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Abstract

Sliced Mutual Information (SMI) is widely used as a scalable alternative
to mutual information for measuring non-linear statistical dependence.
Despite its advantages, such as faster convergence, robustness to high
dimensionality, and nullification only under statistical independence, we
demonstrate that SMI is highly susceptible to data manipulation and
exhibits counterintuitive behavior. Through extensive benchmarking and
theoretical analysis, we show that SMI saturates easily, fails to detect
increases in statistical dependence (even under linear transformations
designed to enhance the extraction of information), prioritizes redundancy
over informative content, and in some cases, performs worse than simpler
dependence measures like the correlation coefficient.
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1 Introduction

Mutual information (MI) is a fundamental and invariant measure of nonlinear statistical
dependence between two random vectors, defined as the Kullback-Leibler divergence
between the joint distribution and the product of marginals [1]:

𝖨(𝑋; 𝑌 ) = D𝖪𝖫(ℙ𝑋,𝑌 ‖ ℙ𝑋 ⊗ ℙ𝑌 ).

Due to several outstanding properties, such as nullification only under statistical indepen-
dence, invariance to invertible transformations, and ability to capture non-linear dependen-
cies, MI is used extensively for theoretical analysis of overfitting [2], [3], hypothesis testing
[4], feature selection [5], [6], [7], representation learning [8], [9], [10], [11], [12], [13], and
studying the mechanisms behind generalization in deep neural networks (DNNs) [14], [15],
[16], [17].
In practical scenarios, ℙ𝑋,𝑌  and ℙ𝑋 ⊗ ℙ𝑌  are unknown, requiring MI to be estimated from
finite samples. Despite all the aforementioned merits, this reliance on empirical estimates
leads to the curse of dimensionality: the sample complexity of MI grows exponentially with
the number of dimensions [18], [19]. A common strategy to mitigate this issue is to use
alternative measures of statistical dependence that are more stable in high dimensions.
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However, such measures usually offer only a fraction of MI capabilities. Therefore, it is
crucial to maintain a balance between robustness to the curse of dimensionality and the
ability to detect complex dependency structures.
To strike this balance, popular techniques often retain MI as a backbone statistical measure
but employ dimensionality reduction before estimation. While some studies explore sophis-
ticated nonlinear compression methods [17], [20], others favor more scalable linear projection
approaches [21], [22], [23], [24], [25]. Among the latter group, the Sliced Mutual Information
(SMI) [22], [23] stands out, leveraging random projections to cover all directions uniformly:

𝖲𝖨(𝑋; 𝑌 ) = 1
∮

𝕊𝑑𝑥−1 d𝜃
1

∮
𝕊𝑑𝑦−1 d𝜙

∮
𝕊𝑑𝑥−1

∮
𝕊𝑑𝑦−1

𝖨(𝜃𝖳𝑋; 𝜙𝖳𝑌 ) d𝜃 d𝜙. (1)

Uniform slicing allows SMI to maintain some crucial properties of MI (e.g., being zero if
and only if 𝑋 and 𝑌  are independent), while remaining completely free from additional
optimization problems (e.g., from finding optimal projections, as in [24], [25]). Combined
with fast convergence rates, this has established SMI as a scalable alternative to MI. Conse-
quently, it has been widely adopted for studying DNNs [26], [27], [28], [29], [30], deriving
generalization bounds [31], independence testing [32] and auditing differential privacy [33].
It was also proposed to use SMI for feature selection [22] and preventing mode collapse in
generative models [23].
Despite its popularity, the research community has largely overlooked potential shortcom-
ings of SMI. Some studies prematurely attribute their results to underlying phenomena
without rigorously investigating whether they stem from artifacts introduced by random
projections. Furthermore, existing works fail to comprehensively address issues related to
random slicing, focusing primarily on suboptimality of random projections for information
preservation [24], [25].
Contribution. In this article, we address this gap by systematically analyzing SMI across
diverse settings, demonstrating that it frequently exhibits counterintuitive behavior and
fails to accurately capture statistical dependence dynamics. Our key contributions are:

1. Saturation and Sensitivity Analysis. Through theoretical analysis and exten-
sive benchmarking, we show that SMI saturates prematurely, even for low-dimen-
sional synthetic problems, and fails to detect significant increases in statistical
dependence.

2. Redundancy Bias. We refute the prevailing assumption that SMI favors linearly
extractable information by constructing an explicit example where introducing such
structure increases MI and even linear correlation, but decreases SMI. In fact, we
show that SMI prioritizes information redundancy over information content. We
argue that this bias can lead to catastrophic failures in some applications, e.g.
collapses in representation learning.

3. Curse of Dimensionality. We revisit the dynamics of SMI for increasing dimen-
sionality and argue that SMI is, in fact, cursed, with the curse of dimensionality
manifesting itself not through sample complexity, but via asymptotic decay to zero
in high-dimensional regimes due to diminishing redundancy.

4. Reestablishing the Trade-off. Finally, we discuss to which extent the aforemen-
tioned problems can be solved by using non-uniform/non-random slicing strategies,
and how they affect the trade-off between scalability and utility of different
measures of statistical dependence.

