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Abstract

Vision-Language models (VLMs) integrate001
visual and textual features through modality002
adaptors, demonstrating outstanding perfor-003
mance in image understanding tasks. Among004
these adaptors, compression-based approaches005
have gained particular prominence, as they006
can prune visual redundancy, highlight key007
details, and streamline computational costs.008
However, existing compression-based adaptors009
often fail to fully exploit the deep semantics010
of input questions, resulting in static or011
uninformative compressed features across012
different questions. In this study, we address013
this gap by leveraging question semantics014
to guide the compression of visual features.015
We propose a Semantic-Enhanced Resampler016
(SER), integrated into our VLM, AceRead,017
which serves as a conditional information bot-018
tleneck, channeling the most question-relevant019
information to the language model for answer020
generation. SER integrates semantic tokens021
with visual tokens and employs learnable022
queries to produce compressed representa-023
tions. Additionally, AceRead incorporates024
an adaptive image encoder, enabling the025
processing of images with arbitrary sizes while026
minimizing distortion. Notably, AceRead027
achieves state-of-the-art performance, with028
improvements of 16% on TableVQABench029
and 10% on A-OKVQA, while requiring030
only 2.75% of the model’s parameters to be031
trained. Our code and model are available at032
https://anonymous.4open.science/r/AceRead-033
77BF.034

1 Introduction035

Vision-Language Models (VLMs) integrate infor-036

mation from both visual and textual modalities,037

enabling more holistic multimodal understanding038

and reasoning, which have gained significant at-039

tention in fields such as image captioning (Dong040

et al., 2024), visual question answering (Peng et al.,041

Question: What is the color of the largest 
value bar in the histogram?
Answer: The color of the second largest 
bar is green.
Question: Please tell me the value of the 
largest bar in the histogram.
Answer: The largest value is 0.64.

(a)  Perceiver-based VLMs

0.48%

Question: Please tell me the value of the 
largest bar in the histogram.

Answer: The largest value is 0.48%.  

Question: Please tell me the value of the 
largest bar, excluding the green bar.

Answer: The second largest value is 0.48%.
(b)  QFormer-based VLMs

0.38%

Question: Please tell me the value of the 
largest bar, excluding the green bar.

Answer: The next largest value is 0.38%.

Question: Please tell me the value of the 
next value after the median.

Answer: The second largest value is 0.21%.
(c)  Our Semantic-enhanced VLMs

0.21%

Figure 1: Comparison of different compression-
based VLMs. (a) Perceiver-based VLMs suffer from
information loss due to static compression. (b) QFormer-
based VLMs primarily rely on keywords, overlooking
the role of semantics. (c) Semantic-enhanced VLMs
accurately align visual regions by incorporating ques-
tion semantics. Correct and wrong answers are colored
green and red, respectively.

2023; Ji et al., 2024), and cross-modal retrieval (Li 042

et al., 2022). Typically, VLMs build on powerful 043

pre-trained large language models (LLMs) and vi- 044

sion encoders, requiring only a modality adaptor to 045

seamlessly fuse visual features with textual tokens. 046

Different adaptor designs have been explored to op- 047

timize this fusion process, each targeting specific 048

challenges in cross-modal integration. In particular, 049

compression-based adaptors have become increas- 050

ingly popular for their ability to remove redundant 051

information and amplify critical cues in the visual 052

features (Alayrac et al., 2022; Li et al., 2023; Xue 053

et al., 2024; Huang et al., 2024). 054
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Figure 2: The overall architecture of AceRead. The left part illustrates how AceRead processes images and
compresses visual features using the Semantic-Enhanced Resampler (SER). The right part provides a detailed
overview of SER, where a frozen text encoder is employed to extract the semantic token from the question.

