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Abstract

Vision-Language models (VLMs) integrate
visual and textual features through modality
adaptors, demonstrating outstanding perfor-
mance in image understanding tasks. Among
these adaptors, compression-based approaches
have gained particular prominence, as they
can prune visual redundancy, highlight key
details, and streamline computational costs.
However, existing compression-based adaptors
often fail to fully exploit the deep semantics
of input questions, resulting in static or
uninformative compressed features across
different questions. In this study, we address
this gap by leveraging question semantics
to guide the compression of visual features.
We propose a Semantic-Enhanced Resampler
(SER), integrated into our VLM, AceRead,
which serves as a conditional information bot-
tleneck, channeling the most question-relevant
information to the language model for answer
generation. SER integrates semantic tokens
with visual tokens and employs learnable
queries to produce compressed representa-
tions. Additionally, AceRead incorporates
an adaptive image encoder, enabling the
processing of images with arbitrary sizes while
minimizing distortion. Notably, AceRead
achieves state-of-the-art performance, with
improvements of 16% on TableVQABench
and 10% on A-OKVQA, while requiring
only 2.75% of the model’s parameters to be
trained. Our code and model are available at
https://anonymous.4open.science/r/AceRead-
77BF.

1 Introduction

Vision-Language Models (VLMs) integrate infor-
mation from both visual and textual modalities,
enabling more holistic multimodal understanding
and reasoning, which have gained significant at-
tention in fields such as image captioning (Dong
et al., 2024), visual question answering (Peng et al.,

Question: What is the color of the largest
value bar in the histogram?

Answer: The color of the second largest
bar is green.

Question: Please tell me the value of the
largest bar in the histogram.

Answer: The largest value is 0.64.

(a) Perceiver-based VLMs

m| Question: Please tell me the value of the
largest bar in the histogram.

Answer: The largest value is 0.48%.

Question: Please tell me the value of the
largest bar, excluding the green bar.

Answer: The second largest value is 0.48%.
(b) QFormer-based VLMs

Question: Please tell me the value of the
largest bar, excluding the green bar.

A forespersonne s

Answer: The next largest value is 0.38%.
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Question: Please tell me the value of the
next value after the median.

Answer: The second largest value is 0.21%.
(c) Our Semantic-enhanced VLMs

Figure 1: Comparison of different compression-
based VLMs. (a) Perceiver-based VLMs suffer from
information loss due to static compression. (b) QFormer-
based VLMs primarily rely on keywords, overlooking
the role of semantics. (c) Semantic-enhanced VLMs
accurately align visual regions by incorporating ques-
tion semantics. Correct and wrong answers are colored
green and red, respectively.

2023; Ji et al., 2024), and cross-modal retrieval (Li
et al., 2022). Typically, VLMs build on powerful
pre-trained large language models (LLMs) and vi-
sion encoders, requiring only a modality adaptor to
seamlessly fuse visual features with textual tokens.
Different adaptor designs have been explored to op-
timize this fusion process, each targeting specific
challenges in cross-modal integration. In particular,
compression-based adaptors have become increas-
ingly popular for their ability to remove redundant
information and amplify critical cues in the visual
features (Alayrac et al., 2022; Li et al., 2023; Xue
et al., 2024; Huang et al., 2024).
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left part illustrates how AceRead processes images and

compresses visual features using the Semantic-Enhanced Resampler (SER). The right part provides a detailed
overview of SER, where a frozen text encoder is employed to extract the semantic token from the question.

Despite these advantages, most existing
compression-based adaptors focus on either
purely visual information or merely textual
keywords, often neglecting the deeper semantics
embedded in input questions. Consequently,
the compressed features often remain static or
not sufficiently question-specific when handling
different questions regarding the same image. For
example, Perceiver-based VLMs (Bai et al., 2023;
Ye et al., 2023b; Li et al., 2024b; Zhang et al.,
2024) rely solely on visual information, failing
to adapt if the question requires fine-grained and
detailed context-specific information. As shown in
Figure 1 (a), when the model is asked to identify a
specific number in the bar chart, it fails due to the
loss of fine-grained visual details during feature
compression. QFormer-based VLMs (Li et al.,
2023; Zhu et al., 2023; Li et al., 2024a) allow
more dynamic compression based on shallow
textual signals of the question keywords. They
thus overlook the deeper semantic cues needed
to differentiate changes across user questions and
result in limited performance improvement (Xue
et al., 2024). In Figure 1 (b), the model overly
focuses on the keywords "largest" and "green bar",
leading to an incorrect answer.

In this work, we address these limitations by
proposing a semantic-enhanced visual token query-
ing mechanism and introducing the Semantic-
Enhanced Resampler (SER) to fully incorporate
question semantics during visual feature compres-
sion. As shown in Figure 2, SER is a lightweight
transformer module that first prepends a semantic
token (extracted from the question’s deep repre-
sentation) to the visual tokens and then employs a

fixed number of learnable queries to produce com-
pressed, question-oriented features. This design
allows SER to serve as a conditional information
bottleneck, ensuring that the most contextually rel-
evant visual signals are preserved while filtering
out irrelevant details.

