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Abstract

Sliced Mutual Information (SMI) is widely used as a scalable alternative 
to mutual information for measuring non-linear statistical dependence. 
Despite its advantages, such as faster convergence, robustness to high 
dimensionality, and nullification only under statistical independence, we 
demonstrate that SMI is highly susceptible to data manipulation and 
exhibits counterintuitive behavior. Through extensive benchmarking and 
theoretical analysis, we show that SMI saturates easily, fails to detect 
increases in statistical dependence, prioritizes redundancy over informative 
content, and in some cases, performs worse than correlation coefficient.
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1 Introduction

Mutual information (MI) is a fundamental and invariant measure of nonlinear statistical 
dependence between two random vectors, defined as the Kullback-Leibler divergence 
between the joint distribution and the product of marginals (Polyanskiy and Wu, 2024):

𝖨(𝑋; 𝑌 ) = 𝖪𝖫[ℙ𝑋,𝑌 ‖ ℙ𝑋 ⊗ ℙ𝑌 ].

Due to several outstanding properties, such as nullification only under statistical indepen
dence, invariance to invertible transformations, and ability to capture non-linear dependen
cies, MI is used extensively for theoretical analysis of overfitting (Asadi et al., 2018; Negrea 
et al., 2019), hypothesis testing (Duong and Nguyen, 2022), feature selection (Battiti, 1994; 
Vergara and Estévez, 2014), representation learning (Bachman et al., 2019; Butakov et al., 
2025; Hjelm et al., 2019; Tschannen et al., 2020; Veličković et al., 2019), and studying the 
mechanisms behind generalization in deep neural networks (DNNs) (Butakov et al., 2024; 
Goldfeld et al., 2019; Shwartz-Ziv and Tishby, 2017; Tishby and Zaslavsky, 2015).

In practical scenarios, ℙ𝑋,𝑌  and ℙ𝑋 ⊗ ℙ𝑌  are unknown, requiring MI to be estimated from 
finite samples. Despite all the aforementioned merits, this reliance on empirical estimates 
leads to the curse of dimensionality: the sample complexity of MI grows exponentially with 
the number of dimensions (Goldfeld et al., 2020; McAllester and Stratos, 2020). A common 
strategy to mitigate this issue is to use alternative measures of statistical dependence that 
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are more stable in high dimensions. However, such measures usually offer only a fraction 
of MI capabilities. Therefore, it is crucial to maintain a balance between robustness to the 
curse of dimensionality and the ability to detect complex dependency structures.

To strike this balance, popular techniques often retain MI as a backbone statistical measure 
but employ dimensionality reduction before estimation. While some studies explore sophis
ticated nonlinear compression methods (Butakov et al., 2024; Gowri et al., 2024), others 
favor more scalable linear projection approaches (Fayad and Ibrahim, 2023; Goldfeld et al., 
2022; Goldfeld and Greenewald, 2021; Greenewald et al., 2023; Tsur et al., 2023). Among 
the latter group, the Sliced Mutual Information (SMI) (Goldfeld et al., 2022; Goldfeld and 
Greenewald, 2021) stands out, leveraging uniform random projections:

𝖲𝖨(𝑋; 𝑌 ) = 1
∮

𝕊𝑑𝑥−1 d𝜃
1

∮
𝕊𝑑𝑦−1 d𝜙

∮
𝕊𝑑𝑥−1

∮
𝕊𝑑𝑦−1

𝖨(𝜃𝖳𝑋; 𝜙𝖳𝑌 ) d𝜃 d𝜙. (1)

Uniform slicing allows SMI to maintain some crucial properties of MI (e.g., being zero if 
and only if 𝑋 and 𝑌  are independent), while remaining completely free from additional 
optimization problems (e.g., from finding optimal projections, as in (Fayad and Ibrahim, 
2023; Tsur et al., 2023)). Combined with fast convergence rates, this has established SMI as 
a scalable alternative to MI: computing the former typically requires orders of magnitude 
less time than neural MI estimation (several seconds vs. several hours for SOTA diffusion 
MI estimators (Franzese et al., 2024; Kholkin et al., 2025)). Consequently, it has been widely 
adopted for studying DNNs (Dentan et al., 2024; Wongso et al., 2022; 2023a; 2023b; 2025), 
deriving generalization bounds (Nadjahi et al., 2023), independence testing (Hu et al., 2024), 
auditing differential privacy (Nuradha and Goldfeld, 2023), feature selection (Goldfeld and 
Greenewald, 2021) and disentanglement in generative models (Goldfeld et al., 2022).

Despite its popularity, the research community has largely overlooked potential shortcom
ings of SMI. Some studies prematurely attribute their results to underlying phenomena 
without rigorously investigating whether they stem from artifacts introduced by random 
projections. Furthermore, existing works fail to comprehensively address issues related to 
random slicing, focusing primarily on suboptimality of random projections for information 
preservation (Fayad and Ibrahim, 2023; Tsur et al., 2023).

Contribution. In this article, we address this gap by systematically analyzing SMI across 
diverse settings, demonstrating that it frequently exhibits counterintuitive behavior and 
fails to accurately capture statistical dependence dynamics. Our key contributions are:

1. Saturation and Sensitivity Analysis. Our theoretical analysis and experiments 
reveal that SMI saturates prematurely, even for low-dimensional synthetic prob
lems, and fails to detect significant increases in statistical dependence.

2. Redundancy Bias. We refute the prevailing assumption that SMI favors linearly 
extractable information by constructing an explicit example where introducing such 
structure increases MI and even linear correlation, but decreases SMI. In fact, we 
show that SMI prioritizes information redundancy over information content. We 
argue that this bias can lead to catastrophic failures in some applications.

3. Curse of Dimensionality. We revisit the dynamics of SMI for increasing dimen
sionality and argue that SMI is, in fact, cursed, with the curse of dimensionality 
manifesting itself not through sample complexity, but via asymptotic decay to zero 
in high-dimensional regimes due to diminishing redundancy.

4. Reestablishing the Trade-off. Finally, we discuss to which extent the aforemen
tioned problems can be solved by using non-uniform/non-random slicing strategies, 
and how they affect the trade-off between scalability and utility.

In Section 2, we provide the necessary mathematical background. Section 3 overviews the 
related literature. Section 4 consists of our main theoretical results (see Section B for proofs). 
In Section 5, we employ synthetic benchmarks to show the disconnection between dynamics 
of MI and SMI. Sections 6 and 7 illustrate that SMI maximization may result in degenerate 
solutions, contrary to MI maximization. Finally, we discuss our results in Section 8.
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2 Preliminaries

Elements of Information Theory. Let (Ω, ℱ︀, ℙ) be a probability space with sample 
space Ω, 𝜎-algebra ℱ︀, and probability measure ℙ defined on ℱ︀. Consider random vectors 
𝑋 : Ω → ℝ𝑑𝑥 and 𝑌 : Ω → ℝ𝑑𝑦 with joint distribution ℙ𝑋,𝑌  and marginals ℙ𝑋 and ℙ𝑌 , 
respectively. Wherever it is needed, we assume the relevant Radon-Nikodym derivatives 
exist. For any probability measure ℚ that is absolutely continuous w.r.t. ℙ (denoted ℚ ≪ ℙ), 
the Kullback-Leibler (KL) divergence is 𝖪𝖫[ℚ ‖ ℙ] = 𝔼ℚ[log d ℚ

d ℙ ], which is non-negative and 

vanishes if and only if (iff) ℙ = ℚ. The mutual information (MI) between 𝑋 and 𝑌  quantifies 
the divergence between the joint distribution and the product of marginals:

𝖨(𝑋; 𝑌 ) = 𝔼 log
d ℙ𝑋,𝑌

d ℙ𝑋 ⊗ ℙ𝑌
= 𝖪𝖫[ℙ𝑋,𝑌 ‖ ℙ𝑋 ⊗ ℙ𝑌 ].

When ℙ𝑋 admits a probability density function (PDF) 𝑝(𝑋) with respect to (w.r.t.) 
the Lebesgue measure, the differential entropy is defined as 𝗁(𝑋) = − 𝔼[log 𝑝(𝑋)], where 
log( ⋅ ) denotes the natural logarithm. Likewise, the joint entropy 𝗁(𝑋, 𝑌 ) is defined 
via the joint density 𝑝(𝑋, 𝑌 ), and conditional entropy is 𝗁(𝑋 | 𝑌 ) = − 𝔼[log 𝑝(𝑋 | 𝑌 )] =
− 𝔼𝑌 [𝔼𝑋|𝑌 log 𝑝(𝑋 | 𝑌 )]. Under the existence of PDFs, MI satisfies the identities

𝖨(𝑋; 𝑌 ) = 𝗁(𝑋) − 𝗁(𝑋 | 𝑌 ) = 𝗁(𝑌 ) − 𝗁(𝑌 | 𝑋) = 𝗁(𝑋) + 𝗁(𝑌 ) − 𝗁(𝑋, 𝑌 ). (2)

Sliced Mutual Information. In this work, we denote by 𝜇M the normalized Haar 
(uniform) probability measure on a compact manifold M, i.e., the unique bi‑invariant 
measure satisfying 𝜇M(M) = 1. Hence, to sample uniformly from specific spaces we write 
W ∼ 𝜇O(𝑑), 𝜃 ∼ 𝜇𝕊𝑑−1 , A ∼ 𝜇St(𝑘,𝑑), indicating draws from the Haar measures on orthogonal 
group O(𝑑) = {Q ∈ ℝ𝑑×𝑑 : Q𝖳Q = QQ𝖳 = I}, the unit sphere 𝕊𝑑−1 = {𝑋 ∈ ℝ𝑑 : ‖𝑋‖2 = 1}, 
and the Stiefel manifold St(𝑘, 𝑑) = {Q ∈ ℝ𝑑×𝑘 : Q𝖳Q = I}, respectively.