Despite these advantages, most existing055

compression-based adaptors focus on either056

purely visual information or merely textual057

keywords, often neglecting the deeper semantics058

embedded in input questions. Consequently,059

the compressed features often remain static or060

not sufficiently question-specific when handling061

different questions regarding the same image. For062

example, Perceiver-based VLMs (Bai et al., 2023;063

Ye et al., 2023b; Li et al., 2024b; Zhang et al.,064

2024) rely solely on visual information, failing065

to adapt if the question requires fine-grained and066

detailed context-specific information. As shown in067

Figure 1 (a), when the model is asked to identify a068

specific number in the bar chart, it fails due to the069

loss of fine-grained visual details during feature070

compression. QFormer-based VLMs (Li et al.,071

2023; Zhu et al., 2023; Li et al., 2024a) allow072

more dynamic compression based on shallow073

textual signals of the question keywords. They074

thus overlook the deeper semantic cues needed075

to differentiate changes across user questions and076

result in limited performance improvement (Xue077

et al., 2024). In Figure 1 (b), the model overly078

focuses on the keywords "largest" and "green bar",079

leading to an incorrect answer.080

In this work, we address these limitations by081

proposing a semantic-enhanced visual token query-082

ing mechanism and introducing the Semantic-083

Enhanced Resampler (SER) to fully incorporate084

question semantics during visual feature compres-085

sion. As shown in Figure 2, SER is a lightweight086

transformer module that first prepends a semantic087

token (extracted from the question’s deep repre-088

sentation) to the visual tokens and then employs a089

fixed number of learnable queries to produce com- 090

pressed, question-oriented features. This design 091

allows SER to serve as a conditional information 092

bottleneck, ensuring that the most contextually rel- 093

evant visual signals are preserved while filtering 094

out irrelevant details. 095

We incorporate SER into a new VLM called 096

AceRead, whose main contributions are: 097

• AceRead is among the first VLMs that lever- 098

age a deeper semantic understanding of ques- 099

tions to guide visual feature compression, tran- 100

scending naive keyword-based approaches. 101

• With only 110M trainable parameters (just 102

2.75% of the total), AceRead outperforms 103

seven other VLMs, achieving state-of-the- 104

art results on TextVQA, A-OKVQA, and 105

TableVQABench, while remaining compet- 106

itive on other benchmarks. 107

• AceRead is the first approach to systemati- 108

cally analyze the role of question semantics in 109

compression-based adaptors through the lens 110

of the information bottleneck framework. 111

2 Related Work 112

Vision-Language Models Current VLMs can 113

be categorized into three paradigms. The first 114

paradigm maintains the vision model unchanged 115

while focusing on designing the internal architec- 116

ture of language models, which enables thorough 117

fusion between visual and textual features. For 118

instance, Flamingo (Alayrac et al., 2022) inserts 119

new cross-attention layers between frozen language 120

model layers to facilitate visual-textual information 121
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interaction and integration. Following Flamingo’s122

approach, Llama 3.1 (Dubey et al., 2024) incor-123

porates cross-attention layers every fourth layer124

within the language model to further enhance the125

fusion of visual information. The second paradigm126

maintains the architecture of both vision and lan-127

guage models unchanged, instead focusing on de-128

signing modality adaptors. For example, in the129

LLaVA model series (Liu et al., 2024b,a; Gao et al.,130

2024; Agrawal et al., 2024), researchers employ131

MLPs as modality adaptors to directly project vi-132

sual features into the language space, achieving133

remarkable results. BLIP-2 (Li et al., 2023) further134

introduced the Q-Former architecture, which not135

only bridges the gap between vision and text modal-136

ities but also compresses and filters visual features137

to extract the most valuable information for down-138

stream tasks. The third paradigm adopts an end-to-139

end approach by directly concatenating visual and140

textual features. These combined features are then141

fed into a multimodal language model (MLLM) for142

answer generation, enabling the language model to143

possess inherent multimodal understanding capa-144

bilities. For example, Florence-2 (Xiao et al., 2024)145

leverages BART (Lewis, 2019) as its foundation146

model and follows an encoder-decoder architecture,147

where end-to-end training equips the model with148

multimodal comprehension. Chameleon (Team,149

2024), on the other hand, employs a decoder-only150

architecture and introduces interleaved vision-text151

autoregressive pretraining tasks to achieve modality152

fusion, allowing the model to effectively integrate153

visual and linguistic information.154

Vision Features Compression Visual feature155

compression is a widely adopted technique in156

VLMs, effectively reducing the number of visual157

tokens to minimize redundancy and enhance com-158

putational efficiency. Perceiver (Jaegle et al., 2021)159

first introduces the use of learnable queries to com-160

press input visual features into a compact latent161

bottleneck. mPlug (Ye et al., 2023b) improves162

this approach by concatenating visual tokens with163

queries before compression, mitigating the issue of164

fragmented fine-grained image information. Blip-165

2 (Li et al., 2023) highlights the importance of166

textual information in visual token compression167

and introduces Q-Former, which, through a two-168

stage training process, enables an understanding of169

shallow semantics. Instructblip (Dai et al., 2023)170

further enhances this by concatenating question171

word embeddings with queries, allowing queries172

to capture question-dependent variations and dy-173

namically compress visual features. MiniMonkey 174

(Huang et al., 2024) extends this idea by integrat- 175

ing textual and visual embeddings and employing 176

learnable queries to compress tokens at the patch 177

level. However, the aforementioned visual feature 178

compression approaches either entirely disregard 179

the semantic information of the question or focus 180

solely on keywords, failing to fully leverage a deep 181

semantic understanding of questions to optimize 182

the visual feature compression process. 183

xGen-MM (Xue et al., 2024) finds that incorpo- 184

rating keywords into visual feature compression 185

yields minimal performance improvement. Conse- 186

quently, their model relies exclusively on the Per- 187

ceiver for visual feature compression. In our study, 188

we further investigate this phenomenon and ob- 189

serve that integrating only shallow semantics from 190

the question indeed results in limited performance 191

improvements. However, when deeper semantic 192

information is incorporated, the model becomes 193

significantly more effective in selecting critical vi- 194

sual features, leading to substantial enhancements 195

in reasoning capability and answer accuracy. 196

3 Methodology 197

In this section, we first introduce the information 198

bottleneck theory in VLMs, followed by a detailed 199

explanation of the Semantic-Enhanced Resampler 200

and its conditional information bottleneck opti- 201

mization objective. Next, we describe the adap- 202

tive image encoder in AceRead, which is capable 203

of handling images at arbitrary sizes. Finally, we 204

describe the instruction fine-tuning strategy used 205

during training. 206

3.1 Information Bottleneck in VLMs 207

The Information Bottleneck (IB) (Tishby et al. 208

(2000)) aims to learn a compressed representation 209

of inputs, which retains task-relevant content while 210

discarding redundant details. In VLMs, we denote 211

the visual features processed by the image encoder 212

as variable X , the target labels as Y , and the com- 213

pressed visual features as Z. To obtain the optimal 214

feature representation Z∗, the IB principle can be 215

formalized as the following optimization problem: 216

Z∗ = argmax
z∼pθ(z|x)