We incorporate SER into a new VLM called
AceRead, whose main contributions are:

* AceRead is among the first VLMs that lever-
age a deeper semantic understanding of ques-
tions to guide visual feature compression, tran-
scending naive keyword-based approaches.

* With only 110M trainable parameters (just
2.75% of the total), AceRead outperforms
seven other VLMs, achieving state-of-the-
art results on TextVQA, A-OKVQA, and
TableVQABench, while remaining compet-
itive on other benchmarks.

AceRead is the first approach to systemati-
cally analyze the role of question semantics in
compression-based adaptors through the lens
of the information bottleneck framework.

2 Related Work

Vision-Language Models Current VLMs can
be categorized into three paradigms. The first
paradigm maintains the vision model unchanged
while focusing on designing the internal architec-
ture of language models, which enables thorough
fusion between visual and textual features. For
instance, Flamingo (Alayrac et al., 2022) inserts
new cross-attention layers between frozen language
model layers to facilitate visual-textual information



interaction and integration. Following Flamingo’s
approach, Llama 3.1 (Dubey et al., 2024) incor-
porates cross-attention layers every fourth layer
within the language model to further enhance the
fusion of visual information. The second paradigm
maintains the architecture of both vision and lan-
guage models unchanged, instead focusing on de-
signing modality adaptors. For example, in the
LLaVA model series (Liu et al., 2024b,a; Gao et al.,
2024; Agrawal et al., 2024), researchers employ
MLPs as modality adaptors to directly project vi-
sual features into the language space, achieving
remarkable results. BLIP-2 (Li et al., 2023) further
introduced the Q-Former architecture, which not
only bridges the gap between vision and text modal-
ities but also compresses and filters visual features
to extract the most valuable information for down-
stream tasks. The third paradigm adopts an end-to-
end approach by directly concatenating visual and
textual features. These combined features are then
fed into a multimodal language model (MLLM) for
answer generation, enabling the language model to
possess inherent multimodal understanding capa-
bilities. For example, Florence-2 (Xiao et al., 2024)
leverages BART (Lewis, 2019) as its foundation
model and follows an encoder-decoder architecture,
where end-to-end training equips the model with
multimodal comprehension. Chameleon (Team,
2024), on the other hand, employs a decoder-only
architecture and introduces interleaved vision-text
autoregressive pretraining tasks to achieve modality
fusion, allowing the model to effectively integrate
visual and linguistic information.

Vision Features Compression Visual feature
compression is a widely adopted technique in
VLMs, effectively reducing the number of visual
tokens to minimize redundancy and enhance com-
putational efficiency. Perceiver (Jaegle et al., 2021)
first introduces the use of learnable queries to com-
press input visual features into a compact latent
bottleneck. mPlug (Ye et al., 2023b) improves
this approach by concatenating visual tokens with
queries before compression, mitigating the issue of
fragmented fine-grained image information. Blip-
2 (Li et al., 2023) highlights the importance of
textual information in visual token compression
and introduces Q-Former, which, through a two-
stage training process, enables an understanding of
shallow semantics. Instructblip (Dai et al., 2023)
further enhances this by concatenating question
word embeddings with queries, allowing queries
to capture question-dependent variations and dy-

namically compress visual features. MiniMonkey
(Huang et al., 2024) extends this idea by integrat-
ing textual and visual embeddings and employing
learnable queries to compress tokens at the patch
level. However, the aforementioned visual feature
compression approaches either entirely disregard
the semantic information of the question or focus
solely on keywords, failing to fully leverage a deep
semantic understanding of questions to optimize
the visual feature compression process.

xGen-MM (Xue et al., 2024) finds that incorpo-
rating keywords into visual feature compression
yields minimal performance improvement. Conse-
quently, their model relies exclusively on the Per-
ceiver for visual feature compression. In our study,
we further investigate this phenomenon and ob-
serve that integrating only shallow semantics from
the question indeed results in limited performance
improvements. However, when deeper semantic
information is incorporated, the model becomes
significantly more effective in selecting critical vi-
sual features, leading to substantial enhancements
in reasoning capability and answer accuracy.

3 Methodology

In this section, we first introduce the information
bottleneck theory in VLMs, followed by a detailed
explanation of the Semantic-Enhanced Resampler
and its conditional information bottleneck opti-
mization objective. Next, we describe the adap-
tive image encoder in AceRead, which is capable
of handling images at arbitrary sizes. Finally, we
describe the instruction fine-tuning strategy used
during training.