The 𝑘-sliced mutual information (𝑘-SMI) (Goldfeld et al., 2022) between 𝑋, 𝑌  is defined as

𝖲𝖨𝑘(𝑋; 𝑌 ) = ∫
St(𝑘,𝑑𝑥)

∫
St(𝑘,𝑑𝑦)

𝖨(Θ𝖳𝑋; Φ𝖳𝑌 ) d𝜇St(𝑘,𝑑𝑥)(Θ) d𝜇St(𝑘,𝑑𝑦)(Φ),

Setting 𝑘 = 1 recovers the standard sliced mutual information (1).

3 Background

Merits of SMI are straightforward and have been investigated thoroughly (Goldfeld et al., 
2022; Goldfeld and Greenewald, 2021). We remind the reader of the most important of them:

1. Scalability enabled by low-dimensional projections.

2. Nullification Property (i.e., 𝖲𝖨𝑘(𝑋; 𝑌 ) = 0 iff 𝑋 and 𝑌  are independent), which 
stems from the projections being random and independent.

In contrast, demerits of SMI are not very obvious and not well-covered in the literature. In 
this section, we recapitulate and analyze previous works which address the shortcomings of 
SMI. To facilitate the analysis, we divide them into three main categories.

Suboptimality of random slicing. Tsur et al. (2023) and Fayad and Ibrahim (2023) 
argue that a uniform slicing strategy can produce suboptimal projections, impairing SMI’s 
ability to capture dependencies in the presence of noisy or non-informative components. To 
address this issue, Tsur et al. (2023) proposed max-sliced MI (mSMI), which selects non-
random projectors that maximize the MI between projected representations. This approach 
is also claimed to improve interpretability and convergence rates.

However, deterministic slicing may overlook dependencies captured by non-optimal compo
nents. To mitigate this, Fayad and Ibrahim (2023) extend the max-sliced approach by 
optimizing SMI over probability distributions of projectors, with regularization to maintain 
slice diversity. While the authors emphasize that optimization should occur over joint 
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distributions, their motivation primarily addresses the issue of non-optimal marginal distri
butions of 𝜃 and 𝜙 — specifically, the presence of non‑informative components in 𝑋 and 
𝑌 . We contend that this represents only a partial understanding of the problem, as many 
SMI artifacts arise from other factors. Needless to say that optimization over probability 
distributions is also a heavy burden, which does not align with the slicing philosophy.

Data Processing Inequality violation. A fundamental property of MI is that it cannot 
be increased by deterministic or stochastic processing. Furthermore, MI is preserved under 
invertible transformations. This is formalized by the data processing inequality (DPI).

Theorem 3.1. (Polyanskiy and Wu (2024, Theorem 3.7)) For a Markov chain 𝑋 → 𝑌 →
𝑍, 𝖨(𝑋; 𝑌 ) ≥ 𝖨(𝑋; 𝑍). Additionally, if 𝑍 = 𝑓(𝑌 ) where 𝑓 is invertible, then equality holds.

In contrast to MI, SMI violates the DPI (Goldfeld and Greenewald, 2021, Section 3.2). 
While the intuition behind DPI is clear (raw data already contains full information, and 
processing can only destroy it), the implications of DPI violation are less straightforward.

Existing works suggest that SMI’s violation of DPI can reflect a preference for linearly 
extractable features, framing this as a useful property that aligns with the informal 
understanding of “practically available” (i.e., easily accessible) information (Goldfeld and 
Greenewald, 2021; Wongso et al., 2022; 2025). However, this interpretation can be misleading 
if the factors behind SMI increases are misidentified. Our analysis reveals that this is indeed 
the case, as SMI exhibits more inherent biases than previously recognized.

Asymptotics in high-dimensional regime. Convergence analysis suggests that the 
sample complexity of SMI estimation is far less sensitive to data dimensionality compared 
to that of MI. In fact, it has been argued that the estimation error may even decrease 
with dimensionality in some cases (Goldfeld et al., 2022, Remark 4). However, this behavior 
may result from SMI vanishing as dimensionality grows. Specifically, (Goldfeld et al., 2022, 
Theorem 3) provides an asymptotic expression (as 𝑑 → ∞) for SMI between jointly normal 
𝑋 and 𝑌 , which decays hyperbolically with 𝑑 under some circumstances.

To date, no explanation for this phenomenon has been provided in the literature. We 
therefore elaborate on this finding by deriving non-asymptotic expressions, along with 
experimental results for non-Gaussian data, which reveal further nuances behind the decay.

4 Theoretical analysis

We start our analysis with considering a simple example, which (a) admits closed-form 
expression for SMI and (b) highlights severe problems of the quantity in question.

Lemma 4.1. Consider the following pair of jointly Gaussian 𝑑-dimensional random vectors:

(𝑋, 𝑌 ) ∼ 𝒩︀(0, ( I
𝜌I

𝜌I
I )), 𝜌 ∈ (−1; 1).

In this setup, MI and SMI can be calculated analytically:

𝖨(𝑋; 𝑌 ) = −𝑑
2

log(1 − 𝜌2), 𝖲𝖨(𝑋; 𝑌 ) = 𝜌2

2𝑑
  𝐹3 2(1, 1, 3

2
; 𝑑
2

+ 1, 2; 𝜌2),

where 𝐹3 2 is the generalized hypergeometric function. Additionally, the following limits hold:

lim
𝑑→∞

𝖨(𝑋; 𝑌 ) = +∞ lim
𝑑→∞

𝖲𝖨(𝑋; 𝑌 ) = 0

lim
𝜌2→1

𝖨(𝑋; 𝑌 ) = +∞ lim
𝜌2→1

𝖲𝖨(𝑋; 𝑌 ) = 𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2 ≤ 1
𝑑 − 1

,

with 𝜓 being the digamma function.

Note that while MI correctly captures the growing statistical dependence as 𝑑 → ∞ (since 
additional components contribute shared information), SMI drops to zero, exposing a 
fundamental problem. We interpret this behavior as a distinct manifestation of the curse 
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Figure 2:  Saturation of 𝖲𝖨(𝑋; 𝑌 ) as function of 𝖨(𝑋; 𝑌 )/𝑑 for the example from Lemma 
4.1, non-normalized (left) and normalized (right) versions. Note that the problem becomes 
more prominent in higher dimensions, both because of lower plateau and faster saturation.

of dimensionality: as 𝑑 grows, SMI uniformly decays to zero and becomes ineffective for 
statistical analysis. We also provide a less tight, but more general result in Section C.

The second pair of limits reveals another critical flaw of SMI. When 𝜌2 → 1, the 𝑋-𝑌  
relationship becomes deterministic — a property MI reflects successfully. In stark contrast, 
SMI remains bounded by a dimension-dependent factor that decays hyperbolically. Further
more, plotting SMI against MI shows this bound is reached prematurely, demonstrating 
SMI’s rapid saturation with increasing dependence (Figure 2). In this saturated regime, 
SMI becomes effectively insensitive to further growth in shared information. Moreover, this 
renders estimates of SMI for different dimensionalities fundamentally incomparable, as they 
are theoretically bounded by factors depending on 𝑑.

These phenomena can not be explained by suboptimality of individual projections. In fact, 
each individual projection is optimal, as 𝖨(𝜃𝖳𝑋; 𝑌 ) does not depend on 𝜃 in this particular 
example. The proof of Lemma 4.1 suggests that the problem arises from the majority of 
pairs of projectors being suboptimal, yielding near-independent 𝜃𝖳𝑋 and 𝜙𝖳𝑌  in the most 
outcomes, even for 𝑑 = 2. Although similar analysis for 𝑘-SMI is extremely challenging, we 
argue that the problems in question prevail even when employing 𝑘-rank projectors.

Proposition 4.2. Under the setup of Lemma 4.1, 𝑘-SMI has the following representation

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∫
[0,1]𝑘

∑
𝑘

𝑖=1
log(1 − 𝜌2𝜆𝑖) 𝑝(𝝀) d𝝀, 𝑝(𝝀) ∝ ∏

𝑖<𝑗
|𝜆𝑗 − 𝜆𝑖| ∏

𝑘

𝑖=1
(1 − 𝜆𝑖)

(𝑑−2𝑘−1)/2

⏟
(⋆)

Remark. 4.3. As 𝑑 grows, (⋆) asymptotically concentrates 𝜆𝑖 near zero, driving 𝖲𝖨𝑘 to zero.

We argue that the limitations we uncovered can be attributed to a strong bias of SMI 
toward information redundancy. That is, SMI favors repetition of information across 
different axes, and suffers from the curse of dimensionality if 𝑋 and 𝑌  have high entropy. 
The following proposition and remark present a simple example to clarify this bias.

Proposition 4.4. Let 𝑋 and 𝑌  be 𝑑𝑥, 𝑑𝑦-dimensional random vectors respectively, with 
𝑑𝑥, 𝑑𝑦 < 𝑘. Let A ∈ ℝ𝑚𝑥×𝑑𝑥 , B ∈ ℝ𝑚𝑦×𝑑𝑦 be full column rank. Then 𝖲𝖨𝑘(A𝑋; B𝑌 ) = 𝖨(𝑋; 𝑌 ).

