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Abstract

Recent advances in self-supervision and contrastive learning have brought the performance
of foundation models to unprecedented levels in a variety of tasks. Fueled by this progress,
these models are becoming the prevailing approach for a wide array of real-world vision
problems, including risk-sensitive and high-stakes applications. However, ensuring safe de-
ployment in these scenarios requires a more comprehensive understanding of their uncer-
tainty modeling capabilities, which has been barely explored. In this work, we delve into
the behaviour of vision and vision-language foundation models under Conformal Prediction
(CP), a statistical framework that provides theoretical guarantees of marginal coverage of
the true class. Across extensive experiments including popular vision classification bench-
marks, well-known foundation vision models, and three CP methods, our findings reveal
that foundation models are well-suited for conformalization procedures, particularly those
integrating Vision Transformers. We also show that calibrating the confidence predictions
of these models, a popular strategy to improve their uncertainty quantification, actually
leads to e!ciency degradation of the conformal set on adaptive CP methods. Furthermore,
few-shot adaptation of Vision-Language Models (VLMs) to downstream tasks, whose pop-
ularity is surging, enhances conformal scores compared to zero-shot predictions. Last, our
empirical study exposes APS as particularly promising in the context of vision foundation
models, as it does not violate the marginal coverage guarantees across multiple challenging,
yet realistic scenarios.

1 Introduction

Large-scale pre-trained vision foundation models, such as DINOv2 Oquab et al. (2024), as well as those
integrating text, such as CLIP Radford et al. (2021), are driving a new learning paradigm in machine
learning, achieving unprecedented results on a broad spectrum of tasks. Despite their desirable zero-shot
and generalization capabilities, recent evidence has pointed out to the existence of bias and factual errors in
these models Tu et al. (2023), which transcend the field of computer vision Shuster et al. (2022); Barocas et al.
(2023). For example, the original CLIP paper Radford et al. (2021) demonstrated gender and race biases
in certain zero-shot tasks, whereas Tu et al. (2023) identified that CLIP-based models are not always better
calibrated than other arguably simpler ImageNet-trained models. Furthermore, Murugesan et al. (2024a)
recently showed that adapted models magnify the miscalibration issue compared to the zero-shot setting,
yielding overconfident predictions. These problems underscore widespread societal concerns surrounding the
reliable deployment and use of foundation models in sensitive contexts, such as decision-making processes in
critical scenarios, e.g., healthcare or security applications.

A popular solution to quantify the uncertainty present in the predictions of deep models is calibration. In
this setting, the proposed strategies aim at reducing the discrepancies between model predictions and the
actual correctness probability. Temperature Scaling (TS) Guo et al. (2017), a simple variant of Platt Scaling
Platt et al. (1999), provides a simple post-processing approach to adjust the softmax probability scores of the
trained models. Other lines of methods have proposed training objectives to enforce the model to produce
less confident scores, either in the predictions space Popordanoska et al. (2022); Pereyra et al. (2017), logits
Liu et al. (2023a; 2022), or modifying the ground truth labels Mukhoti et al. (2020); Müller et al. (2019).
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Conformal Prediction (CP) Vovk et al. (1999), an alternative strategy to quantify the uncertainty Sadinle
et al. (2018); Romano et al. (2020); Angelopoulos et al. (2020), is a statistical framework which o"ers several
advantages over calibration methods. First, unlike most methods in calibration, CP works directly on the
model predictions, o"ering an appealing solution for black-box models. Second, instead of simply modeling
the correctness of the predicted probability, CP produces a set of predictions, including the most likely
classes, which can be of much interest in certain problems. Last, CP methods have theoretical guarantees
for the marginal coverage of the true class within the predicted set, under several assumptions, contrary to
calibration approaches.

Due to these properties, CP is gaining attention to conformalize the predictions of deep models Barber et al.
(2023); Angelopoulos et al. (2020); Ding et al. (2024); Sesia & Romano (2021). Nevertheless, albeit the
e"orts to study CP in large language foundation models Gui et al. (2024), its impact on vision foundation
models has been unexplored, besides the significant implications it may have on a variety of vision problems.
The aim of this study is to shed light and provide important insights into this direction. To achieve this, we
conducted an extensive empirical analysis of the performance of three common CP methods on 17 popular
vision foundation models across multiple vision datasets. Our extensive experiments further explore common
situations encountered in practice, assessing the impact on CP: under distributional drifts, after confidence
calibration and in few-shot adaptation to novel downstream tasks. Our key observations are:

(i) Vision, and vision-language foundation models seem to better conformalize compared to their more
traditionally (fully-supervised) trained counterparts.

(ii) Across all the experiments, Adaptive Prediction Sets (APS) is the best CP approach in terms of
empirical coverage, while Regularized Adaptive Prediction Sets (RAPS) presents the best alternative
from a conformal set size standpoint.

