance of this continuous time model, with κ given, and
time normalized into range [0, 1]. We can approximate this arbitrarily well with a discrete time
model as T → ∞, by letting the discrete time grid correspond to { 1

T ,
2
T , . . . 1} in continuous time.

Specifically, we can do this as follows: suppose we are given collection of continuous-time strategies
hc
1, . . . ,h

c
n, and define

xc
i (t) =

∫ t

0

hc
i (l)dl (for continuous t ∈ [0, 1])

xi,t = xc
i

(
t

T

)
(for discrete t ∈ [T ])

hi,t = xi,t − xi,t−1 (for discrete t ∈ [T ]) .

Then, our discrete-time cost structure in terms of these stragegy vectors hi will be given by

cα,β,Ti (hi;h−i) = α

T∑
t=1

hi,t

n∑
j=1

xj,t−1 + (α+ β)

T∑
t=1

hi,t

n∑
j=1

hj,t

= α

T∑
t=1

{
xc
i

( t
T

)
− xc

i

( t− 1

T

)} n∑
j=1

xc
j

( t− 1

T

)

+ (α+ β)

T∑
t=1

{
xc
i

( t
T

)
− xc

i

( t− 1

T

)} n∑
j=1

{
xc
j

( t
T

)
− xc

j

( t− 1

T

)}

= α

T∑
t=1

1

T
hc
i

( t− γi,t
T

) n∑
j=1

xc
j

( t− 1

T

)

+ (α+ β)

T∑
t=1

1

T
hc
i

( t− γi,t
T

) n∑
j=1

1

T
hc
j

( t− γj,t
T

)
,

where the final line follows from the mean-value theorem, where γi,t ∈ (0, 1) for all i, t. Therefore,
if we consider a sequence of discrete problem instances with α = κ and β = T , we get

lim
T→∞

cκ,T,T
i (hi;h−i) = lim

T→∞
κ
1

T

T∑
t=1

hc
i

( t− γi,t
T

) n∑
j=1

xc
j

( t− 1

T

)

+ lim
T→∞

(
κ+ T

T

)
1

T

T∑
t=1

hc
i

( t− γi,t
T

) n∑
j=1

hc
j

( t− γj,t
T

)
= κ

∫ 1

0

hc
i (t)

n∑
j=1

xc
i (t)dt+

∫ 1

0

hc
i (t)

n∑
j=1

hc
j(t)dt ,

where first equality plugs in the above result with α = κ and β = T , and the second follows
from product of limits and the definition of the Riemann integral. Therefore, under appropriate re-
normalization of the ratio β/α as we make the discrete-time approximation more fine-grained, our
model can approximate the existing continuous time cost structure considered in Chriss (2024b;c;a;
2025) arbitrarily well if we let T → ∞. Therefore, our model on the above restriction on idiosyn-
cratic utilities, constraints, and exogenous actions subsumes theirs up to a vanishing discretization
error.
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B PROOFS FOR SECTION 3

PROOF OF LEMMA 1:

We first unroll the auto-regressive nature of the Walrasian price dynamic pwt . Observe that the
following holds:

pw1 = p0 + α
∑
j

hj,1 + αs1 ;

pw2 = p0 + α
∑
j

hj,1 + αs1 + α
∑
j

hj,2 + αs2 ; . . .

The execution price an agent pays is also influenced by the temporary impact. Combining this with
the above, we can write the net cost an agent i faces as follows: ui(h1, . . . ,hn,λ)

= fi(hi)−
∑
t

hi,tp0 − α

T∑
t=1

t∑
ℓ=1

hi,thi,ℓ − α

T∑
t=1

t∑
ℓ=1

hi,t(
∑
j ̸=i

hj,ℓ + sℓ)− β

T∑
t=1

hi,t

( n∑
j=1

hj,t + st

)

= fi(hi)− α

T∑
t=1

(
h2i,t + hi,t

t−1∑
ℓ=1

hi,ℓ

)
− β

T∑
t=1

h2i,t︸ ︷︷ ︸
quadratic terms

− α

T∑
t=1

hi,t

t∑
ℓ=1

∑
j ̸=i

hj,ℓ − β

T∑
t=1

hi,t
∑
j ̸=i

hj,t︸ ︷︷ ︸
linear terms ∝ other agent

−α

T∑
t=1

hi,t

t∑
ℓ=1

sℓ − β

T∑
t=1

hi,tst︸ ︷︷ ︸
linear term ∝ exogenous agent

−
∑
t

p0hi,t

Focusing on the quadratic terms, it suffices to compute the Hessian, denoted by Q. Note that Qt,t =
2α+ 2β. As for the off-diagonal values, these are composed entirely of α. Indeed, for any t1 ̸= t2,
we have that Qt1,t2 = α. Next, we consider the linear terms that are proportional to other agents.
We wish to express it in the following form:

∑
j ̸=i (Ahj(θj))

Thi(θi). For a given t, consider the
first of the two linear terms proportional to others. For any j, observe that hi,t(θi) is multiplied by
αhj,1(θj), . . . αhj,1(θj). As for the second term, it multiplies hi,t(θi) with βhj,t(θj). Hence, we
conclude that A is a lower-triangular matrix, whose diagonals are α + β and the remaining values
are α. As for the linear term with respect to the exogenous agent, it follows a similar pattern, and
we can express it as (As)Thi. We thus have the following expression for the matrices Q and A:

Qij =


α if i < j

2α+ 2β if i = j

α if i > j

; Aij =


0 if i < j

α+ β if i = j

α if i > j

;

Since Q is a symmetric matrix that can be written as Q = αJ + (α + 2β)I where J is the all 1s
matrix and I the identity matrix. Observe that for any x, we have that:

xTQx = (α+2β)(xT Ix)+α(xTJx) = (α+2β)(xTx)+α(xTJx) = (α+2β)||x||22+α
( T∑

i=1

xi

)2

> 0

where the strict inequality holds since the parameters α, β are non-negative and x ̸= 0. In other
words, the Q matrix is positive definite and thus the utility of each agent, in terms of their own
strategy, is a strictly concave function.

PROOF OF LEMMA 2

Proof. Consider an agent i and suppose all other agents are playing a mixed and possibly correlated
strategy, denoted by σ−i. Buyer i can choose to best-respond with a mixed strategy of their own,
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denoted pi(h). Without loss of generality, we set p0 = 0 and observe that:

bri(σ−i) = argmax
p∈∆(Gi)

∫
hi

p(hi)

(
fi(hi)− sAhi −

∫
h−i

σ(h−i)[h
T
i Qhi +

∑
j ̸=i

(Ahj)
Thi]dh−i

)
dhi

= argmax
p∈∆(Gi)

∫
hi

p(hi)

[
fi(hi)− hT

i Qhi − sAhi −
(∫

h−i

σ(h−i)
∑
j ̸=i

(Ahj)
T dh−i

)
︸ ︷︷ ︸

vT
−i

hi

]
dhi

= argmax
p∈∆(Gi)

∫
hi

p(hi)

[
fi(hi)− hT

i Qhi − vT
−ihi − sAhi

]
dhi

= argmax
hi∈Gi

[
fi(hi)− hTQh− vT

−ihi − sAhi

]
where the last equality follows from the linearity of expectation. The resulting maximization ex-
pression has a sole quadratic term: hT

i Qhi. From Lemma 1 we know Q is a PD matrix. Thus, the
best-response optimization, to both pure or mixed strategies of others, is strictly concave, and there
is a unique solution.

Interestingly, this result implies that in the complete information setting, any coarse correlated equi-
librium (CCE) must also be a Nash. Indeed, for any σ to be a CCE, each agent’s strategy must be
pure (otherwise there is a deviating pure strategy that is a best response for any mixed strategy of
others). A CCE with pure strategy is the same as Nash.