Our paper is structured as follows. In Section 2, we provide the mathematical background
that is necessary for our analysis. In Section 3, we discuss previous findings which are related
to the research topic of this work. Section 4 consists of our main theoretical results, with the
complete proofs being provided in Section B. In Section 5, we employ synthetic benchmarks
to show the disconnection between dynamics of MI and SMI. Section 6 illustrates that tasks
related to SMI maximization may yield degenerate solutions, contrary to MI maximization.
Finally, we discuss our results in Section 7.
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2 Preliminaries

Elements of Information Theory. Let (Ω, ℱ, ℙ) be a probability space with sample
space Ω, 𝜎-algebra ℱ, and probability measure ℙ defined on ℱ. Consider random vectors 𝑋 :
Ω → ℝ𝑑𝑥 and 𝑌 : Ω → ℝ𝑑𝑦 with joint distribution ℙ𝑋,𝑌  and marginals ℙ𝑋 and ℙ𝑌 , respec-
tively. Wherever it is needed, we assume the relevant Radon-Nikodym derivatives exist.
For any probability measure ℚ ≪ ℙ, the Kullback-Leibler (KL) divergence is D𝖪𝖫(ℚ ‖ ℙ) =
𝔼ℚ[log d ℚ

d ℙ ], which is non-negative and vanishes if and only if (iff) ℙ = ℚ. The mutual
information (MI) between 𝑋 and 𝑌  quantifies the divergence between the joint distribution
and the product of marginals:

𝖨(𝑋; 𝑌 ) = 𝔼 log
d ℙ𝑋,𝑌

d ℙ𝑋 ⊗ ℙ𝑌
= D𝖪𝖫(ℙ𝑋,𝑌 ‖ ℙ𝑋 ⊗ ℙ𝑌 ).

When ℙ𝑋 admits a probability density function (PDF) 𝑝(𝑋) with respect to (w.r.t.)
the Lebesgue measure, the differential entropy is defined as 𝗁(𝑋) = − 𝔼[log 𝑝(𝑋)], where
log( ⋅ ) denotes the natural logarithm. Likewise, the joint entropy 𝗁(𝑋, 𝑌 ) is defined
via the joint density 𝑝(𝑋, 𝑌 ), and conditional entropy is 𝗁(𝑋 | 𝑌 ) = − 𝔼[log 𝑝(𝑋 | 𝑌 )] =
− 𝔼𝑌 [𝔼𝑋 | 𝑌 log 𝑝(𝑋 | 𝑌 )]. Under the existence of PDFs, MI satisfies the identities

𝖨(𝑋; 𝑌 ) = 𝗁(𝑋) − 𝗁(𝑋 | 𝑌 ) = 𝗁(𝑌 ) − 𝗁(𝑌 | 𝑋) = 𝗁(𝑋) + 𝗁(𝑌 ) − 𝗁(𝑋, 𝑌 ). (2)

In this work, we denote by 𝜇M the normalized Haar (uniform) probability measure on a
compact manifold M, i.e., the unique bi‑invariant measure satisfying 𝜇M(M) = 1. Hence, to
sample uniformly from specific spaces we write W ∼ 𝜇O(𝑑), 𝜃 ∼ 𝜇𝕊𝑑−1 , A ∼ 𝜇St(𝑘,𝑑), indicating
draws from the Haar measures on orthogonal group O(𝑑) = {Q ∈ ℝ𝑑×𝑑 : Q𝖳Q = QQ𝖳 =
I}, the unit sphere 𝕊𝑑−1 = {𝑋 ∈ ℝ𝑑 : ‖𝑋‖2 = 1}, and the Stiefel manifold St(𝑘, 𝑑) = {Q ∈
ℝ𝑑×𝑘 : Q𝖳Q = I}, respectively.
Sliced Mutual Information. To mitigate the curse of dimensionality, one may average
MI over all 𝑘-dimensional projections. The 𝑘-sliced mutual information (𝑘-SMI) [23] between
𝑋 and 𝑌  is defined as

𝖲𝖨𝑘(𝑋; 𝑌 ) = ∫
St(𝑘,𝑑𝑥)

∫
St(𝑘,𝑑𝑦)

𝖨(Θ𝖳𝑋; Φ𝖳𝑌 ) d𝜇St(𝑘,𝑑𝑥)(Θ) d𝜇St(𝑘,𝑑𝑦)(Φ),

Setting 𝑘 = 1 recovers the standard sliced mutual information (1).

3 Background

Merits of SMI are straightforward and have been investigated thoroughly in [22], [23]. We
remind the reader of the two most important of them:

1. Scalability enabled by low-dimensional projections.
2. Nullification Property (i.e., 𝖲𝖨𝑘(𝑋; 𝑌 ) = 0 iff 𝑋 and 𝑌  are independent), which