I(Y ;Z)− βI(X;Z) (1) 217

where pθ(z|x) represents the conditional distri- 218

bution of Z given X , with θ denoting the model 219

parameters. I(Y ;Z) measures the mutual infor- 220

mation between Y and Z, quantifying how much 221
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information Z retains for predicting the target Y .222

A larger I(Y ;Z) indicates that Z better preserves223

task-relevant content. Meanwhile, I(X;Z) quanti-224

fies the dependence between X and Z, reflecting225

the amount of information Z retains from X . A226

smaller I(X;Z) implies stronger compression, as227

it reduces redundancy while maintaining essential228

information for downstream tasks. The hyperpa-229

rameter β ≥ 0 controls the trade-off between pre-230

serving predictive information and compressing231

irrelevant details.232

To optimize the objective function in Equation 1,233

we adopt the method from VIB (Alemi et al., 2016)234

to derive the lower bound LIB of the information235

bottleneck. For brevity, we place the deduction in236

Appendix A and only present the result:237

I(Y ;Z)− βI(X;Z) ≥ LIB = (2)238

E
z∼pθ(z|x)

(x,y)∼pθ(x,y)

[
log qϕ(y|z)− βKL

(
pθ(z|x)||qϕ(z)

)]
239

By maximizing the lower bound LIB , Z can be240

optimized. In Equation 2, qϕ(y|z) represents the241

language decoder with frozen parameters. The only242

trainable component is pθ(z|x), which learns to ex-243

tract a compressed yet informative representation.244

3.2 Semantic-Enhanced Resampler245

As shown in Figure 2, our Semantic-Enhanced Re-246

sampler (SER) is a lightweight transformer mod-247

ule composed of three key components: a self-248

attention block, a cross-attention block, and a feed-249

forward network. In contrast to the QFormer-based250

approach, our method introduces two notable inno-251

vations: First, we introduce a single semantic token252

that encapsulates the deep semantic information253

of the question to guide visual feature compres-254

sion. Second, directly concatenating semantic and255

visual tokens facilitates more effective cross-modal256

fusion, thereby enhancing the model’s capacity to257

retain and utilize information.258

The image is processed by a visual encoder, gen-259

erating visual feature tokens V ∈ RNv×dv , where260

Nv represents the number of visual tokens and261

dv denotes the visual feature dimension. Simul-262

taneously, the question is encoded by a frozen263

text encoder, yielding text features T ∈ RNt×dt ,264

with Nt representing the question token length265

and dt the text feature dimension. By applying266

mean pooling to the text features, a semantic to-267

ken S ∈ R1×dt is obtained. The semantic token S268

and visual token V are concatenated as keys and269

Algorithm 1 Adaptive Image Encoding Algorithm
input: Image I , Grids G, Patch size (Hv, Hw)
output: Visual features V

1: Initialize optimal grids g∗ and IoU score s;
2: for each grid g ∈ G do
3: Compute IoUr and IoUs as in Equation3
4: s1 ← IoUr + IoUs

5: if s1 ≥ s then
6: s← s1
7: g∗ ← g
8: end if
9: end for

10: P ← Crop image I with g∗

11: I ′ ← Resize image I to (Hv, Hw)
12: I ← Concatenate P and I ′

13: V ← Encode I using visual encoder fv
14: return V

values in the cross-attention block, while a set of 270

learnable queries Q ∈ RNq×dq is selected as the 271

query, where Nq ≪ Nv controls the capacity of 272

information bottleneck. After performing the fea- 273

ture aggregation computation in the cross-attention 274

block, compressed tokens Z ∈ RNq×d are ulti- 275

mately obtained. Since the text and visual encoders 276

both originate from SigLIP (Zhai et al., 2023), the 277

dimensions satisfy dv = dt = dq = d. 278

SER serves as the information bottleneck in Ac- 279

eRead, selecting the most question-relevant visual 280

tokens to the language model for answer generation. 281

Compared to Equation 2, the key innovation lies in 282

reformulating the compression model from pθ(z|x) 283

to pθ(z|x⊕ s), where the semantic token s is incor- 284

porated as a conditional input. Through extensive 285

fine-tuning with instruction signals from diverse 286

VQA datasets, pθ is optimized to maximize LIB , 287

thereby realizing what we refer to as a "conditional 288

information bottleneck" mechanism. 289

3.3 Adaptive Image Encoder 290

In AceRead, we implement an adaptive image 291

encoder that prevents content distortion typically 292

caused by fixed-size scaling. Following URe- 293

ader(Ye et al., 2023a), we employ a Shape- 294

Adaptive Cropping Module that preprocesses im- 295

ages according to their aspect ratios, generating 296

uniform-sized patches. Each patch undergoes inde- 297

pendent encoding, followed by feature concatena- 298

tion to form a complete image representation. 299

We predefine diverse grids G = {(nh×nw)|nh · 300

nw ≤ Nc, nh ∈ N, nw ∈ N}, where nh and nw 301
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denote the number of rows and columns of grid g ∈302