(iii) Under distributional shifts, APS exhibits the highest robustness among CP methods in terms of
coverage guarantees, albeit decreasing its set e!ciency.

(iv) Confidence calibration decreases the e!ciency of conformal sets, but typically improves coverage
gap.

(v) Few-shot adaptation of vision-language models (VLMs) yields better conformalization than zero-shot
predictions in ID data, with marginal gains on OOD.

(vi) Under domain shift, across di"erent foundation models, those including visual transformers, such
as DINO and CLIP, lead to better conformal results compared to models integrating convolutional
neural networks.

2 Related Work

Foundation models for computer vision. The landscape of foundation models has rapidly evolved in
the last years. Traditionally, pre-trained convolutional networks based on ResNet architectures He et al.
(2016) were the main models used by the community. However, driven by the unprecedented advances
in language models, e.g., GPT Brown et al. (2020) or LLaMA Touvron et al. (2023), as well as the vast
availability of image data online, there are groundbreaking advances in unimodal Caron et al. (2021); Oquab
et al. (2024); Kirillov et al. (2023) and multimodal Radford et al. (2021) foundation models for vision tasks,
commonly based on vision transformers. These large pre-trained models aim to generalize across a broad
span of visual tasks by pre-training on massive, diverse image datasets, exhibiting strong zero-shot and
generalization capabilities to new tasks. For example, vision foundation models such as DINO Caron et al.
(2021); Oquab et al. (2024) rely on self-supervised learning strategies on large datasets, leading to excellent
semantic understanding of visual content. On the other hand, CLIP Radford et al. (2021) bridges the
gap between language and vision modalities through contrastive learning, e"ectively allowing the model to
understand images in the context of natural language prompts and enabling zero-shot capabilities.

Quantifying the uncertainty of the predictions of deep networks has recently garnered considerable
interest. From a calibration standpoint, popular strategies include post-hoc approaches Guo et al. (2017);
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Ding et al. (2021); Joy et al. (2023), which map the logits or softmax predictions to smoother distributions,
and explicit learning objectives Liu et al. (2022; 2023a); Müller et al. (2019); Mukhoti et al. (2020); Hebbal-
aguppe et al. (2022); Murugesan et al. (2024b), which are integrated into the loss function. Nevertheless, a
main limitation of calibration methods is that they lack theoretical guarantees of model performance. In con-
trast, CP has recently emerged as a promising alternative, which provides marginal coverage guarantees over
unseen test samples Vovk et al. (2005); Shafer & Vovk (2008). Specifically, CP resorts to a non-conformity
score function (i.e., a measure of how “di"erent" a particular data point is compared to a CP calibration
dataset) to produce a finite prediction set, which is guaranteed to contain the true label with a user-specified
confidence level. A central objective of the CP literature has been to improve either the set e!ciency (i.e.,
smaller set sizes) or the class conditional coverage. For this purpose, several non-conformity scores have
been presented Stutz et al. (2022); Romano et al. (2020); Angelopoulos et al. (2020); Sadinle et al. (2018);
Einbinder et al. (2022); Ding et al. (2024); Straitouri et al. (2023), with Romano et al. (2020); Angelopoulos
et al. (2020); Sadinle et al. (2018) being popular methods widely studied. A straightforward solution di-
rectly uses the raw class softmax predictions to generate the prediction sets Sadinle et al. (2018). Adaptive
Prediction Sets (APS) Romano et al. (2020) provides an adaptive version, computing non-conformity scores
by accumulating sorted softmax probabilities in descending order. To further improve the e!ciency, RAPS
Angelopoulos et al. (2020) introduces an explicit regularization term, which penalizes non-conformity scores
for unlikely classes.

However, a main limitation of existing evaluations is the focus on more traditional models, usually trained
on data collection that falls within the calibration and test data points distribution. Despite this transfer
learning framework not necessarily a"ecting the marginal guarantees provided by CP, how it a"ects its
e!ciency and conditional coverage remains to be explored. Thus, quantifying the uncertainty of their
predictions is paramount given the rising popularity of foundation models in strategic domains. However,
whereas uncertainty quantification from a calibration perspective has been scarcely studied Murugesan et al.
(2024a); Yoon et al. (2024); Tu et al. (2024), its exploration under CP is, to our knowledge, overlooked.

3 Background

3.1 Conformal Prediction Framework

Let X and Y denote the input and output space, respectively. We assume access to a calibration set
Dcal = {(xi, yi)}n

i=1 of n independent and identically distributed (i.i.d.) samples, where each xi = (pik)1→k→K

represents the black-box probabilities and yi → Y = {1, 2, ..., K} is the associated label. The goal of CP is to
construct a prediction set Ĉ(xn+1) ↑ Y for a new test input xn+1 such that it contains the true label yn+1
with a user pre-specified coverage probability 1 ↓ ω, where ω → (0, 1) denotes the error level.