stems from the projections being random and independent.
In contrast, demerits of SMI are not very obvious and not well-covered in the literature. In
this section, we recapitulate and analyze previous works which address the shortcomings of
SMI. To facilitate the analysis, we divide them into three main categories.
Suboptimality of random slicing. In [24] and [25], it is argued that a uniform slicing
strategy can produce suboptimal projections, impairing SMI’s ability to capture dependen-
cies in the presence of noisy or non-informative components. To address this issue, [24]
proposed max-sliced MI (mSMI), which selects non-random projectors that maximize the MI
between projected representations. This approach is also claimed to improve interpretability
and convergence rates.
However, deterministic slicing may overlook dependencies captured by non-optimal compo-
nents. To mitigate this, [25] extends the max-sliced approach by optimizing SMI over
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probability distributions of projectors, with regularization to maintain slice diversity. While
the authors emphasize that optimization should occur over joint distributions, their moti-
vation primarily addresses the issue of non-optimal marginal distributions of 𝜃 and 𝜙 —
specifically, the presence of non‑informative components in 𝑋 and 𝑌 . We contend that this
represents only a partial understanding of the problem, as many SMI artifacts arise from
other factors. Needless to say that optimization over probability distributions is also a heavy
burden, which does not align with the slicing philosophy.
Data Processing Inequality violation. A fundamental property of MI is that it cannot
be increased by deterministic processing or, more generally, by Markov kernels. Furthermore,
MI is preserved under invertible transformations. This is formalized by the data processing
inequality (DPI).
Theorem 3.1. (Theorem 3.7 in [1]) For a Markov chain 𝑋 → 𝑌 → 𝑍, 𝖨(𝑋; 𝑌 ) ≥ 𝖨(𝑋; 𝑍).
Additionally, if 𝑍 = 𝑓(𝑌 ) where 𝑓 is measurably invertible, then equality holds.
In contrast to MI, SMI violates the DPI (see Section 3.2 in [22] for an example). While the
intuition behind DPI is clear (raw data already contains full information, and processing
can only destroy it), the implications of DPI violation are less straightforward.
Existing works suggest that SMI’s violation of DPI can reflect a preference for linearly
extractable features, framing this as a useful property that aligns with the informal
understanding of “practically available” (i.e., easily accessible) information [22], [26], [30].
However, this interpretation can be misleading if the factors behind SMI increases are
misidentified. Our analysis reveals that this is indeed the case, as SMI exhibits more inherent
biases than previously recognized.
Asymptotics in high-dimensional regime. Convergence analysis suggests that the
sample complexity of SMI estimation is far less sensitive to data dimensionality compared
to that of MI. In fact, it has been argued that the estimation error may even decrease with
dimensionality in some cases (see Remark 4 in [23]). However, an analysis of SMI itself
reveals that this behavior may result from the fact that SMI can decrease as dimensionality
grows. Specifically, Theorem 3 in [23] provides an asymptotic expression (as 𝑑 → ∞) for
SMI in the case of jointly normal 𝑋 and 𝑌 , which decays hyperbolically with 𝑑 under some
circumstances.
To date, no explanation for this phenomenon has been provided in the literature. We
therefore elaborate on this finding by deriving non-asymptotic expressions, along with
experimental results for non-Gaussian data, which reveal further nuances behind the decay.

4 Theoretical analysis

We start our analysis with considering a simple example, which (a) admits closed-form
expression for SMI and (b) is capable of illustrating severe problems of the quantity in
question.
Lemma 4.1. Consider the following pair of jointly Gaussian 𝑑-dimensional random vectors:

(𝑋, 𝑌 ) ∼ 𝒩(0, ( I
𝜌I

𝜌I
I )), 𝜌 ∈ (−1; 1).

In this setup, MI and SMI can be calculated analytically:

𝖨(𝑋; 𝑌 ) = −𝑑
2

log(1 − 𝜌2), 𝖲𝖨(𝑋; 𝑌 ) = 𝜌2

2𝑑
  𝐹3 2(1, 1, 3

2
; 𝑑
2

+ 1, 2; 𝜌2),

where 𝐹3 2 is the generalized hypergeometric function. Additionally, the following limits hold:

lim
𝑑→∞

𝖨(𝑋; 𝑌 ) = +∞ lim
𝑑→∞

𝖲𝖨(𝑋; 𝑌 ) = 0

lim
𝜌2→1

𝖨(𝑋; 𝑌 ) = +∞ lim
𝜌2→1

𝖲𝖨(𝑋; 𝑌 ) = 𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2 ≤ 1
𝑑 − 1

,

4
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Figure 2:  Saturation of 𝖲𝖨(𝑋; 𝑌 ) as function of 𝖨(𝑋; 𝑌 )/𝑑 for the example from Lemma
4.1, non-normalized (left) and normalized (right) versions. Note that the problem becomes
more prominent in higher dimensions, both because of lower plateau and faster saturation.

with 𝜓 being the digamma function.
Note that while MI correctly captures the growing statistical dependence as 𝑑 → ∞ (since
additional components contribute shared information), SMI drops to zero, exposing a
fundamental problem. We interpret this behavior as a distinct manifestation of the curse
of dimensionality: as 𝑑 grows, SMI uniformly decays to zero and becomes ineffective for
statistical analysis.
The second pair of limits reveals another critical flaw of SMI. When 𝜌2 → 1, the 𝑋-𝑌
relationship becomes deterministic — a property MI reflects successfully. In stark contrast,
SMI remains bounded by a dimension-dependent factor that decays hyperbolically. Further-
more, plotting SMI against MI shows this bound is reached prematurely, demonstrating
SMI’s rapid saturation with increasing dependence (Figure 2). In this saturated regime,
SMI becomes effectively insensitive to further growth in shared information. Moreover, this
renders estimates of SMI for different dimensionalities fundamentally incomparable, as they
are theoretically bounded by factors depending on 𝑑.
These phenomena can not be explained by suboptimality of individual projections. In fact,
each individual projection is optimal, as 𝖨(𝜃𝖳𝑋; 𝑌 ) does not depend on 𝜃 in this particular
example. The proof of Lemma 4.1 suggests that the problem arises from the majority of
pairs of projectors being suboptimal, yielding near-independent 𝜃𝖳𝑋 and 𝜙𝖳𝑌  in the most
outcomes, even for 𝑑 = 2. Although similar analysis for 𝑘-SMI is extremely challenging, we
argue that the problems in question prevail even when employing 𝑘-rank projectors.
Proposition 4.2. Under the setup of Lemma 4.1, 𝑘-SMI has the following representation

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∫
[0,1]𝑘

∑
𝑘

𝑖=1
log(1 − 𝜌2𝜆𝑖) 𝑝(𝝀) d𝝀,

where 𝑝(𝝀) ∝ ∏𝑖<𝑗|𝜆𝑗 − 𝜆𝑖| ∏𝑘
𝑖=1 (1 − 𝜆𝑖)

(𝑑−2𝑘−1)/2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(⋆)

.