3.1 Information Bottleneck in VLMs

The Information Bottleneck (IB) (Tishby et al.
(2000)) aims to learn a compressed representation
of inputs, which retains task-relevant content while
discarding redundant details. In VLMs, we denote
the visual features processed by the image encoder
as variable X, the target labels as Y, and the com-
pressed visual features as Z. To obtain the optimal
feature representation Z*, the IB principle can be
formalized as the following optimization problem:

Z* =argmax [(Y;2) - pI(X;Z) (1)
zrpp(zlz)

where py(z|x) represents the conditional distri-

bution of Z given X, with 6 denoting the model

parameters. I(Y'; Z) measures the mutual infor-

mation between Y and Z, quantifying how much



information Z retains for predicting the target Y.
A larger I(Y'; Z) indicates that Z better preserves
task-relevant content. Meanwhile, /(X; Z) quanti-
fies the dependence between X and Z, reflecting
the amount of information Z retains from X. A
smaller I(X; Z) implies stronger compression, as
it reduces redundancy while maintaining essential
information for downstream tasks. The hyperpa-
rameter 5 > 0 controls the trade-off between pre-
serving predictive information and compressing
irrelevant details.

To optimize the objective function in Equation 1,
we adopt the method from VIB (Alemi et al., 2016)
to derive the lower bound L;p of the information
bottleneck. For brevity, we place the deduction in
Appendix A and only present the result:

I(Y;Z) - BI(X;Z) = Lip = (2)
E_ [logas(yl) = BKL(po(=I2) lgo(2))|

@ e)

By maximizing the lower bound L;p, Z can be
optimized. In Equation 2, ¢,(y|2) represents the
language decoder with frozen parameters. The only
trainable component is py(z|x), which learns to ex-
tract a compressed yet informative representation.

3.2 Semantic-Enhanced Resampler

As shown in Figure 2, our Semantic-Enhanced Re-
sampler (SER) is a lightweight transformer mod-
ule composed of three key components: a self-
attention block, a cross-attention block, and a feed-
forward network. In contrast to the QFormer-based
approach, our method introduces two notable inno-
vations: First, we introduce a single semantic token
that encapsulates the deep semantic information
of the question to guide visual feature compres-
sion. Second, directly concatenating semantic and
visual tokens facilitates more effective cross-modal
fusion, thereby enhancing the model’s capacity to
retain and utilize information.

The image is processed by a visual encoder, gen-
erating visual feature tokens V € RNo*dv where
N, represents the number of visual tokens and
d, denotes the visual feature dimension. Simul-
taneously, the question is encoded by a frozen
text encoder, yielding text features T € RN:xd
with N, representing the question token length
and d; the text feature dimension. By applying
mean pooling to the text features, a semantic to-
ken S € R1*9% is obtained. The semantic token S
and visual token V are concatenated as keys and

Algorithm 1 Adaptive Image Encoding Algorithm
input: Image 7, Grids G, Patch size (H,, Hy)
output: Visual features V'

1: Initialize optimal grids g* and IoU score s;
2: for each grid g € G do

3 Compute IoU, and IoU; as in Equation3
4 s1 < IoU, + IoU,

5: if s1 > s then

6 545l

7 gt g

8 end if

9: end for

10: P < Crop image [ with g*

11: I' < Resize image I to (H,, Hy)

12: I < Concatenate P and I’

13: V' <« Encode I using visual encoder f,,

14: return V

values in the cross-attention block, while a set of
learnable queries Q € RNe*% is selected as the
query, where IV, < N, controls the capacity of
information bottleneck. After performing the fea-
ture aggregation computation in the cross-attention
block, compressed tokens Z € RNe*9 are ulti-
mately obtained. Since the text and visual encoders
both originate from SigLIP (Zhai et al., 2023), the
dimensions satisfy d, = d; = d, = d.

SER serves as the information bottleneck in Ac-
eRead, selecting the most question-relevant visual
tokens to the language model for answer generation.
Compared to Equation 2, the key innovation lies in
reformulating the compression model from py(z|z)
to pp(z|x @ s), where the semantic token s is incor-
porated as a conditional input. Through extensive
fine-tuning with instruction signals from diverse
VQA datasets, py is optimized to maximize L;p ,
thereby realizing what we refer to as a "conditional
information bottleneck" mechanism.

3.3 Adaptive Image Encoder

In AceRead, we implement an adaptive image
encoder that prevents content distortion typically
caused by fixed-size scaling. Following URe-
ader(Ye et al., 2023a), we employ a Shape-
Adaptive Cropping Module that preprocesses im-
ages according to their aspect ratios, generating
uniform-sized patches. Each patch undergoes inde-
pendent encoding, followed by feature concatena-
tion to form a complete image representation.