G, respectively, and Nc represents the maximum303

number of image patches after cropping. These304

predefined grids ensure flexibility in adapting to305

various image layouts. For an input image I ∈306

R3×H×W , we select the optimal grid g∗ based on307

two criteria: (1) g∗ should preserve the resolution308

of the image as much as possible, and (2) the aspect309

ratio of g∗ should align with that of the image.310

To measure the similarity between image I and311

grid g in terms of pixel coverage and aspect ratio312

alignment, we compute Intersection over Union313

(IoU) at both pixel and grid levels.314

IoUr(I, g) = IoU((H,W ), (nhHv, nwWv))315

IoUs(I, g) = IoU((
nwH

W
,nw), (nh, nw)) (3)316

Where Hv and Wv denote the height and width317

of each patch, respectively, which also serve as318

the input dimensions for the visual encoder. The319

optimal grid g can be obtained by maximizing the320

following matching score:321

g∗ = argmax
g∈G

IoUr(I, g) + IoUs(I, g) (4)322

After selecting the optimal grid g∗ = (nh×nw),323

we resize image I to (nhHv, nwWv) and parti-324

tion it into nh · nw local patches. Meanwhile, to325

preserve the global structure of the input image,326

we additionally scale I to (Hv,Wv) as a global327

patch, which is then processed alongside the local328

patches by the visual encoder. The resulting vi-329

sual features V ∈ RNv×dv have feature numbers330

Nv = (nh · nw + 1) × Np, where Np represents331

the number of visual features generated per patch332

by the visual encoder. Algorithm 1 outlines the333

complete processing workflow.334

3.4 Instruction Tuning335

Instruction tuning is a supervised fine-tuning (SFT)336

approach that further trains a pre-trained model on337

(instruction, output) pairs to improve the model’s338

ability to follow human instructions. This method339

bridges the gap between large language models340

(LLMs) that are trained purely on next-token pre-341

diction and the expectation for them to adhere to342

user instructions. It also enhances performance343

on unseen tasks (Feng et al., 2023). To enhance344

the model’s task generalization capabilities, we345

Dataset # Imgs. # Anns. Modality

TextVQA 28K 40K Scenes
A-OKVQA 19K 19K Scenes
ChartVQA 21K 33K Charts
InfoVQA 6K 30K Charts
TableVQABench 1.5K 1.5K Charts
DocVQA 13K 50K Documents

Table 1: Comparison of different VQA datasets.
‘Scenes’ refers to images from natural scenes, ‘Charts’
denotes statistical chart images, and ‘Documents’ repre-
sents images of document pages.

reformat all training datasets into an instruction- 346

tuning paradigm: "<|user|>:{Question} <|assis- 347

tant|>:{<image>answer}". The special tokens 348

‘<|user|>’ and ‘<|assistant|>’ indicate the user and 349

assistant dialogue segments respectively, while 350

‘<image>’ functions as a placeholder for image 351

position, which is consistently placed before the 352

question in our experiments. Additionally, we im- 353

plement response control by prefixing ‘<|system|>’ 354

instructions to ‘<user>’ queries, allowing explicit 355

specification of both response style and level of 356

comprehensiveness. Instruction-tuning dataset ex- 357

amples are provided in the Appendix B. 358

4 Experiments 359

4.1 Implementation Details 360

AceRead builds upon the recently proposed xGen- 361

MM (Xue et al., 2024), which is a powerful 362

Perceiver-based VLM. To incorporate semantics, 363

we replace its visual compression model with our 364

semantic-enhanced resampler. The dimensions 365

of hidden states dv, dt and dq are 1152, and the 366

number of learnable queries of SER Nq is set to 367

128. For the Adaptive Image Encoder, we set 368

the maximum number of grids Nc to 9, covering 369

23 distinct aspect ratio grids. The size of each 370

patch Hv ×Wv is set to = 384 to match the pre- 371

trained resolution of the visual encoder. During 372

instruction tuning, we set the maximum input se- 373

quence length to 4096 and batch size to 16. The 374

learning rate follows a linear warm-up strategy, in- 375

creasing to 2e−4 during the initial 10% of training 376

steps, followed by cosine decay to 0. Our exper- 377

iments are conducted on six datasets: ChartVQA 378

(Masry et al., 2022), TableVQABench (Kim et al., 379

2024), InfoVQA (Mathew et al., 2022), TextVQA 380

(Singh et al., 2019), and A-OKVQA (Schwenk 381

et al., 2022), DocVQA (Mathew et al., 2021), with 382
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Table 2: Main results on six visual question answering benchmarks. AceRead achieves state-of-the-art performance
on TableVQABench, TextVQA, and A-OKVQA. Underline indicates the second-highest performance.

Model Train Chart TabelVQA InfoVQA TextVQA A-OKVQA DocVQAParam VQA Bench

TinyChart-3B 9M 72.0 15.3 15.4 19.0 16.6 21.9
Monkey-2B 12M 55.9 37.3 50.8 77.3 50.0 78.0
LLaVA-7B 20M 10.2 14.6 17.6 62.4 52.8 20.0
Blip2-3B 105M 7.00 5.40 12.2 35.8 41.0 6.80
xGenMM-4B 110M 50.1 18.9 27.2 81.6 59.7 55.4
MiniGPT4-7B 114M 4.40 3.60 11.2 16.4 24.4 6.30
Instructblip-7B 186M 9.60 7.40 18.0 43.2 59.4 9.20