B.1 PROOF OF THEOREM 1

Proof. Uniqueness: From 2, we know that each agent’s best response is a concave optimization
problem over a convex region Gi. In this proof, we shall express the agent’s objective from a cost
minimization perspective – i.e. ci(hi;h−i,λ) = −ui(hi;h−i,λ). As such, the best response
objective will be convex. Formally (again setting p0 = 0 for ease of exposition):

bri(h−i) = argmin
hi∈Gi

1

2
hT
i Qhi +

∑
j ̸=i

(Ahj)
Thi + sAhi − fi(hi) := argmin

hi∈Gi

ci(hi;h−i,λ)

At a best response for agent i, h∗
i , it must be that for all ∀hi ∈ Gi : ⟨∇hi

ci(h
∗
i ;h−i), (hi −h∗

i )⟩ ≥
0; otherwise, the agent could move in that direction and decrease their net cost. This is a standard
equivalence between a convex optimization and variational inequalities (see Rockafellar & Wets
(2009)). At a Nash Equilibrium, each buyer imust be playing their best response, given the strategies
of other agents. Thus, we are looking for a set of trajectories (heq

1 , . . . ,h
eq
n ) such that:

∀i,∀(h1, . . . ,hn) ∈ R1 × · · · ×Rn : ⟨∇hi
ci(h

eq
i ;heq

−i), (hi − heq
i ⟩ ≥ 0 (3)

Indeed, any tuple (heq
1 , . . . ,h

eq
n ) that satisfies the above must be a Nash Equilibrium. Observe that

ci is the sum of a quadratic function and a convex term. The gradient of ci is then as follows:

∇hi
ci(h

∗
i ;h−i) = Qh∗

i +
∑
j ̸=i

Ahj +As−∇hi
fi(hi)

Ignoring the ∇hi
fi(hi) term, the gradient is a linear function of all agent strategies. Denoting

x = [h1, . . . ,hn]
T as the concatenation of agent strategies and s as a constant (since this is not

from a strategic agent), the variational inequality that characterizes the Nash Equilibrium can thus
written with an operator F (x) =Mx+ b− [∇h1

fi(h1), . . .∇hn
fi(hn)]. That is, a set of strategies

xeq = [heq
1 , . . . ,h

eq
n ] is a Nash Equilibrium if and only if, for all x ∈ R1×. . . ,×Rn: ⟨F (xeq), (x−

xeq)⟩ ≥ 0. We note the following:

Definition 9 (Rockafellar & Wets (2009)). An operator F is called strongly monotone on a set X if
and only if there exists a scaler c such that:

⟨F (x)− F (x′), (x− x′)⟩ ≥ c||x− x′||2 , ∀x1,x2 ∈ X
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From Rockafellar & Wets (2009), we note that a variational inequality with a strongly monotone
operator has a unique solution. Here, this implies a unique Nash Equilibrium. For our operator F :

⟨F (x)− F (x′), (x− x′)⟩ = ⟨M(x− x′), (x− x′)⟩ −
n∑

i=1

⟨∇hi
fi(hi)−∇h′

i
fi(h

′
i), (hi − h′

i)⟩

As such, it suffices to show that for positive c: ⟨M(x − x′), (x − x′)⟩ ≥ c||x − x′||2 and for all
i: −⟨∇hi

fi(hi)−∇h′
i
fi(h

′
i), (hi − h′

i)⟩ ≥ 0. It is known that for convex functions, their gradient
is a monotone operator. Thus, fi being concave (and thus −fi is convex) and the desired condition
immediately holds. As such, it suffices to prove the strong monotonicity of the linear operator M
and show that for any x: ⟨Mx,x⟩ = xTMx ≥ c||x||2. The matrix M is given by the following
block matrix:

M =


Q ∈ RT×T A ∈ RT×T . . . A ∈ RT×T

A ∈ RT×T Q ∈ RT×T . . . A ∈ RT×T

...
...

...
...

A ∈ RT×T A ∈ RT×T . . . Q ∈ RT×T

 (4)

We first note that while our matrix M may not symmetric, we can always write it as the sum of
a symmetric component Ms = 1

2 (M + MT ) and a skew-symmetric component Mk = 1
2 (M −

MT ). By definition, MT
k = −Mk. This means that for any x where s = xTMkx: s = sT =

(xTMkx)
T = −xTMkx = −s. Thus, xTMkx = 0 and it suffices to only consider the symmetric

componentMs for the strong monotonicity condition. Now supposeMs is a positive definite matrix.
Then we can always diagonalize it as PΛPT , where Λ is a diagonal matrix of positive eigenvalues
and PPT = PTP = I . Then we can also express any x = Py for some y. Then under this PD
condition, we have:

xTMx = yTPTPΛPTPy = yTΛy

≥ λmin(Ms)(P
Tx)T (PTx) = λmin(Ms)x

TPPTx = λmin(Ms)||x||2

In other words, if Ms is positive definite, we can choose c = λmin(Ms) > 0 and satisfy the
conditions of strong monotonicity. The matrix Ms is an n× n block matrix with Q on the diagonal
and all other elements being As = 1

2 (A + AT ). This can be succinctly represented using the
Kronecker product (recall Jn is an n× n all 1s matrix):

Ms = In ⊗ (Q−As) + Jn ⊗As (5)

Note that the all 1s matrix is positive-definite with one eigenvalue of (n−1) and all other eigenvalues
0. Therefore, we can write ΛJn = UTJnU , where ΛJn = diag(n, 0, . . . 0). Let P = U ⊗ IT , and
note that PTP = (UT ⊗ IT )(U ⊗ IT ) = UTU ⊗ IT = InT , where we use the mixed product
property of Kronecker products. We shall be using P to diagonalize (in the block sense) the matrix
Ms. Specifically, observe that due to the mixed product rule:

PTMsP = PT (In ⊗Q−As)P + PT (Jn ⊗As)P

= (UT ⊗ IT )(In ⊗Q−As)(U ⊗ IT ) + (UT ⊗ IT )(Jn ⊗As)(U ⊗ IT )

= (UT InU ⊗ IT (Q−As)IT ) + (UTJnU ⊗ ITAsIT )

= (In ⊗ (Q−As)) + (ΛJn
⊗As)

The first summand is a block diagonal matrix with Q− As in each entry, and the second summand
is also block diagonal with nAs in the first entry and 0 elsewhere. Therefore, PTMSP results in
a block diagonal matrix diag(Qs + (n − 1)As, As, . . . , Q − As). The eigenvalues of Ms are the
eigenvalues of this block diagonal matrix, which in turn are the eigenvalues of each matrix in the
diagonal. Thus, we need to show that Q + (n − 1)As and Q − As both have positive eigenvalues.
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Note that Q = (α+ 2β)IT + αJT and As = (α2 + β)IT + α
2 JT . Thus, for any x ∈ RT :

xT (Q−As)x
T = xT

[
(α2 + b)IT + α

2 JT

]
x = (α2 + b)xTx+ α

2

( T∑
t=1

xt

)2

> 0

xT (Q+ (n− 1)As)x
T = xT

[
(n+ 1)(α2 + b)IT + (n+ 1)α2 JT

]
x

= (n+ 1)(α2 + b)xTx+ (n+ 1)α2

( T∑
t=1

xt

)2

> 0

as long as either α > 0 or β > 0. Since these diagonal matrices are positive definite, they have
positive eigenvalues, implying Ms has positive eigenvalues, implying strong monotonicity of the
simultaneous best response operator, implying uniqueness of the equilibrium.

Linear Convergence:

Algorithm 1: Extra-Gradient Algorithm
Input: Game Instance I, Variational Operator F , step-size η
Randomly Initialize a feasible joint strategy x0 = (h1, . . . ,hn)
while ||xr − xr−1|| ≤ ε do

xr+1/2 = ProjG1×Gn
(xr − ηF (xr))

xr+1 = ProjG1×Gn
(xr − ηF (xr+1/2))

Theorem 3.4 of Wadia et al. (2024) states that for any c-strongly monotone and L-Lipshcitz operator,
the extragradient algorithm (Algorithm 1) with step-size η = 1

2(c+L) converges to the fixed point at
a linear rate of 1 − c

4L . We have shown above that our given operator is c = λmin(Ms) strongly
monotone. As for Lipschitzness, note that our operator can be decomposed as: F (x) = Mx +
b− J(x), where J(x) = [∇h1

f1, . . . ,∇hn
fn]

T . Lipschitz constants for the sum of two maps add;
thus, it suffices to solve for the Lipschitz constants for the linear operator M , LM and the gradient
operator J , LJ .