We predefine diverse grids G = {(nj x ny)|np, -
ny < Neynp € Nyny, € N}, where ny, and ny,



denote the number of rows and columns of grid g €
G, respectively, and V. represents the maximum
number of image patches after cropping. These
predefined grids ensure flexibility in adapting to
various image layouts. For an input image I €
R3XHXW “we select the optimal grid g* based on
two criteria: (1) g* should preserve the resolution
of the image as much as possible, and (2) the aspect
ratio of g* should align with that of the image.
To measure the similarity between image I and
grid g in terms of pixel coverage and aspect ratio
alignment, we compute Intersection over Union
(IoU) at both pixel and grid levels.

IOUT(Ia g) = IOU((Hv W)v (ntha nwWU))
N H
w77nw)7(nhanw)) (3)
Where H, and W, denote the height and width
of each patch, respectively, which also serve as
the input dimensions for the visual encoder. The

optimal grid g can be obtained by maximizing the
following matching score:

IoU4(I, g) = IoU((

g = argmax IoU,(I,g) + IoUs(1,g) (4)
geG

After selecting the optimal grid g* = (1 X ny),
we resize image [ to (npH,,n,W,) and parti-
tion it into ny, - Ny, local patches. Meanwhile, to
preserve the global structure of the input image,
we additionally scale I to (H,,W,) as a global
patch, which is then processed alongside the local
patches by the visual encoder. The resulting vi-
sual features V' € R™v*% have feature numbers
N, = (np - ny + 1) x Np, where N, represents
the number of visual features generated per patch
by the visual encoder. Algorithm 1 outlines the
complete processing workflow.

3.4 Instruction Tuning

Instruction tuning is a supervised fine-tuning (SFT)
approach that further trains a pre-trained model on
(instruction, output) pairs to improve the model’s
ability to follow human instructions. This method
bridges the gap between large language models
(LLMs) that are trained purely on next-token pre-
diction and the expectation for them to adhere to
user instructions. It also enhances performance
on unseen tasks (Feng et al., 2023). To enhance
the model’s task generalization capabilities, we

Dataset #Imgs. # Anns. Modality
TextVQA 28K 40K Scenes
A-OKVQA 19K 19K Scenes
ChartVQA 21K 33K Charts
InfoVQA 6K 30K Charts
TableVQABench 1.5K 1.5K Charts
DocVQA 13K 50K Documents
Table 1: Comparison of different VQA datasets.

‘Scenes’ refers to images from natural scenes, ‘Charts’
denotes statistical chart images, and ‘Documents’ repre-
sents images of document pages.

reformat all training datasets into an instruction-
tuning paradigm: "<luserl>:{Question} <lassis-
tantl>:{<image>answer}". The special tokens
‘<luserl>’ and ‘<lassistantl>’ indicate the user and
assistant dialogue segments respectively, while
‘<image>’ functions as a placeholder for image
position, which is consistently placed before the
question in our experiments. Additionally, we im-
plement response control by prefixing ‘<Isystem[>’
instructions to ‘<user>’ queries, allowing explicit
specification of both response style and level of
comprehensiveness. Instruction-tuning dataset ex-
amples are provided in the Appendix B.

4 Experiments

4.1 Implementation Details

AceRead builds upon the recently proposed xGen-
MM (Xue et al.,, 2024), which is a powerful
Perceiver-based VLM. To incorporate semantics,
we replace its visual compression model with our
semantic-enhanced resampler. The dimensions
of hidden states d,,d; and d, are 1152, and the
number of learnable queries of SER N is set to
128. For the Adaptive Image Encoder, we set
the maximum number of grids N, to 9, covering
23 distinct aspect ratio grids. The size of each
patch H, x W, is set to = 384 to match the pre-
trained resolution of the visual encoder. During
instruction tuning, we set the maximum input se-
quence length to 4096 and batch size to 16. The
learning rate follows a linear warm-up strategy, in-
creasing to 2e 4 during the initial 10% of training
steps, followed by cosine decay to 0. Our exper-
iments are conducted on six datasets: ChartVQA
(Masry et al., 2022), TableVQABench (Kim et al.,
2024), InfoVQA (Mathew et al., 2022), TextVQA
(Singh et al., 2019), and A-OKVQA (Schwenk
et al., 2022), DocVQA (Mathew et al., 2021), with



Table 2: Main results on six visual question answering benchmarks. AceRead achieves state-of-the-art performance
on TableVQABench, TextVQA, and A-OKVQA. Underline indicates the second-highest performance.