AceRead-4B 110M 51.8 53.4 32.5 82.6 68.9 37.6

dataset statistics detailed in Table 1. These datasets383

cover a diverse range of visual question-answering384

tasks, spanning natural scenes, charts, and doc-385

ument images. More details are provided in Ap-386

pendix C. To address dataset imbalance, we employ387

downsampling for larger datasets and upsampling388

for smaller ones, ultimately resulting in 122,959389

instruction-tuning pairs. All experiments are con-390

ducted on a cluster of 8 NVIDIA GeForce RTX391

4090 GPUs for 10 epochs, with a total training392

time of 24 hours.393

4.2 Evaluation394

Since the answers generated by VLMs can be395

phrased differently while conveying the same mean-396

ing, traditional keyword-based evaluation methods397

(Papineni et al., 2002; Levenshtein, 1966) might un-398

derestimate their performance. Therefore, we adopt399

the method proposed by VLMEvalKit (Duan et al.,400

2024), which employs a large language model to401

assess the correctness of the generated answers.402

In our evaluation, we use GPT-4o (Achiam et al.,403

2023) as the evaluator to determine whether the404

generated answers are consistent with the reference405

answers. We provide explicit judgment criteria and406

examples in the prompt to ensure that the model407

can accurately recognize the alignment. Ultimately,408

we assess the performance by calculating the accu-409

racy of the generated answers. For the complete410

evaluation prompt, please refer to Appendix D.411

4.3 Main Results412

Table 2 shows a comprehensive comparison of413

AceRead against seven similarly-sized VLMs414

across six VQA benchmarks. AceRead achieves415

state-of-the-art performance on TableVQABench,416

TextVQA, and A-OKVQA, with a notable im-417

provement of 16 percentage points in accuracy 418

on TableVQABench and 10 percentage points on 419

A-OKVQA. In terms of computational efficiency, 420

AceRead has only 110M trainable parameters, ac- 421

counting for 2.75% of the total model size. Com- 422

pared to QFormer-based VLMs such as Blip2 and 423

Instructblip, AceRead demonstrates higher com- 424

pute efficiency. However, when compared to mod- 425

els that employ MLP-based cross-modal align- 426

ments, such as TinyChart, Monkey, and LLaVA, 427

AceRead exhibits lower parameter efficiency. 428

Although AceRead performs well on scene and 429

chart images, achieving precise visual feature com- 430

pression enhanced by semantics, it underperforms 431

on text-intensive tasks like DocVQA and InfoVQA 432

compared to TinyChart and Monkey. We attribute 433

this limitation to the choice of image encoder, 434

which is not specifically optimized for processing 435

text-intensive visual inputs. In contrast, TinyChart 436

and Monkey leverage vision encoders designed for 437

document understanding, enabling them to achieve 438

superior performance on these tasks. 439

4.4 Ablation Study 440

To validate the effectiveness of the semantic- 441

enhanced visual token querying mechanism and 442

examine how SER performance varies with hyper- 443

parameter changes, we conduct extensive ablation 444

studies as shown in Table 3. 445

Removing Semantic-Enhanced Resampler. 446

Removing SER and utilizing only visual features 447

for compression (r1 vs r10) leads to a perfor- 448

mance decrease. Comparable performance to the 449

semantic-enhanced version is only achieved when 450

increasing the number of learnable queries Nq to 451

196 (r2 vs r10). This indicates that without se- 452

mantic guidance, more compressed image tokens 453
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Table 3: Ablation study about semantic-enhanced querying mechanism and different settings about hyperparameters.
‘# Nq’ represents the number of learnable queries, and ‘# Nc’ represents the number of maximum number of image
patches after cropping. ‘Sent.’ is an abbreviation for ‘Sentence’, indicating the use of features processed by the
text encoder instead of word embeddings. ‘Qry’ is an abbreviation for ‘Query’, referring to the concatenation of
semantic tokens with learnable queries.

SER Embedding Pooling Concat2 # Nq # Nc TextVQA A-OKVQA ChartVQAWord Sent. [CLS] Mean Qry Img

r1 ✓ ✓ ✓ 128 9 75.4 59.1 47.2
r2 ✓ ✓ ✓ 196 9 82.3 68.4 51.2

r3 ✓ ✓ ✓ ✓ 128 9 79.8 67.1 48.8

r4 ✓ ✓ ✓ ✓ 128 9 82.3 68.6 51.4

r5 ✓ ✓ ✓ ✓ 128 9 81.0 67.6 51.6

r6 ✓ ✓ ✓ ✓ 128 1 42.4 31.1 22.5
r7 ✓ ✓ ✓ ✓ 128 3 51.2 51.3 42.1
r8 ✓ ✓ ✓ ✓ 128 5 62.3 61.7 50.2
r9 ✓ ✓ ✓ ✓ 128 12 82.9 68.5 51.7

r10 ✓ ✓ ✓ ✓ 128 9 82.6 68.9 51.8

are needed to retain question-relevant information.454

This is also illustrated in Figure 3, where the light455

blue bars represent performance with SER, and the456

dark blue bars represent performance without it.457

As shown, using SER leads to improved results458

across all six datasets, confirming the necessity of459

semantic-enhanced resampling.460

Using Word Embeddings. In AceRead (r10),461

semantic tokens are derived from the features pro-462

cessed by a text encoder which captures an overall463

understanding of the question. The replacement of464

semantic tokens with word embeddings leads to a465

performance decrease (r3 vs r10), with a notable466

drop of 3 percentage points on ChartVQA, indicat-467

ing that shallow semantics are insufficient to guide468

visual feature compression effectively.469

Pooling with [CLS] Token. In addition to470

using mean pooling to aggregate semantic tokens,471

we also leverage the question’s [CLS] token as472

a global semantic representation to guide visual473

feature compression. However, the model’s perfor-474

mance (r4 vs r10) exhibits no improvement, sug-475

gesting that the choice between the [CLS] token476

and mean pooling has minimal impact on feature477

compression, as both methods retain similar high-478

level semantics.479

Concatenating to Queries. We follow In-480

structblip’s approach by concatenating semantic481

tokens with learnable queries before compressing482

visual features. However, we observe a slight per-483

formance degradation with this setup (r5 vs r10).484

A possible reason is that directly concatenating se-485

mantic tokens with queries may disrupt the query-486
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Figure 3: Visualization of AceRead under different set-
tings across six VQA benchmarks. The bar chart com-
pares performance w/ and w/o SER for visual feature
compression, showing that incorporating SER leads to
overall performance improvements. The line chart illus-
trates the impact of different hyperparameter settings on
performance, with r10 achieving the best results.

