
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TimeChain: A Secure and Decentralized Off-chain Storage System

for IoT Time Series Data

Anonymous Author(s)

ABSTRACT

Blockchain-based distributed storage systems offer enhanced se-

curity, transparency, and lower costs compared to traditional cen-

tralized storage, making them ideal for peer-to-peer collaboration.

However, with the trend towards the Web of Things (WoT), lower

transaction speeds and higher computational requirements limit

their access to high-density data such as IoT. To address this, we

propose TimeChain, an efficient off-chain blockchain storage sys-

tem for IoT time series data. TimeChain batches discrete time series

data, storing only the hash value of each batch on-chain while keep-

ing the complete data off-chain. This significantly reduces storage

overhead on the blockchain and storage latency by 37.4 times. In

order to reduce the additional transmission latency in range queries,

TimeChain employs an adaptive packaging mechanism. We convert

the batching problem to a graph partitioning problem by represent-

ing data and historical co-query as graph vertices and edge weights

respectively. To reduce the size of the transmission size in data

integrity verification, a Locality-Sensitive Hashing (LSH)-based

data integrity verification mechanism, which minimizes the data

required for integrity checks by transmitting only non-redundant

parts. TimeChain also integrates a node selection mechanism based

on consensus protocol, which reduces the overhead by combining

node selection and consensus processes. Our evaluation shows a

reduction in query latency by 64.6% and storage latency by 35.3%

compared to existing systems.

KEYWORDS

IoT Series Data, Blockchain, Database

1 INTRODUCTION

The Web of Things (WoT) is an important trend led by W3C that

aims to address Internet of Things (IoT) interoperability issues by

adopting the proven technologies and patterns of the Web [26].

According to Gartner’s analysis, billions of deployed IoT devices

in the future will generate zettabytes (ZB) of data [19]. With the

trend towards WoT, this ZB-level data needs to be connected to

the web. For such large-scale data, the use of decentralized servers

(e.g., AWS IoT[2], Aliyun Cloud [1]) to manage it suffers from

problems such as a single point of failure [15]. Although distributed

databases can avoid a single point of failure, they are susceptible

to data tampering attacks in scenarios that require a high degree

of transparency, such as IoT data sharing [10], due to weak data

security and non-tamperability [29].

Blockchain, characterized by traceability and immutability, can

solve the single point of failure problem of centralised storage and

the malicious tampering problem of distributed databases [18]. It

stores data in a decentralized ledger and uses consensus protocols

WWW’25, April 28–May 2, 2025, Australia

2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to resolve conflicts between equal nodes, which way has enhanced

security, increased transparency, and lower costs, supporting peer-

to-peer collaboration [30]. Though its great potential, its lower

transaction speed and higher computational requirements make

it only widely used in areas with huge value but very low density,

e.g., financial services, supply chain management, etc.

There are many researchers working on improving the perfor-

mance of blockchain-based storage systems. Based on the stor-

age location of data, these works can be divided into two classes,

namely on-chain storage and off-chain storage. For on-chain stor-

age, data is included as part of the transactional records stored on

the blockchain and users acquire these data by the index (i.e., Merkle

Patricia Trie, MPT). Existing work improves system usability by

providing user-friendly query language [33, 36, 46] and system

throughput by improving indexing scheme [25, 43], blockchain

storage sharding [14, 18, 42]. However, the overhead of storing IoT

data on-chain is very high. For large-volume and fast-generating

IoT data, storing it continuously on the blockchain requires the

processes of achieving consensus and ledger replication, which

can lead to significant storage pressure and communication over-

heads. Therefore, a more practical approach for IoT data storage is

to leverage off-chain storage solutions. For off-chain storage, data

are stored outside of the blockchain, and the blockchain stores only

the necessary metadata or references to the data, such as hashes

or cryptographic pointers. Off-chain storage offers greater scala-

bility and lower cost than on-chain solutions, so there is a lot of

excitement in industry and academia about off-chain storage, e.g.

Storj [22], BigchainDB [27], Sia [4], etc. However, existing works

are mostly designed for the storage of large files. For small-size IoT

data, considering the massive amounts of IoT data, storing a hash of

each data item in the blockchain would incur incredible overhead.

Besides, IoT application scenario often requires storage system sup-

port for efficient queries (e.g., aggregation queries), which is not

supported by existing file-based storage systems.

In this paper, we propose TimeChain, an efficient off-chain

blockchain storage system for time series data. This system batches

discrete time series data, stores only the hash value of each batch

on the chain, and keeps the complete original data off-chain. This

batch storage method significantly reduces data overhead. We con-

duct a measurement on the performance of the off-chain blockchain

storage system. According to our measurement, compared to single

data storage, the storage latency is reduced by an average of 37.4

times. This storage performance makes blockchain-based storage

for time series data feasible.

However, it is undeniable that this also impacts query perfor-

mance. Specifically, when a user executes an aggregate query, in-

efficient batch processing methods result in fetching data across

multiple transmission nodes, causing additional transmission de-

lays. In addition, since only the hash values of batches are stored

on the blockchain, the storage system must transmit additional

information (e.g., the hash path of a Merkle tree) to support the

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’25, April 28–May 2, 2025, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Workflow of basic blockchain-based storage sys-

tems.

data owner in performing data integrity verification. This further

increases the query overhead.

In order to reduce the number of storage nodes spanned during

range queries, we propose a novel adaptive packaging mechanism.

We transform the batch processing problem into a graph partition-

ing problem by building an undirected weighted graph from the

raw data. We use the spectral clustering algorithm to solve the

partitioning problem by grouping frequently queried data together

to reduce the number of node accesses during aggregated queries.

To further reduce query latency while ensuring system security,

we propose a consensus-based storage node selection mechanism.

We consider storage node reputation and transmission distance

together when selecting nodes. In order to reach the node selection

decision quickly in blockchain-based storage system, we combine

the consensus process with nodes to reduce the propagation delay.

To reduce the transmission overhead during verification, we

propose a data integrity verification mechanism based on location-

sensitive hashing (LSH). This mechanism transmits only the non-

redundant portion of the proof based on the similarity between

neighboring time series data points, thus significantly reducing the

data required for integrity verification.