Train | Chart TabelVQA
Model Param | VOA Bench InfoVQA | TextVQA A-OKVQA | DocVQA
TinyChart-3B oM 72.0 15.3 15.4 19.0 16.6 21.9
Monkey-2B 12M 55.9 37.3 50.8 77.3 50.0 78.0
LLaVA-7B 20M 10.2 14.6 17.6 62.4 52.8 20.0
Blip2-3B 105M 7.00 5.40 12.2 35.8 41.0 6.80
xGenMM-4B 110M 50.1 18.9 27.2 81.6 59.7 55.4
MiniGPT4-7B  114M | 4.40 3.60 11.2 16.4 24.4 6.30
Instructblip-7B 186M 9.60 7.40 18.0 43.2 59.4 9.20
AceRead-4B 110M 51.8 53.4 32.5 ‘ 82.6 68.9 37.6

dataset statistics detailed in Table 1. These datasets
cover a diverse range of visual question-answering
tasks, spanning natural scenes, charts, and doc-
ument images. More details are provided in Ap-
pendix C. To address dataset imbalance, we employ
downsampling for larger datasets and upsampling
for smaller ones, ultimately resulting in 122,959
instruction-tuning pairs. All experiments are con-
ducted on a cluster of 8 NVIDIA GeForce RTX
4090 GPUs for 10 epochs, with a total training
time of 24 hours.

4.2 Evaluation

Since the answers generated by VLMs can be
phrased differently while conveying the same mean-
ing, traditional keyword-based evaluation methods
(Papineni et al., 2002; Levenshtein, 1966) might un-
derestimate their performance. Therefore, we adopt
the method proposed by VLMEvalKit (Duan et al.,
2024), which employs a large language model to
assess the correctness of the generated answers.
In our evaluation, we use GPT-40 (Achiam et al.,
2023) as the evaluator to determine whether the
generated answers are consistent with the reference
answers. We provide explicit judgment criteria and
examples in the prompt to ensure that the model
can accurately recognize the alignment. Ultimately,
we assess the performance by calculating the accu-
racy of the generated answers. For the complete
evaluation prompt, please refer to Appendix D.

4.3 Main Results

Table 2 shows a comprehensive comparison of
AceRead against seven similarly-sized VLMs
across six VQA benchmarks. AceRead achieves
state-of-the-art performance on TableVQABench,
TextVQA, and A-OKVQA, with a notable im-

provement of 16 percentage points in accuracy
on TableVQABench and 10 percentage points on
A-OKVQA. In terms of computational efficiency,
AceRead has only 110M trainable parameters, ac-
counting for 2.75% of the total model size. Com-
pared to QFormer-based VLMs such as Blip2 and
Instructblip, AceRead demonstrates higher com-
pute efficiency. However, when compared to mod-
els that employ MLP-based cross-modal align-
ments, such as TinyChart, Monkey, and LLaVA,
AceRead exhibits lower parameter efficiency.

Although AceRead performs well on scene and
chart images, achieving precise visual feature com-
pression enhanced by semantics, it underperforms
on text-intensive tasks like DocVQA and InfoVQA
compared to TinyChart and Monkey. We attribute
this limitation to the choice of image encoder,
which is not specifically optimized for processing
text-intensive visual inputs. In contrast, TinyChart
and Monkey leverage vision encoders designed for
document understanding, enabling them to achieve
superior performance on these tasks.

4.4 Ablation Study

To validate the effectiveness of the semantic-
enhanced visual token querying mechanism and
examine how SER performance varies with hyper-
parameter changes, we conduct extensive ablation
studies as shown in Table 3.

Removing Semantic-Enhanced Resampler.
Removing SER and utilizing only visual features
for compression (r1 vs r10) leads to a perfor-
mance decrease. Comparable performance to the
semantic-enhanced version is only achieved when
increasing the number of learnable queries IV, to
196 (12 vs r10). This indicates that without se-
mantic guidance, more compressed image tokens



Table 3: Ablation study about semantic-enhanced querying mechanism and different settings about hyperparameters.
‘# N, represents the number of learnable queries, and ‘# N’ represents the number of maximum number of image
patches after cropping. ‘Sent.” is an abbreviation for ‘Sentence’, indicating the use of features processed by the
text encoder instead of word embeddings. ‘Qry’ is an abbreviation for ‘Query’, referring to the concatenation of

semantic tokens with learnable queries.

Embedding Pooling Concat2
‘ SER Word  Sent. ‘ [CLS] Mean | Qry Img ‘ #Ny | #N:. | TextVQA A-OKVQA ChartVQA
rl v v v 128 9 75.4 59.1 472
r2 v v v 196 9 82.3 68.4 51.2
B3| v | v | au V| 128 9 | 798 67.1 48.8
| v |V | Vo128 9 | 823 68.6 51.4
5| v v v |V | 128 | 9 | 8LO 67.6 51.6
6 v v v v 128 1 42.4 31.1 22.5
r7 v v v v 128 3 51.2 51.3 421
8 v v v v 128 5 62.3 61.7 50.2
9 v v v v 128 12 82.9 68.5 51.7
110 | v | v au Vo128 9 | 826 68.9 51.8
are needed to retain question-relevant information. 30 w/ SER
This is also illustrated in Figure 3, where the light 4o m wio SER
blue bars represent performance with SER, and the “
dark blue bars represent performance without it. <
. . =l
As shown, using SER leads to improved results ;50
across all six datasets, confirming the necessity of g 40
. . -
semantic-enhanced resampling. 530
Q
Using Word Embeddings. In AceRead (r10), <€ 20
semantic tokens are derived from the features pro- 10
cessed by a text encoder which captures an overall
. . Chart. Table. Info. Text. A-OK. Doc.
understanding of the question. The replacement of s L s e

semantic tokens with word embeddings leads to a
performance decrease (13 vs r10), with a notable
drop of 3 percentage points on ChartVQA, indicat-
ing that shallow semantics are insufficient to guide
visual feature compression effectively.