The core idea of CP is to assess the degree to which a new sample conforms to the underlying distribution
of the calibration data by computing non-conformity scores. Let S(x, y) be a non-conformity measure (or
scoring function) that assigns a score si to each (xi, y) pair, quantifying how unusual the pair is relative to
the rest of the data. Given the non-conformity scores for all calibration examples and a new input xn+1
(unseen in the calibration set), the conformal prediction set C(xn+1) is defined as:

C(xn+1) = {y → Y : S(xn+1, y) ↔ qω} , (1)

where qω is the 1↓ω quantile of the non-conformity scores on the calibration set, obtained with the observed
labels:

qω = Quantile
(

{S(xi, yi)}N
i=1,

↗(n + 1)(1 ↓ ω)↘
n

)
(2)

Coverage Guarantees. A key property of conformal prediction is its finite-sample coverage guarantee. This
property ensures that the prediction sets achieve the desired coverage probability marginally over X and Y,
irrespective of the underlying data distribution, as long as the calibration and test data are exchangeable
Vovk et al. (2005). Formally, for any 1 ↓ ω, conformal predictors satisfy:

P(yn+1 → C(xn+1)) ≃ 1 ↓ ω. (3)
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This property is crucial for applications requiring reliable uncertainty quantification, particularly where
distributional assumptions (e.g., Gaussianity) may not hold.

Tightness of Prediction Sets. Conformal prediction guarantees valid marginal coverage. Nevertheless,
the e!ciency of the prediction sets, i.e., their size, depends on the choice of the non-conformity measure.
Choosing an appropriate S(x, y) is key to balancing the trade-o" between coverage and tightness of the
prediction sets. In practice, we aim to minimize the size of the prediction sets while maintaining the desired
coverage probability.

3.2 Non-conformity scores

Least Ambiguous Classifier (LAC) Sadinle et al. (2018) aims to construct the smallest possible set under
the assumption that the output is correct. Intuitively, it can be interpreted as a thresholding of the output
probabilities for each category. Thus, the non-conformity score can be constructed as:

SLAC(x, y) = 1 ↓ xk=y. (4)

LAC also provides notable e!ciency in scenarios using an imperfect classifier. However, it lacks adaptability,
e.g., in under-represented categories or uncertain predictions.

Adaptive Prediction Sets (APS) Romano et al. (2020) provides a non-conformity score that leverages the
accumulated confidence in the ordered probability predictions. Thus, APS is known to be an adaptive score,
whose main objective is enhancing the coverage of uncertain predictions by sacrificing e!ciency. Formally,
APS is expressed as:

SAPS(x, y) = ε(x, y) + xk=y · u, (5)

where ε(x, y) is the accumulated confidence of the categories more likely than the evaluated label y, i.e.,
ε(x, y) =

∑
k→↑Y→(x,y) xk=k→ , with Y ↓(x, y) = {k|xk > xk=y}. Adaptive methods usually include u → {0, 1},

as a random variable to break ties to achieve exact marginal coverage.

Regularized Adaptive Prediction Sets (RAPS) Angelopoulos et al. (2020) builds upon APS by adding
a regularization term to enforce smaller predicted sets. Thus, APS score is modified to penalize the confidence
of introducing additional, unlikely categories, after a certain set size is met:

SRAPS(x, y) = ε(x, y) + xk=y · u + ϑ(o(x, y) ↓ kreg)+ (6)

where ϑ, kreg ≃ 0 are hyper-parameters controlling the penalty strength, ox(y) is the rank of the sorted label,
o(x, y) = |Y ↓(x, y)| + 1, and (·)+ denotes the positive part.

We refer the reader to the di"erent works Angelopoulos et al. (2020); Sadinle et al. (2018); Romano et al.
(2020) for the respective conformal calibration coverage guarantees.

4 Experiments

4.1 Experimental Setup

Models: We employ a total of 17 foundation models: two DINO Caron et al. (2021) (DINO-S and DINO-B),
four DINOv2 Oquab et al. (2024) (DINOv2-S, DINOv2-B, DINOv2-L, and DINOv2-G), three VICReg Bardes
et al. (2022) (with ResNet-50, ResNet-50x2, and ResNet-200x2), and eight VLMs (five CLIP Radford et al.
(2021) models, MetaCLIP Xu et al. (2024), LLaVa Liu et al. (2023b), and Phi Abdin et al. (2024)). Our
main analysis is conducted on three popular vision datasets: CIFAR-10 Krizhevsky & Hinton (2009), CIFAR-
100 Krizhevsky & Hinton (2009), and Imagenet Deng et al. (2009), including its versions integrating domain
shifts Hendrycks et al. (2021a;b); Wang et al. (2019); Recht et al. (2019). Each dataset is split into two sets:
one for training, and one for the conformal experiments. The latter is then split into one calibration set to
tune the CP method, and one test set for evaluation. For few-shot, we adhere to the emerging CLIP few-
shot literature Zhang et al. (2022); Silva-Rodríguez et al. (2024); Zhou et al. (2022a), and evaluate models
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on 10 additional fine-grained and general concepts classification benchmarks: SUN397 Xiao et al. (2010),
FGVCAircraft Maji et al. (2013), EuroSAT Helber et al. (2018), StanfordCars Krause et al. (2012), Food101
Bossard et al. (2014), OxfordPets Parkhi et al. (2012), Flowers102 Nilsback & Zisserman (2008), Caltech101
Fei-Fei et al. (2004), DTD Cimpoi et al. (2014), and UCF101 Soomro et al. (2012).