ing mechanism, making it less effective in extract- 487

ing critical visual features. 488

Varying Number of Adaptive Grids. We 489

investigate the impact of varying Nc, which con- 490

trols the number of adaptive grids, on model perfor- 491

mance. When adaptive image encoding is disabled 492

(Nc = 1) and all images are uniformly resized to 493

the base encoding size, model performance drops 494

significantly (r6 vs r10). This result suggests that 495

fixed resizing leads to a loss of image details, nega- 496

tively affecting the model’s ability to capture visual 497

information. As Nc increases (r7, r8), the adaptive 498

image encoder progressively expands its coverage 499

across different image sizes and aspect ratios, en- 500
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Human: What is in the 
motor-cyclist's mouth? 
AceRead: cigarette (√)

Human: What brand of 
watch is that? 
AceRead:  AP (√)

Human: How many free trials were there at the end of 
2016?
AceRead: 85 (√)

Human: What percen-
tage genes do parents 
and children  share?
AceRead: 50% (√)

Human: What is the name of the company? 
AceRead: ITC Limited (√)

ITC Limited REPORT AND 
ACCOUNTS 2013 ITC's 
Brands: Innovating for India 

Human: What is the difference in value between 
Green bar and Orange bar?
AceRead: 0.04 (×) / 0.08

（a） （c）（b）

（d） （f）（e）

Figure 4: Qualitative results of AceRead across six VQA benchmarks. (a) Scene image from A-OKVQA containing
subtle visual details. (b) Document page from DocVQA with dense textual information. (c) Table image from
TableVQABench with a structured row-column format. (d) Scene image from TextVQA featuring scene text. (e)
Complex chart from InfoVQA requiring an understanding of relationships between different regions. (f) Bar chart
from ChartVQA involving arithmetic reasoning.

hancing its ability to encode fine-grained details.501

This leads to a steady improvement in model per-502

formance. However, when Nc reaches 12 (r9), fur-503

ther increasing it does not yield noticeable perfor-504

mance improvement. Since increasing Nc results in505

a greater number of image tokens, which increases506

computational overhead, we determine Nc = 9 to507

be the optimal grid size in our experiments.508

4.5 Qualitative Results509

Figure 4 presents some qualitative results by Ac-510

eRead across six VQA datasets. For scene im-511

ages, AceRead demonstrates not only precise de-512

tection of subtle visual details (case a) but also513

robust scene text recognition capabilities (case d).514

When processing tabular data, the model exhibits515

strong structural comprehension, effectively locat-516

ing answers based on row and column relation-517

ships (case c). For information-rich visualizations518

in InfoVQA (case e), AceRead successfully infers519

the 50% gene proportion from the textual cue "...520

AS DO A PARENT AND CHILD," indicating its521

ability to select semantically relevant visual fea-522

tures. The model also shows sophisticated reason-523

ing in complex scenarios where multiple pieces524

of information need to be synthesized to arrive at525

the correct answer. In text-intensive tasks (case b),526

the model demonstrates semantic understanding by527

correctly mapping the relationship between "name528

of company" and "brand" to identify "ITC" as the 529

company name. Although AceRead exhibits excep- 530

tional comprehension capabilities across diverse 531

VQA tasks, it still faces limitations inherent to the 532

language model’s capabilities, particularly in arith- 533

metic reasoning (case f). The model struggles to 534

compute accurate results when questions involve 535

basic arithmetic operations such as addition and 536

subtraction. More qualitative results can be found 537

in Appendix E. 538

5 Conclusion 539

We introduce AceRead, a vision-language model 540

that enhances visual feature compression by inte- 541

grating question semantics. Additionally, AceRead 542

features an adaptive image encoder, enabling it to 543

process images of arbitrary sizes with minimal dis- 544

tortion. Our Semantic-Enhanced Resampler (SER) 545

acts as a conditional information bottleneck, pre- 546

serving question-relevant details while reducing 547

redundancy. We also conduct extensive ablation 548

studies to confirm its effectiveness in improving 549

visual compression. AceRead achieves state-of-the- 550

art performance across multiple VQA benchmarks 551

while requiring only 2.75% of the model’s param- 552

eters to be trained. We hope that our findings on 553

semantic-enhanced visual compression will inspire 554

further research in developing more efficient and 555

interpretable multimodal models. 556
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Limitations557

Our experiments demonstrate that AceRead effec-558

tively compresses visual features while preserv-559

ing question-relevant details. However, it strug-560

gles with text-intensive tasks (e.g., DocVQA and561

InfoVQA) due to the limitations of its vision en-562

coder, which is not specifically optimized for dense563

text recognition. Additionally, AceRead has diffi-564

culty handling numerical reasoning, as its language565

model-based decoder lacks strong arithmetic com-566

putation abilities, leading to errors in math-related567

questions. Furthermore, AceRead does not support568

multi-image question answering, as it processes569

only a single image at a time, limiting its ability to570

reason over multiple related visual inputs. In the fu-571

ture, we aim to enhance AceRead’s text understand-572

ing by integrating more specialized vision encoders573

and improving its numerical reasoning with exter-574

nal tools or enhanced training strategies. Moreover,575

extending AceRead to handle multi-image tasks576

remains an important direction for future research.577
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A Lower Bound of Information770