Any linear operator is lipschitz – in fact, the Lipschitz constant is just the 2-norm of the matrix M .
For any matrix, the following is always true: ||M ||2 ≤

√
||M ||1||M ||∞, where ||M ||1 is the largest

absolute column sum and ||M ||∞ is the largest absolute row sum. In our specific matrix M , observe
that:

||M ||1 = ||M ||∞ = (2α+2β)+(T−1)α+(n−1)[(T−1)α+α+β] = (nT+1)α+(n+1)β ≥ ||M ||2
Thus, LM = (nT +1)α+(n+1)β is a suitable bound for the M operator Lipschitz constant. Sec-
ondly, for any i, observe that since fi is concave, the operator ∇hi

fi is Li = supx λmax(−∇hi
fi)

lipschitz. Further, observe that:

||J(x)−J(x′)||2 =

n∑
i=1

||∇hi
fi(hi)−∇h′

i
fi(h

′
i)||2 ≤ max

i
Li

n∑
i=1

||hi−h′
i||2 = max

i
Li||x−x′||2

Therefore, LJ = maxi Li and the overall Lipschitz constant is LJ + LM =
maxi supx λmax(−∇hifi) + (nT + 1)α+ (n+ 1)β.

B.2 PROOF OF THEOREM 2

Proof. Suppose there are n = 2 agents and we have some constant values of α, β – one can assume,
without loss of generality, that α = β = 13. Let the final position utility for both agents be given by
the following linear function: ui(hi) = ri

∑
t hi,t, where ri can be interpreted as the reserve/fair-

market price as perceived by agent i. Further, the two have box constraints on their cumulative
position: V −

i ≤
∑

i hi,t ≤ V +
i . We shall assume the exogenous agent is not present – i.e. s = 0.

3Insofar as α, β are constants and not scaling with respect to the ε all results will hold.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For a positive constant x, let the initial price p0 = x and the reserve prices for the agents be (r1 =
x, r2 = x− ε), where ε > 0. We first consider the equilibrium of this game without any constraints.
Then each agent’s best response is given by:

br1(h2) = argmax
h1

{
− 1

2
hT
1Qh1 − (Ah2)

Th1

}
(6)

br1(h2) = argmax
h2

{
− ε1Th2 −

1

2
hT
2Qh2 − (Ah1)

Th2

}
(7)

Observe that at the equilibrium of this unconstrained game, the gradient of both agents’ best re-
sponses must be 0. Since this is a quadratic function, the gradient is linear, and the equilibrium can
be uniquely specified by the following system of linear equalities:[

Q A
A Q

]
︸ ︷︷ ︸

Matrix M ∈ R2T×2T

[
heq
1

heq
2

]
=

[
0
−ε

]
︸ ︷︷ ︸
z∈R2T

Recall that the matrices Q,A are specified using only the terms α, β. In lemma 2, we noted that
Q is a positive-definite matrix and thus invertible. The matrix A is a lower triangular matrix with
α + β on the diagonals and is thus also invertible (insofar as α > 0 or β > 0). As such, the matrix
M above is invertible and the unconstrained equilibrium strategy is given by M−1z. Note that this
does not depend on the value of x. Further, if V −

i ≤ −||M−1z||1 and V +
i ≥ ||M−1z||1, then

this unconstrained equilibrium is also an equilibrium in the original constrained game. As for the
strategy itself, let mij denote the values of −M−1 and note that mij can be seen as a scaler with
respect to ε. Then we have that:

h1t = ε

2T∑
j=T

mt,j and h2t = ε

2T∑
j=T

mT+t,j (8)

Given that the value of the final position is simply the product of the total amount bought and the
reserve, the utility of buyer 1 (with reserve x) is:

u1eq = x ε

T∑
t=1

2T∑
j=T

mt,j︸ ︷︷ ︸∑
t h1t

−
T∑

t=1

[ 2T∑
j=T

mt,jε

(
x+ αε

t∑
τ=1

2T∑
j=T

(mτ,j +mT+τ,j) + βε

2T∑
j=T

mt,j +mT+t,j

)
︸ ︷︷ ︸

price pt

]

=

∣∣∣∣ T∑
t=1

2T∑
j=T

mt,jε
2

(
α

t∑
τ=1

2T∑
j=T

(mτ,j +mT+τ,j) + β

2T∑
j=T

(mt,j +mT+t,j)

)∣∣∣∣ = Θ(ε2)

where the absolute value in the second line follows, since utility at equilibrium will always be non-
negative (the agents not trading would get utility 0, so utility at equilibrium must be at least 0). A
similar analysis leads us to show that the utility of the second agent (with reserve x − ε) is also
bounded by Θ(ε2), allowing us to conclude that the welfare at equilibrium is O(ε2). Formally:

ueq2 =

∣∣∣∣−ε2 T∑
t=1

2T∑
j=T

mT+t,j−
T∑

t=1

2T∑
j=T

mT+t,jε
2

(
α

t∑
τ=1

2T∑
j=T

(mτ,j +mT+τ,j) + β

2T∑
j=T

(mt,j +mT+t,j)

)∣∣∣∣
We now turn to characterizing the optimal welfare of this instance. For some δ > 0 (to be specified
later), consider the following trajectories for each buyer (recall positive values mean buying):

h1 = [x, x, 0, . . . , 0] and h2 = [−x− δ,−x− δ, 0, . . . , 0] (9)

Insofar as V +
i ≥ 2x and V −

i ≤ −2x − δ, the trajectories above are feasible. Under this strategy, it
suffices to consider the prices at rounds t = 1, 2, for which we have that: p1 = x − αδ − βδ and
p2 = x− 2αδ − βδ. Then the utilities for each buyer is given by:

u1 = x · 2x− x(x− αδ − βδ)− x(x− 2αδ − βδ) = 3αδx+ 2βδx

u2 = (x− ε)(−2x− δ) + (x+ δ)(x− αδ − βδ) + (x+ δ)(x− 2αδ − βδ)

= 2εx+ 2δε− 3αδx− 3αδ2 − 2βδx− 2βδ2

=⇒ uopt1 + uopt1 ≥ 2εx+ 2δε− 3αδ2 − 2βδ2 = 2xε+ 2δε− (3α+ 2β)δ2
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This gives a concave quadratic (in the unspecified parameter δ) lower bound on the optimal utility.
Maximizing it means choosing a δ such that the gradient is 0:

δ =
ε

3α+ 2β
=⇒ uopt1 + uopt1 ≥ 2xε+

2ε2

3α+ 2β
− ε2

3α+ 2β
= 2xε+

ε2

3α+ 2β
= Θ(xε)

From here, it is evident that for any constants α, β and x, we can construct an ε > 0 parametrized
instance Iε with box constraints V −

i ≤ min(−||M−1z||,−2x−2δ) and V +
i ≥ max(||M−1z||, 2x)

with the aforementioned δ = ε
3α+2β such that:

PoA(Iε) =
Uopt(Iε)
Ueq(Iε)

≥ Ω(ε)

O(ε2)
= Ω

(
1

ε

)
→ ∞ as ε→ 0 (10)

C PROOFS AND DETAILS FOR SECTION 4

C.1 PROOF OF LEMMA 3

Proof. In the most general sense, observe that agent i’s best response for a realized type θi allows
them to play a mixed strategy over all valid strategies: pi(hi|θi), where hi is a vector in RT since
the probability is already conditioned on θi. Suppose the remaining agents are playing some mixed,
possibly correlated strategy σ−i, where σ−i(h−i|θ−i) denotes the probability that the remaining
agents play strategy h−i ∈ R−i when their joint type realization is some θ−i. We can then express
agent i’s best response problem as follows (we use Gi to denote Gi(θi):

bri(θi, σ−i) = argmax
pi(hi|θi)∈∆(Gi)

∫
hi

pi(hi; θi)
∑
θ−i

∫
s,α,β

P (θ−i, s, α, β|θi)
∫
h−i

σ−i(h−i|θ−i)ui(hi;h−i,λ)