Metrics: We resort to conformal set size (a.k.a. e!ciency), minimum class-conditional coverage (MCCC),
coverage gap (CovGap) and marginal coverage to benchmark the di"erent methods. More details about
metrics and implementation details can be found in Appendix Section A and Appendix Section B.

Adaptation to target tasks. The foundation models used in this study have been pre-trained using
di"erent strategies. Nevertheless, they need to be adapted for novel tasks, as their pre-trained versions do
not accommodate classification tasks, i.e., there is no classification head. To do this, foundation models are
frozen, and a linear probing (LP) head (one linear layer followed by a softmax activation function) is trained
on each dataset by optimizing a cross-entropy loss (more details in Appendix Section B).

4.2 Results

To gain insights into the factors influencing the e!cacy of CP in vision foundation models, we design four
experiments. First, we explore the impact of CP in standard scenarios, where a large calibration set is
available to conform to the predictions of di"erent models. Then, we challenge the status quo of CP and
alter the conformal sets to accommodate real-world scenarios by including domain shifts. Furthermore,
since confidence calibration is significantly linked to CP, we explore the impact of model calibration on CP
performance. Last, we examine CP when adapting a very popular VLM, i.e., CLIP, to novel tasks.

4.2.1 Performance in the General Setting

First, we study the performance of 17 vision foundation models paired with CP methods under the standard
setting, and on the three datasets, which presents ideal conditions: a su!ciently large calibration set, and
absence of distributional drifts between calibration and test sets. We aim to determine whether we can
prescribe a winner solution in this scenario and which factors can help identifying it.

Figure 1: Relationship between the linear probing model accuracy and conformal set size (top) and the
coverage gap (bottom) across di"erent tasks of increasing complexity. From left to right: CIFAR-10, CIFAR-
100 and ImageNet.

Figure 1 depicts the relationship between the linear probing performance of each model and the conformal set
size (top), and coverage gap (bottom). The initial observation highlights a clear trend: higher-performance
models tend to produce smaller prediction sets, regardless of the conformal method used. Nevertheless, while
set e!ciency (i.e. size) is typically considered as a su!cient condition in most prior literature in conformal
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prediction Angelopoulos et al. (2020), our analysis revealed that the relation with the accuracy does not

consistently hold when examining other metrics. In particular, Figure 1 (bottom) exposes that di"erent CP
methods yield mixed results for the coverage gap, which do not correlate directly with accuracy across all CP
approaches. While APS appears to be almost una"ected by the model performance, RAPS clearly benefits
from a strong performance, and LAC is negatively a"ected by more accurate models as the dataset becomes
more complex.

Regarding comparison between the CP methods, if we consider the set size, APS is clearly outperformed
by the other approaches, whereas LAC provides the smallest prediction sizes, closely followed by RAPS.
Indeed, RAPS is specifically designed to reduce the conformal set size of APS. However, the coverage gap
results indicate that this comes at the cost of increasing the range of the class-conditional coverage. Below,
we analyze the underlying causes that may explain this behaviour.

RAPS class-conditional coverage, and therefore coverage gap, are more sensitive to the model’s accuracy.

Let us assume we have two models, M1 and M2, in a multi-class classification problem, whose accuracies
are Acc1 and Acc2, respectively. For each class y → Y, we refer to CMi(y) = P(Y = y|Y → SMi(X)) as the
class-conditional coverage for y under model Mi, which measures the probability that predictions include
the true label when the true label is y. Furthermore, let ϖM1 = miny↑Y CM1(y) and ϖM2 = miny↑Y CM2(y)
denote the minimum class-conditional coverage achieved by each model. Under this scenario, we argue that
due to the penalty in RAPS, if Acc1 < Acc2, then ϖM1 < ϖM2 when using RAPS as a conformal prediction
method. In particular, M1 (with lower accuracy) needs to expand its prediction sets for certain classes to
meet the marginal coverage target 1↓ω. However, the penalty term encourages small prediction sets, limiting
an excessive number of classes. Thus, for some di!cult classes, model M1 may still potentially fail to meet
the target coverage, as the enforced penalty discourages overly large sets. This ultimately results in lower
coverage rates for those specific classes than M2. In contrast, since APS does not include any regularization
term that encourages small set sizes, it will compensate for lower performing models by increasing its set
sizes, ultimately attaining higher class-conditional coverages.