We implement TimeChain based on top of production-ready

open-source components such as Hyperledger Fabric and IPFS, and

evaluate the performance of TimeChain. The result shows that com-

pared to existing blockchain-based storage systems, TimeChain re-

duces 64.6% query latency and 35.3% storage latency on average.

2 BACKGROUND AND PRELIMINARY STUDY

To improve the performance of blockchain-based distributed databases,

we propose a basic off-chain storage system and conduct a mea-

surements study on it.

2.1 Blockchain-based Storage System

As shown in Fig. 1, a basic blockchain-based distributed storage sys-

tem has four main roles, namely data owners, gateways, satellites,

and storage providers. Data owners request storage resources and

query data. Gateways provide an interface for consumers to interact

with the network, allowing them to upload, download, and man-

age their data. Satellites coordinate the communication between

owners and providers. They provide file auditing (Audit) or POR

(retrievability) related functions and storage payment processing.

To ensure the security of the process, satellites are often operated

in the form of smart contracts. Storage providers store and retrieve

data to earn rewards by providing storage and bandwidth resources.

For the storage provider to quickly provide proof of integrity to

the data owner with flexible queries, the proof data needs to be

stored in the storage provider as well. The storage provider’s service

information such as remaining storage space will be recorded in

the distributed ledger along with the interaction records to ensure

security. Generally, the data storage and query procedure can be

summarized as follows:

Data Storage:�Uploading: The data owner uploads data through

a gateway interface. � Batching: The gateway batches the time-

series data and generates data integrity proofs of each batch. �

Storer selecting: The satellites help the gateway in discovering the

optimal storage node for storing the data. � Sending data and proof :

The raw sensor data and the integrity proofs are sent to the optimal

storage provider. The metadata of the data batch are recorded in

the distributed ledger.

Data Query: � Retrieval: The data owner requests to download

their data, and the gateway interacts with the satellites to retrieve

the location of the corresponding storage provider. � Fetching data

and proof : The gateway fetches data and integrity proofs from

storage providers. � Verification: The gateway verifies the integrity

of the downloaded data by checking data integrity proofs. 	 Return:

The gateway returns the data to the data owner.

2.2 Measurement Study

In this section, we conduct a preliminary study to evaluate the

performance of the basic blockchain-based storage system. We

implement the storage system based on Hyperledger Fabric [3].

This test network consists of 5 nodes, with 1 node as both gateway

and 4 nodes as satellites. We simulate 300 storage providers around

the world [13, 47].

Storage Performance. We set the data owner to generate 20

packets of 56 bytes per second and store them within 20 seconds.

The storage performance results are shown in Fig. 2a. Batch storage

reduces latency by about 37.4 times compared to storing each data

individually. This is mainly due to the fact that the larger batch size

reduces the number of on-chain transactions.

Query Performance.We then test the performance of the range

query, as shown in Fig. 2b. Unfortunately, the results show that the

query performance of batch storage solution is relatively poor, with

an average latency of 165.4ms under different batch sizes, which

cannot meet the needs of many IoT scenarios. For example, the

latency of an autonomous driving application is less than 50ms [9],

and the latency of earthquake monitoring is less than 100ms [8].

2.3 Root Causes of Bad Query Performance

To find out the cause of the poor query performance, we conduct an

in-depth investigation and summarize the causes into the following

three points:

1) Multiple Queried Spanning Batches. Queries for time

series data often encompass multiple data points, such as range

queries, aggregation queries, filter queries, and so forth. A single

query may span multiple batches if not packaged appropriately.

We evaluate the number of batches spanned by each query using

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TimeChain: A Secure and Decentralized Off-chain Storage System for IoT Time Series Data WWW’25, April 28–May 2, 2025, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 10 20 40 80
Batch Size

0

20

40

60

80

100

St
or

ag
e 

La
te

nc
y 

(m
s)

(a) Storage latency.

1 10 20 40 80
Batch Size

80

100

120

140

160

180

Q
ue

ry
 L

at
en

cy
 (m

s)

(b) Query latency.

Figure 2: Performance of the basic system.

5 10 15
Queried Batches

0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

(a) Multiple queried batches.

0 2000 4000 6000
Distance (km)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Improper storage node.

1 4 8 12 16
Batch Size

0

500

1000

1500

2000

Si
ze

 (B
)

Data
Proof

(c) Large transmission size.

Figure 3: The root reasons for poor query performance.

Figure 4: Architecture of TimeChain.

the existing dataset, YCSB [5]. As illustrated in Fig. 3a, more than

84.25% of queries span over 10 batches. When these batches reside

on different nodes, additional query and transmission delays are

introduced.

2) Improper Storage Node Selection. In this measurement, we

found that the transfer latency accounts for a significant portion

of the total query latency. As shown in Fig. 3b, there is a large

difference in the distance of storage nodes around the world, which

leads to a large difference in the transmission latency from one node

to another. If a very far away storage node is selected, this leads

to an increase in transmission latency. Moreover, in the presence

of malicious nodes, the final choice of storage node may not be

optimal in terms of transmission delay, which leads to additional

transmission overhead.

3) Large Size of Proof Transmitted.To enable storage providers

to quickly provide data owners with integrity proofs through flex-

ible queries, proof data also needs to be stored with the storage

providers. So when the storage provider needs to prove the integrity

of the data to the data owner, the data proof is also sent back to the

data owner. Fig. 3c shows the breakdown of the total transmitted

data. We can find from the figure that the proof size occupied 48.8%

of the received data, which is almost half of the received data. When

the network is busy, a large size of proof will increase the network

transmission delays.

3 TIMECHAIN OVERVIEW

In order to improve the query performance of the blockchain stor-

age system, we design TimeChain, a novel blockchain-based storage

system for IoT time series data. Fig. 4 shows the architecture of

TimeChain. TimeChain is built on the blockchain platform and all

operations are recorded on the distributed ledger. The core modules

in TimeChain include data batching, storer selection, and data veri-

fication. The indexing structure of TimeChain is R-tree, which can

accelerate spatiotemporal aggregation searches commonly used in

IoT scenarios. Next, we introduce the key modules of TimeChain.