Corollary 4.5. Consider the following pair of Gaussian 𝑑-dimensional random vectors:

(𝑋, 𝑌 ) ∼ 𝒩︀(0, ( J
𝜌J

𝜌J
J )), 𝜌 ∈ (−1; 1),

where J = 𝟏 ⋅ 𝟏𝖳 with 𝟏𝖳 = (1, …, 1). Then 𝖲𝖨𝑘(𝑋; 𝑌 ) = 𝖨(𝑋; 𝑌 ) = −1
2 log(1 − 𝜌2).

Remark. 4.6. Applying 𝟏 ⋅ 𝑒𝖳
1  to 𝑋 and 𝑌  from Lemma 4.1 individually yields the example 

from Corollary 4.5. Therefore, this linear transform increases SMI despite decreasing MI.
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4.1 Extension to optimal slicing

Although our work primarily focuses on conventional (average) SMI, as it is the most widely 
used variant, we also provide some intuition regarding the limitations of its “optimal” 
counterparts: max-sliced MI (mSMI) (Tsur et al., 2023) and optimal-sliced MI (oSMI) (Fayad 
and Ibrahim, 2023). Since mSMI is a special case of oSMI without regularization, we restrict 
our discussion to it, though our reasoning extends to oSMI as well. The 𝑘-mSMI is defined as:

𝖲𝖨𝑘(𝑋; 𝑌 ) = sup
Θ∈ St(𝑑𝑥,𝑘), Φ∈ St(𝑑𝑦,𝑘)

𝖨(Θ𝖳𝑋; Φ𝖳𝑌 ). (3)

The following proposition highlights the shortcomings of linear compression: even in a simple 
Gaussian setting, mSMI captures only a subset of dependencies and can exhibit opposite 
trends to MI. This occurs, for instance, when dependencies become more evenly distributed 
across components, which again returns us to the redundancy bias.

Proposition 4.7. (Tsur et al. (2023, Proposition 2)) Let (𝑋, 𝑌 ) ∼ 𝒩︀(𝜇, Σ), with marginal 

covariances Σ𝑋, Σ𝑌  and cross-covariance Σ𝑋𝑌 . Suppose the matrix Σ−1
2

𝑋 Σ𝑋𝑌 Σ−1
2

𝑌  exists, 
and let {𝜌𝑖}

𝑑
𝑖=1 denote its singular values in descending order, where 𝑑 = min(𝑑𝑥, 𝑑𝑦). Then

𝖨(𝑋; 𝑌 ) = −1
2

∑
𝑑

𝑖=1
log(1 − 𝜌2

𝑖 ), 𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∑
𝑘

𝑖=1
log(1 − 𝜌2

𝑖 ).

5 Synthetic experiments

To complement our theoretical analysis and address complex, non-Gaussian cases, we 
conduct an extensive benchmarking of SMI using synthetic tests from (Butakov et al., n.d.), 
based on the works of (Butakov et al., 2024; Czyż et al., 2023). These tests are designed 
to evaluate MI estimators. However, here we do not assess whether SMI estimates converge 
to ground-truth MI values. SMI is a distinct measure of statistical dependance, and should 
not be viewed as an approximation of MI. Instead, our analysis focuses on the relationship 
between the two measures: since MI captures the true degree of statistical dependence, 
opposing trends in MI and SMI reveal problems with the latter quantity.

For the experiments, we use correlated normal, correlated uniform, smoothed uniform and 
log-gamma-exponential distributions, for which the ground-truth value of MI is available. 
To increase the dimensionality, we use independent components with equally distributed 
per-component MI. For each distribution, we vary both the data dimensionality (𝑑) and 
the projection dimensionality (𝑘 < 𝑑). In Section G, we also utilize MI-preserving mappings 
to transform low-dimensional Gaussian vectors into high-dimensional synthetic images, as 
described in (Butakov et al., 2024); the examples of such images are displayed in Figure 3.

To estimate MI between projections, we use the KSG estimator (Kraskov et al., 2004) with 
the number of neighbors fixed at 1 (higher values are suboptimal, see Section F), 104 samples 
from (𝑋, 𝑌 ) and 128 samples from (Θ, Φ). For each configuration, 10 independent runs with 
different random seeds are conducted to compute means and standard deviations.

To experimentally verify the saturation, we plot SMI against MI normalized by dimension
ality 𝑑 in Figure 4. The plots clearly show that SMI reaches a plateau relatively early for 
all the featured distributions. The results for the normal distribution also align well with 

(a) 2D Gaussians (b) Rectangles

Figure 3:  Examples of synthetic images from additional experiments in Section G. Note that 
images are high-dimensional, but admit latent structure, which is similar to real datasets.
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Figure 4:  SMI results on synthetic benchmarks. Mean values and standard deviations across 
10 runs are reported, 104 samples from 𝑋, 𝑌  and 128 random projections were used.
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Figure 5:  Saturated values of 𝑘-SMI versus data dimensionality 𝑑 for 1-SMI (left) and 
2-SMI (right) for correlated normal (corr. 𝒩︀), correlated uniform (corr. U), smoothed 
uniform (sm. U) and log-gamma-exponential (LGE). Log scale illustrates the 1/𝑑 trend.

those from Lemma 4.1. We further confirm the saturation of 𝑘-SMI for 𝑘 ∈ {2, 3} and for 
complex datasets from (Butakov et al., 2024) experimentally in Section G. Finally, we plot 
the saturated values against 𝑑 on a log-log scale, demonstrating that the 1/𝑑 trend from 
Lemma 4.1 also holds for non-Gaussian distributions.

Overall, the results strongly support our findings, showing saturation and uniform decay 
with increasing dimensionality across a wide range of settings, from low-dimensional distri
butions to high-dimensional images.

6 SMI for InfoMax-like tasks

Since mutual information is interpretable and captures non-linear dependencies, it is widely 
used as a training objective. Many applications involve maximizing MI (InfoMax) for feature 

7



Published as a conference paper at ICLR 2026

selection (Battiti, 1994; Sulaiman and Labadin, 2015; Vergara and Estévez, 2014; Yang and 
Gu, 2004) and self-supervised representation learning (Bachman et al., 2019; Butakov et al., 
2025; Hjelm et al., 2019; Tschannen et al., 2020; Veličković et al., 2019). However, due to 
the curse of dimensionality, it was instead proposed to maximize SMI for feature extraction 
(Goldfeld and Greenewald, 2021) and disentanglement in InfoGAN (Goldfeld et al., 2022).

In this section, we argue that SMI is not a suitable alternative to MI for InfoMax tasks: since 
SMI exhibits a strong preference for redundancy, SMI maximization may lead to collapses.

Representation learning. To demonstrate SMI’s redundancy bias, we examine learning 
compressed representations through information maximization (Deep InfoMax) (Hjelm et 
al., 2019). This approach is known to be equivalent to many popular contrastive self-
supervised methods (Butakov et al., 2025).

In Deep InfoMax, an encoder network 𝑓 is trained to maximize a lower bound on 𝖨(𝑋; 𝑓(𝑋)), 
where 𝑋 represents input data and 𝑓(𝑋) its compressed representation. This method is 
theoretically sound, as maximizing MI ensures the most informative embeddings under 
the latent space dimensionality constraint. For our study, we replace MI with SMI in this 
framework. This substitution is straightforward since both MI and SMI admit Donsker-
Varadhan variational lower bounds (Donsker and Varadhan, 1983):

𝖨(𝑋; 𝑌 ) = sup
𝑇:Ω→ℝ

[𝔼ℙ𝑋,𝑌
𝑇 (𝑋, 𝑌 ) − log(𝔼ℙ𝑋 ⊗ ℙ𝑌

𝑒𝑇(𝑋,𝑌 ))],

𝖲𝖨𝑘(𝑋; 𝑌 ) = sup
𝑇:Ω→ℝ

𝔼Θ,Φ[𝔼ℙ𝑋,𝑌
𝑇(Θ𝖳𝑋, Φ𝖳𝑌 , Θ, Φ) − log(𝔼ℙ𝑋 ⊗ ℙ𝑌

𝑒𝑇(Θ𝖳𝑋,Φ𝖳𝑌 ,Θ,Φ))],
(4)

where 𝑇  is a critic function, which is also approximated in practice by a neural network. 
For detailed derivations of these bounds, we refer the reader to (Belghazi et al., 2018) (MI) 
and (Goldfeld et al., 2022; Goldfeld and Greenewald, 2021) (SMI).

We strictly follow the experimental protocol from (Butakov et al., 2025). In particular, we 
use MNIST handwritten digits dataset (Deng, 2012), employ InfoNCE loss (Oord et al., 
2019) to approximate (4), use convolutional network for 𝑓 and fully-connected network for 
𝑇 . Latent space dimensionality is fixed at 𝑑 = 2 for visualization purposes. Small Gaussian 
noise is added to the outlet of the encoder to combat representation collapse (Butakov et al., 
2025). For more details, see Section I. We focus on this simple setup because our objective 
is to show that SMI produces degenerate results even in elementary tasks, making more 
complex configurations unnecessary for this demonstration.

Results are presented in Figure 6. As expected, maximization of SMI immediately leads to 
collapsed representations, while conventional InfoMax yields embeddings with low redun
dancy (their distribution is close to 𝒩︀(0, I)). This behavior is consistent across different runs.