Figure 2: Comparison (APS vs RAPS) of the class-conditional coverage and set size for the class for which
RAPS has the worst class-conditional coverage. Experiments performed on CIFAR-100. Models sorted (in
ascending order) by their LP performance (min = 0.64 and max = 0.92), indicated by the size of the circles.

To confirm this hypothesis, we perform the following experiment. First, we identify the class with the lowest
minimum class-conditional coverage obtained by RAPS for each model m, which we refer to as yR

m, and find
its corresponding set size, both represented blue circles in Figure 2. Then, we identify the class-conditional
coverage and set size of the class yR

m provided by APS across all models, whose values are shown as pink
circles in both plots of Figure 2. Last, we also include the minimum class-conditional coverage obtained by
APS across each method, depicted with a cross. Note that the minimum class-conditional coverage from
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APS does not necessarily correspond to the coverage of class yR
m. Upon close examination of these results, we

observe that, indeed, for models presenting lower accuracy (those with smaller circles), the gap between the
class-conditional coverage for the worst class in RAPS and the same class in APS is consistently larger than
for more accurate models (larger circles). This empirical evidence shows that the minimum class-conditional
coverage is substantially reduced because RAPS is constrained from expanding its predictions set size. This
e"ect is more pronounced in less accurate models, where the true class may rank far away from the maximum
allowable set size in the softmax predictions. In contrast, APS tolerates worse models by increasing the set
size, which ultimately degrades the set e!ciency but yields better class-conditional coverages.

Last, LAC presents structural di"erences with RAPS and APS, as it lacks an adaptive mechanism, relying
on a uniform fixed threshold. Thus, LAC may yield inconsistent coverage rates across classes, resulting in
high variability in the class-conditional coverage and thus in the coverage gap.

Table 1: SSL vs supervised learning. Results on ImageNet obtained by CLIP (ViT-B), MetaCLIP
(ViT-B), and DINO-S (ViT-S) and a ViT-B trained in a supervised manner on ImageNet.

Set size (⇐) MCCC (⇒)
Acc (⇒) LAC APS RAPS LAC APS RAPS

ViTCLIP 72.01 3.03 9.50 3.73 0.434 0.556 0.418
ViTDINO-S 74.92 3.27 10.02 4.23 0.433 0.477 0.412
ViTMetaCLIP 75.80 2.39 9.43 2.84 0.479 0.535 0.467
ViTImageNet 76.08 2.36 38.75 4.46 0.416 0.495 0.405

Following this analysis, we are also interested in determining whether a network pre-trained following a
more traditional approach (i.e., standard supervised fine-tuning) o"ers similar conformal capabilities to self-
supervised and contrastive ones. In particular, we select a ViT-B pre-trained on ImageNet, which is the same
architecture as the visual encoder of the di"erent foundation models. The results from this analysis (Table 1)
reveal that, despite obtaining lower classification accuracy when using LP on the di"erent foundation models,

CP methods typically yield better performance than in ViTImageNet. These di"erences are significant under the
APS approach, where the set size is significantly degraded on ViTImageNet. Moreover, the class-conditional
coverage is also substantially a"ected, with nearly 6% decrease compared to the best model. Note that
our criterion for model selection in Table 1 was to ensure comparable predictive capabilities, essential to
enable a fair assessment of their conformal performance, as di"erences in accuracy could otherwise confound
the analysis. As DINO-B classification performance is not comparable, conclusions from a conformalization
standpoint cannot be drawn from it (see Table 7).

Figure 3: ViTImageNet vs ViTCLIP. An-
alyzing the di"erence in set size between a
ViTCLIP and ViTImageNet. Equal set sizes
not shown.

To further delve into these di"erences, we compute, for each
test sample, the di"erence between the conformal set size for
APS when applied to ViTImageNet and ViTCLIP models, whose
distribution is depicted in Figure 3 (additional results in Ap-
pendix Section E). These values confirm that set size di"erences
are not derived from a small set of isolated outliers but from
a considerably large group of samples that see their conformal
set increase when using the ViT trained in a supervised man-
ner. These results suggest that the strategies used to train
foundation models yield better CP metrics, resulting in con-
formalized models that can be deployed more safely on critical
scenarios. It is important to stress that this study is limited
due to the di"erent dataset scales used for training (i.e., Ima-
geNet alone is insu!cient to train a foundation model). Our
goal, however, is to understand the conformalization properties
of readily available pre-trained models, regardless of how they
were pre-trained.
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4.2.2 Impact under Distribution Shifts

The theoretical guarantees of the coverage for conformal prediction hold under the hypothesis that the
calibration set and the test set are drawn from the same distribution, i.e., data exchangeability assumption.
In this section, we analyze the impact of having calibration sets that present distributional shifts with respect
to the testing set.