Data Batching Module: Our measurement study reveals that

improper packaging methods increase the number of queried span-

ning batches, thereby increasing network transmission delays. We

construct an adaptive undirected weighted graph (UWG) to accu-

rately capture user query information based on the historical query

of data owners (§-4.1). For the UWG we built, the problem of what

data to pack into batches is converted to a clustering problem [39],

which divides all the original data into multiple clusters according

to the user’s query request. There are many traditional algorithms

for solving clustering problems, such as K-means [21], GMM [16],

etc. However, such traditional clustering algorithms are not suit-

able for dividing the data generated by IoT devices. This is because

in TimeChain the user’s query does not follow specific features,

which may cause the clustering of the data graph to form a complex

shape instead of the common circular shape. In addition, traditional

clustering algorithms need to divide all data into a fixed number of

sets, but not all sets are equal to the batch size, which will bring

extra overhead to index queries. Therefore, we use the spectral

clustering algorithm to pack data (§-4.2), which is very suitable for

dealing with irregular and non-fixed numbers of clusters.

Storer Selection Module: The selection of storage nodes is

crucial. Like we found previously in Fig 3b, the distance between

the storage node and the client affects the data access latency. In

addition, for off-chain storage databases, nodes with insufficient

storage space or malicious nodes can cause data loss, tampering, or

service interruption, which in turn affects the security and stabil-

ity of the entire system. Therefore, we comprehensively evaluate

storage nodes based on information such as distance and historical

service records. The security of the storage node selection process is

also very important. Storj [22], CoopEdge [41], and PipeEdge [40]

select service nodes through a fixed set of nodes, and confirm the

decisions by the blockchain. In other words, they make decisions

centrally and still face the threat of single point failure [35]. How-

ever, using a voting mechanism similar to PBFT, the node selection

process usually requires multiple rounds of task calculation and

message broadcasting. And if the consensus process and the node

selection process are completely decoupled, the system security will

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’25, April 28–May 2, 2025, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

be compromised. To solve this problem, we combine the node se-

lection process with the consensus and propose a consensus-based

node selection mechanism (§-5).

Data Verification Module:We can find from the previous mea-

surement results, that close to half of the data transferred is data

integrity proof. The data proof is organized as a Merkle tree, which

is built from a series of hashing. In the Merkle tree, the number of

hashes that are non-leaf nodes is almost equal to the number of

original data points. Since the size of the IoT data units is approx-

imately equal to the hash values, this means that the amount of

data that needs to be sent to validate the data is almost twice as

much as the original data. Reducing the size of data proof poses

a challenge. Upon analyzing IoT data, we observe that IoT data

changes slowly and rarely exhibits abrupt changes within a short

period [17]. For these similar data, the Locality-Sensitive Hashing

(LSH) algorithm can generate similar hash results from similar orig-

inal data [20]. The LSH ensures that similar IoT data remain similar

even after hashing. Therefore, we propose a novel LSH tree-based

verification mechanism (§-6), which employs LSH instead of the

universal hashing used in traditional Merkle trees. By differentially

transmitting LSH hash values, the size of the transmitted data can

be significantly reduced.

4 ADAPTIVE PACKAGING MECHANISM

For data packing, we construct an adaptive UWG based on historical

queries to characterize the dynamic query range. By running the

spectral clustering algorithm of the adaptive UWG, we pack the

raw data into batches based on random user queries.

4.1 Adaptive UWG based on Historical Query

Since the raw data of IoT are isolated points, we create weighted

edges between data points, which represent the probability of being

jointly queried. The weight of the edge between points 𝑎 and 𝑏 is

denoted as:

𝑙𝑎𝑏 =

{√
(𝑖𝑑𝑎 − 𝑖𝑑𝑏 )2 + (𝑡𝑎 − 𝑡𝑏 )2 , 𝑘 = 0

𝜃 · 𝑙𝑎𝑏 + (1 − 𝜃 ) · 𝑥𝑘
𝑎𝑏

, 𝑘 ≥ 1
(1)

where 𝑙𝑎𝑏 is initialised to the Euclidean distance between the

two device IDs and the time when no request arrives. When a user’s

request arrives, the UWG is dynamically adjusted according to the

range of data involved in the request. To avoid excessive storage

overhead of querying the graph, we ignore the time dimension of

the data when updating the graph and only consider the device ID

of the data. We use the flag variable 𝑥𝑘
𝑎𝑏

to indicate the content of

the 𝑘th query. When the 𝑘th query contains device𝑑𝑎 and device𝑑𝑏 ,

𝑥𝑘
𝑎𝑏

= 1, otherwise 𝑥𝑘
𝑎𝑏

= 0. Then, the distance 𝑙𝑎𝑏 will be updated

according to 𝑥𝑘
𝑎𝑏
. The data points in the graph cannot be predicted

by a fixed pattern since the user requests may be very random.

Therefore we set an influencing factor 𝜃 to determine the impact of

the weight on the client’s request. When 𝜃 is closer to 1, the weight

is more affected by the query. When 𝜃 is close to 0, it means that

the batch clustering is kept as initial as possible.

Through the adaptive weight clustering algorithm, we can dy-

namically adjust the weights between nodes according to the dis-

tance between nodes and the relevance of the query to better reflect

Algorithm 1: Packaging Algorithm

Input: 𝐷, 𝑆,𝑄𝑖 .

Output: 𝑃 .
1 begin

2 𝑆 ′ ← {𝑠𝑎 |𝑎 ∈ 𝐷 & 𝑠𝑎 ⊂ 𝑆}

3 𝐿 ←
{√

(𝑖𝑑𝑎 − 𝑖𝑑𝑏 )2 + (𝑡𝑎 − 𝑡𝑏 )2
���∃𝑎,𝑏∈𝐷 }

4 𝑋𝑘 ← {0|∃𝑎,𝑏∈𝐷 }

5 for 𝑞𝑘 ∈ 𝑄𝑖 do

6 if 𝑎, 𝑏 ∈ 𝑞𝑘 then

7 update 𝑋𝑘 with 𝑥𝑘
𝑎𝑏

← 1

8 end

9 end

10 𝐿 ←
{
𝜃 · 𝑙𝑎𝑏 + (1 − 𝜃 ) · 𝑥𝑘

𝑎𝑏

���∃𝑎,𝑏∈𝐷∃𝑙𝑎𝑏 ∈𝐿}
11 𝐷′ ← cluster(𝐷, 𝐿)

12 𝑃 ← {}

13 for 𝑑 𝑗 ∈ 𝐷′ do

14 add {𝑠𝑎 |∃𝑎∈𝑑 𝑗 } to 𝑃

15 end

16 end

17 return 𝑃

their similarity. This helps to more accurately determine which

nodes’ data should be placed in the same batch during the packag-

ing process to improve the efficiency and accuracy of the query.