Bottleneck771

Define the relevant probability distributions as fol-772

lows: let pθ(x, y) be the joint distribution of the773

data, qϕ(z|x) be the encoder’s conditional distribu-774

tion of the latent variable z, and pθ(y|z) be the de-775

coder’s conditional distribution of the output y. We776

first derive the variational lower bound of I(Y ;Z):777

I(Y,Z) =Epθ(y,z)

[
log

pθ(y, z)

pθ(y)pθ(z)

]
778

= Epθ(x,y)

[
Eqϕ(z|x) [log pθ(y|z)]

]
779

−Epθ(x)

[
Eqϕ(z|x)

[
log

pθ(z)

qϕ(z|x)

]]
780

≥ Epθ(x,y)

[
Eqϕ(z|x) [log qϕ(y|z)]

]
781

−Epθ(x)

[
Eqϕ(z|x)

[
log

pθ(z)

qϕ(z|x)

]]
782

Here, we apply Jensen’s inequality:783

Epθ(x,y)

[
Eqϕ(z|x) [log pθ(y|z)]

]
784

≥ Epθ(x,y)

[
Eqϕ(z|x) [log qϕ(y|z)]

]
785

Next, we derive I(X;Z):786

I(X;Z) = Epθ(x,z)

[
log

pθ(x, z)

pθ(x)pθ(z)

]
787

= Epθ(x)

[
Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]]
788

Thus, the lower bound of the objective in the789

Information Bottleneck is:790

I(Y ;Z)− βI(X;Z) ≥ LIB =791

Epθ(x,y)

[
Eqϕ(z|x) [log qϕ(y|z)]

]
792

−Epθ(x)

[
Eqϕ(z|x)

[
log

pθ(z)

qϕ(z|x)

]]
793

−βEpθ(x)

[
Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]]
=794

E
z∼pθ(z|x)

(x,y)∼pθ(x,y)

[
log qϕ(y|z)− βKL

(
pθ(z|x)||qϕ(z)

)]
795

B Instruction Templates796

In our framework, we utilize the special to-797

ken ‘<|system|>’ to explicitly instruct the Vision-798

Language Model (VLM) to generate a short and799

concise response. The token ‘<|user|>’ is employed800

to indicate the question input, with all associated801

images being prepended to the textual question us- 802

ing the special token ‘<|image|>’ as a designated 803

placeholder. This ensures a structured and con- 804

sistent input format for the model. The model’s 805

response is prefixed with the token ‘<|assistant|>’, 806

maintaining a clear separation between different 807

dialogue components. Furthermore, each segment 808

of the input and output sequence is properly termi- 809

nated using the ‘<|end|>’ token to delineate bound- 810

aries and prevent ambiguity. All experiments in 811

this study adhere to this standardized instruction 812

template, as illustrated in Figure 5, ensuring con- 813

sistency across different evaluation settings. 814

Instruction Template for AceRead

<|system|>\nA chat between a curious user and an 
artificial intelligence assistant. The assistant gives 
concise answers to the user's questions.<|end|>

<|user|>\n<image>\nWhat is the second column 
name?<|end|>

<|assistant|>\n2-9 Sept. 1972<|end|>

Figure 5: The standardized instruction template used for
training AceRead. This template defines the structured
input format, where the ‘<|system|>’ token provides
high-level directives, the ‘<|user|>’ token introduces the
question along with associated images marked by ‘<|im-
age|>’, and the ‘<|assistant|>’ token signals the model’s
response. Each segment is clearly delineated and termi-
nated with the ‘<|end|>’ token, ensuring consistency in
the training process.

C Datasets 815

In our study, we perform experiments on six diverse 816

VQA datasets, each posing unique challenges and 817

providing a comprehensive evaluation of VLM ca- 818

pabilities. 819

• TextVQA (Singh et al., 2019) addresses the 820

significant challenge of reading and reasoning 821

about text within images, comprising 45,336 822

questions across 28,408 images, highlighting 823

the gap between human and machine perfor- 824

mance in text-based reasoning. 825

• A-OKVQA (Schwenk et al., 2022) consists 826

of 19K questions requiring commonsense 827

and world knowledge. Unlike traditional 828

VQA datasets, A-OKVQA’s questions de- 829

mand more complex reasoning beyond sim- 830
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ple knowledge retrieval, testing models’ real-831