We resort to ImageNet and its di"erent versions: ImageNet-R Hendrycks et al. (2021a), ImageNet-A
Hendrycks et al. (2021b), ImageNet-Sketch Wang et al. (2019) and ImageNet-V2 Recht et al. (2019). To
introduce the distributional drift between the calibration and testing data, we adapt the pre-trained model
to one of the ImageNet versions. Then, ImageNet is used as the calibration set to conform the model, which
is later tested on the ImageNet version used for adaptation. This is repeated for each ImageNet variant.

APS Romano et al. (2020) exhibits strong robustness against large distributional shifts, at the cost of substan-

tially degrading e!ciency. One would expect that adaptive CP methods, such as APS and RAPS, somehow
mitigate domain shifts due to their adaptive nature. Nevertheless, Figure 4 reveals several interesting obser-
vations, which contradict this intuition. First, we can observe that, when resorting to APS as CP method
the coverage gap is consistently satisfied (or nearly satisfied) across all domain shifts and models (Figure 4,
middle). In contrast, RAPS generally shows very similar performances compared to LAC, obtaining lower
marginal coverage under several models and domains, and substantially lower than APS. To understand this
phenomenon, we now study how set sizes evolve across domains for the di"erent methods (Figure 4, left).
We can easily observe that (i) APS yield the largest conformal sets across ImageNet domains, regardless
of the model, and (ii) APS experiences the largest set increases when the complexity of the domain grows.
Thus, as exposed in the previous Section, APS satisfied marginal coverage by substantially including more
predicted classes, therefore increasing conformal set sizes.

Figure 4: Evaluation under domain-shift. Set size (⇐), coverage (⇒), and MCCC (⇒) across three CP
methods and three foundation models. ImageNet versions are sorted based on OOD performance in Silva-
Rodríguez et al. (2024).

Figure 5: Domain shift analysis. Distribution of class-
conditional coverages for CLIP (ViT-B) on ImageNet-A: APS
(left) and RAPS (right).

APS and RAPS are adaptive methods
that produce similar minimum class-
conditional coverage, as exhibited in
ImageNet-A (Figure 4, right). However,
they showcase significant di"erences in
the average coverage gap. In the follow-
ing, we explore this phenomenon in de-
tail. More concretely, we depict in Figure
5 the distribution of the conditional class
coverage values obtained by APS and
RAPS on ImageNet-A for CLIP (ViT-B),
more datasets and models in Appendix
Section F. Interestingly, while both ap-
proaches see their minimum class-conditional coverage decrease, their distributions are completely di"erent.
Indeed, APS distributions exhibit a Gaussian shape, with a decreasing number of categories presenting lower
conditional coverage as they separate from 1-ω. In contrast, the distribution in RAPS exposes a significantly
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worse scenario, where class-conditional coverages are almost uniformly spread, with a non-negligible amount
of classes below the expected coverage, i.e., 1 ↓ ω.

Another interesting and valuable observation is that the low performance of all CP methods is magnified
when coupled with VICReg (i.e., larger set sizes and lower coverage), suggesting that this family of foundation
models may su"er more under distribution shifts.

4.2.3 Does calibration a!ect Conformal Prediction?

Confidence calibration is a popular strategy to improve the uncertainty estimates of deep models. These
techniques, which can be either added as a post-processing step Platt et al. (1999); Guo et al. (2017);
Kull et al. (2019) or integrated as a training regularizer Hebbalaguppe et al. (2022); Bohdal et al. (2023);
Müller et al. (2020), adapt the model softmax predictions to reflect their actual performance accurately.
The exponentially growing adoption of vision and vision-language foundation models in critical areas makes
integrating confidence calibration a natural progression, as evidenced by recent works Murugesan et al.
(2024a); Yoon et al. (2024); Tu et al. (2024). Thus, in this section, we investigate this important issue, as
the relationship between calibration and conformal prediction in vision foundation models remains largely
unexplored. Specifically, we examine whether calibrating these models with the popular Temperature Scaling
(TS) Guo et al. (2017) a"ects the conformal performance of fixed and adaptive CP methods. Particularly,
we apply TS to the ImageNet results in the general case (Section 4.2.1). As a proper validation set is not
available, we evaluate the CP performance over a set of T values (14 values from 0.85 to 2), and found that
T = 1.1 typically yielded well-calibrated models1. In Appendix Section D, we explore histogram binning as
another method for model calibration.

Our observations suggest that calibration decreases the e!ciency of CP sets but increases the minimum

class-conditional coverage, improving the coverage gap.