Gaussian channel. We also refute SMI’s preference for linearly extractable information 
by considering 𝑋, 𝑌  such that cov 𝑋 = I, 𝑌 = A𝑋 + 𝒩︀(0, 𝜎2I), and diag AA𝖳 = I; this is a 
Gaussian channel with energy constraints (Cover and Thomas, 2006). Generally, 𝖨(𝑋; 𝑌 ) is 

(a) MI → max, 2000 epochs. (b) SMI → max, 10 epochs. (c) SMI → max, 2000 epochs.

Figure 6:  Visualizations of embeddings from the representation learning experiments, with 
points colored by class. Note that mutual information maximization (left) produces clustered 
low-redundancy representations, while SMI maximization results in immediate collapse.
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Figure 7:  Changing the condition number of A in the Gaussian channel experiment (𝑌 =
A𝑋 + 𝒩︀(0, 𝜎2I𝑑)) for normal 𝑋 ∼ 𝒩︀(0, I𝑑) (left) and uniform 𝑋 ∼ U[0;

√
12]𝑑 (right). 

We perform 10 runs with 104 samples, 128 projections, and use 𝜎 = 0.3, 𝑑 = 4.

maximized by a well-posed A, since decorrelated features are more robust to isotropic noise. 
However, the results in Figure 7 highlight SMI’s preference for ill-posed A (i.e., matrices 
with high condition number 𝜅(A) ≝ ‖A‖ ⋅ ‖A−1‖). More information is in Section D.

7 Replication study

Since our work highlights fundamental problems with SMI, we revisit the experiments from 
the original SMI articles (Goldfeld et al., 2022; Goldfeld and Greenewald, 2021; Tsur et al., 
2023) to reassess their results. We are especially interested in the feature extraction and 
independence testing, because these setups might suffer from the redundancy bias and 
SMI’s decay to zero. Section H provides more details.

Feature extraction. In (Goldfeld and Greenewald, 2021), the following toy problem 
is considered: 𝖲𝖨(A𝑋; B𝑌 ) → maxA,B, where 𝑋 ∼ 𝒩︀(0, I𝑑), 𝑌 = 𝟏 ⋅ 𝑒𝖳

1𝑋 + 𝒩︀(0, I𝑑), and 
A, B ∈ ℝ𝑑×𝑑 are feature selection matrices. The redundancy bias suggests that optimal A, B 
are singular, with all columns other than the first being zero — a property reflected in the 
original results (Goldfeld and Greenewald, 2021, Figure 3).

To highlight that SMI fails when the number of relevant features increases, we consider the 
following example: 𝑋 ∼ 𝒩︀(0, I𝑑), 𝑌 = ∑𝑚

𝑖=1 𝑒𝑖𝑋𝑖 + 𝒩︀(0, I𝑑), where 𝑚 controls the number 

of features. In addition to maximizing 𝑘-SMI, we also learn A, B through MI maximization. 
In the latter case, we use A, B ∈ ℝ𝑘×𝑑 to impose a dimensionality bottleneck. For MI and 𝑘-
SMI maximization, we reuse the NNs from Section 6 and perform 10 runs with 104 samples.

The quality of feature extraction is assessed via the effective rank (Roy and Vetterli, 2007) 
of the matrices formed by the first 𝑚 columns of A and B respectively. Figure 9 illustrates 
that MI maximization yields effective rank close to 𝑘, confirming its ability to recover all 
relevant features. In contrast, 𝑘-SMI results in a low effective rank regardless of 𝑘, revealing 
its redundancy bias. A visual analysis of the matrices in Figure 10 and Section H.1 also 
supports our findings.

Independence testing. Goldfeld et al. (2022); Goldfeld and Greenewald (2021) report 
consistently superior performance of SMI over MI for independence testing when the data 
dimensionality 𝑑 is fixed. We replicate their protocol for the distributions from Section 5 
but introduce a critical modification. Instead of evaluating each 𝑑 separately, we pool SMI 
(and MI) estimates across multiple dimensions (𝑑 ∈ {2, 10, 20, 30}) for each sample size 𝑛 
and compute a single ROC‑AUC from the mixed‑dimensional data. For a fair comparison, 
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Figure 9:  Effective rank versus 𝑘 for feature 
extraction; 10 runs with 104 samples, 𝑚 = 6.

Figure 10:  Matrices A for SMI → max 
(left) and MI → max (right), 𝑚 = 𝑘 = 4.
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𝖨(𝑋; 𝑌 ) is fixed at 2 nat, and KSG (Kraskov et al., 2004) is used as a backbone MI estimator. 
We conduct 100 runs for each 𝑑.

As shown in Figure 11, and in contrast to (Goldfeld et al., 2022; Goldfeld and Greenewald, 
2021), SMI performs worse under this more realistic setting where a single threshold must 
work across varying dimensions. These experiments reveal that SMI’s discriminative power 
can drop sharply even when the ground truth MI is constant, causing dependent high-
dimensional cases to yield SMI values that overlap with independent low-dimensional cases. 
Consequently, it is hard to consider SMI reliable enough for independence testing, unless 
the dimensionality is fixed in advance.

10 100 1000
0.7

0.8

0.9

1

R
O

C
-A

U
C

MI

1-SMI

2-SMI

3-SMI

10 100 1000

0.7

0.8

0.9

1

10 100 1000

0.7

0.8

0.9

1

10 100 1000

0.7

0.8

0.9

1

Figure 11:  Independence testing: ROC-AUC versus sample size for correlated normal, 
correlated uniform, smoothed uniform and log-gammma-exponential (left-to-right, 2 nat).

8 Discussion

Results. Sliced mutual information (SMI) has been proposed as a scalable alternative to 
Shannon’s mutual information. While SMI enables efficient computation in high-dimensional 
settings and satisfies the nullification property, our findings reveal critical deficiencies that 
undermine its reliability for feature extraction and related tasks.

We demonstrate that SMI saturates rapidly, failing to capture variations in statistical depen
dence. This makes it difficult to distinguish between intrinsic SMI fluctuations and genuine 
changes in dependence structure. Furthermore, we invalidate the common hypothesis that 
SMI favors linear features through a counterexample where even correlation coefficients 
reflect dependence more faithfully than SMI, which exhibits inverted behavior.

In high dimensions, SMI decays with increasing dimensionality, contrary to MI’s monotonic 
behavior. This is established analytically for Gaussian cases and validated empirically across 
diverse synthetic experiments. Consequently, SMI variations may reflect redundancy or high-
dimensional artifacts without a principled way to disentangle these factors.

Impact. Thanks to fast convergence rates and the absence of additional optimization 
problems, SMI has been widely applied across various fields of statistics and machine 
learning. Given our findings, it is therefore crucial to recognize how the inherent biases of 
SMI affect practical applications.

The works (Chen et al., 2023; Goldfeld et al., 2022; Goldfeld and Greenewald, 2021) 
propose using SMI in a Deep InfoMax setting. However, we demonstrate that maximizing 
SMI can lead to collapsed solutions due to the redundancy bias. Meanwhile, (Dentan et 
al., 2025; Shaeri and Middel, 2025; Wongso et al., 2022; 2023b; 2023a; 2025) study deep 
neural networks by measuring SMI between intermediate layers. Yet, as our analysis reveals, 
changes in SMI do not always reflect true shifts in statistical dependence; they may instead 
result from differences in layer dimensionality, redundancy in intermediate representations, 
low sensitivity in saturated regimes, or other factors. Finally, (Nuradha and Goldfeld, 2023) 
suggests using SMI for independence testing in differential privacy tasks. We contend that 
this approach poses critical issues, as SMI estimates can become statistically indistinguish
able from zero in high-dimensional or low-redundancy settings.

Limitations. While we support our claims with both theoretical analysis and experi
mental evidence, we were able to derive precise analytical expressions for the Gaussian case 
only. Nevertheless, our findings are more than sufficient to expose fundamental limitations 
of SMI, and to support all the claims we made.
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Ethics statement. This work is not subject to any ethical concerns.

Reproducibility  statement. To ensure reproducibility of our results, we provide 
complete proofs in Section B and implementation details in Section I. We also provide our 
code for the experiments in the supplementary material.

LLM usage. Large Language Models (LLMs) were used only to assist with rephrasing 
sentences and improving the clarity of the text.
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A Supplementary theory

Lemma A.1. (Polyanskiy and Wu (2024, Example 2.4)) 𝗁(𝒩︀(𝜇, Σ)) = 1
2 log((2𝜋𝑒)𝑑 det Σ).

Corollary A.2. For (𝑋, 𝑌 ) ∼ 𝒩︀(𝜇, Σ) with non-singular Σ

𝖨(𝑋; 𝑌 ) = 1
2

log det Σ𝑋 + 1
2

log det Σ𝑌 − 1
2

log det Σ

= −1
2

∑
𝑑

𝑖=1
log(1 − 𝜌2

𝑖 ),

where Σ𝑋, Σ𝑌  are marginal covariances, Σ𝑋𝑌  is cross-covariance, 𝑑 = min(𝑑𝑥, 𝑑𝑦), and 

{𝜌𝑖}
𝑑
𝑖=1 are singular values of Σ−1

2
𝑋 Σ𝑋𝑌 Σ−1

2
𝑌 .