4.2 Packaging Mechanism with Spectral
Clustering Algorithm

Since the spectral clustering algorithm is suitable for handling

classification problems with irregular shapes, we use it to pack

the data. Algorithm 1 shows the total packaging process of the

TimeChain. The input of the algorithm includes the input devices set

𝐷 , data set 𝑆 , and users’ 𝑖th history query set 𝑄𝑖 . We first organize

the original data 𝑆 into a set 𝑆 ′ according to the device name and

time unit, which represents the data of a device in a time unit (line

2).We first initialize the weight set 𝐿 (line 3). For the historical query
records 𝑄𝑖−1 in the last interval, we collect the query information

𝑋𝑘 (lines 5-9). Then we update the weight set 𝐿 according to the

collected query information 𝑋𝑘 (line 10). For the UWG (𝐷, 𝐿), we
use the spectral clustering algorithm to obtain the aggregation

result 𝐷′ (line 11). According to the aggregated result 𝐷′, we merge

the data into 𝑃 , which is the packaging result we get (lines 13-15).

5 NODE SELECTION MECHANISM BASED ON
CONSENSUS PROTOCOL

5.1 Protocol Process

In order to safely select optimal storage nodes, TimeChain proposes

a node selection algorithm based on a consensus mechanism. The

total selection process includes request, prepare, pre-submit, submit,

submit, and reply, the details of which are shown in Fig. 5. Similar to

PBFT consensus, in the request phase the gateway sends a request

to all nodes in the system, and the consensus nodes will return the

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TimeChain: A Secure and Decentralized Off-chain Storage System for IoT Time Series Data WWW’25, April 28–May 2, 2025, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 5: Workflow of consensus-based node selection.

obtained results to the gateway in the reply phase. Again similar to

PBFT consensus, we suppose the number of Byzantine satellites is

𝑓 , and the number of total satellites is more than 3𝑓 + 1.

In the prepare phase, each node calculates the score by consider-

ing the distance, reputation, etc. of the storage node and broadcasts

the score to all other nodes. We use 𝑝𝑖 = 𝛼 · 𝑑𝑖 + 𝛽 · 𝑠𝑖 + 𝛾 · 𝑞𝑖 to
calculate the score of the 𝑖th node, where 𝑑𝑖 denotes the distance
between the 𝑖th node and the client node, the storage service quality
𝑞𝑖 can be evaluated from the service records on the chain, and 𝑠𝑖
denotes the remaining storage space of the node. All these data

can be found on the chain. 𝛼 , 𝛽 , and 𝛾 are weighting parameters,

and these coefficients can be adjusted according to specific system

needs and performance requirements.

In the pre-commit stage, the consensus node receives prepared

messages set {𝑝𝑖 } from other nodes. When the timer of this node

times out and more than 2𝑓 + 1 prepare messages are received, con-

sensus nodes decide the optimal storage provider according to the

reputation priorities {𝑝𝑖 } they receive. If each round of consensus

only returns the closest node, due to the influence of distance on the

reputation calculation mechanism, the storage pressure on some

closer nodes may be very high. To balance the load, the consensus

nodes will return at a set of the highest reputation 𝑛 nodes for

gateway to randomly select, instead of the highest reputation node.

In the commit stage, all nodes will receive the optimal storage

decision recommended by other nodes. When the number of the

same pre-commit messages exceeds 𝑓 + 1, this node will commit

the optimal storage node to the client.

5.2 Security Analysis

We consider here the security of this consensus protocol. Since

TimeChain’s consensus protocol just adds extra information based

on PBFT, we only consider the security risk posed by the extra

information in the prepare and pre-commit phases. In the prepare

phase, if a node fakes its own score, the authenticity of the score

can be easily checked by the gateway since the evaluation data

sources can all be found on the chain. Once a node falsifies its

reputation, the behavior will also be recorded on the chain, thus

affecting the next reputation assessment. Moreover, since only one

storage node is selected at the end, gateway does not pay attention

to the authenticity of scores of all nodes, but only the score of the

selected node. In the pre-commit phase, if any node forges the final

score, it does not affect the final result. This is because for a network

Figure 6: LSH tree.

Figure 7: A non-full binary LSH tree with tail merging.

of 3𝑓 +1 nodes containing 𝑓 Byzantine nodes, 𝑓 +1 identical results
must be obtained in the commit phase.

6 LSH TREE-BASED VERIFICATION
MECHANISM

To address the high network transmission delay caused by the large

amount of verification data transmitted, we propose a novel LSH

tree and optimize its space through a tail merging strategy.

6.1 LSH Tree

Locality-sensitive hashing maps similar data to similar hash values

for deduplication. In TimeChain, we usually package data that is

close in physical space or time, which tends to have high local

similarity. Therefore, by using locality-sensitive hashing on the

same batch, we can get similar hash values. When a hash value

needs to be transmitted, only the hash difference part is transmitted,

thereby reducing the amount of data to be transmitted.

We show an example of an LSH tree in Fig. 6. Specifically, for

the data in a batch, we take steps similar to the Merkle Tree, first

performing local-sensitive hashing on the original data. For the

hashed result, we merge two close hashes into a string and calculate

the locality-sensitive hash value of the string. We then recurse this

process upwards, layer by layer, until we get a unique hash, the

hash root. In the first level of hashing, many bits of hash value are

the same due to the high similarity of the original data. Therefore,

when transmitting the hash value of the first level, we can only

transmit different bits to reduce the transmission delay. Likewise,

since there are local similarities in the first-level hash, many bits in

the second-level hash will also be similar. By analogy, for the hash

value of each layer, we only need to transmit the hash difference

bits, thus further reducing the amount of data transmitted.

Since we are using LSH tree instead of the original Merkle tree,

we need to analyse the security of LSH tree. Here we mainly con-

sider the scenario where the storage provider tampers with the

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’25, April 28–May 2, 2025, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

data, i.e., the case where the same hash can still be obtained with

the different original data. We tested for different layers of the

LSH tree and found that in the layer of hash closest to the data

source, the hash has an average difference bit count of 170bit. This

has surpassed the MD5 and SHA1 standards, which are now very

commonly used in IoT scenarios.[11, 24]. For the layers of the LSH

tree close to the root node, despite the smaller number of hash

difference bits, this does not make sense for tampering with the

original data.