Pooling with [CLS] Token. In addition to
using mean pooling to aggregate semantic tokens,
we also leverage the question’s [CLS] token as
a global semantic representation to guide visual
feature compression. However, the model’s perfor-
mance (r4 vs r10) exhibits no improvement, sug-
gesting that the choice between the [CLS] token
and mean pooling has minimal impact on feature
compression, as both methods retain similar high-
level semantics.

Concatenating to Queries. We follow In-
structblip’s approach by concatenating semantic
tokens with learnable queries before compressing
visual features. However, we observe a slight per-
formance degradation with this setup (r5 vs r10).
A possible reason is that directly concatenating se-
mantic tokens with queries may disrupt the query-

Figure 3: Visualization of AceRead under different set-
tings across six VQA benchmarks. The bar chart com-
pares performance w/ and w/o SER for visual feature
compression, showing that incorporating SER leads to
overall performance improvements. The line chart illus-
trates the impact of different hyperparameter settings on
performance, with r10 achieving the best results.

ing mechanism, making it less effective in extract-
ing critical visual features.

Varying Number of Adaptive Grids. We
investigate the impact of varying N., which con-
trols the number of adaptive grids, on model perfor-
mance. When adaptive image encoding is disabled
(N, = 1) and all images are uniformly resized to
the base encoding size, model performance drops
significantly (r6 vs r10). This result suggests that
fixed resizing leads to a loss of image details, nega-
tively affecting the model’s ability to capture visual
information. As N, increases (r7, r8), the adaptive
image encoder progressively expands its coverage
across different image sizes and aspect ratios, en-
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Figure 4: Qualitative results of AceRead across six VQA benchmarks. (a) Scene image from A-OKVQA containing
subtle visual details. (b) Document page from DocVQA with dense textual information. (c) Table image from
TableVQABench with a structured row-column format. (d) Scene image from TextVQA featuring scene text. (e)
Complex chart from InfoVQA requiring an understanding of relationships between different regions. (f) Bar chart

from ChartVQA involving arithmetic reasoning.

hancing its ability to encode fine-grained details.
This leads to a steady improvement in model per-
formance. However, when N, reaches 12 (19), fur-
ther increasing it does not yield noticeable perfor-
mance improvement. Since increasing N, results in
a greater number of image tokens, which increases
computational overhead, we determine N, = 9 to
be the optimal grid size in our experiments.

4.5 Qualitative Results

Figure 4 presents some qualitative results by Ac-
eRead across six VQA datasets. For scene im-
ages, AceRead demonstrates not only precise de-
tection of subtle visual details (case a) but also
robust scene text recognition capabilities (case d).
When processing tabular data, the model exhibits
strong structural comprehension, effectively locat-
ing answers based on row and column relation-
ships (case c¢). For information-rich visualizations
in InfoVQA (case e), AceRead successfully infers
the 50% gene proportion from the textual cue "

AS DO A PARENT AND CHILD," indicating its
ability to select semantically relevant visual fea-
tures. The model also shows sophisticated reason-
ing in complex scenarios where multiple pieces
of information need to be synthesized to arrive at
the correct answer. In text-intensive tasks (case b),
the model demonstrates semantic understanding by
correctly mapping the relationship between "name

of company" and "brand" to identify "ITC" as the
company name. Although AceRead exhibits excep-
tional comprehension capabilities across diverse
VQA tasks, it still faces limitations inherent to the
language model’s capabilities, particularly in arith-
metic reasoning (case f). The model struggles to
compute accurate results when questions involve
basic arithmetic operations such as addition and
subtraction. More qualitative results can be found
in Appendix E.

5 Conclusion

We introduce AceRead, a vision-language model
that enhances visual feature compression by inte-
grating question semantics. Additionally, AceRead
features an adaptive image encoder, enabling it to
process images of arbitrary sizes with minimal dis-
tortion. Our Semantic-Enhanced Resampler (SER)
acts as a conditional information bottleneck, pre-
serving question-relevant details while reducing
redundancy. We also conduct extensive ablation
studies to confirm its effectiveness in improving
visual compression. AceRead achieves state-of-the-
art performance across multiple VQA benchmarks
while requiring only 2.75% of the model’s param-
eters to be trained. We hope that our findings on
semantic-enhanced visual compression will inspire
further research in developing more efficient and
interpretable multimodal models.