Remark. 4.3. As 𝑑 grows, (⋆) asymptotically concentrates 𝜆𝑖 near zero, driving 𝖲𝖨𝑘 to zero.
We argue that the limitations we uncovered can be attributed to a strong bias of SMI
toward information redundancy. That is, SMI favors repetition of information across
different axes, and suffers from the curse of dimensionality if 𝑋 and 𝑌  have high entropy.
The following proposition and remark present a simple example to clarify this bias.
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Proposition 4.4. Let 𝑋 and 𝑌  be 𝑑𝑥, 𝑑𝑦-dimensional random vectors respectively,
with 𝑑𝑥, 𝑑𝑦 < 𝑘. Let A ∈ ℝ𝑚𝑥×𝑑𝑥 and B ∈ ℝ𝑚𝑦×𝑑𝑦 be full column rank matrices. Then
𝖲𝖨𝑘(A𝑋; B𝑌 ) = 𝖨(𝑋; 𝑌 ).
Corollary 4.5. Consider the following pair of Gaussian 𝑑-dimensional random vectors:

(𝑋, 𝑌 ) ∼ 𝒩(0, ( J
𝜌J

𝜌J
J )), 𝜌 ∈ (−1; 1),

where J = 𝟏 ⋅ 𝟏𝖳 with 𝟏𝖳 = (1, …, 1). Then 𝖲𝖨𝑘(𝑋; 𝑌 ) = 𝖨(𝑋; 𝑌 ) = −1
2 log(1 − 𝜌2).

Remark. 4.6. Applying 𝟏 ⋅ 𝑒𝖳
1  to the random vectors from Lemma 4.1 individually yields

the example from Corollary 4.5. Therefore, this linear transform increases SMI despite
decreasing MI.

4.1 Extension to optimal slicing

Although our work primarily focuses on conventional (average) sliced mutual information
(SMI), as it is the most widely used variant, we also provide some intuition regarding the
limitations of its “optimal” counterparts: max-sliced MI (mSMI) [24] and optimal-sliced MI
(oSMI) [25]. Since mSMI is a special case of oSMI without regularization constraints, we
restrict our discussion to mSMI, though our reasoning extends to oSMI as well. The 𝑘-
mSMI is defined as:

𝖲𝖨𝑘(𝑋; 𝑌 ) = sup
Θ∈ St(𝑑𝑥,𝑘)
Φ∈ St(𝑑𝑦,𝑘)

𝖨(Θ𝖳𝑋; Φ𝖳𝑌 ) (3)

To highlight the shortcomings of linear compression, we revisit a Gaussian example. The
following proposition demonstrates that even in this simple setting, mSMI captures only
a subset of dependencies and can exhibit opposite trends to MI. This occurs, for instance,
when dependencies become more evenly distributed across components, which again returns
us to the redundancy bias.
Proposition 4.7. (Proposition 2 in [24]) Let (𝑋, 𝑌 ) ∼ 𝒩(𝜇, Σ), with marginal covariances
Σ𝑋, Σ𝑌  and cross-covariance Σ𝑋𝑌 . Suppose the matrix Σ−1

2
𝑋 Σ𝑋𝑌 Σ−1

2
𝑌  exists, and let {𝜌𝑖}

𝑑
𝑖=1

denote its singular values in descending order, where 𝑑 = min(𝑑𝑥, 𝑑𝑦). Then

𝖨(𝑋; 𝑌 ) = −1
2

∑
𝑑

𝑖=1
log(1 − 𝜌2

𝑖 ), 𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∑
𝑘

𝑖=1
log(1 − 𝜌2

𝑖 ).

5 Synthetic Experiments

To complement the theoretical analysis from the previous section and address complex, non-
Gaussian cases, we conduct an extensive benchmarking of SMI using synthetic tests from
[34], based on the works of [17], [35], [36]. This benchmark suite is used to evaluate MI
estimators. However, here we do not assess whether SMI estimates converge to ground-truth
MI values. SMI is a distinct measure of statistical dependance, and should not be viewed as
an approximation of MI. Instead, our analysis focuses on the relationship between the two
measures: since MI captures the true degree of statistical dependence, opposing trends in
MI and SMI reveal problems with the latter quantity.
For the experiments, we use correlated normal, correlated uniform, smoothed uniform and
log-gamma-exponential distributions, for which the ground-truth value of MI is available.
To increase the dimensionality, we use independent components with equally distributed
per-component MI. For each distribution, we vary both the data dimensionality (𝑑) and
the projection dimensionality (𝑘 < 𝑑). In Section C, we also utilize MI-preserving mappings
to transform low-dimensional Gaussian vectors into high-dimensional synthetic images, as
described in [17]; the examples of such images are displayed in Figure 3.
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(a) 2D Gaussians (b) Rectangles

Figure 3:  Examples of synthetic images from additional experiments in Section C. Note that
images are high-dimensional, but admit latent structure, which is similar to real datasets.

To estimate MI between projections, we use the KSG estimator [35] with the number of
neighbors fixed at 1. For each configuration, we conduct 10 independent runs with different
random seeds to compute means and standard deviations. Our experiments use 104 samples
for (𝑋, 𝑌 ) and 128 samples for (Θ, Φ).
To experimentally verify the saturation, we plot SMI against MI normalized by dimension-
ality 𝑑 in Figure 4. The plots clearly show that SMI reaches a plateau relatively early for all
the featured distributions. The results for the normal distribution also align well with those
from Lemma 4.1. We further confirm the saturation of 𝑘-SMI for 𝑘 ∈ {2, 3} experimentally
in Section C. Finally, we plot the saturated values against 𝑑 on a log-log scale, demonstrating
that the 1/𝑑 trend from Lemma 4.1 also holds for non-Gaussian distributions.