The linearity of the integral and the fact that
∫
hi
pi(h1|θi)dhi = 1 means that a maximum must

exists at a vertex/pure strategy. If multiple pure strategies are optimal, then any linear combination
(a mixed strategy) would also be a best-response. However, if there is a unique pure strategy maxi-
mizing this, then it means any mixed strategy must be strictly sub-optimal. In other words, it suffices
to show that the pure-strategy best-response is unique even when others’ play mixed and correlated
strategies. This pure best-response problem is given by:

bri(θi, σ−i) = argmax
hi∈Gi

∑
θ−i

∫
λ

P (θ−i,λ|θi)
∫
h−i

σ−i(h−i|θ−i)ui(hi;h−i,λ)

= argmax
hi∈Gi

∑
θ−i

∫
λ

P (θ−i,λ|θi)
∫
h−i

σ−i(h−i|θ−i)

[
fi(hi)− hT

i Qhi −
∑
j ̸=i

hT
j Ahi − sBhi

]
= argmax

hi∈Gi

∫
fi∈F

fi(hi)dµ(fi)− hT
i Qhi

−
[∑

θ−i

∫
s,α,β

P (θ−i, s, α, β|θi)
∫
h−i

σ−i(h−i|θ−i)
∑
j ̸=1

hT
j A+ sB

]
︸ ︷︷ ︸

wT (·)

hi

= argmax
hi∈Gi

f∗i (hi)− hT
i Qhi −wT (·)hi

where µ(fi) is any finite non-negative measure on the function space F , and f∗ is the result of the
integral. The concavity of the function class F and non-negativity of measure µ ensure that f∗ is
concave Rockafellar & Wets (2009). Next, we note that wT (·) is a T dimensional vector that does
not depend on the hi. Thus, the objective faced by buyer i is strictly concave (sinceQ is a PD matrix
– see Lemma 2) and there is a unique solution. This immediately implies that a mixed strategy will
always be a sub-optimal best-response.
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C.2 PROOF OF THEOREM 3

Proof. As in Theorem 1, we express the results from a minimization perspective. That is, each
agent’s best-response for type realization θi is: argminhi∈Gi

Eθ−i,λ|θi [ci(hi,h−i,λ)], where
ci(hi,h−i,λ) = −ui(hi,h−i,λ). Also from 1, we note that the necessary and sufficient con-
ditions for an n agent BNE with k discrete types and pure strategies for each type, can be interpreted
as follows:

∀i ∈ [n],∀θi ∈ [k],∀h′ ∈ Hi : Eθ−i,λ[ci(h
eq
i (θi),h

eq
−i(θ−i),λ)− ci(h

′,heq
−i(θ−i),λ)] ≤ 0

Since expected utility is a smooth function, as in the Nash setting, the simultaneous conditions can
be expressed as a variational inequality of the cost derivatives: there can exist no feasible direction
at equilibrium at which cost is decreasing. Importantly, this characterization is exact even if the
derivatives are scaled by a distinct constant. Formally, a set of strategies are at a BNE if and only if
the following holds for any choice of γiℓ – we will choose γi,ℓ = P (θi), the marginal probability of
an agent i being of type θi ∈ [k] – recall hi(θi) ∈ Gi(θi) is the strategy used upon realization θi:

∀i ∈ [n],∀θi ∈ [k],∀h′(θi) ∈ Gi : ⟨γi,θi∇hi(θi)Eθ−i,λ[ci(h
eq
i (θi),h

eq
−i(θ−i),λ)], (h

′(θi)−heq
i (θi))⟩ ≥ 0

With our choice of scaling γi,ℓ, and switching the order of gradients and expectation, we have that
for any i, θi, γi,θi∇hi(θi)Eθ−i,λ[ci(h

eq
i (θi),h

eq
−i(θ−i),λ)]

= P (θi)

(∑
θ−i

∫
λ

Qα,βhi(θi)P (θ−i,λ|θi)

+
∑
θ−i

∫
λ

[∑
j ̸=i

Aα,βhj(θj) +Bα,βs

]
P (θ−i,λ|θi)−∇hi(θi)

∫
λ

fi(hi(θi))dµ(fi|θi)
)

= P (θi)

[ ∫
α,β

Qα,βP (α, β|θi)
]
hi(θi) + P (θi)

∑
j ̸=i

∑
θj

∫
α,β

Aα,βhj(θj)
∑

θ−(i,j)

∫
s

P (θj ,θ−(i,j),λ|θi)

+

∫
α,β,s

Bα,βsP (λ, θi)︸ ︷︷ ︸
bi,θi

−P (θi)∇hi(θi)

∫
fi∈F

fi(hi(θi))dµ(fi|θi)︸ ︷︷ ︸
f∗
i,θi

(hi(θi))

= P (θi)

[ ∫
α,β

Qα,βP (α, β|θi)︸ ︷︷ ︸
Q∗

i,θi
∈RT×T

]
hi(θi) +

∑
j ̸=i

∑
θj

P (θj , θi)

[ ∫
α,β

Aα,βP (α, β|θj , θi)︸ ︷︷ ︸
A∗

i,θi,j,θj
∈RT×T

]
hj(θj)

+ bi,θi − Pi(θi) · ∇hi(θi)f
∗
i,θi(hi(θi))

where in the last transition, we use the fact that:

P (θj , α, β|θi) · P (θi) = P (α, β, θj , θi) = P (α, β|θi, θj)P (θi, θj)

We note that µ(fi|θi) is a finite non-negative measure on the function space F , and f∗i,θi is the result
of the functional integral. The concavity of the function class F and non-negativity of measure µ
ensure that f∗i,θi is a concave function Rockafellar & Wets (2009). Next, let kp =

∏n
i=1 ki and define

x = [h1,1, . . . ,h1,k1
, . . . ,hn,1, . . . ,hn,kn

] ∈ Rnkp denote a complete strategy profile (strategy for
each agent for each type). At a high-level, our goal is to show that this operator, denoted by F ,
is strictly monotone, which implies the uniqueness of the solution to the equilibrium variational
inequality. That is, we want to show that for all x, ⟨F (x)− F (x′), (x− x′)⟩ ≥ m||x− x′||2.

We can write this operator as follows: F (x) =Mbayesx+b−J(x), where b ∈ RkpT has bi,θi ∈ RT

as index (i, θi). Observe that this vector is a constant with respect to the agent strategies. Similarly,
J(x) ∈ RkpT , where at index i, θi, we have P (θi)∇hi(θi)f

∗
i,θi

(hi(θi)) ∈ RT . As for the Mbayes ∈
RkpT×kpT , we can write this as an n × n block matrix, where each block (i ∈ [n], j ∈ [n]) is a
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kiT × kjT matrix), defined as follows:

M ii
bayes =


P (θi = 1)Q∗

i,1 0 . . . 0
0 P (θi = 2)Q∗

i,2 . . . 0
...

... . . .
...

0 0 . . . P (θi = k)Q∗
i,k



M ij
bayes =


P (θi = 1, θj = 1)A∗

i,1,j,1 P (θi = 1, θj = 2)A∗
i,1,j,2 . . . P (θi = 1, θj = kj)A

∗
i,1,j,k

P (θi = 2, θj = 1)A∗
i,2,j,1 P (θi = 2, θj = 2)A∗

i,2,j,2 . . . P (θi = 2, θj = kj)A
∗
i,2,j,k

...
... . . .