Limitations

Our experiments demonstrate that AceRead effec-
tively compresses visual features while preserv-
ing question-relevant details. However, it strug-
gles with text-intensive tasks (e.g., DocVQA and
InfoVQA) due to the limitations of its vision en-
coder, which is not specifically optimized for dense
text recognition. Additionally, AceRead has diffi-
culty handling numerical reasoning, as its language
model-based decoder lacks strong arithmetic com-
putation abilities, leading to errors in math-related
questions. Furthermore, AceRead does not support
multi-image question answering, as it processes
only a single image at a time, limiting its ability to
reason over multiple related visual inputs. In the fu-
ture, we aim to enhance AceRead’s text understand-
ing by integrating more specialized vision encoders
and improving its numerical reasoning with exter-
nal tools or enhanced training strategies. Moreover,
extending AceRead to handle multi-image tasks
remains an important direction for future research.
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A Lower Bound of Information
Bottleneck

Define the relevant probability distributions as fol-
lows: let pg(z,y) be the joint distribution of the
data, g4(z|z) be the encoder’s conditional distribu-
tion of the latent variable z, and pg(y|z) be the de-
coder’s conditional distribution of the output y. We
first derive the variational lower bound of I(Y; Z):
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Here, we apply Jensen’s inequality:
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Next, we derive I(X; Z):
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Thus, the lower bound of the objective in the
Information Bottleneck is:
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B Instruction Templates

In our framework, we utilize the special to-
ken ‘<Isysteml>’ to explicitly instruct the Vision-
Language Model (VLM) to generate a short and
concise response. The token ‘<luserl>’ is employed
to indicate the question input, with all associated

(108 05(312) — BEL (po(:o) (=)
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images being prepended to the textual question us-
ing the special token ‘<limagel>’ as a designated
placeholder. This ensures a structured and con-
sistent input format for the model. The model’s
response is prefixed with the token ‘<lassistant|>’,
maintaining a clear separation between different
dialogue components. Furthermore, each segment
of the input and output sequence is properly termi-
nated using the ‘<lendl>’ token to delineate bound-
aries and prevent ambiguity. All experiments in
this study adhere to this standardized instruction
template, as illustrated in Figure 5, ensuring con-
sistency across different evaluation settings.

Instruction Template for AceRead

<|system|>\nA chat between a curious user and an
artificial intelligence assistant. The assistant gives
concise answers to the user's questions.<|end|>

<|user|>\n<image>\nWhat is the second column
name?<|end|>

<|assistant[>\n2-9 Sept. 1972<|end|>

Figure 5: The standardized instruction template used for
training AceRead. This template defines the structured
input format, where the ‘<Isysteml>’ token provides
high-level directives, the ‘<luserl>" token introduces the
question along with associated images marked by ‘<lim-
agel>’, and the ‘<lassistant/>’ token signals the model’s
response. Each segment is clearly delineated and termi-
nated with the ‘<lendl>" token, ensuring consistency in
the training process.

C Datasets

In our study, we perform experiments on six diverse
VQA datasets, each posing unique challenges and
providing a comprehensive evaluation of VLM ca-
pabilities.

* TextVQA (Singh et al., 2019) addresses the
significant challenge of reading and reasoning
about text within images, comprising 45,336
questions across 28,408 images, highlighting
the gap between human and machine perfor-
mance in text-based reasoning.

* A-OKVQA (Schwenk et al., 2022) consists
of 19K questions requiring commonsense
and world knowledge. Unlike traditional
VQA datasets, A-OKVQA’s questions de-
mand more complex reasoning beyond sim-



ple knowledge retrieval, testing models’ real-
world reasoning capabilities.

ChartVQA (Masry et al., 2022) includes 21K
generated questions based on chart summaries.
It focuses on logical and arithmetic reasoning
over chart data, pushing models to handle both
visual features and data tables.

InfoVQA (Mathew et al., 2022) through its
collection of infographic images, emphasizes
reasoning over document layout, textual con-
tent, and graphical elements, challenging mod-
els to perform elementary reasoning and arith-
metic tasks.

TableVQABench (Kim et al., 2024) is a
benchmark for VQA on tables, with 1,500
QA pairs. It focuses on evaluating the ability
to reason over both textual and visual infor-
mation presented in tabular format.

DocVQA(Mathew et al., 2021) contains
50,000 questions on 12,000+ document im-
ages, testing models’ ability to understand
document structure and answer questions that
require detailed reading comprehension. It re-
veals performance gaps between machine and
human understanding of document layouts.