6.2 Tail Merging

In a full binary tree, LSHTree can perform locality-sensitive hashing

by merging data in batches in pairs. However, if the number of data

in the batch is not sufficient to form a full binary tree, building a

hash tree like a Merkle tree will result in a loss of similarity. For

example, in Fig. 6, there are 7 data points in a batch, which size

is not satisfied for a full binary tree. In the first round of hashing,

the first 6 data perform LSH in pairs. The hash results of these 6

data are similar, due to the similarity of the raw data. In the second

round of hashing, because the first round of hash results of data 5-6

and the 7th raw data are very different, the hash results of these

two are also very different from the hash results of data points 1-4.

When performing integrity proofs, all of these dissimilar hashed

data bits need to be transmitted, which increases the amount of

data transferred.

In order to solve this problem, we introduced the tail merging

strategy, which merges the tail nodes of the non-full binary tree

with the front nodes of the same layer. As shown in Fig. 7, in the

first round of hashing, we merge the left out the 7th node with

the the 6th node, in order to preserve the similarity of the data as

much as possible. The hash result of the data 6-7 is efcbeb, and the
hash value of the data 5-6 is efcbef. Obviously, there exists high
similarity in the first round of hashing, and it can be maintained to

the next level of hashing. This reduces the transmitted hash value

size from 12 bits to 7bits, at the cost of only transmitting 1 more

different bit in the first round of hashing. In this way, when doing

integrity proof, we only need to transmit the different hash bits,

thus reducing the amount of data transmitted.

7 EVALUATION

In this section, we evaluate the storage performance and query

performance of TimeChain.

7.1 Experimental Setup

We implement TimeChain based on top of some open-source projects,

such as Hyperledger Fabric and IPFS. The block size is set to 1500

and the block interval is 1 second. We simulated 320 cloud server

nodes distributed in different locations around the world and con-

ducted experiments based on this cluster. Each storage node is

configured with a 2-core CPU and 4GB memory, the storage space

of each storage node is 512GB. The distance between the storage

node and the gateway ranged from 800km to 6000km, with an

average of 4000km. Considering that some storage providers are

fraudulent, the data stored remotely will be inaccessible with a

probability of 60%. We use a PC as the gateway node of the IoT

sensors, which is equipped with Intel(R) Core i7-13700K CPU @

5.4GHz, 32GB DRAM, and runs Ubuntu 22.04. The default batch

size and query size are set to 20.

7.1.1 Baselines. SEBDB [46] is a typical representative of the on-

chain databases. It enables efficient access to on-chain blocks by

storing all data on the blockchain and using the B+ tree to create a

fast index on timestamps and device names. In terms of data verifi-

cation, SEBDB uses the traditional Merkle tree for data verification.

Merkle tree achieves data integrity verification by calculating hash

values of data blocks and organizing these hash values into a tree

structure layer by layer.

FileDES [38] is a file-based storage system. It achieves safe

storage and reliability of data by storing data on remote nodes

and recording the hash value of the data on the chain. When a

client needs to search for data, FileDES traverses all blocks on

the blockchain to get where the data is stored. In terms of data

verification, FileDES also uses the same Merkle tree as SEBDB.

7.1.2 Dataset and Workloads. We use the following three datasets:

HongKong–Zhuhai–Macao Bridge (Bridge) [44], RT-IFTTT (RT) [17]

and Weather (WX) 1. Considering the storage characteristics of the

time series storage system [28], we append the device information

in the dataset to the header of the sensor values, which takes up

56B of space per piece of data. We set the average data query range

of these three datasets as 100, 20 and 10 respectively based on the

data generation rate of these three datasets.

7.2 Overall Performance

Storage Latency.We compared the storage latency under different

batch sizes. Due to the large number of IoT devices and the fast data

generation speed, we define storage latency as the total latency

for storing 10,000 data, rather than focusing on the micro latency

of a single data. As shown in Fig. 8, TimeChain has lower storage

latency than both SEBDB and FileDES for different batch sizes.

This is because TimeChain ’s unique packing mechanism and node

selection mechanism reduce the data transfer latency. Moreover, as

the batch size becomes larger, the storage latency becomes smaller.

This is because, for the same amount of data, when the batch size is

larger, the number of times the data is packed and recorded in the

chain decreases. Users can control the storage latency by adjusting

the batch size.

Query Latency.We compare the query latency with different

batch sizes, which is shown in Fig. 9. The query latency refers to

the average latency of randomly querying a data set based on a

fixed query range. From Fig. 9, we can see that the query latency of

TimeChain is lower than the other two schemes. This comes from

TimeChain ’s reduction in data transfer latency for reasons that

will be explained in Fig. 10. We can also discover that when the

batch size increases, the query latency decreases. This is because

when the batch size increases, the number of batches involved in

the same query decreases, and the user’s query results will try to

concentrate on one storage node. However, the larger the batch size,

the improvement of TimeChain over other solutions will diminish

as the batch size increases. This is because when the batch size is

very large, it is equivalent to storing all the data in a single batch, in

1https://www.kaggle.com/selfishgene/historical-hourly-weather-data/

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

TimeChain: A Secure and Decentralized Off-chain Storage System for IoT Time Series Data WWW’25, April 28–May 2, 2025, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 10 20 40 80
Batch Size

0

101

102

103

St
or

ag
e 

La
te

nc
y 

(m
s) FileDES

SEBDB
TimeChain

Figure 8: Storage latency.

1 10 20 40 80
Batch Size

0

200

400

600

Q
ue

ry
 L

at
en

cy
 (m

s)

FileDES
SEBDB
TimeChain

Figure 9: Query latency.

0 200 400 600
Latency (ms)

TimeChain

SEBDB

FileDES

Retrival
Transmission
Verification

Figure 10: Breakdown of

query latency.

1 10 20 40 80
Batch Size

0

101

102

103

N
um

be
r o

f S
up

po
rt 

D
ev

ic
e

FileDES
SEBDB
TimeChain

Figure 11: Numbers of sup-

porting device.