Proof of Corollary A.2. Combining Lemma A.1 and (2) yields the first result. Now note that

𝖨(𝑋; 𝑌 ) = 𝖨(Σ−1
2

𝑋 𝑋; Σ−1
2

𝑌 𝑌 ) = 𝖨(U𝖳Σ−1
2

𝑋 𝑋; VΣ−1
2

𝑌 𝑌 ),

where U diag(𝜌𝑖)V𝖳 is the SVD of Σ−1
2

𝑋 Σ𝑋𝑌 Σ−1
2

𝑌 . Now note that

(U𝖳Σ−1
2

𝑋 𝑋, VΣ−1
2

𝑌 𝑌 ) ∼ 𝒩︀(𝜇′, ( I
diag(𝜌𝑖)

diag(𝜌𝑖)
I )),

from which we arrive at the second expression. □
Lemma A.3. Let A ∈ ℝ𝑛×𝑚 be full column rank matrix, and Θ ∼ 𝜇St(𝑛,𝑘) Then Θ𝖳A is 
full-rank with probability one.

Proof of Lemma A.3. Performing QR decomposition of A yields Θ𝖳A = Θ𝖳QR =d Θ𝖳(I𝑚
0 )R. 

Since A is full-rank, R is invertible and rank Θ𝖳A = rank Θ𝖳(I𝑚
0 ). Therefore,

ℙ{Θ𝖳A is full-rank} = 1 − ℙ{Θ𝖳(I𝑚
0 ) is not full-rank} = 1.

□
Lemma A.4. (Edelman and Sutton (2008, Theorem 1.5)) Let W ∼ 𝜇O(𝑑) and partition

W = (W11
W21

W12
W22

)

with W11 of size 𝑘 by 𝑘. Then the eigenvalues {𝜆𝑖}
𝑘
𝑖=1 of W11W𝖳

11 follow the Jacobi ensemble

𝑝(𝝀) ∝ ∏
𝑖<𝑗

|𝜆𝑖 − 𝜆𝑗|𝛽 ∏
𝑘

𝑖=1
𝜆

𝛽
2 (𝑎+1)−1
𝑖 (1 − 𝜆𝑖)

𝛽
2 (𝑏+1)−1

with parameters 𝑎 = 0, 𝑏 = 𝑑 − 2𝑘, and 𝛽 = 1 (over ℝ).

Proof of Lemma A.4. Let A1 ∈ ℝ𝑘×𝑑 and A2 ∈ ℝ(𝑑−𝑘)×𝑑 be independent matrices with i.i.d. 
entries from 𝒩︀(0, 1). By stacking A1 atop A2 and then performing a QR decomposition on 
the resulting Gaussian matrix, the orthogonal invariance of the Gaussian law implies that 
Q is independent of the upper‑triangular factor R and uniformly distributed on O(𝑑).
For a matrix P = diag(𝑝1, …, 𝑝𝑘) with i.i.d. 𝑝𝑖 sampled uniformly from {−1, 1}, we have 
QP =d W. Partitioning Q and P into blocks similarly to W, we have Q11P11 =d W11 for the 

top-left block of Q.

The CS decomposition of an orthogonal Q together with invertible R yields the generalized 
singular value decomposition (GSVD) of the pair (A1, A2):
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(A1
A2

) = (Q11
Q21

Q12
Q22

)R = (U1
U2

)
(

 C

−S
S
C

𝐼)

(V𝖳

1
V𝖳

2
)R,

where U1, V1 ∈ O(𝑘), U2, V2 ∈ O(𝑑 − 𝑘), and C = diag(𝑐1, …, 𝑐𝑘), S = diag(𝑠1, …, 𝑠𝑘) with 
𝑐𝑖 ≥ 0, 𝑠𝑖 ≥ 0 in descending order, and 𝑐2

𝑖 + 𝑠2
𝑖 = 1 for all 𝑖. The diagonal entries of C are 

known as the generalized singular values of the pair (A1, A2). From this decomposition and 
the SVD of W11 = UΣV𝖳, one has

U1C V𝖳
1 P11 =d UΣV𝖳.

Since U1, V1, and U, V are uniformly distributed on O(𝑘) and independent of C, Σ, P11, we 
have C =d Σ by the invariance of the Haar measure under orthogonal transformations. On 

the other hand, the generalized singular values {𝑐𝑖}
𝑘
𝑖=1 of a pair (A1, A2) follow the law of 

the Jacobi ensemble with parameters 𝑎 = 0, 𝑏 = 𝑑 − 2𝑘, and 𝛽 = 1 (Edelman and Sutton, 
2008, Proposition 1.2). Therefore, the squared singular values of W11 follow the Jacobi 
ensemble with the same parameters. □
Corollary A.5. The squared inner product |𝜃𝖳𝜙|2 between two independent random 
vectors 𝜃, 𝜙 ∼ 𝜇𝕊𝑑−1 follows Beta(1

2 , 𝑑−1
2 ). Moreover, the shifted inner product (1 + 𝜃𝖳𝜙)/2 

is symmetrically distributed as Beta(𝑑−1
2 , 𝑑−1

2 ).

Proof of Corollary A.5. Setting Jacobi parameters 𝑘 = 1, 𝑎 = 0, 𝑏 = 𝑑 − 2 and 𝛽 = 1, the 
density is proportional to 𝑥−1/2(1 − 𝑥)(𝑑−3)/2 on [0, 1], which matches the Beta(1

2 , 𝑑−1
2 ) 

distribution.

Next, observe that 𝜃𝖳𝜙 has a density proportional to (1 − 𝑡)𝑑−3
2  for 𝑡 ∈ [−1, 1]. Under the 

change of variables 𝜂 ∼ Beta(𝑑−1
2 , 𝑑−1

2 ).

□

B Complete proofs

Lemma 4.1. Consider the following pair of jointly Gaussian 𝑑-dimensional random vectors:

(𝑋, 𝑌 ) ∼ 𝒩︀(0, ( I
𝜌I

𝜌I
I )), 𝜌 ∈ (−1; 1).

In this setup, MI and SMI can be calculated analytically:

𝖨(𝑋; 𝑌 ) = −𝑑
2

log(1 − 𝜌2), 𝖲𝖨(𝑋; 𝑌 ) = 𝜌2

2𝑑
  𝐹3 2(1, 1, 3

2
; 𝑑
2

+ 1, 2; 𝜌2),

where 𝐹3 2 is the generalized hypergeometric function. Additionally, the following limits hold:

lim
𝑑→∞

𝖨(𝑋; 𝑌 ) = +∞ lim
𝑑→∞

𝖲𝖨(𝑋; 𝑌 ) = 0

lim
𝜌2→1

𝖨(𝑋; 𝑌 ) = +∞ lim
𝜌2→1

𝖲𝖨(𝑋; 𝑌 ) = 𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2 ≤ 1
𝑑 − 1

,

with 𝜓 being the digamma function.

Proof of Lemma 4.1. One can acquire 𝖨(𝑋; 𝑌 ) = −𝑑
2 log(1 − 𝜌2) from a general expression 

for MI of two jointly Gaussian random vectors (see Corollary A.2).

Recall that (𝜃𝖳𝑋, 𝜙𝖳𝑌 ) is also Gaussian with cross-covariance 𝜌 𝜃𝖳𝜙. Therefore, by Corollary 
A.2 we have

𝖲𝖨(𝑋; 𝑌 ) = 𝖨 (𝜃𝖳𝑋; 𝜙𝖳𝑌 | 𝜃, 𝜑) = −1
2

𝔼[log(1 − 𝜌2 |𝜃𝖳𝜙|2)].

From Corollary A.5, we note that |𝜃𝖳𝜙|2 ∼ Beta(1
2 , 𝑑−1

2 ), so
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𝖲𝖨(𝑋; 𝑌 ) = − 1
2B(1

2 , 𝑑−1
2 )

∫
1

0
log(1 − 𝜌2𝑥)(1 − 𝑥)𝑑−3

2 𝑥−1
2 d𝑥

= 𝜌2

2
Γ(𝑑

2)
Γ(1

2)Γ(𝑑−1
2 )

∫
1

0
𝑥1

2 (1 − 𝑥)𝑑−3
2 𝐹2 1(1, 1; 2; 𝜌2𝑥) d𝑥,

where the last equality follows from the identity log(1 − 𝑧) = −𝑧 𝐹2 1(1, 1; 2; 𝑧) with hyper
geometric function 𝐹2 1. Appling Euler’s integral transform (McBride, 1999, Eq. (2.2.3)) gives

𝖲𝖨(𝑋; 𝑌 ) = 𝜌2

2𝑑
Γ(𝑑

2 + 1)
Γ(3

2)Γ(𝑑−1
2 )

∫
1

0
𝑥3

2−1(1 − 𝑥)(𝑑
2+1)−3

2−1 𝐹2 1(1, 1; 2; 𝜌2𝑥) d𝑥

= 𝜌2

2𝑑
𝐹3 2(1, 1, 3

2
; 𝑑
2

+ 1, 2; 𝜌2).

Here 𝐹3 2 denotes the generalized hypergeometric function.