D Evaluation Prompts

Figure 9 illustrates the instruction template used for
evaluating the correctness of the generated answers.
In our evaluation framework, GPT-4 is prompted
with a predefined set of criteria to rigorously deter-
mine whether a model-generated response aligns
with the ground truth answers. Specifically, GPT-
4 is instructed to consider an answer correct if it
explicitly contains the ground truth, conveys the
same meaning using different wording, or is am-
biguous to the extent that the true answer cannot be
easily inferred. Conversely, an answer is deemed
incorrect if it is entirely unrelated to the question or
significantly deviates in meaning from the ground
truth, such as confusing a “date” with “a dinner
party.” To ensure objective and consistent evalua-
tion, GPT-4 is strictly required to return only “yes”
or “no” as its response, without any additional ex-
planations or justifications. Examples of correct
and incorrect classifications are provided in the in-
structions to guide the model in making precise
judgments.
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E More Qualitative Results

E.1 Understanding of Natural Images

We selected natural images from A-OKVQA and
TextVQA to evaluate AceRead’s comprehension,
as shown in Figure 6. The two upper subfigures
assess image understanding in cases where the an-
swer is not explicitly present, requiring inference
from contextual cues. The lower subfigures contain
images with directly embedded answers, such as
scene text. Here, AceRead must correctly recog-
nize and interpret the text before generating the
answer. These examples highlight the model’s abil-
ity to handle both implicit reasoning and explicit
text extraction tasks.

E.2 Understanding of Charts

Figure 7 showcases AceRead’s performance on
chart-type images, where it leverages textual and
graphical cues to locate relevant information. The
model successfully identifies proportions in pie
charts, trends in line charts, and numerical values
in bar charts. However, it struggles in some cases,
such as the third subfigure, where it misidentifies
the fourth item as the third, likely due to image
fragmentation. These errors highlight the need for
improved spatial reasoning and layout robustness.

E.3 Understanding of Document Pages

AceRead’s performance on document pages is
comparatively weaker than on natural images and
charts, as shown in Figure 8. Unlike natural im-
ages, which contain well-defined visual elements,
or charts, which have structured layouts, document
pages often introduce noise, distortions, and varied
text formats that pose significant challenges. In-
terestingly, AceRead demonstrates an unexpected
ability to correctly recognize handwritten text, as
shown in the first subfigure. However, its perfor-
mance deteriorates when faced with more complex
document layouts, such as forms or low-resolution
scanned pages. In these cases, noise and artifacts
in the document images likely interfere with Ac-
eRead’s text extraction process, leading to errors
in numerical recognition and semantic interpreta-
tion. These findings indicate that while AceRead
exhibits promising capabilities in understanding
structured and semi-structured text, further refine-
ments in layout-aware processing and noise ro-
bustness are needed to enhance its performance
on document-based tasks.



Human: What country do these planes belo-

ng to? AceRead: Inited States

e JZ = >

Human: In what nation is this scene locat-
ed? AceRead: France

Human: What number is on the player's
jersey? AceRead: 27

Human: what kind of beer is this?
AceRead: Ale

Figure 6: Text Reading and Visual Question Answering performance of AceRead on natural images from A-OKVQA

and TextVQA. Correct answers are colored in green.
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Human: Which country is represented by
brown color bar? AceRead: | ibya

Figure 7: Text Reading and Visual Question Answering performance of AceRead on charts from ChartVQA and
TableVQABench. Correct and wrong answers are colored green and red, respectively.
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SWANSON CENTER FOR NUTRITION
: 15779 Budget
Revised, July, 1979

222k
7

o
Human: To whom is the document sent? Human: In which month was the budget
AceRead.: 'revised' ? AceRead.:

s__975.00 s s — S 97500 I

Human: According to budget request Human: What is the population in the
summary what is total amount of other "Newton' county? AceRead: 33,870/
expenses? AceRead: $750.00/

Figure 8: Text Reading and Visual Question Answering performance of AceRead on document pages from DocVQA

and InfoVQA. Correct and wrong answers are colored green and red, respectively.

Instructions to GPT-40

You are an assistant to help me determine whether the answers generated by my model are correct. I will provide you
with the true answer(s) to a question (which may be one or multiple answers; if there are multiple, any one of them is
acceptable), and I will also give you the answer generated by my model.You need to judge whether the answer
generated by my model is correct.

The following cases are considered correct:

1. The generated answer contains the true answer.

2. The generated answer refers to the same thing as the true answer, but with different wording.
3. It is difficult for me to guess the true answer from the generated answer.

The following cases are considered incorrect:

1. The generated answer is completely unrelated to the question.

2. The generated answer is too far off from the true answer in meaning, such as “date” and “A dinner party.”
Return “yes” if correct, and “no” if incorrect.

Remember, only return “yes” or “no”, do not return anything else.

Example #1:

True answer: New York

Generated answer by model: The state where the license plate was issued is not specified in the image.
Answer: no

Example #2:

True answer: [2.9%', '2.9"]

Generated answer by model: Banks contribute 2.9% of the UK's debt.
Answer: yes

True answer: {real answer}
Generated answer by model: {generated answer}
Answer:

Figure 9: Instructions for evaluating whether the generated answer is correct.
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