6 SMI for InfoMax-like tasks
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Figure 4:  Results of synthetic experiments with different distributions for SMI. We report
mean values and standard deviations computed across 10 runs, with 104 samples used for
MI estimation and 128 for averaging across projections.
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Figure 5:  Decaying trends of 𝑘-SMI for correlated normal (corr. 𝒩), correlated uniform
(corr. U), smoothed uniform (sm. U) and log-gamma-exponential (LGE). We plot saturated
values of 𝑘-SMI against data dimensionality 𝑑. Log scale is used to illustrate the 1/𝑑 trend
predicted in Lemma 4.1.

Since mutual information is interpretable and captures non-linear dependencies, it is widely
used as a training objective. Many applications involve maximizing MI (InfoMax) for feature
selection [5], [6], [7] and self-supervised representation learning [8], [9], [10], [11], [12], [13].
However, due to the curse of dimensionality, alternative objectives have been proposed, with
some works using sliced mutual information maximization for feature extraction [22] and
disentanglement in InfoGAN [23].
In this section, we argue that SMI is not a suitable alternative to MI for InfoMax tasks.
Since SMI exhibits a strong preference for redundancy, SMI maximization may lead to
collapsed (high-redundancy) solutions. To demonstrate this, we examine its performance
in learning compressed representations through mutual information maximization (Deep
InfoMax) [8]. This approach is known to be equivalent to many popular contrastive self-
supervised methods [13].
In Deep InfoMax, an encoder network 𝑓 is trained to maximize a lower bound on 𝖨(𝑋; 𝑓(𝑋)),
where 𝑋 represents input data and 𝑓(𝑋) its compressed representation. This method is
theoretically sound, as maximizing MI ensures the most informative embeddings under
the latent space dimensionality constraint. For our study, we replace MI with SMI in this
framework. This substitution is straightforward since both MI and SMI admit Donsker-
Varadhan variational lower bounds [37]:

𝖨(𝑋; 𝑌 ) = sup
𝑇:Ω→ℝ

[𝔼ℙ𝑋,𝑌
𝑇 (𝑋, 𝑌 ) − log(𝔼ℙ𝑋 ⊗ ℙ𝑌

𝑒𝑇(𝑋,𝑌 ))],

𝖲𝖨𝑘(𝑋; 𝑌 ) = sup
𝑇:Ω→ℝ

𝔼Θ,Φ[𝔼ℙ𝑋,𝑌
𝑇(Θ𝖳𝑋, Φ𝖳𝑌 , Θ, Φ) − log(𝔼ℙ𝑋 ⊗ ℙ𝑌

𝑒𝑇(Θ𝖳𝑋,Φ𝖳𝑌 ,Θ,Φ))],
(4)

where 𝑇  is a critic function, which is also approximated in practice by a neural network. For
detailed derivations of these bounds, we refer the reader to [38] (MI) and [22], [23] (SMI).
We strictly follow the experimental protocol from [13]. In particular, we use MNIST hand-
written digits dataset [39], employ InfoNCE loss [40] to approximate (4), use convolutional
network for 𝑓 and fully-connected network for 𝑇 . Latent space dimensionality is fixed at 𝑑 =
2 for visualization purposes. Small Gaussian noise is added to the outlet of the encoder to
combat representation collapse [13]. More details are provided in Section D. We focus on this
simple setup because our objective is to show that SMI produces degenerate results even in
elementary tasks, making more complex configurations unnecessary for this demonstration.
Results are presented in Figure 6. As expected, maximization of SMI immediately leads to
collapsed representations, while conventional InfoMax yields embeddings with low redun-
dancy (components are close to 𝒩(0, I)). This behavior is consistent across different runs.
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(a) MI → max, 2000 epochs. (b) SMI → max, 10 epochs. (c) SMI → max, 2000 epochs.

Figure 6:  Visualizations of embeddings from the representation learning experiments, with
points colored by class. Note that mutual information maximization (left) produces clustered
low-redundancy representations, while SMI maximization results in immediate collapse.

7 Discussion

Results. Sliced mutual information (SMI) has been proposed as a scalable alternative to
Shannon’s mutual information. While SMI enables efficient computation in high-dimensional
settings and satisfies the nullification property, our findings reveal critical deficiencies that
undermine its reliability for feature extraction and related tasks.
We demonstrate that SMI saturates rapidly, failing to capture variations in statistical depen-
dence. This makes it difficult to distinguish between intrinsic SMI fluctuations and genuine
changes in dependence structure. Furthermore, we invalidate the common hypothesis that
SMI favors linear features through a counterexample where even correlation coefficients
reflect dependence more faithfully than SMI, which exhibits inverted behavior.
In high dimensions, SMI decays with increasing dimensionality, contrary to MI’s monotonic
behavior. This is established analytically for Gaussian cases and validated empirically across
diverse synthetic experiments. Consequently, SMI variations may reflect redundancy or high-
dimensional artifacts without a principled way to disentangle these factors.
Impact. Thanks to fast convergence rates and the absence of additional optimization
problems, SMI has been widely applied across various fields of statistics and machine
learning. Given our findings, it is therefore crucial to recognize how the inherent biases of
SMI affect practical applications.
The works [22] and [23] propose using SMI in a Deep InfoMax setting. However, we
demonstrate that maximizing SMI can lead to collapsed solutions due to redundancy bias.
Meanwhile, [26], [27], [28], [30] study deep neural networks by measuring SMI between
intermediate layers. Yet, as our analysis reveals, changes in SMI do not always reflect true
shifts in statistical dependence; they may instead result from differences in layer dimension-
ality, redundancy in intermediate representations, low sensitivity in saturated regimes, or
other factors. Finally, [33] suggests using SMI for independence testing in differential privacy
tasks. We contend that this approach poses critical issues, as SMI estimates can become
statistically indistinguishable from zero in high-dimensional or low-redundancy settings.
Limitations. While we support our claims with both theoretical analysis and experi-
mental evidence, we were able to derive analytical expressions for the Gaussian case only.
Nevertheless, we demonstrate that our findings are more than sufficient to expose funda-
mental limitations of SMI, and to support all the claims we made.
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Ethics statement. This work is not subject to any ethical concerns.
Reproducibility  statement. To ensure reproducibility of our results, we provide
complete proofs in Section B and implementation details in Section D. We also provide our
code for the experiments in the supplementary material.
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A Supplementary theory

Lemma A.1. (Example 2.4 in [1]) 𝗁(𝒩(𝜇, Σ)) = 1
2 log((2𝜋𝑒)𝑑 det Σ).