Finally, we calculate the limit of 𝖲𝖨(𝑋; 𝑌 ) as 𝜌2 → 1 using properties of beta-distribution. 
Denoting 𝜂 = (1 + 𝜃𝖳𝜙)/2 ∼ Beta(𝑑−1

2 , 𝑑−1
2 ) (see Corollary A.5), we get

𝖲𝖨(𝑋; 𝑌 ) = − log 2 − 𝔼 log(1 − 𝜂) = − log 2 − 𝔼 log 𝜂 = 𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2,

where 𝜓 is the digamma function. Using the bounds on digamma function (Elezovic et al., 
2000), we get

log(𝑥 + 1
2
) − 1

𝑥
≤ 𝜓(𝑥) ≤ log(𝑥 + 𝑒𝜓(1)) − 1

𝑥
, (5)

we derive an upper bound on this expression:

𝜓(𝑑 − 1) − 𝜓(𝑑 − 1
2

) − log 2 ≤ 1
𝑑 − 1

+ log(1 + 𝑒𝜓(1) − 1
𝑑

)

To simplify the bound, one can note that 𝑒𝜓(1) − 1 < 0, as 𝜓(1) < 0. □
Proposition 4.2. Under the setup of Lemma 4.1, 𝑘-SMI has the following representation

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∫
[0,1]𝑘

∑
𝑘

𝑖=1
log(1 − 𝜌2𝜆𝑖) 𝑝(𝝀) d𝝀, 𝑝(𝝀) ∝ ∏

𝑖<𝑗
|𝜆𝑗 − 𝜆𝑖| ∏

𝑘

𝑖=1
(1 − 𝜆𝑖)

(𝑑−2𝑘−1)/2

⏟
(⋆)

Proof of Proposition 4.2. Let QX, QY ∼ 𝜇St(𝑘,𝑑). Then [Q𝖳
X𝑋, Q𝖳

Y𝑌 ] ∼ 𝒩︀(0, Σ), where Σ is 
a 2𝑘 × 2𝑘 covariance matrix with the following block structure

Σ = ( I𝑘
𝜌 Q𝖳

YQX

𝜌 Q𝖳
XQY
I𝑘

).

Using the formula for the determinant of a block matrix Σ yields

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

𝔼[log det(Σ)] = −1
2

𝔼[log det(I − 𝜌2(Q𝖳
XQY)(Q𝖳

XQY)𝖳)].

By the invariance of the Haar measure under left and right multiplication, Q𝖳
XQY =𝑑 W11, 

where W11 is a 𝑘 by 𝑘 left upper block of the matrix W ∼ 𝜇O(𝑑). According to Lemma A.4, 
the eigenvalues of W11W𝖳

11 follow Jacobi ensemble with parameters 𝑎 = 0, 𝑏 = 𝑑 − 2𝑘 and 
𝛽 = 1:

𝑝(𝜆) ∝ ∏
𝑖<𝑗

|𝜆𝑗 − 𝜆𝑖| ∏
𝑘

𝑖=1
(1 − 𝜆𝑖)

𝑑−2𝑘−1
2 .
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Thus, we get a general expression for 𝑘-SMI

𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∫
[0,1]𝑘

∑
𝑘

𝑖=1
log(1 − 𝜌2𝜆𝑖)𝑝(𝜆) d𝜆.

□
Proposition 4.4. Let 𝑋 and 𝑌  be 𝑑𝑥, 𝑑𝑦-dimensional random vectors respectively, with 
𝑑𝑥, 𝑑𝑦 < 𝑘. Let A ∈ ℝ𝑚𝑥×𝑑𝑥 , B ∈ ℝ𝑚𝑦×𝑑𝑦 be full column rank. Then 𝖲𝖨𝑘(A𝑋; B𝑌 ) = 𝖨(𝑋; 𝑌 ).

Proof of Proposition 4.4. Using Lemma A.3 and 𝑑𝑥, 𝑑𝑦 < 𝑘, we get that Θ𝖳A and Φ𝖳B are 
injective with probability one for independent Θ, Φ distributed uniformly on St(𝑑𝑥, 𝑘) and 
St(𝑑𝑦, 𝑘). Therefore, according to Theorem 3.1, [𝖨(Θ𝖳A𝑋; Φ𝖳B𝑌 ) | Θ, Φ] = 𝖨(𝑋; 𝑌 ) almost 
sure. As a result, 𝖲𝖨𝑘(A𝑋; B𝑌 ) = 𝖨(Θ𝖳A𝑋; Φ𝖳B𝑌 | Θ, Φ) = 𝖨(𝑋; 𝑌 ). □

Proposition 4.7. (Tsur et al. (2023, Proposition 2)) Let (𝑋, 𝑌 ) ∼ 𝒩︀(𝜇, Σ), with marginal 

covariances Σ𝑋, Σ𝑌  and cross-covariance Σ𝑋𝑌 . Suppose the matrix Σ−1
2

𝑋 Σ𝑋𝑌 Σ−1
2

𝑌  exists, 
and let {𝜌𝑖}

𝑑
𝑖=1 denote its singular values in descending order, where 𝑑 = min(𝑑𝑥, 𝑑𝑦). Then

𝖨(𝑋; 𝑌 ) = −1
2

∑
𝑑

𝑖=1
log(1 − 𝜌2

𝑖 ), 𝖲𝖨𝑘(𝑋; 𝑌 ) = −1
2

∑
𝑘

𝑖=1
log(1 − 𝜌2

𝑖 ).

Proof of Proposition 4.7. Direct corollary of Corollary A.2. □

C General case

While Lemma 4.1 successfully demonstrates severe shortcomings in SMI, it relies exclu
sively on the Gaussian case. Since real-world data distributions can deviate significantly 
from normality, this section analyzes other scenarios where SMI may or may not exhibit 
limitations.

We begin with a simple example of discrete random vectors 𝑋, 𝑌  for which 𝖲𝖨𝑘(𝑋; 𝑌 ) =
𝖨(𝑋; 𝑌 ) regardless of 𝑘 and dimensionality.

Example. C.1. Let 𝑋, 𝑌  be any discrete pair random vectors. Then, 𝖲𝖨𝑘(𝑋; 𝑌 ) = 𝖨(𝑋; 𝑌 ).
Proof of Example C.1. Because 𝑋 and 𝑌  are discrete, almost every random projection 
mapping is injective on their respective supports. Since MI is invariant under measurable 
injective transforms, 𝖨(Θ𝖳𝑋; Φ𝖳𝑌 ) = 𝖨(𝑋; 𝑌 ) for almost all fixed Θ and Φ. Therefore, taking 
the expectations over Φ ∼ 𝜇St(𝑘,𝑑𝑋), Θ ∼ 𝜇St(𝑘,𝑑𝑌 ) yields

𝖲𝖨𝑘(𝑋; 𝑌 ) = 𝖨(Θ𝖳𝑋; Φ𝖳𝑌 | Θ, Φ) = 𝖨(𝑋; 𝑌 ).

□
However, this example is simple and does not require dimensionality reduction in the first 
place: when dealing with discrete random vectors, the only constraint is the support size. 
On the other hand, applying SMI to continuous distributions with independent components 
immediately results in saturation.

Lemma C.2. Let 𝑋 : Ω → ℝ𝑑 be a random vector with i.i.d. components of unit variance 
such that 𝗁(𝑋𝑖) = 𝐸 < ∞, and 𝑌 ⟂⟂ 𝑋𝑖 for 𝑖 ≥ 2. Then

𝖲𝖨𝑘(𝑋; 𝑌 ) ≤ 𝑘(𝗁(𝒩︀(0, 1)) − 𝐸) − 1
2
[𝜓(𝑑 − 𝑘

2
) − 𝜓(𝑑

2
)],

where the RHS is independent of 𝖨(𝑋; 𝑌 ).
Proof of Lemma C.2. From the DPI for the Markov chain Φ𝖳𝑌 → 𝑌 → 𝑋1 → Θ𝖳𝑋, one has
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𝖨(Θ𝖳𝑋; Φ𝖳𝑌 | Θ, Φ) ≤ 𝖨(Θ𝖳𝑋; 𝑋1 | Θ)
= 𝗁(Θ𝖳𝑋 | Θ) + 𝗁(𝑋1) − 𝗁(Θ𝖳𝑋, 𝑋1 | Θ).

The first one can be upper bounded as follows

𝗁(Θ𝖳𝑋 | Θ) ≤ 𝗁(Θ𝖳𝑋) ≤ 𝑘 𝗁(𝒩︀(0, 1)),

To get a lower bound on the joint entropy, we first rewrite the (𝑘 + 1)-dimensional vector as 
a transformation of the 𝑘-dimensional 𝑋 and perform QR-decomposition of the (𝑘 + 1) ×
𝑑 matrix

(Θ𝖳𝑋
𝑋1

) = (Θ𝖳

𝑒𝖳
1

)𝑋 = ( 𝐼
𝑟𝖳 ‖𝑢̃‖)(Θ𝖳

𝑢𝖳 )𝑋 = R𝖳U𝖳 𝑋,

where 𝑢 = 𝑢̃/‖𝑢̃‖2 with 𝑢̃ = (I − ΘΘ𝖳)𝑒1. Here R ∈ ℝ(𝑘+1)×(𝑘+1) is a full-rank upper-trian
gular matrix, and U ∈ St(𝑘 + 1, 𝑑). Then,

𝗁(Θ𝖳𝑋, 𝑋1 | Θ) = 𝗁(R𝖳U 𝑋 | Θ) = 𝗁(U 𝑋 | Θ) + 𝔼 log|det R|.

To lower bound the entropy in the RHS, we make use of the result from (Guo et al., 2006, 
Theorem 3):

𝗁(U 𝑋 | Θ) ≥ 𝔼 Tr(U diag(𝗁(𝑋1), …, 𝗁(𝑋𝑑))U𝖳) = 𝐸 𝔼 Tr(ΘΘ𝖳 + 𝑢𝖳𝑢) = 𝐸 (𝑘 + 1).