world reasoning capabilities.832

• ChartVQA (Masry et al., 2022) includes 21K833

generated questions based on chart summaries.834

It focuses on logical and arithmetic reasoning835

over chart data, pushing models to handle both836

visual features and data tables.837

• InfoVQA (Mathew et al., 2022) through its838

collection of infographic images, emphasizes839

reasoning over document layout, textual con-840

tent, and graphical elements, challenging mod-841

els to perform elementary reasoning and arith-842

metic tasks.843

• TableVQABench (Kim et al., 2024) is a844

benchmark for VQA on tables, with 1,500845

QA pairs. It focuses on evaluating the ability846

to reason over both textual and visual infor-847

mation presented in tabular format.848

• DocVQA(Mathew et al., 2021) contains849

50,000 questions on 12,000+ document im-850

ages, testing models’ ability to understand851

document structure and answer questions that852

require detailed reading comprehension. It re-853

veals performance gaps between machine and854

human understanding of document layouts.855

D Evaluation Prompts856

Figure 9 illustrates the instruction template used for857

evaluating the correctness of the generated answers.858

In our evaluation framework, GPT-4 is prompted859

with a predefined set of criteria to rigorously deter-860

mine whether a model-generated response aligns861

with the ground truth answers. Specifically, GPT-862

4 is instructed to consider an answer correct if it863

explicitly contains the ground truth, conveys the864

same meaning using different wording, or is am-865

biguous to the extent that the true answer cannot be866

easily inferred. Conversely, an answer is deemed867

incorrect if it is entirely unrelated to the question or868

significantly deviates in meaning from the ground869

truth, such as confusing a “date” with “a dinner870

party.” To ensure objective and consistent evalua-871

tion, GPT-4 is strictly required to return only “yes”872

or “no” as its response, without any additional ex-873

planations or justifications. Examples of correct874

and incorrect classifications are provided in the in-875

structions to guide the model in making precise876

judgments.877

E More Qualitative Results 878

E.1 Understanding of Natural Images 879

We selected natural images from A-OKVQA and 880

TextVQA to evaluate AceRead’s comprehension, 881

as shown in Figure 6. The two upper subfigures 882

assess image understanding in cases where the an- 883

swer is not explicitly present, requiring inference 884

from contextual cues. The lower subfigures contain 885

images with directly embedded answers, such as 886

scene text. Here, AceRead must correctly recog- 887

nize and interpret the text before generating the 888

answer. These examples highlight the model’s abil- 889

ity to handle both implicit reasoning and explicit 890

text extraction tasks. 891

E.2 Understanding of Charts 892

Figure 7 showcases AceRead’s performance on 893

chart-type images, where it leverages textual and 894

graphical cues to locate relevant information. The 895

model successfully identifies proportions in pie 896

charts, trends in line charts, and numerical values 897

in bar charts. However, it struggles in some cases, 898

such as the third subfigure, where it misidentifies 899

the fourth item as the third, likely due to image 900

fragmentation. These errors highlight the need for 901

improved spatial reasoning and layout robustness. 902

E.3 Understanding of Document Pages 903

AceRead’s performance on document pages is 904

comparatively weaker than on natural images and 905

charts, as shown in Figure 8. Unlike natural im- 906

ages, which contain well-defined visual elements, 907

or charts, which have structured layouts, document 908

pages often introduce noise, distortions, and varied 909

text formats that pose significant challenges. In- 910

terestingly, AceRead demonstrates an unexpected 911

ability to correctly recognize handwritten text, as 912

shown in the first subfigure. However, its perfor- 913

mance deteriorates when faced with more complex 914

document layouts, such as forms or low-resolution 915

scanned pages. In these cases, noise and artifacts 916

in the document images likely interfere with Ac- 917

eRead’s text extraction process, leading to errors 918

in numerical recognition and semantic interpreta- 919

tion. These findings indicate that while AceRead 920

exhibits promising capabilities in understanding 921

structured and semi-structured text, further refine- 922

ments in layout-aware processing and noise ro- 923

bustness are needed to enhance its performance 924

on document-based tasks. 925
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Human: What country do these planes belo-
ng to? AceRead: United States

Human: What number is on the player's 
jersey? AceRead: 22

Human: In what nation is this scene locat-
ed? AceRead: France

Human: what kind of beer is this?
AceRead: Ale

Figure 6: Text Reading and Visual Question Answering performance of AceRead on natural images from A-OKVQA
and TextVQA. Correct answers are colored in green.

Human: What's the percentage of U.S adults 
who refused? AceRead: 2

Human: What was the 4th most popular 
emotion? AceRead: Connected / Inspired

Human: When does the line reach the peak? 
AceRead: 2014

Human: Which country is represented by 
brown color bar? AceRead: Libya

Figure 7: Text Reading and Visual Question Answering performance of AceRead on charts from ChartVQA and
TableVQABench. Correct and wrong answers are colored green and red, respectively.
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Human: To whom is the document sent?
 AceRead: The document is sent to Paul.

Human: According to budget request 
summary what is total amount of other 
expenses? AceRead: $750.00/ $975.00

Human: In which month was the budget 
'revised' ? AceRead: 2014

Human: What is the population in the 
'Newton' county? AceRead:  33,870 / 
33,600

Figure 8: Text Reading and Visual Question Answering performance of AceRead on document pages from DocVQA
and InfoVQA. Correct and wrong answers are colored green and red, respectively.

Instructions to GPT-4o

You are an assistant to help me determine whether the answers generated by my model are correct. I will provide you 
with the true answer(s) to a question (which may be one or multiple answers; if there are multiple, any one of them is 
acceptable), and I will also give you the answer generated by my model.You need to judge whether the answer 
generated by my model is correct.

The following cases are considered correct:
1. The generated answer contains the true answer.
2. The generated answer refers to the same thing as the true answer, but with different wording.
3. It is difficult for me to guess the true answer from the generated answer.

The following cases are considered incorrect:
1. The generated answer is completely unrelated to the question.
2. The generated answer is too far off from the true answer in meaning, such as “date” and “A dinner party.”
Return “yes” if correct, and “no” if incorrect.
Remember, only return “yes” or “no”, do not return anything else.

Example #1:
True answer: New York
Generated answer by model: The state where the license plate was issued is not specified in the image.
Answer: no

Example #2:
True answer: ['2.9%', '2.9']
Generated answer by model: Banks contribute 2.9% of the UK's debt.
Answer: yes

True answer: {real_answer}
Generated answer by model: {generated_answer}
Answer:

Figure 9: Instructions for evaluating whether the generated answer is correct.
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