Bridge RT WX
Different Datasets

0

100

200

300

400

500

Q
ue

ry
 L

at
en

cy
 (m

s)

FileDES
SEBDB
TimeChain

Figure 12: Query latency

under different query size.

10 20 40 80 160 320
Storage Nodes

0

50

100

150

St
or

ag
e 

La
te

nc
y 

(m
s)

FileDES
SEBDB
TimeChain

Figure 13: Storage latency

under different network.

which case data clustering does not lead to performance improve-

ment. Moreover, when a large amount of data is concentrated in a

storage node, the scalability and reliability of the storage system

will also be damaged.

Breakdown of Query Latency.We further analyze the break-

down of query latency, which is shown in Fig. 10. The latency of a

query is mainly composed of 4 stages, retrieval, transmission, verifi-

cation, and return. Considering that sensors usually choose a closer

gateway, the latency of the return stage can be almost ignored. In

the validation phase, the latency of the three schemes is relatively

close to each other, which is less than 1 ms and also almost negli-

gible. The delays in the transmission and retrieval phases account

for the major part of the query delay. The transmission delay of

TimeChain is significantly lower than that of FileDES and SEBDB.

This is because of TimeChain’s unique node packaging mechanism

and selectionmechanism, which reduce the number of data fetching

times and shorten the distance from storage providers. For the re-

trieval stage, since FileDES traverses all blocks to retrieve data, the

retrieval delay is particularly high. While SEBDB and TimeChain re-

spectively use B+ and R trees to build indexes respectively, thus

reducing the latency to less than 1ms.

Maximum Number of Storage Devices Supported. Specifi-

cally, we use the metric of maximum number of supported devices,

which refers to the number of devices that the storage system can

support for storage services per second. We assume that a gateway

can handle data storage requests from multiple IoT devices, and

ignore the processing delay of the gateway itself. All IoT devices

simultaneously generate data at 1hz and require that this data must

be stored before the next data is generated. As shown in Fig. 11,

TimeChain increases the maximum number of supported devices

by 1.63x and 3.55x compared to SEBDB and FileDES, respectively.

This is mainly due to the fast storage latency of TimeChain, where

data transfer latency is very low and allows TimeChain to store

data at a much faster rate. Moreover, the maximum number of sup-

ported devices will increase as the batch size increases. When the

batch size is up to 80, the maximum number of devices supported

by TimeChain has reached thousands.

7.3 Performance under Different Parameters.

Query Latency under Different Query Size. We compare the

query performance on three different query size datasets: Bridge,

RT, and WX, the result of which is shown in Fig. 12. The average

query size of the workloads in the three data sets is 10, 20, and

40 respectively. We can find that the query latency of these three

solutions usually decreases with the increase of query size. This

can be attributed to the fact that a larger query size means more

data is covered in the query, thereby improving data locality and

query efficiency. We observed that when the query size becomes

larger, the performance improvement brought by TimeChain also

increases, compared to SEBDB and FileDES. This is because when

the query size becomes larger, SEBDB and FileDES often need to

obtain data from more nodes than TimeChain.

Storage Latency Under Storage Network Scale. We com-

pared the storage latency of each solution under different storage

network scales, as shown in Fig. 13. As the number of storage

nodes increases, the storage latency of TimeChain shows a down-

ward trend. This is because when the number of nodes increases,

gateways in TimeChain can choose more storage providers, which

increases the probability that closer nodes will be chosen. Other

solutions will not benefit from the increase in the number of storage

nodes. This is because both FileDES and SEBDB randomly select

storage nodes, and the growing storage nodes will not significantly

affect the results of random selection. Therefore, the storage latency

of FileDES and SEBDB shows a relatively large randomness.

7.4 Ablation Study

In this subsection, we demonstrate the improvement effect of our

design through three ablation studies.

Clustering Algorithm.We compared the effect of clustering

algorithms and compared TimeChain with SEBDB. As shown in

Fig. 14a, the network transmission delay of TimeChain is reduced

by 40.3% compared with SEBDB. The packaging nodes in SEBDB do

not consider the regularity of user queries, and the aggregated data

is not divided according to the type of data source. When the data

owner requests a series of data, the SEBDB gateway needs to cross

multiple batches from more storage providers. TimeChain uses a

spectral clustering algorithm to package data from specific sensors

based on the characteristics of user requests, resulting in 59.3%

fewer access batches than SEBDB, as shown in Fig. 14b.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’25, April 28–May 2, 2025, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 10 20 40 80
Batch Size

0

10

20

30

Q
ue

ry
 L

at
en

cy
 (m

s) SEBDB
TimeChain

(a) Query latency.

1 10 20 40 80
Batch Size

0

5

10

15

20
Ac

ce
ss

 B
at

ch
es

SEBDB
TimeChain

(b) Access batches.

Figure 14: Clustering ablation study.

1 10 20 40 80
Batch Size

0

50

100

Q
ue

ry
 L

at
en

cy
 (m

s) FileDES
CRUSH
TimeChain

(a) Query latency.

1 10 20 40 80
Batch Size

0

0.2

0.4

0.6

0.8

1

Er
ro

r R
at

io

FileDES
CRUSH
TimeChain

(b) QoS of storage.

Figure 15: Node selection ablation study.

1 10 20 40 80
Batch Size

0

100

200

300

400

Q
ue

ry
 L

at
en

cy
 (m

s) FileDES
TimeChain

(a) Query latency.

1 10 20 40 80
Batch Size

0

2000

4000

6000

Tr
an

sm
is

si
on

 S
iz

e 
(B

) FileDES
TimeChain

(b) Size of verification.

Figure 16: LSH tree ablation study.

Node Selection.We show the performance differences between

TimeChain, FileDES, and CRUSH in node selection in Fig. 15a.

FileDES [38] divides some trusted storage nodes based on node

reputation and randomly selects nodes from the set of nodes to

store data. Therefore FileDES has the highest probability of storage

service provision among the three, as shown in Fig. 15b. However,

the random node selection of FileDES may introduce more distant

storage nodes and thus longer transmission delays. CRUSH [34]

selects the nearest node for storage based on the physical location

of the node, but does not take into account storage node failures

and single points of failure. This makes it possible for CRUSH to

select closer but unreliable storage nodes, so that 41% of the nodes

selected by CRUSH are unable to provide effective storage services.