Noting that log|det R| = 1
2 log ‖𝑢̃‖2

2 = 1
2 log(1 − ‖Θ𝖳𝑒1‖

2
2
), the joint entropy bound is

𝗁(Θ𝖳𝑋, 𝑋1 | Θ) ≥ 𝐸 (𝑘 + 1) + 1
2

𝔼 log(1 − ‖Θ𝖳𝑒1‖
2
2
).

Since ‖Θ𝖳𝑒1‖
2
2

= 𝜃2
11 + … + 𝜃2

1𝑘 ∼ 𝑍2
1+…𝑍2

𝑘
𝑍2

1+…𝑍2
𝑑

∼ Beta(𝑘
2 , 𝑑−𝑘

2 ) with i.i.d. 𝑍𝑖 ∼ 𝒩︀(0, 1), one con

cludes that

𝖨(Θ𝖳𝑋; 𝑌 | Θ) ≤ 𝑘 𝗁(𝒩︀(0, 1)) + 𝐸 − 𝐸 (𝑘 + 1) − 1
2
[𝜓(𝑑 − 𝑘

2
) − 𝜓(𝑑

2
)]

= 𝑘 𝗁(𝒩︀(0, 1)) − 𝑘𝐸 − 1
2
[𝜓(𝑑 − 𝑘

2
) − 𝜓(𝑑

2
)]

□
Lemma C.3. Under the assumptions of Lemma C.2 holds

𝖲𝖨𝑘(𝑋; 𝑌 ) ≤ 𝑘 const − 1
2

log(1 − 𝑘
𝑑
) + 1

𝑑 − 𝑘
− 1

2𝑑
,

where “const” is independent of 𝖨(𝑋; 𝑌 ).
Proof of Lemma C.3. By using the inequalities on the digamma function (Elezovic et al., 
2000), one has the following upper bound:

𝖲𝖨(𝑋; 𝑌 ) ≤ 𝑘 const − 1
2
[𝜓(𝑑 − 𝑘

2
) − 𝜓(𝑑

2
)]

≤ 𝑘 const − 1
2
[log(𝑑 − 𝑘

2
) − 2

𝑑 − 𝑘
− [log(𝑑

2
) − 1

𝑑
]]

= 𝑘 const − 1
2

log(1 − 𝑘
𝑑
) + 1

𝑑 − 𝑘
− 1

2𝑑
.

□
We note that both Lemma 4.1 and Lemma C.2 are much stronger than (Goldfeld and Gree
newald, 2021, Proposition 1, part 2): the latter merely states that 𝖲𝖨(𝑋; 𝑌 ) ≤ 𝖲𝖨(𝑋; 𝑌 ). For 
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instance, given the example from Lemma 4.1, (Goldfeld and Greenewald, 2021, Proposition 
1, part 2) yields 𝖲𝖨(𝑋; 𝑌 ) ≤ 1

𝑑 𝖨(𝑋; 𝑌 ), while our result suggests 𝖲𝖨(𝑋; 𝑌 ) ≤ 1
𝑑−1 , which does 

not depend on mutual information. Therefore, the saturation is strong (even 𝖨(𝑋; 𝑌 ) → ∞ 
does not break it) and can not be explained solely by non-optimality of projections.

D Gaussian channel

To explore the SMI’s preference for redundant over linearly extractable information, we an
alyze an additive white Gaussian noise (AWGN) channel. Consider a 𝑑-dimensional random 
vector 𝑋 with cov(𝑋) = I, independent noise 𝑍 ∼ 𝒩︀(0, 𝜎2I), and the channel output 𝑌 =
𝐴𝑋 + 𝑍, where the matrix A satisfies diag AA𝖳 = I to ensure energy preservation across 
dimensions.

In classical information theory, maximizing 𝖨(𝑋; 𝑌 ) with respect to the input distribution 
under energy constraints 𝔼[𝑋2

𝑖 ] = 1 is achieved by 𝑋 ∼ 𝒩︀(0, I) (Cover and Thomas, 2006). 
This solution is optimal because decorrelated features provide maximal robustness against 
isotropic noise. When the transformation matrix A is well-conditioned (i.e., 𝜅(A) ≝ ‖A‖ ⋅
‖A−1‖ ≈ 1), information about 𝑋 is spread evenly across the dimensions of 𝑌 . In contrast, 
as shown below, SMI exhibits the opposite preference due to its redundancy bias.

When A = I, the channel decouples into independent scalar channels 𝑌𝑖 = 𝑋𝑖 + 𝑍𝑖. In this 
case, linear estimation via the conditional expectation 1

1+𝜎2 𝔼[𝑋𝑖 | 𝑌𝑖] achieves the optimal 
mean squared error (MSE), representing the most efficient linear extraction of information.

Contrary to the theoretical optimality of well-conditioned transformations for mutual infor
mation, SMI increases with 𝜅(A) as shown in Figure 7. This demonstrates that SMI does 
not measure linearly extractable information but rather favors redundant information.

SMI’s preference for ill-conditioned 𝐴 (high 𝜅(A)) arises because such transformations create 
strong dependencies among the output features. A high condition number implies that 
the components of A𝑋 become highly correlated, making the same information available 
repeatedly across different one-dimensional projections.

E Relation to other measures of dependence

Ability to capture complex statistical dependencies

E
st

im
at

io
n
 c

om
p
le

x
it
y

correlation

SMI

max-SMI
optimal-SMI

mutual information

copulaperceived position
actual position

our contribution

In our visual abstract, we position SMI as more complex and capable than correlation 
analysis but less complex than MI and copulas. In this section, we elaborate on this ranking.

• Copulas provide the most complete description of dependencies of two random 
vectors. The joint distribution ℙ𝑋,𝑌  fully captures probabilistic dependencies, but 
includes irrelevant information about marginal distributions ℙ𝑋 ⊗ ℙ𝑌 . A copula 
𝐶𝑋,𝑌  factors out the former w.r.t. the latter by pinning the marginals to be uniform, 
thus describing the pure dependence structure (Fan and Henry, 2021). While 
offering full generality, copulas complexity often makes their direct use impractical.
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• Mutual Information (MI) is a measure of statistical dependence, capturing non-
linear relationships between two random vectors. It projects the copula onto a scalar 
summarizing dependence strength:

𝖨(𝑋; 𝑌 ) = 𝔼 PMI(𝑋; 𝑌 ) = 𝔼 log
d ℙ𝑋,𝑌

d ℙ𝑋 ⊗ ℙ𝑌
(𝑋, 𝑌 ),

where the log-derivative PMI refers to Pointwise Mutual Information and literally 
equals to the copula 𝐶𝑋,𝑌 . Thus, MI is a functional of the copula (Chen et al., 
2025; Ma and Sun, 2011), and if the corresponding PDF exists, one can write

𝖨(𝑋; 𝑌 ) = − 𝗁(𝐶𝑋,𝑌 ).

• Sliced Mutual Information (SMI) estimates the mutual information between two 
random variables by averaging across one-dimensional projections. It can detect 
non-linear dependencies. However, as our work demonstrates, SMI saturates 
prematurely, prefers information redundancy, and asymptotically vanishes as the 
dimension growth.

• Correlation measures linear dependence. It is computationally efficient, but fails to 
detect any non-linear relationships.

In summary, our work shows that there exists a fundamental trade-off between computa
tional scalability of a dependence estimator and its ability to capture rich, high-dimensional 
dependencies. We find that SMI, contrary to earlier assumptions, fails to overcome this 
trade-off. The cost of its computational benefits are misleading biases. While our findings are 
solid, we would like to emphasize that the visual abstract represents our personal, informal 
opinion, although it is backed by concrete evidence.

F Selecting 𝑘NN in KSG estimator

In this section, we use the same benchmarks from Section 5 to determine the optimal 
number of nearest neighbors (𝑘NN) for the KSG estimator (Kraskov et al., 2004). We focus 
exclusively on plain Mutual Information estimation, as it is a direct component of the SMI 
estimation task. For each MI value from 0 to 10 in steps of 1, we perform 10 independent 
runs with 104 samples each. We then compute the median across these runs and use it to 
derive the Mean Absolute Error (MAE) for different distributions and 𝑘NN values. These 
errors are reported in Table 1. From the results it is evident that 𝑘NN = 1 is the best choice 
on average. This is consistent with Figure 4 in (Kraskov et al., 2004), where 𝑘NN/𝑁samples →
0 increases accuracy.

Table 1: MAE of the KSG estimates under different distributions and values of 𝑘NN.

𝑘NN

Distribution 1 2 3 5 10 20
Correlated Normal 1.32 1.47 1.57 1.69 1.87 2.08
Correlated Uniform 1.45 1.59 1.68 1.80 1.98 2.17
Smoothed Uniform 1.42 1.57 1.67 1.80 1.98 2.18

Log-Gamma-Exponential 0.41 0.52 0.60 0.72 0.91 1.15

G Additional experiments

In this section, we conduct supplementary experiments to evaluate SMI under a broader 
range of setups.
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G.1 Low-dimensional synthetic tests

We begin by assessing 𝑘-SMI on the same set of benchmarks from Section 5. The results for 
𝑘 = 1, 2, 3 are presented in Figure 4, Figure 13, and Figure 14, respectively. Notably, satu
ration remains consistent even for 𝑘 = 𝑑 − 1 (i.e., when only one component is discarded).