Corollary A.2. For (𝑋, 𝑌 ) ∼ 𝒩(𝜇, Σ) with non-singular Σ

𝖨(𝑋; 𝑌 ) = 1
2

log det Σ𝑋 + 1
2

log det Σ𝑌 − 1
2

log det Σ

= −1
2

∑
𝑑

𝑖=1
log(1 − 𝜌2

𝑖 ),

where Σ𝑋, Σ𝑌  are marginal covariances, Σ𝑋𝑌  is cross-covariance, 𝑑 = min(𝑑𝑥, 𝑑𝑦), and
{𝜌𝑖}

𝑑
𝑖=1 are singular values of Σ−1

2
𝑋 Σ𝑋𝑌 Σ−1

2
𝑌 .

Proof of Corollary A.2. Combining Lemma A.1 and (2) yields the first result. Now note that

𝖨(𝑋; 𝑌 ) = 𝖨(Σ−1
2

𝑋 𝑋; Σ−1
2

𝑌 𝑌 ) = 𝖨(U𝖳Σ−1
2

𝑋 𝑋; VΣ−1
2

𝑌 𝑌 ),

where U diag(𝜌𝑖)V𝖳 is the SVD of Σ−1
2

𝑋 Σ𝑋𝑌 Σ−1
2

𝑌 . However,

(U𝖳Σ−1
2

𝑋 𝑋, VΣ−1
2

𝑌 𝑌 ) ∼ 𝒩(𝜇′, ( I
diag(𝜌𝑖)

diag(𝜌𝑖)
I )),

from which we arrive at the second expression. □
Lemma A.3. Let A ∈ ℝ𝑛×𝑚 be full column rank matrix and Θ ∼ 𝜇St(𝑛,𝑘) Then Θ𝖳A is full-
rank with probability one.

Proof of Lemma A.3. Performing QR decomposition of A yields Θ𝖳A = Θ𝖳QR =d Θ𝖳(I𝑚
0 )R.

Since A is full-rank, R is invertible and rank Θ𝖳A = rank Θ𝖳(I𝑚
0 ). Therefore,

ℙ{Θ𝖳A is full-rank} = 1 − ℙ{Θ𝖳(I𝑚
0 ) is not full-rank} = 1.

□
Lemma A.4. (Theorem 1.5 in [41]) Let W ∼ 𝜇O(𝑑) and partition

W = (W11
W21

W12
W22

)

with W11 of size 𝑘 by 𝑘. Then the eigenvalues {𝜆𝑖}
𝑘
𝑖=1 of W11W𝖳

11 follow the Jacobi ensemble

𝑝(𝝀) ∝ ∏
𝑖<𝑗

|𝜆𝑖 − 𝜆𝑗|𝛽 ∏
𝑘

𝑖=1
𝜆

𝛽
2 (𝑎+1)−1
𝑖 (1 − 𝜆𝑖)

𝛽
2 (𝑏+1)−1

with parameters 𝑎 = 0, 𝑏 = 𝑑 − 2𝑘, and 𝛽 = 1 (over ℝ).
Proof of Lemma A.4. Let A1 ∈ ℝ𝑘×𝑑 and A2 ∈ ℝ(𝑑−𝑘)×𝑑 be independent matrices with i.i.d.
entries from 𝒩(0, 1). By stacking A1 atop A2 and then performing a block QR decomposition
on the resulting Gaussian matrix, the orthogonal invariance of the Gaussian law implies
that the two Q‑blocks are independent of the upper‑triangular factor R, with Q1 and Q2
uniformly distributed on O(𝑘) and St(𝑘, 𝑑 − 𝑘), respectively. Finally, computing the SVD of
the block rows together with R yields the generalized singular value decomposition (GSVD)
of the pair (A1, A2):
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(A1
A2

) = (Q1
Q2

)R = (U1
U2

)

(
((
((
((
( C̃

0
−S̃
0 )

))
))
))
)

Ṽ𝖳R,

where U1 ∈ O(𝑘), U2 ∈ O(𝑑 − 𝑘), Ṽ ∈ O(𝑘), and C = diag(𝑐𝑖), S = diag(𝑠𝑖) with 𝑐𝑖 ≥ 0, 𝑠𝑖 ≥
0, and 𝑐2

𝑖 + 𝑠2
𝑖 = 1 for all 𝑖. The diagonal entries of C̃ are known as the generalized singular

values of the pair (A1, A2).
For a matrix P = diag(𝑝1, …, 𝑝𝑘) with i.i.d. 𝑝𝑖 sampled uniformly from {−1, 1}, we have
Q1𝑃 =d W11. Let W11 = UCV𝖳 be the SVD of W11, then one has

U1(
C̃
0)Ṽ𝖳P =d UCV𝖳.