Figure 6: Di!erence in conformal set
size (i.e., e!ciency) when applying tem-
perature scaling on APS and DINOv2-B
(T = 1.1).

Confidence calibration typically smooths the distribution of the
class softmax scores, which results in less confident predictions.
Consequently, the dominant value in the predicted softmax vec-
tor is typically lower in calibrated models. Nevertheless, since
CP methods provide theoretical guarantees (under the data

exchangeability assumption Vovk et al. (2005)) to satisfy the
target marginal coverage of 1↓ω, these changes in the softmax
distributions a"ect the conformalization obtained pre-TS. We
present in Table 2 the results for the average set size and min-
imum class-conditional coverage before and after scaling the
logits with TS. Furthermore, we include the Expected Calibra-
tion Error (ECE) values to verify that model calibration has
improved. These results show that if the model is calibrated, its
prediction set size tends to be larger, particularly for adaptive
CP approaches (RAPS, and more specifically, APS). Figure 6
further delves into these results, where we plot the distribution
of di"erences between the set size of samples before and after
calibration (i.e., a point in the distribution is C(xi) ↓ C(xT S

i )). We can identify that the overall larger size
in APS is caused by a consistent e!ciency degradation across samples and not a few atypical cases with
large conformal sets. We also observe that class-conditional coverage is typically improved on calibrated
models, particularly when they are conformalized by adaptive CP methods. Thus, these results suggest
that calibrating vision foundation models decreases e!ciency while marginally enhancing class-conditional
coverage, particularly on adaptive CP.

The best coverage gap obtained by APS Romano et al. (2020) approximately aligns with the coverage gap

achieved at the optimal calibration point, whereas RAPS Angelopoulos et al. (2020) coverage gap strongly

di"ers. Figure 7 shows the impact of the temperature T on the di"erent CP metrics on CLIP conformalized

1Note that our goal is not to obtain the best-calibrated model but evaluate the impact of calibration on CP. Furthermore,
this value aligns with existing works Mukhoti et al. (2020); Joy et al. (2023) using TS for similar datasets, e.g., TinyImageNet.
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Table 2: Quantitative impact of calibrating vision foundation models with TS. Average size and
minimum class conditional coverage are reported between uncalibrated/calibrated models (T = 1 and T = 1.1
respectively) for several models, with ImageNet as benchmark dataset. Arrows indicate a decrease ( ) or an
increase( ) in metric after calibration, color indicates better (green) and worse (red) performance.

ECE (↔) Set size (↔) MCCC (↗)

(↘10↑2) LAC APS RAPS LAC APS RAPS

DINOv2-S 2.71/1.37 1.87/1.87 6.66/8.34 2.12/2.19 0.370/0.351 0.520/0.538 0.384/0.409
DINOv2-B 2.85/1.81 1.36/1.36 7.50/10.46 1.67/1.77 0.414/0.406 0.476/0.482 0.489/0.498
DINOv2-L 2.99/1.81 1.21/1.21 6.77/9.67 1.50/1.59 0.326/0.336 0.502/0.522 0.453/0.487
DINOv2-G 3.66/2.10 1.18/1.18 4.08/5.69 1.44/1.50 0.244/0.243 0.458/0.484 0.350/0.375
VICReg (RN-50x2) 2.34/2.16 3.08/3.09 13.49/16.06 3.89/3.80 0.442/0.430 0.549/0.557 0.445/0.446
VICReg (RN-100x2) 2.21/1.90 2.50/2.49 12.05/14.61 2.98/3.01 0.440/0.430 0.567/0.566 0.462/0.471
CLIP (ViT-B) 2.70/1.63 3.03/3.01 9.50/11.11 3.73/3.53 0.434/0.441 0.556/0.564 0.418/0.414
MetaCLIP 2.63/1.99 2.39/2.40 9.43/11.31 2.84/2.84 0.479/0.477 0.535/0.541 0.467/0.469

predictions. An interesting observation is that at the optimal temperature value T = 1.1, the CovGap of
APS is very close to its optimal point2 (0.0567 vs 0.0561). In contrast, while the RAPS coverage gap at
optimal calibration is 0.0701, it decreases to 0.0642 as T increases. This suggests that the coverage gap for
APS tends to be associated with model calibration performance, with smaller gaps occurring near optimal
calibration. On the downside, APS conformal sets e!ciency is degraded. As T increases, the softmax
distributions get smoother, explaining the degradation in e!ciency, which is even more drastic for APS,
whose set size monotonically increases with T . We concede that, whereas APS minimizes the coverage gap,
it does so at the expense of increasing the conformal set size. However, we believe that increasing the size,
up to some extent, while improving coverage gap is preferable in critical decision systems.

Figure 7: Impact of the temperature T on ECE (⇐), set size (⇐), MCCC (⇒), and CovGap (⇐) (CLIP
(ViT-B) on ImageNet). Green region indicates the area with ECE smaller than for T = 1. Green dotted
line indicates value of optimal calibration (T = 1.1). More plots in Appendix Section D.