...
P (θi = ki, θj = 1)A∗

i,k,j,1 P (θi = k, θj = 2)A∗
i,k,j,2 . . . P (θi = ki, θj = kj)A

∗
i,k,j,k


Observe that each f∗i,θi is a concave function. Since for all convex functions, their gradient is a
monotone operator, it is immediate that −⟨J(x)− J(x′)⟩ ≥ 0. And since b is a constant, it suffices
to show that the matrix M is positive definite. That is, we want to show that xTMx ≥ m||x||2.
Observe that:

xTMbayesx =

n∑
i=1

∑
θi

P (θi)h
T
i (θi)Q

∗
i,θihi(θi) +

∑
i̸=j

∑
θi,θj

Pij(θi, θj)h
T
i (θi)Ai,θi,j,θjhj(θj)

=

n∑
i=1

∑
θi

∫
α,β

hT
i (θi)Qα,βhi(θi)

∑
θ−i

P (θi,θ−i, α, β)

+
∑
i ̸=j

∑
θi,θj

∫
α,β

hT
i (θi)Aα,βhj(θj)

∑
θ−(i,j)

P (θiθj ,θ−(i,j)α, β)

=
∑
θ

∫
α,β

P (θ, α, β)

[ n∑
i=1

hT
i (θi)Qα,βhi(θi) +

∑
j ̸=i

hT
i (θi)Aα,βhj(θj)

]

= Eθ,α,β

[∑
i=1

zT
i,θiQα,βzi,θi +

∑
i̸=j

zT
i,θiAα,βzj,θj

]
= Eθ,α,β [z

T
θMα,βzθ]

where zi,θi =
∑

ℓ 1[θi = ℓ]hi(ℓ) is a random vector of length T and for a realization θ ∈ [k]n,
zθ = [z1,θ1 , . . . , ηn,θn ]

T is a concatenation of these n random vectors (of size nT ). Further,Mα,β is
a random matrix which, for any realization of α, β, is the same as theM matrix used in the complete
information setting. From Theorem 1, we also note that for any α, β, the symmetric component of
Mα,β , denoted Ms

α,β is positive definite; thus, by choosing c = λmin(M
s
α,β) ensures the strong

monotonicity condition on the operator Mα,β . Thus, for any zθ and any realization realization of
(α, β), there exists a cα,β such that zT

θMα,βzθ ≥ cα,β ||zθ||2, when zθ ̸= 0.

To determine a uniform bound on c across the randomness of (θ, α, β), let each agent’s type realiza-
tion θi = ℓ occur with non-zero probability4. Then letting Pmin = mini,ℓ P (θi = ℓ) be the smallest
probability, and cmin = minα,β λmin(M

s
α,β) the smallest eigenvalue possible in the distribution

support of α, β:

xTMbayesx = Eθ,α,β [z
T
θMα,βzθ] =

∑
θ|zθ ̸=0

∫
α,β

P (θ, α, β)cα,β ||zθ||2

≥ cmin

n∑
i=1

k∑
ℓ=1

P (θi = ℓ)||zi,θi
||2 = cminPmin︸ ︷︷ ︸

m

||x||2

We recall from Theorem 1 that for any c-strongly monotone and L-Lipshictz operator F , the extra
gradient algorithm converges linearly to the unique solution of the variational inequality. We have

4Note that if a type realization occurs with probability 0, it can be removed from the support without loss of
generality.
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already shown the operator to be c-strongly monotone. Further, since the operator is of the form
Mbayesx + b − J(x), it suffices to show Lipschitzness of each term. The linear operator Mbayes is
always Lipschitz, with the constant depending on the norm of this matrix. Since each f ∈ F is
smooth, J(x) is composed of the gradient of some smooth concave function. Therefore, this is also
Lipschitz, with the constant depending on the Hessian of this function.

C.3 EXPERIMENTAL SETUP

Our experimental setting for the Bayesian Simulations is as follows. There are 2 agents and 3
possible types for each agent. The type of an agent i, θi is a positive real number that is equal to
the constraint. That is, an agent i of type θi has a constraint −θi ≤ 1Thi(θi) ≤ θi. We have
θ1 ∈ [10, 15, 20] and θ2 ∈ [20, 25, 30]. The joint type distribution P (θ1, θ2) is uniform over the 9
possible outcomes.

Each agent’s idiosyncratic utility fi is a linear function: fi(hi(θi)) = ri1
Thi(θi). The linearity

of this function means it suffices to consider E[ri|θi]. For agent 1, the type conditioned expected
reserves are (3, 5, 7), and for agent 2, we set (6, 8, 10).

Lastly, the variational inequality characterizing the BNE has linear dependence on the α, β. As such,
it suffices to consider the expected value of these market parameters, conditioned on the joint type
realization. We set E[α|θ1, θ2] = 0.1 and E[β|θ1, θ2] = c

400 (θ1+ θ2), where we have c = 1, 10, 100
for the left, middle and right panel. These numbers were chosen to ensure the β values were in a
comparable range to those used in the experiments for Section 3. This exact setup, with c = 10, is
used for the online learning experiments for Section 5.

D PROOFS AND DETAILS FOR SECTION 5

In what follows we primarily use the cost notation ci(·) (recall that ci(hi(θi);h−i(θ−i),λ) =
−ui(hi(θi);h−i(θ−i),λ)).

D.1 PROOF OF THEOREM 4

Proposition 1. Let P be a joint distribution over game instances I. Let σ ∈ ∆(H1 × · · · ×Hn) be
a distribution over strategy profiles. Suppose σ satisfies for all i, for all θi, for all h′

i(θi):

Eh∼σ Eθ,λ∼P

[
ci
(
hi(θi),h−i(θ−i),λ

)
− ci

(
h′
i(θi),h−i(θ−i),λ

)]
≤ ϵ.

Then, σ is an approximate Bayesian coarse correlated equilibrium, satisfying for all i, for all θi, for
all h′

i(θi):

Eh∼σ Eθ−i,λ∼P | θi
[
ci
(
hi(θi),h−i(θ−i),λ

)
− ci

(
h′
i(θi),h−i(θ−i),λ

)]
≤ ϵ

Pr(θi)
.

Notice that when σ is a singleton distribution, this corresponds to an approximate Bayesian Nash
equilibrium.

Proof. We show the contrapositive. Suppose for some agent i, there is a type θ′i and action h′
i(θ

′
i)

such that

Eh∼σ Eθ−i,λ∼P | θ′
i

[
ci
(
hi(θ

′
i),h−i(θ−i),λ

)
− ci

(
h′
i(θ

′
i),h−i(θ−i),λ

)]
>

ϵ

Pr(θ′i)
.

For each θi, define

h∗
i (θi) ∈ argmin

hi

Eh∼σ Eθ−i,λ∼P | θi
[
ci
(
hi,h−i(θ−i),λ

)]
.

By optimality of h∗
i (θ

′
i),

Eh∼σ Eθ−i,λ∼P | θ′
i

[
ci
(
h∗
i (θ

′
i),h−i(θ−i),λ

)]
≤ Eh∼σ Eθ−i,λ∼P | θ′

i

[
ci
(
h′
i(θ

′
i),h−i(θ−i),λ

)]
.
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Thus,

Eh∼σ Eθ−i,λ∼P | θ′
i

[
ci
(
hi(θ

′
i),h−i(θ−i),λ

)
− ci

(
h∗
i (θ

′
i),h−i(θ−i),λ

)]
>

ϵ

Pr(θ′i)
.

Now consider the gain by a unilateral deviation to h∗
i (θi) for all θi:

Eh∼σ Eθ,λ∼P

[
ci
(
hi(θi),h−i(θ−i),λ

)
− ci

(
h∗
i (θi),h−i(θ−i),λ

)]
=
∑
θi

Pr(θi) Eh∼σ Eθ−i,λ∼P | θi
[
ci
(
hi(θi),h−i(θ−i),λ

)
− ci

(
h∗
i (θi),h−i(θ−i),λ

)]
.

By optimality of h∗
i (θi) for every θi, each summand is non-negative. Furthermore, the summand

corresponding to θ′i exceeds Pr(θ′i) · ϵ
Pr(θ′

i)
= ϵ. Hence the whole sum is > ϵ, contradicting the

hypothesis.

Lemma 4. For all i ∈ [n], let Vi(h) = ∇hi
ℓi(hi,h−i;P ) =

∇hi
Eθ,λ∼P [ci(hi(θi),h−i(θ−i),λ)] ∈ Rki×T and V (h) = (V1(h), ..., Vn(h)) ∈ Rn×k×T .

The operator V is m-strongly monotone, i.e. ⟨V (h′)− V (h),h′ −h⟩ ≥ m∥h′ −h∥2 for all h,h′,
where m is the strong monotonicity constant of Theorem 3. Consequently, for all i, ℓi(hi,h−i;P )
is m-strongly convex in hi.

Proof. Recall that Theorem 3 shows that the operator W (h) ∈ Rn×k×T , defined by:

Wi(θi)(h) = Pr(θi) · ∇hi(θi)Eθ−i,λ∼P |θi [ci(hi(θi),h−i(θ−i),λ)] ∈ RT

in the entry corresponding to agent i and type θi, is m-strongly monotone for some positive m.