TimeChain, on the other hand, takes into account the physical

distance of nodes and node reputation and has the best performance

both in response time and serve probability. Although the node

distance selected by TimeChain is not the closest, TimeChain works

best considering the node distance and quality of service.

LSH Tree. We compare the network transmission latency of

FileDES and TimeChain as shown in Fig. 16a. We can find a 10.9% re-

duction in data transfer latency for TimeChain compared to FileDES.

This is due to the fact that when there are more sensor devices in the

local area network and the frequency of data generation is high, the

amount of data transmission significantly affects the transmission

delay in a congested network. As shown in Fig. 16b, the amount of

data transmitted over the network is greatly reduced due to the fact

that TimeChain uses LSH as hash algorithm. This will reduce the

storage and query latency and greatly reduce the storage burden

on the storage provider.

8 RELATEDWORK

Distributed Storage Systems. In recent years, distributed databases

have gained increasing prominence due to the inherent vulner-

abilities of centralized data storage solutions, particularly their

susceptibility to single points of failure. Apache Cassandra [23],

Spanner [12] and CockroachDB [31] are all distributed key-value

storage systems that ensure high availability and fault tolerance of

data storage through special data distribution strategies. However,

these distributed storage systems still suffer from single-point fail-

ure and high storage costs. Even when data has been distributed to

multiple storage nodes, control of the data remains in the hands of

the database vendor, making it easy for storage system companies

to tamper with the data without the data owner’s knowledge.

Blockchain Storage Systems. These days, many studies have

focused on the performance of on-chain data storage, including

query performance and storage burden. SEBDB [46] andMSTDB [45]

do this by introducing different indexing mechanisms in order

to support various types of queries such as SQL-like queries and

semantic-based multi-keyword queries. Different from establish-

ing a block-level index, LVMT [25] and COLE [43] optimized the

index on the Merkle Patricia Trie to improve the query speed for

the blockchain state. For the burden of storing data in the ledger,

Rapidchain [42], SlimChain [37] and GriDB [18] distribute the

ledger to other shards for storage to reduce the storage pressure.

TimeChain can easily be combined with these on-chain storage op-

timisation solutions to accelerate the acquisition of on-chain hashes.

However, in IoT scenarios with large data volume and fast genera-

tion, these solutions not only bring the risk of data privacy leakage,

but also bring additional space storage burden to the blockchain,

which is unsuitable for IoT scenarios with fast data generation.

Blockchain-based File Systems. Blockchain-based file sys-

tems have received extensive research and attention, due to their

assurance of file integrity. Filecoin [6] is a decentralised file storage

system built on IPFS [7], which encourages users to provide stor-

age services by means of an incentive mechanism. Storj [22] and

Sia [32] establish a Merkle tree for each file in a semi-decentralized

way to ensure file integrity. FileDES [38] focuses on encrypted stor-

age of data. It protects the security of data storage by introducing

technologies such as zero-knowledge proof. However, none of these

methods can provide efficient IoT data storage. Because the low

value density of IoT data, if a single data is stored in the form of a

file in the blockchain file system, it will bring very high costs.

9 CONCLUSION

In order to integrate IoT data with fast data generation speed and

large data volume into blockchain with slow transaction processing

speed for security, we propose TimeChain, an efficient off-chain

blockchain storage system for time series data, which uses a batch

processing method for discrete data. TimeChainpackages IoT data

onto the chain, reducing storage latency. We propose an adaptive

packaging mechanism, node selection mechanism based on consen-

sus protocol and LSH tree-based verification mechanism to improve

the query performance of TimeChain. We have implemented the

system based on an open-source framework. Experiments have

shown that compared to existing work, name can reduce query

latency by an average of 64.6% and storage latency by 35.3%.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

TimeChain: A Secure and Decentralized Off-chain Storage System for IoT Time Series Data WWW’25, April 28–May 2, 2025, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Aliyun iot. https://iot.aliyun.com/. Accessed: [2024.7].
[2] Aws iot. https://aws.amazon.com/cn/iot/. Accessed: [2024.7].
[3] Hyperledger Fabric Documentation. https://hyperledger-fabric.readthedocs.io/

en/release-1.4/. Accessed: [2019.7].
[4] Sia. https://sia.tech/. Accessed: [2024.4].
[5] Melyssa Barata, Jorge Bernardino, and Pedro Furtado. Ycsb and tpc-h: Big data

and decision support benchmarks. In 2014 IEEE International Congress on Big
Data, pages 800–801. IEEE, 2014.

[6] Davi Pedro Bauer. Filecoin. In Getting Started with Ethereum: A Step-by-Step
Guide to Becoming a Blockchain Developer, pages 97–101. Springer, 2022.

[7] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

[8] Munish Bhatia, Tariq Ahamed Ahanger, and Ankush Manocha. Artificial in-
telligence based real-time earthquake prediction. Engineering Applications of
Artificial Intelligence, 120:105856, 2023.

[9] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 11621–
11631, 2020.

[10] Fei Chen, Jiahao Wang, Changkun Jiang, Tao Xiang, and Yuanyuan Yang.
Blockchain based non-repudiable iot data trading: Simpler, faster, and cheaper.
In IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pages
1958–1967. IEEE, 2022.

[11] Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy.
ACM Computing Surveys (Csur), 50(1):1–36, 2017.

[12] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally distributed database. ACM
Transactions on Computer Systems (TOCS), 31(3):1–22, 2013.

[13] Lorenzo Corneo,Maximilian Eder, NitinderMohan, Aleksandr Zavodovski, Suzan
Bayhan, Walter Wong, Per Gunningberg, Jussi Kangasharju, and Jörg Ott. Sur-
rounded by the clouds: A comprehensive cloud reachability study. In Proceedings
of the Web Conference 2021, pages 295–304, 2021.

[14] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. Blockchaindb: A shared database on blockchains. Proceedings
of the VLDB Endowment, 12(11):1597–1609, 2019.

[15] Ilir Gashi, Peter Popov, and Lorenzo Strigini. Fault tolerance via diversity for
off-the-shelf products: A study with sql database servers. IEEE Transactions on
Dependable and Secure Computing, 4(4):280–294, 2007.