4.2.4 E!ect on few-shot adapted models

Adapting zero-shot CLIP models for downstream tasks in a few-shot labeled regime is becoming increasingly
popular in VLMs. These strategies can be mainly categorized into Prompt Learning Zhou et al. (2022b);
Hantao Yao (2023); Zhou et al. (2022a), which optimize the set of text prompts given to the text encoder,
and Adapters Yu et al. (2023); Lin et al. (2023); Huang et al. (2024); Silva-Rodríguez et al. (2024); Zhou et al.
(2022b); Hantao Yao (2023), where only a limited set of learnable parameters atop embedding representa-
tions is updated. Thus, questioning whether adapting these models hinges the performance of CP methods is
of paramount importance, as it addresses a foundational aspect of e"ectively integrating uncertainty quan-
tification with modern architectures. To assess the impact of CLIP adaptation in conformal prediction, we
resort to representative methods of the few-shot adaptation families presented above, and follow standard
adaptation and evaluation protocols in the literature Silva-Rodríguez et al. (2024): (i) for out-of distribution
(OOD), we adapt CLIP on few-shot samples (M = 16) from ImageNet, and evaluate on ImageNet and its
variants, and (ii) for in distrbution (ID) we adapt on few-shot samples and evaluate on the validation set
from the same dataset.

2Results on Appendix Section D show similar behavior for other models.
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Table 3: Few-shot adaptation (16-shots). Set size and CovGap for CLIP (ViT-B backbone) on in-

distribution (average over 11 datasets) and out-of-distribution (average over ImageNet versions). Additional
results are presented in Appendix Section G.

Set size (↔) CovGap (↔)

LAC APS RAPS LAC APS RAPS
ID

ZS 5.29 6.98 6.49 0.114 0.094 0.102
ZSLP 2.09 3.43 2.53 0.087 0.060 0.064
CLAP Silva-Rodríguez et al. (2024) 2.13 3.52 2.57 0.088 0.060 0.065
CoOp Zhou et al. (2022b) 2.07 2.87 2.47 0.083 0.059 0.067
KgCoOp Hantao Yao (2023) 2.10 3.11 2.53 0.085 0.059 0.065

O
O

D

ZS 7.68 19.22 9.93 0.095 0.085 0.094
ZSLP 8.34 18.51 10.61 0.092 0.083 0.092
CLAP Silva-Rodríguez et al. (2024) 7.55 17.41 9.89 0.093 0.083 0.091
CoOp Zhou et al. (2022b) 7.86 16.35 10.03 0.093 0.085 0.095
KgCoOp Hantao Yao (2023) 7.54 16.68 9.79 0.094 0.085 0.095

Few-shot VLM adaptation render pre-trained models better conformalized in the ID scenario (Table 3). First,
we observe that, across both ID and OOD scenarios, both Adapters and Prompt Learning yield smaller
conformal set sizes and higher coverage gap than zero-shot CLIP, regardless of the CP method, with Prompt
Learning yielding slightly better performances. In contrast, on the OOD scenario, only APS consistently
enhances the set e!ciency of the ZS model, with all the few-shot adaptation methods obtaining scarce
coverage gap improvements across CP methods. These observations are related to the findings from the
previous section, which suggested that better-calibrated models lead to larger conformal sets. Indeed, recent
evidence Murugesan et al. (2024a) demonstrated that few-shot CLIP adaptation methods deteriorate the
confidence estimates compared to ZS predictions, which, following our observations, should result in smaller
conformal sets, as validated in Table 3. Further details are provided in Appendix Section G.

5 Conclusion

In this study, we aimed at answering the question: Which CP method and model should I use, and what

can I expect, in the era of vision foundation models? Our findings revealed that vision foundation models
yield better conformal metrics than their traditional pre-trained counterparts, with models integrating vi-
sual transformers outperforming those that use convolutional neural networks, particularly under domain
shifts. Furthermore, we observed that several common situations encountered in practice (i.e., presence of
distributional drifts and models undergoing confidence calibration) are indeed detrimental for some CP ap-
proaches. Interestingly, an adaptive CP method, i.e., APS, exhibited stronger robustness to these scenarios,
particularly in terms of conditional coverage, but at the expense of degrading the set e!ciency.

The final decision ultimately hinges on the requirements of each task. In certain fields, e.g., medical diagnosis,
it may be preferable to maximize the conditional coverage across classes, even if it increases the conformal set
size, as this minimizes the risk of critical errors. In contrast, in domains where errors are less consequential,
maintaining smaller set sizes might be preferable to streamline decision-making and reduce computational
demands. Thus, the choice depends on balancing the trade-o"s between accuracy, usability, and the specific
demands of the application.
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