Now, for every i, we can write:

Vi(h) = ∇hi

(∑
θi

Pr(θi) · Eθ−i,λ∼P |θi [ci(hi(θi),h−i(θ−i),λ)]

)
Fix a agent i and a type θ∗i . Since each agent has finitely many types, we can write V as a vector of
size nkT , where the entry of V corresponding to agent i and type θ∗i is:

Vi(θ
∗
i )(h) = ∇hi(θ∗

i )

(∑
θi

Pr(θi) · Eθ−i,λ∼P |θi [ci(hi(θi),h−i(θ−i),λ)]

)
= ∇hi(θ∗

i )

(
Pr(θ∗i ) · Eθ−i,λ∼P |θ∗

i
[ci(hi(θ

∗
i ),h−i(θ−i),λ)]

)
(since all terms not involving θ∗i can be treated as constants)

= Pr(θ∗i ) · ∇hi(θ∗
i )
Eθ−i,λ∼P |θ∗

i
[ci(hi(θ

∗
i ),h−i(θ−i),λ)]

=Wi(θ
∗
i )(h)

Thus V = W , and V is m-strongly monotone, i.e. ⟨V (h′)− V (h),h′ − h⟩ ≥ m∥h′ − h∥2 for all
h,h′. For every i, m-strong convexity then follows by definition, by considering h,h′ that are the
same in all coordinates except i.

Proof of Theorem 4. For each i and h′
i, by the regret guarantees of Algi:

1

R

R∑
r=1

(ℓri (h
r
i )− ℓri (h

′
i)) = Eh∼σREθ,λ∼P [ci(hi(θi),h−i(θ−i),λ)− ci(h

′
i(θi),h−i(θ−i),λ)] ≤ ϵi(R)

Applying Proposition 1, we can conclude that for all θi and all h′
i(θi):

Eh∼σREθ−i,λ∼P |θi [ci(hi(θi),h−i(θ−i),λ)− ci(h
′
i(θi),h−i(θ−i),λ)] ≤

ϵi(R)

Pr(θi)
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Algorithm 2: AdaOGD (Algorithm 1 of Jordan et al. (2024))
Input: Strategy space Hi

Initialize h1
i ∈ Hi

Let z0 = 1
log(R+10)

for r = 1, ..., R do
Sample Mr ∼ Geometric(z0)
Let ηr+1 = r+1√

1+max{M1,...,Mr}

Update hr+1
i = argminhi∈Hi

{(hi − hr
i )

⊤∇̃r
i +

ηr+1

2 ∥hi − hr
i ∥2}

D.2 ALGORITHM DETAILS

Here we present the algorithm of Jordan et al. (2024) and state its guarantees.

Theorem 6 (Theorem 3.7 of Jordan et al. (2024)). Consider a game G among n agents, each with
a convex and bounded action set Hi ⊆ Rdi and a cost function ℓi :

∏n
i=1 Hi → R satisfying: (i)

ℓi(hi,h−i) is continuous in (hi,h−i) and continuously differentiable in hi; (ii) ∇hiℓi(hi,h−i) is
continuous in (hi,h−i); (iii) ∥h − h′∥ ≤ D for all h,h′ ∈

∏n
i=1 Hi; and (iv) G is m-strongly

monotone. Suppose at every round r ∈ [R], each agent observes an unbiased and bounded gradient
∇̃r

hr
i

satisfying E[∇̃r
hr

i
|hr] = ∇hr

i
ℓi(h

r
i ,h

r
−i) and E[∥∇̃r

hi
∥2|hr] ≤ M . Then, if all agents run

Algorithm 2, the final iterate satisfies:

E
[
∥hR − h∗∥2

]
≤ O

(
D2M(1 + exp(1/(m2 logR))) log(nR) log2(R)

R

)
where h∗ is the Nash equilibrium of G, i.e. for all i ∈ [n], for all hi ∈ Hi, ℓi(h∗

i ,h
∗
−i) ≤

ℓi(hi,h
∗
−i).

D.3 PROOF OF THEOREM 5

Proof. We define the game G where each agent i chooses a strategy map hi ∈ Hi and suffers cost:

ℓi(hi,h−i;P ) = Eθ,λ∼P [ci(hi(θi),h−i(θ−i),λ)]

We verify the conditions of Theorem 6 on this game G. Since for all type profiles θ,
ci(hi(θi),h−i(θ−i),λ) is continuous in (hi(θi),h−i(θ−i)) and continuously differentiable in
hi(θi), we have that ℓi(hi,h−i;P ) is continuous in (hi,h−i) and continuously differentiable in
hi. Under Assumption 3, ∥h − h′∥ ≤ B

√
nk for all h,h′. Furthermore, by Lemma 4, G is m-

strongly monotone, where m is the strong monotonicity of Theorem 3.

To apply Theorem 6, it remains to establish that agents observe unbiased and bounded gra-
dient feedback. Recall at each round r ∈ [R], agent i receives as feedback: ∇̃r

hi
=

∇hi
ci(h

r
i (θ

r
i ),h

r
−i(θ

r
−i),λ

r). Since θr,λr ∼ P are sampled independently from the strategies
chosen at round r, we have that E[∇̃r

hi
|hr] = E[∇̃r

hi
] = E[∇hici(h

r
i (θ

r
i ),h

r
−i(θ

r
−i),λ

r)] =
∇hiℓi(h

r
i ,h

r
−i;P ), i.e. the gradient is unbiased. Moreover, we can compute, for any hi,h−i, θ,λ:

∥∇hi
ci(hi(θi),h−i(θ−i),λ)∥

= ∥po · 1T + αJhi(θi) + αM

∑
j ̸=i

hj(θj)− s

+ β

2hi(θi) +
∑
j ̸=i

hj(θj)− s

−∇hi
fi(hi(θi))∥

≤ |p0|
√
T + αTB + αT ((n− 1)B + S) + β((n+ 1)B + S) + U ′ (by Assumption 3)
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where J ∈ RT×T is the matrix with Jtt = 2 for all t ∈ [T ] and 1 everywhere else, and M ∈ RT×T

is the matrix with Mts = 1 for s ≤ t and 0 everywhere else. Hence,

E[∥∇̃r
hi
∥2|hr] = E[∥∇̃r

hi
∥2]

= E[∥∇hi
ci(h

r
i (θ

r
i ),h

r
−i(θ

r
−i),λ

r)∥2]

≤
(
p0max

√
T + αmaxTB + αmaxT ((n− 1)B + S) + βmax((n+ 1)B + S) + U ′

)2
= poly(n, T, α, β, p0, B, S, U ′)

Above, αmax = argmaxα∈supp(P ){α}, βmax = argmaxβ∈supp(P ){β}, and p0max
=

argmaxp0∈supp(P ){|p0|}

Therefore, by Theorem 6, the final iterate produced by Algorithm 2 satisfies:

E
[
∥hR − h∗∥2

]
≤ O

(
D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R

)
where h∗ is the Nash equilibrium of G, and the expectation is taken over the randomness of the
algorithm. Here, we have D = poly(n, k,B) and M = poly(n, T, α, β, p0, B, S, U ′).

Next we show that ℓi is Lipschitz in the ℓ2 norm, which will allow us to argue that since hR and h∗

are close in ℓ2 distance, they must also incur similar cost. Observe that by Assumption 3, for any
j ̸= i, for any hi,h−i, θ,λ:

∥∇hjci(hi(θi),h−i(θ−i),λ)∥ = ∥αM⊤hi(θi) + βhi(θi)∥ ≤ (αT + β)B

and so:

sup
h

∥∇hci(hi(θi),h−i(θ−i),λ)∥

≤ |p0|
√
T + αTB + αT ((n− 1)B + S) + β((n+ 1)B + S) + U ′ + n(αT + β)B︸ ︷︷ ︸

=:L′(p0,α,β)

Therefore for all h,h′, θ,λ, ci is L′(p0, α, β)-Lipschitz in h, i.e.:

|ci(h′
i(θi),h

′
−i(θ−i),λ)− ci(hi(θi),h−i(θ−i),λ)| ≤ L′∥h′ − h∥

Taking expectations, we have that ℓi is L-Lipschitz in h, i.e. for all h,h′:

|ℓi(h′
i,h

′
−i;P )− ℓi(hi,h−i;P )| = |Eθ,λ∼P [ci(h

′
i(θi),h

′
−i(θ−i),λ)− ci(hi(θi),h−i(θ−i),λ)]|

≤ Eθ,λ∼P [|ci(h′
i(θi),h

′
−i(θ−i),λ)− ci(hi(θi),h−i(θ−i),λ)|]

≤ L∥h′ − h∥
where L ≤ maxp0,α,β L

′(p0, α, β) = poly(n, T, α, β, p0, B, S, U ′).