[16] Xiaofei He, Deng Cai, Yuanlong Shao, Hujun Bao, and Jiawei Han. Laplacian
regularized gaussian mixture model for data clustering. IEEE transactions on
knowledge and data engineering, 23(9):1406–1418, 2010.

[17] Seonyeong Heo, Seungbin Song, Jong Kim, and Hanjun Kim. Rt-ifttt: Real-time
iot framework with trigger condition-aware flexible polling intervals. In 2017
IEEE Real-Time Systems Symposium (RTSS), pages 266–276. IEEE, 2017.

[18] Zicong Hong, Song Guo, Enyuan Zhou, Wuhui Chen, Huawei Huang, and Albert
Zomaya. Gridb: scaling blockchain database via sharding and off-chain cross-
shard mechanism. Proceedings of the VLDB Endowment, 16(7):1685–1698, 2023.

[19] Mark Hung. Leading the iot, gartner insights on how to lead in a connected
world. Gartner Research, 1:1–5, 2017.

[20] Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and
Chidambaram Crushev. A survey on locality sensitive hashing algorithms and
their applications. arXiv preprint arXiv:2102.08942, 2021.

[21] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko,
Ruth Silverman, and Angela Y Wu. An efficient k-means clustering algorithm:
Analysis and implementation. IEEE transactions on pattern analysis and machine
intelligence, 24(7):881–892, 2002.

[22] Storj Labs. Storj: A decentralized cloud storage network framework, 2018.
[23] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured

storage system. ACM SIGOPS operating systems review, 44(2):35–40, 2010.
[24] Irfan A Landge and Hannan Satopay. Secured iot through hashing using md5.

In 2018 fourth international conference on advances in electrical, electronics, infor-
mation, communication and bio-informatics (AEEICB), pages 1–5. IEEE, 2018.

[25] Chenxing Li, Sidi Mohamed Beillahi, Guang Yang, Ming Wu, Wei Xu, and Fan
Long. {LVMT}: An efficient authenticated storage for blockchain. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 23),
pages 135–153, 2023.

[26] Andrés García Mangas, Francisco José Suárez Alonso, Daniel Fernando García
Martínez, and Fidel Díez Díaz. Wotemu: An emulation framework for edge com-
puting architectures based on the web of things. Computer Networks, 209:108868,
2022.

[27] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy
McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto
Granzotto. Bigchaindb: a scalable blockchain database. white paper, BigChainDB,
pages 53–72, 2016.

[28] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. Time series
databases and influxdb. Studienarbeit, Université Libre de Bruxelles, 12:1–44, 2017.

[29] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. Falcondb:
Blockchain-based collaborative database. In Proceedings of the 2020 ACM SIGMOD
international conference on management of data, pages 637–652, 2020.

[30] Yiannis Psaras and David Dias. The interplanetary file system and the filecoin
network. In 2020 50th Annual IEEE-IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S), pages 80–80. IEEE, 2020.

[31] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. Cock-
roachdb: The resilient geo-distributed sql database. In Proceedings of the 2020
ACM SIGMOD international conference on management of data, pages 1493–1509,
2020.

[32] David Vorick and Luke Champine. Sia: Simple decentralized storage. Retrieved
May, 8:2018, 2014.

[33] HaixinWang, Cheng Xu, Ce Zhang, Jianliang Xu, Zhe Peng, and Jian Pei. vchain+:
Optimizing verifiable blockchain boolean range queries. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), pages 1927–1940. IEEE,
2022.

[34] Sage Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceedings of the
7th Conference on Operating Systems Design and Implementation (OSDI’06), pages
307–320, 2006.

[35] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A decentralized
truth discovery approach to the blockchain oracle problem. In IEEE INFOCOM
2023-IEEE Conference on Computer Communications, pages 1–10. IEEE, 2023.

[36] Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: Enabling verifiable boolean
range queries over blockchain databases. In Proceedings of the 2019 international
conference on management of data, pages 141–158, 2019.

[37] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. Slimchain: Scaling blockchain
transactions through off-chain storage and parallel processing. Proceedings of
the VLDB Endowment, 14(11):2314–2326, 2021.

[38] Minghui Xu, Jiahao Zhang, Hechuan Guo, Xiuzhen Cheng, Dongxiao Yu, Qin Hu,
Yijun Li, and Yipu Wu. FileDES: A secure, scalable and succinct decentralized
encrypted storage network. In IEEE INFOCOM 2024-IEEE Conference on Computer
Communications, pages 1–10. IEEE, 2024.

[39] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions
on neural networks, 16(3):645–678, 2005.

[40] Liang Yuan, Qiang He, Feifei Chen, Ruihan Dou, Hai Jin, and Yun Yang. Pipeedge:
A trusted pipelining collaborative edge training based on blockchain. In Proceed-
ings of the ACM Web Conference 2023, pages 3033–3043, 2023.

[41] Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen, Hai Jin, and
Yun Yang. Coopedge: A decentralized blockchain-based platform for cooperative
edge computing. In Proceedings of the Web Conference 2021, pages 2245–2257,
2021.

[42] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, pages 931–948, 2018.

[43] Ce Zhang, Cheng Xu, Haibo Hu, and Jianliang Xu. {COLE}: A column-based
learned storage for blockchain systems. In 22nd USENIX Conference on File and
Storage Technologies (FAST 24), pages 329–345, 2024.

[44] Wenzhao Zhang, Cheng Guo, Yi Gao, and Wei Dong. Edge cloud collaborative
stream computing for real-time structural health monitoring. arXiv preprint
arXiv:2310.07130, 2023.

[45] Enyuan Zhou, Zicong Hong, Yang Xiao, Dongxiao Zhao, Qingqi Pei, Song Guo,
and Rajendra Akerkar. Mstdb: a hybrid storage-empowered scalable semantic
blockchain database. IEEE Transactions on Knowledge and Data Engineering, 2022.

[46] Yanchao Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, and Ying Yan. Sebdb:
Semantics empowered blockchain database. In 2019 IEEE 35th international
conference on data engineering (ICDE), pages 1820–1831. IEEE, 2019.

[47] Artur Ziviani, Serge Fdida, José F De Rezende, and Otto Carlos MB Duarte.
Improving the accuracy of measurement-based geographic location of internet
hosts. Computer Networks, 47(4):503–523, 2005.

9