Since U1, Ṽ, and U, V are uniformly distributed and independent of C̃, C, we have C̃ =d

C by the invariance of the Haar measure under orthogonal transformations. On the other
hand, the generalized singular values C̃ of a pair (A1, A2) follow the law of the Jacobi
ensemble with parameters 𝑎 = 0, 𝑏 = 𝑑 − 2𝑘, and 𝛽 = 1 (Proposition 1.2 in [41]). Therefore,
the squared singular values of W11 follow the Jacobi ensemble with the same parameters.□
Corollary A.5. The squared inner product |𝜃𝖳𝜙|2 between two independent random
vectors 𝜃, 𝜙 ∼ 𝜇𝕊𝑑−1 follows Beta(1

2 , 𝑑−1
2 ). Moreover, the shifted inner product (1 + 𝜃𝖳𝜙)/2

is symmetrically distributed as Beta(𝑑−1
2 , 𝑑−1

2 ).

Proof of Corollary A.5. Setting Jacobi parameters 𝑘 = 1, 𝑎 = 0, 𝑏 = 𝑑 − 2 and 𝛽 = 1, the
density is proportional to 𝑥−1/2(1 − 𝑥)(𝑑−3)/2 on [0, 1], which matches the Beta(1

2 , 𝑑−1
2 )

distribution.
Next, observe that 𝜃𝖳𝜙 has a density proportional to (1 − 𝑡)𝑑−3

2  for 𝑡 ∈ [−1, 1]. Under the
change of variables 𝜂 ∼ Beta(𝑑−1

2 , 𝑑−1
2 ).

□

B Complete proofs

Proof of Lemma 4.1. One can acquire 𝖨(𝑋; 𝑌 ) = −𝑑
2 log(1 − 𝜌2) from a general expression

for MI of two jointly Gaussian random vectors (see Corollary A.2).
Recall that (𝜃𝖳𝑋, 𝜙𝖳𝑌 ) is also Gaussian with cross-covariance 𝜌 𝜃𝖳𝜙. Therefore, by Corollary
A.2 we have

𝖲𝖨(𝑋; 𝑌 ) = 𝖨(𝜃𝖳𝑋; 𝜙𝖳𝑌 | 𝜃, 𝜑) = −1
2

𝔼[log(1 − 𝜌2 |𝜃𝖳𝜙|2)].

From Corollary A.5, we note that |𝜃𝖳𝜙|2 ∼ Beta(1
2 , 𝑑−1

2 ), so

𝖲𝖨(𝑋; 𝑌 ) = − 1
2B(1

2 , 𝑑−1
2 )

∫
1

0
log(1 − 𝜌2𝑥)(1 − 𝑥)𝑑−3

2 𝑥−1
2 d𝑥

= 𝜌2

2
Γ(𝑑

2)
Γ(1

2)Γ(𝑑−1
2 )

∫
1

0
𝑥1

2 (1 − 𝑥)𝑑−3
2 𝐹2 1(1, 1; 2; 𝜌2𝑥) d𝑥,

where the last equality follows from the identity log(1 − 𝑧) = −𝑧 𝐹2 1(1, 1; 2; 𝑧) with hyper-
geometric function 𝐹2 1. Appling Euler’s integral transform ([42], Eq. (2.2.3)) gives
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𝖲𝖨(𝑋; 𝑌 ) = 𝜌2

2𝑑
Γ(𝑑

2 + 1)
Γ(3

2)Γ(𝑑−1
2 )

∫
1

0
𝑥3

2−1(1 − 𝑥)(𝑑
2+1)−3

2−1 𝐹2 1(1, 1; 2; 𝜌2𝑥) d𝑥

= 𝜌2

2𝑑
𝐹3 2(1, 1, 3

2
; 𝑑
2

+ 1, 2; 𝜌2).

Here 𝐹3 2 denotes the generalized hypergeometric function.
Finally, we calculate the limit of 𝖲𝖨(𝑋; 𝑌 ) as 𝜌2 → 1 using properties of beta-distribution.
Denoting 𝜂 = (1 + 𝜃𝖳𝜙)/2 ∼ Beta(𝑑−1

2 , 𝑑−1
2 ) (see Corollary A.5), we get

𝖲𝖨(𝑋; 𝑌 ) = − log 2 − 𝔼 log(1 − 𝜂) = − log 2 − 𝔼 log 𝜂 = 𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2,

where 𝜓 is the digamma function. Using the bounds on digamma function [43]

log(𝑥 + 1
2
) − 1

𝑥
≤ 𝜓(𝑥) ≤ log(𝑥 + 𝑒𝜓(1)) − 1

𝑥
,

we derive an upper bound on this expression:

𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2 ≤ 1
𝑑 − 1

+ log(1 + 𝑒𝜓(1) − 1
𝑑

)

To simplify the bound, one can note that 𝑒𝜓(1) − 1 < 0, as 𝜓(1) < 0.
□

Proof of Proposition 4.2. Let QX, QY ∼ 𝜇St(𝑘,𝑑). Then [Q𝖳
X𝑋, Q𝖳

Y𝑌 ] ∼ 𝒩(0, Σ), where Σ is
a 2𝑘 × 2𝑘 covariance matrix with the following block structure

Σ = ( I𝑘
𝜌 Q𝖳

YQX

𝜌 Q𝖳
XQY
I𝑘

).

Using the formula for the determinant of a block matrix Σ yields

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

𝔼[log det(Σ)] = −1
2

𝔼[log det(I − 𝜌2(Q𝖳
XQY)(Q𝖳

XQY)𝖳)].

By the invariance of the Haar measure under left and right multiplication, Q𝖳
XQY =𝑑 W11,

where W11 is a 𝑘 by 𝑘 left upper block of the matrix W ∼ 𝜇O(𝑑). According to Lemma A.4,
the eigenvalues of W11W𝖳

11 follow Jacobi ensemble with parameters 𝑎 = 0, 𝑏 = 𝑑 − 2𝑘 and
𝛽 = 1:

𝑝(𝜆) ∝ ∏
𝑖<𝑗

|𝜆𝑗 − 𝜆𝑖| ∏
𝑘

𝑖=1
(1 − 𝜆𝑖)

𝑑−2𝑘−1
2 .