Thus, the cost evaluated at hR is close to the cost evaluated at h∗:

E
[
ℓi(h

∗
i ,h

∗
−i;P )− ℓi(h

R
i ,h

R
−i;P )

]
≤ L · E

[
∥hR − h∗∥

]
(by L-Lipschitzness)

≤ L ·O

√D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R


In the second inequality, we use that fact that E

[
∥hR − h∗∥

]2 ≤ E
[
∥hR − h∗∥2

]
by Jensen’s

inequality. Furthermore, since the entries of ∥hR − h∗∥ are non-negative, we also have that for any
hi ∈ Hi:

E
[
ℓi(hi,h

R
−i;P )− ℓi(hi,h

∗
−i;P )

]
≤ L · E

[
∥hR

−i − h∗
−i∥
]

(by L-Lipschitzness)

≤ L · E
[
∥hR − h∗∥

]
≤ L ·O

√D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R


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Combining the above, we can show that hR is an approximate Nash equilibrium of G. In particular,
for any i, for any hi ∈ Hi:

E
[
ℓi(h

R
i ,h

R
−i;P )− ℓi(hi,h

R
−i;P )

]
≤ E

[
ℓi(h

∗
i ,h

∗
−i;P )− ℓi(hi,h

R
−i;P )

]
+ L ·O

√D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R


≤ E

[
ℓi(h

∗
i ,h

∗
−i;P )− ℓi(hi,h

∗
−i;P )

]
+ 2L ·O

√D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R


≤ 2L ·O

√D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R


(by the fact that h∗ is a Nash equilibrium)

Thus, applying Proposition 1, we can conclude that hR is an approximate Bayesian Nash equilib-
rium. Specifically, for all i, for all θi, and for all hi(θi):

E[Eθ−i,λ∼P |θi [ci(h
R
i (θi),h

R
−i(θ−i),λ)− ci(hi(θi),h

R
−i(θ−i),λ)]]

≤ 2L

Pr(θi)
·O

√D2M(1 + exp(1/m2 logR)) log(nR) log2(R)

R

 (by Proposition 1)

≤ O

(
poly(n, T, k, α, β, p0, B, S, U ′)

Pr(θi)
· log

3/2(R)√
R

)
as desired.

D.4 EXPERIMENTAL DETAILS

The online learning experimental setup follows that of Section 4. Here we provide more details on
the conditional distributions of agent types and market parameters used. Recall that θ1 ∈ [10, 15, 20]
and θ2 ∈ [20, 25, 30], and the joint type distribution P (θ1, θ2) is uniform over the 9 possible type
profiles. Agent 1’s linear utility coefficient r1 is drawn from a conditional Gaussian distribution:
r1|θ1 ∼ N (µ(θ1), 1) with µ(10) = 3, µ(15) = 5, and µ(20) = 7. Similarly, Agent 2’s linear
utility coefficient r2 is drawn from a conditional Gaussian distribution: r2|θ2 ∼ N (µ(θ2), 1) with
µ(20) = 6, µ(25) = 8, and µ(30) = 10. Thus the type conditioned expected reserves are (3, 5, 7)
for agent 1 and (6, 8, 10) for agent 2. Finally, we fix p0 = 0, α = 0.1, β = 1

40 (θ1 + θ2), and draw s
from the Gaussian distribution: for all t ∈ [T ], st ∼ N (0, 1).

E LEARNING IN THE BAYESIAN GAME WITHOUT STOCHASTIC FEEDBACK

Here we relax the assumption that agents have access to online algorithms with no-regret guarantees
under stochastic gradient feedback. Instead, we assume access to no-regret algorithms that, given
cost function feedback, can learn over an agent’s strategy space conditional on any type. Recall that
Gi(θi) is the set of feasible strategies hi(θi) for agent i and type θi. Given a sequence of costs cri ,
an algorithm Alg achieves average regret bounded by ϵ(R) if:

1

R

R∑
r=1

cri (h
r
i (θi))− min

hi(θi)∈Gi(θi)

1

R

R∑
r=1

cri (hi(θi)) ≤ ϵ(R)

Mirroring Theorem 4, we show how agents can converge to Bayesian coarse correlated equilibrium
by running separate instances of such no-regret algorithms, one for each type. The procedure is
described in Algorithm 3 and mirrors the setup used by Hartline et al. (2015).
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Algorithm 3: No-Regret Learning Protocol Without Stochastic Feedback
Input: No-regret algorithms Algi

Output: Joint distribution of strategy profiles σ ∈ ∆(H1 × ...×Hn)
Each agent i initializes an instance of Algi over the action space Gi(θi) for every θi ∈ Θi. We
denote the instance corresponding to θi by Algi(θi).

for r = 1, ..., R do
for i = 1, ..., n do

For each θi, let hr
i (θi) ∈ Gi(θi) be the output of Algi(θi).

Observe θri and take action hr
i (θ

r
i ).

Receive cost function cri and update Algi(θ
r
i ) with cri . Update all other Algi(θi),

θi ̸= θri , with cri = 0.

Output empirical distribution over strategy profiles {h1, ...,hR}.

Theorem 7. Fix a joint distribution P over types θ and instances λ. Fix δ ∈ (0, 1). For every
i ∈ [n], suppose there is an algorithm Algi that, given any Gi(θi), and against any sequence
c1i , ..., c

R
i , obtains average regret bounded by ϵi(R) after R rounds. Let σR be the output of the

Bayesian no-regret learning protocol (Algorithm 3), when given as input algorithms Algi. Then,
for every agent i, for every type θi ∈ Θi, and every h′

i(θi) ∈ Gi(θi), with probability at least 1− δ:

Eh∼σREθ−i,λ∼P |θi[ci
(
hi(θi),h−i(θ−i),λ

)
− ci

(
h′
i(θi),h−i(θ−i),λ

)
] ≤

ϵi(R) + 2H

√
2 ln 2

δ

R

Pr(θi)

Here, H = Bp0max

√
T + αmaxBT (nB + S) + βmaxB(nB + S) + U , where αmax =

argmaxα∈supp(P ){α}, βmax = argmaxβ∈supp(P ){β}, and p0max
= argmaxp0∈supp(P ){|p0|}.

First, we show in the following lemma a concentration bound: on any sequence a type θ∗i was
observed, the agent i’s cost under the empirically observed types and game instances concentrate
around their expected cost.
Lemma 5. Fix a agent i and a type θ∗i ∈ Θi. Fix δ ∈ (0, 1). Suppose costs are bounded between
[−H,H] uniformly over all types and strategies. Let h1, ...,hR be any sequence of strategy profiles,
and let σR denote the empirical distribution over h1, ...,hR. Then, with probability at least 1− δ:∣∣∣∣∣ 1R

R∑
r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
− Eh∼σREθ,λ∼P

[
1[θi = θ∗i ] ci

(
hi(θ

∗
i ),h−i(θ−i),λ

)]∣∣∣∣∣ ≤ H

√
2 ln 1

δ

R
.

Proof. For convenience, let Yi(h, θ−i,λ) = ci
(
hi(θ

∗
i ),h−i(θ−i),λ

)
and Iri = 1[θri = θ∗i ]. Hence

we can write:

1

R

R∑
r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
=

1

R

R∑
r=1

Iri Yi(h
r, θr−i,λ

r).

and, letting p(θ∗i ) = PrP [θ
∗
i ]:

Eh∼σREθ,λ∼P

[
1[θi = θ∗i ] ci

(
hi(θ

∗
i ),h−i(θ−i),λ

)]
=

1

R

R∑
r=1

Eθ,λ∼P

[
1[θi = θ∗i ] ci

(
hr
i (θ

∗
i ),h

r
−i(θ−i),λ

)]
=

1

R

R∑
r=1

p(θ∗i )Eθ−i,λ∼P |θ∗
i
[Yi(h

r, θ−i,λ)] .

Thus we want to bound the quantity
∣∣∣ 1R ∑R

r=1 I
r
i Yi(h

r, θr−i,λ
r)− 1

R

∑R
r=1 p(θ

∗
i )Eθ−i,λ∼P |θ∗

i
[Yi(h

r, θ−i,λ)]
∣∣∣.

Let F≤r denote the sequence {Isi Yi(hs, θs−i,λ
s)}s≤r. Since types are drawn independently each

round, Iri is independent of F≤r−1. Moreover, hr is chosen prior to the draw of θr,λr, so θr,λr
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are independent of hr. Thus:
E[Iri Yi(hr, θr−i,λ

r)|F≤r−1] = E
[
E[Iri Yi(hr, θr−i,λ

r)|F≤r−1, θ
r
i ]|F≤r−1

]
= E

[
1[θri = θ∗i ]E[Yi(hr, θr−i,λ

r)|F≤r−1, θ
r
i ]|F≤r−1

]
= E

[
1[θri = θ∗i ]Eh−i,λ∼P |θr

i
[Yi(h

r, θ−i,λ)|F≤r−1]|F≤r−1

]
= E

[
1[θri = θ∗i ]Eh−i,λ∼P |θr

i
[Yi(h

r, θ−i,λ)]|F≤r−1

]
= Eh−i,λ∼P |θ∗

i
[Yi(h

r, θ−i,λ)] · Pr[1[θri = θ∗i ]|F≤r−1]

= Eh−i,λ∼P |θ∗
i
[Yi(h

r, θ−i,λ)] · Pr[1[θri = θ∗i ]]

= p(θ∗i )Eh−i,λ∼P |θ∗
i
[Yi(h

r, θ−i,λ)].

By Azuma’s inequality:

Pr

[∣∣∣∣∣ 1R
R∑

r=1

Iri Yi(h
r, θr−i,λ

r)− 1

R

R∑
r=1

E[Iri Yi(hr, θr−i,λ
r)|F≤r−1]

∣∣∣∣∣ ≥ m

]
≤ 2 exp

(
−m2R

2H2

)
.

Plugging in m ≥ H

√
2 ln 1

δ

R , we have that with probability at least 1− δ:∣∣∣∣∣ 1R
R∑

r=1

Iri Yi(h
r, θr−i,λ

r)− 1

R

R∑
r=1

E[Iri Yi(hr, θr−i,λ
r)|F≤r−1]

∣∣∣∣∣
=

∣∣∣∣∣ 1R
R∑

r=1

Iri Yi(h
r, θr−i,λ

r)− 1

R

R∑
r=1

p(θ∗i )Eθ−i,λ∼P |θ∗
i
[Yi(h

r, θ−i,λ)]

∣∣∣∣∣
=

∣∣∣∣∣ 1R
R∑

r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
− Eh∼σREθ,λ∼P

[
1[θi = θ∗i ] ci

(
hi(θ

∗
i ),h−i(θ−i),λ

)]∣∣∣∣∣
≤ H

√
2 ln 1

δ

R
,

as claimed.

Now we prove the theorem.

Proof. Let σR be the empirical distribution over h1, ...,hR, the history of strategy profiles output
by the learning protocol. Consider a agent i, and fix a type θ∗i ∈ Θi and any action h′

i(θi) ∈ Gi(θi).
By the regret guarantee of Algi(θ

∗
i ), we have that:

1

R

R∑
r=1

ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
− 1

R

R∑
r=1

ci
(
h′
i(θi),h

r
−i(θ

r
−i),λ

)
≤ ϵi(R).

By construction, on the rounds where θri ̸= θ∗i , cri = 0 for all actions in Gi(θi), and so we equiva-
lently have:

1

R

R∑
r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
︸ ︷︷ ︸

(1)

− 1

R

R∑
r=1

1[θri = θ∗i ] ci
(
h′
i(θi),h

r
−i(θ

r
−i),λ

)
︸ ︷︷ ︸

(2)

≤ ϵi(R).

Before analyzing this expression, we bound the magnitude of costs. For any hi,h−i, θ,λ, we have,
by applying Cauchy-Schwarz and Assumption 3:∣∣ci(hi(θi),h−i(θ−i),λ

)∣∣
≤ |p0|∥hi(θi)∥1 + α∥Mhi(θi)∥

∥∥∥∥∥∥
n∑

j=1

hj(θj)− s

∥∥∥∥∥∥+ β∥hi(θi)∥

∥∥∥∥∥∥
n∑

j=1

hj(θj)− s

∥∥∥∥∥∥− fi
(
hi(θi)

)
≤ B|p0|

√
T + αBT (nB + S) + βB(nB + S) + U,
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where M is the lower triangular matrix. We set H = Bp0max

√
T + αmaxBT (nB + S) +

βmaxB(nB + S) + U .

Then, to analyze term (1): using Lemma 5 and the fact that:

Eh∼σREθ,λ∼P

[
1[θi = θ∗i ] ci

(
hi(θ

∗
i ),h−i(θ−i),λ

)]
= p(θ∗i )·Eh∼σREθ,λ∼P |θ∗

i

[
ci
(
hi(θ

∗
i ),h−i(θ−i),λ

)]
,

we have that with probability at least 1− δ
2 :∣∣∣∣∣ 1R

R∑
r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
− Eh∼σREθ,λ∼P

[
1[θi = θ∗i ] ci

(
hi(θ

∗
i ),h−i(θ−i),λ

)]∣∣∣∣∣
=

∣∣∣∣∣ 1R
R∑

r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
− p(θ∗i ) · Eh∼σREθ,λ∼P |θ∗

i

[
ci
(
hi(θ

∗
i ),h−i(θ−i),λ

)]∣∣∣∣∣
≤ H

√
2 ln 2

δ

R
.

Similarly, for term (2): we apply Lemma 5 on the sequence where for all r ∈ [R], hr
i (θi) = h′

i(θi)
for all θi ∈ Θi, and hr

−i remains unchanged. We have that with probability at least 1− δ
2 :∣∣∣∣∣ 1R

R∑
r=1

1[θri = θ∗i ] ci
(
h′
i(θi),h

r
−i(θ

r
−i),λ

)
− Eh∼σREθ,λ∼P

[
1[θi = θ∗i ] ci

(
h′
i(θi),h−i(θ−i),λ

)]∣∣∣∣∣
=

∣∣∣∣∣ 1R
R∑

r=1

1[θri = θ∗i ] ci
(
h′
i(θi),h

r
−i(θ

r
−i),λ

)
− p(θ∗i ) · Eh∼σREθ,λ∼P |θ∗

i

[
ci
(
h′
i(θi),h−i(θ−i),λ

)]∣∣∣∣∣
≤ H

√
2 ln 2

δ

R
.

Thus, we can conclude, with probability at least 1− δ:

p(θ∗i ) · Eh∼σREθ−i,λ∼P |θ∗
i

[
ci
(
hi(θi),h−i(θ−i),λ

)]
− p(θ∗i ) · Eh∼σREθ−i,λ∼P |θ∗

i

[
ci
(
h′
i(θi),h−i(θ−i),λ

)]
≤ 1

R

R∑
r=1

1[θri = θ∗i ] ci
(
hr
i (θ

r
i ),h

r
−i(θ

r
−i),λ

)
+

1

R

R∑
r=1

1[θri = θ∗i ] ci
(
h′
i(θi),h

r
−i(θ

r
−i),λ

)
+ 2H

√
2 ln 2

δ

R

≤ ϵi(R) + 2H

√
2 ln 2

δ

R
,

and:

Eh∼σREθ−i,λ∼P |θ∗
i

[
ci
(
hi(θi),h−i(θ−i),λ

)]
− Eh∼σREθ−i,λ∼P |θ∗

i

[
ci
(
h′
i(θi),h−i(θ−i),λ

)]
≤
ϵi(R) + 2H

√
2 ln 2

δ

R

Pr(θ∗i )
.

This completes the proof.
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