Thus, we get a general expresion for 𝑘-SMI

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∫
[0,1]𝑘

∑
𝑘

𝑖=1
log(1 − 𝜌2𝜆𝑖)𝑝(𝜆) d𝜆.

□
Proof of Proposition 4.4. Using Lemma A.3 and 𝑑𝑥, 𝑑𝑦 < 𝑘, we get that Θ𝖳A and Φ𝖳B are
injective with probability one for independent Θ, Φ distributed uniformly on St(𝑑𝑥, 𝑘) and
St(𝑑𝑦, 𝑘). Therefore, according to Theorem 3.1, [𝖨(Θ𝖳A𝑋; Φ𝖳B𝑌 ) | Θ, Φ] = 𝖨(𝑋; 𝑌 ) almost
sure. As a result, 𝖲𝖨𝑘(A𝑋; B𝑌 ) = 𝖨(Θ𝖳A𝑋; Φ𝖳B𝑌 | Θ, Φ) = 𝖨(𝑋; 𝑌 ). □

Proof of Proposition 4.7. Direct corollary of Corollary A.2. □
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C Additional experiments

In this section, we conduct supplementary experiments to evaluate SMI under a broader
range of setups. We begin by assessing 𝑘-SMI on the same set of benchmarks from Section 5.
The results for 𝑘 = 1, 2, 3 are presented in Figure 4, Figure 7, and Figure 8, respectively.
Notably, saturation remains consistent even for 𝑘 = 𝑑 − 1 (i.e., when only one component
is discarded).
Next, we examine a setup involving randomized distribution parameters, following the
methodology of [34]. Among other adjustments, this includes randomizing per-component
mutual information (e.g., assigning interactions unevenly in this experiment). In some cases
(e.g., the log-gamma-exponential distribution), this increases linear redundancy, as compo-
nent pairs with higher mutual information also exhibit higher variance in this particular
scenario. Our results are displayed in Figure 9.
Due to numerical constraints, we do not track 𝖨(𝑋; 𝑌 )/𝑑 in this particular setup, instead
plotting the results against the total mutual information. While this makes saturation
slightly less evident, the general trend of SMI decreasing with 𝑑 remains observable. We
also highlight the log-gamma-exponential distribution (Figure 9d), where SMI is less prone
to saturation under parameter randomization due to the reasons mentioned earlier.
Finally, using the MI-preserving smooth injective mappings from [34], we reproduce the
synthetic datasets used in [17]. These datasets consist of high-dimensional images (see
Figure 3) with known ground-truth mutual information. The results presented in Figure 10
again prove our findings.
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Figure 7:  Results of synthetic experiments with different distributions for 2-SMI. We report
mean values and standard deviations computed across 10 runs, with 104 samples used for
MI estimation and 128 for averaging across projections.
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D Implementation details

D.1 Synthetic experiments

For the experiments from Section 5, we use implementation of Kraskov-Stoegbauer-Grass-
berger (KSG) [35] mutual information estimator and random slicing from [34]. The number
of neighbors is set to 𝑘NN = 1 for the KSG estimator. For each configuration, we conduct 10
independent runs with different random seeds to compute means and standard deviations.
Our experiments use 104 samples for (𝑋, 𝑌 ) and 128 samples for (Θ, Φ).
For the experiments from Section 5, we use independent components with equally distrib-
uted per-component MI. For the supplementary experiments from Figure 9, parameters of
each distribution (e.g., covariance matrices) are randomized via the algorithm implemented
in [34]. This includes randomization of per-component MI (which is done using a uniform
distribution over a (𝑑 − 1)-dimensional simplex).
For the experiments, we used AMD EPYC 7543 CPU, one core per distribution. Each
experiment (fixed 𝑘, varying 𝑑) took no longer then 3 days to compute.

D.2 Representation learning experiments

For experiments on MNIST dataset, we use a simple ConvNet with three convolutional
and two fully connected layers. A three-layer fully-connected perceptron serves as a critic
network for the InfoNCE loss. We provide the details in Table 1. We use additive Gaussian
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(d) Log-Gamma-Exponential

Figure 8:  Results of synthetic experiments with different distributions for 3-SMI. We report
mean values and standard deviations computed across 10 runs, with 104 samples used for
MI estimation and 128 for averaging across projections.
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Figure 9:  Results of synthetic experiments with different distributions. We report mean
values and standard deviations computed across 10 runs, with 104 samples used for MI
estimation and 128 for averaging across projections.

noise with 𝜎 = 0.2 as an input augmentation. Training hyperparameters are as follows: batch
size = 512, 2000 epochs, Adam optimizer [44] with learning rate 10−3.
For the experiments, we used Nvidia A100 GPUs. Each experiment took no longer then 1
day to compute.Table 1: The NN architectures used to conduct the tests on MNIST images in Section 6.

NN Architecture

ConvNet,
24 × 24
images

× 1: Conv2d(1, 32, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)
× 1: Conv2d(32, 64, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)

× 1: Conv2d(64, 128, ks=3), MaxPool2d(2), BatchNorm2d,
LeakyReLU(0.01)

× 1: Dense(128, 128), LeakyReLU(0.01), Dense(128, dim)

Critic NN,
pairs of vectors

× 1: Dense(dim + dim, 256), LeakyReLU(0.01)
× 1: Dense(256, 256), LeakyReLU(0.01), Dense(256, 1)
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(c) Rectangles 16 × 16
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Figure 10:  Results of synthetic experiments with high-dimensional image-based distribu-
tions for k-SMI. We report mean values and standard deviations computed across 10 runs,
with 104 samples used for MI estimation and 128 for averaging across projections.
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