Next, we examine a setup involving randomized distribution parameters, following the 
methodology of (Butakov et al., n.d.). Among other adjustments, this includes random
izing per-component mutual information (e.g., assigning interactions unevenly in this 
experiment). In some cases (e.g., the log-gamma-exponential distribution), this increases 
linear redundancy, as component pairs with higher mutual information also exhibit higher 
variance in this particular scenario. Our results are displayed in Figure 15.

Due to numerical constraints, we do not track 𝖨(𝑋; 𝑌 )/𝑑 in this particular setup, instead 
plotting the results against the total mutual information. While this makes saturation 
slightly less evident, the general trend of SMI decreasing with 𝑑 remains observable. We also 
highlight the log-gamma-exponential distribution (Figure 15d), where SMI is less prone to 
saturation under parameter randomization due to the reasons mentioned earlier.

G.2 Synthetic images

Using the MI-preserving smooth injective mappings from (Butakov et al., n.d.), we 
reproduce the synthetic datasets used in (Butakov et al., 2024). These datasets consist of 
high-dimensional images (see Figure 3) with known ground-truth mutual information. The 
results presented in Figure 16 again prove our findings.

G.3 Real images with synthetic copulas

Following the technique proposed in (Lee and Rhee, 2024), we conduct additional experi
ments on the MNIST dataset. We consider the Markov chain:

𝑋1 ⟶ 𝐶1 → 𝐶2 ⟶ 𝑋2,

where 𝐶1 and 𝐶2 are random class variables, and 𝑋1, 𝑋2​ represent random images drawn 
from classes 𝐶1 and 𝐶2, respectively. We control the mutual information 𝖨(𝐶1; 𝐶2) using 
the noisy symmetric channel framework from (Lee and Rhee, 2024). If images are selected 
independently given the class pair, it can be shown that 𝖨(𝑋1; 𝑋2) = 𝖨(𝐶1; 𝐶2).
We vary 𝖨(𝐶1; 𝐶2) from 0 to log(#classes) (its theoretical maximum) and conduct 10 
independent runs. The resulting values of 𝑘-SMI, averaged over 10 independent runs, are 
presented in Table 2. These results also indicate saturation of SMI. Moreover, one can also 
notice that SMI between independent is non-zero and only twice as small compared to the 
case 𝖨(𝑋1; 𝑋2) = 2.3 nats, which highlights the curse of dimensionality.

Table 2: SMI results (in 10−3 nats) for the experiments with MNIST dataset.

𝖨(𝑋1; 𝑋2), nats

0.0 0.5 1.0 1.5 2.0 2.3
𝖲𝖨(𝑋1; 𝑋2), 10−3 nats 2.89 2.88 3.80 4.68 5.73 5.77

H Replication study: details

The original papers on 𝑘-SMI and max-SMI feature several experiments on independence 
testing and InfoMax tasks (Goldfeld et al., 2022, Section 5; Goldfeld and Greenewald, 2021, 
Sections 4.2,4.3; Tsur et al., 2023, Section 5). In this section, we attempt to replicate these 
tests to understand how their results align with our analysis.
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(b) Correlated Uniform
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(c) Smoothed Uniform
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(d) Log-Gamma-Exponential

Figure 13:  2-SMI results on synthetic benchmarks. Mean values and standard deviations 
across 10 runs are reported, 104 samples from 𝑋, 𝑌  and 128 random projections were used.
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(b) Correlated Uniform
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(c) Smoothed Uniform
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(d) Log-Gamma-Exponential

Figure 14:  3-SMI results on synthetic benchmarks. Mean values and standard deviations 
across 10 runs are reported, 104 samples from 𝑋, 𝑌  and 128 random projections were used.
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(c) Smoothed Uniform
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Figure 15:  SMI results on synthetic benchmarks. Mean values and standard deviations 
across 10 runs are reported, 104 samples from 𝑋, 𝑌  and 128 random projections were used.
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(a) Gaussian 16 × 16
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(b) Gaussian 32 × 32
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(c) Rectangles 16 × 16

0 2 4 6 8 10
𝖨(𝑋; 𝑌 )/𝑑, nats

0

2

4

6

8

10

𝖲𝖨
(𝑋

;𝑌
), 

n
at

s

𝑘 = 1
𝑘 = 2
𝑘 = 3
𝑘 = 5
𝑘 = 7

(d) Rectangles 32 × 32
Figure 16:  Results of synthetic experiments with high-dimensional image-based distribu
tions for k-SMI. We report mean values and standard deviations computed across 10 runs, 
with 104 samples used for MI estimation and 128 for averaging across projections.
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H.1 Feature extraction

Here, we reproduce and elaborate on the InfoMax-like feature extraction experiments. In 
contrast to the tasks described in Section 6 of our work, (Goldfeld and Greenewald, 2021, 
Section 4.3) considers a supervised feature extraction setting. In this setup, the shared 
information between 𝑓(𝑋) and 𝑔(𝑌 ) is maximized with respect to the functions 𝑓 and 𝑔.

Toy Gaussian example. Here we consider two families of Gaussian baselines: high 
redundancy (𝑋, 𝑌 ′) and low redundancy (𝑋, 𝑌 ″):

𝑋, 𝑍 ∼ 𝒩︀(0, I𝑑), 𝑋 ⟂⟂ 𝑍 𝑌 ′ = 𝑍 + ∑
𝑚

𝑖=1
𝟏 ⋅ 𝑒𝖳

𝑖 𝑋 𝑌 ″ = 𝑍 + ∑
𝑚

𝑖=1
𝑒𝑖 ⋅ 𝑒𝖳

𝑖 𝑋,

where 𝟏𝖳 = (1, …, 1) and 𝑚 controls the number of components that are injected into 𝑌 . 
Setting 𝑑 = 10 and 𝑚 = 1 for (𝑋, 𝑌 ′) recovers the experiment from (Goldfeld and Gree
newald, 2021). However, to highlight SMI’s deficiencies, we will adhere to the low redundancy 
benchmark, according to which a proper feature extraction should result in the selection of 
at least 𝑚 features.

In our experiments, we closely follow the setup from (Goldfeld and Greenewald, 2021): when 
maximizing 𝑘-SMI, we use linear 𝑓 and 𝑔, parametrized by ℝ𝑑×𝑑 matrices. However, when 
extracting features through MI and max-SMI maximization, we have to form a dimension
ality bottleneck by using ℝ𝑘×𝑑 matrices: otherwise, the best strategy is to extract every 
feature. As we show below, SMI does not require this bottleneck, because it is implicitly 
biased toward degenerate solutions.

Similar to Section 6, variational representations are employed to conduct the experiments: 
the NNs from Section I are trained for 100 epochs; other settings are the same.

To evaluate the quality of the extracted features, we compute the effective rank of the 
matrices A(1:𝑚), B(1:𝑚) formed by the first 𝑚 columns of A and B respectively. The effective 
rank is defined as erank M = exp(𝖧(𝜎)), where 𝖧(𝜎) is the Shannon entropy of the normal

Figure 17:  Feature extraction matrix for the low redundancy setting acquired through 
𝑘-SMI → max for 𝑚 ∈ {1, 2, 3, 4} (columns) and 𝑘 ∈ {1, 4} (rows).

Figure 18:  Feature extraction matrix for the low redundancy setting acquired through 
MI → max for 𝑚 ∈ {1, …, 4} (rows).
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Figure 19:  Feature extraction matrix for the low redundancy setting acquired through 
1-max-SMI → max for 𝑚 ∈ {1, …, 4} (rows).

ized singular values 𝜎 of M. If erank A(1:𝑚) ≈ 𝑚, then all features are extracted without 
mixing, while low values of erank A(1:𝑚) indicate the (numerically) irrecoverable collapse to 
mixtures (ill-posed linear combinations of the first 𝑚 components of 𝑋).

Our results, depicted in Figure 9, show that the MI maximization yields effective rank 
close to 𝑚, confirming its ability to recover all relevant features. In contrast, 𝑘-SMI yields 
an effective rank that nearly constant regardless of 𝑘, revealing its redundancy bias. This 
collapse confirms that 𝑘-SMI optimization leads to redundant features.

H.2 Independence testing

The SMI has been proposed as a scalable alternative to MI for independence testing 
(Goldfeld et al., 2022; Goldfeld and Greenewald, 2021; Nuradha and Goldfeld, 2023; Tsur et 
al., 2023), which can be framed as a binary classification task. Given estimates of SMI (or 
MI) on datasets drawn from either the joint distribution (positive class) or the product of 
marginals (negative class, obtained by shuffling), one can apply the threshold for dependence 
verification. For each fixed dimension 𝑑, and sample size 𝑛, we can generate 100 positive 
and 100 negative pairs of samples, estimate SMI (or MI), and compute the ROC‑AUC over 
these 200 scored examples as a function of the number of samples 𝑛. The works (Goldfeld 
et al., 2022; Goldfeld and Greenewald, 2021) shows that SMI outperforms MI when the 
dimension is fixed.

We replicate this protocol with one critical modification. We pool estimates across different 
dimensions (𝑑 ∈ {2, 10, 20, 30}) for each sample size 𝑛, and then compute a single ROC‑AUC 
from the mixed-dimensional data. Additionally, we fix the ground truth MI to 1 and 2 nat 
for each dataset and replace the Kozachenko–Leonenko estimator used in (Goldfeld and 
Greenewald, 2021) with the KSG estimator (Kraskov et al., 2004) (using 𝑘NN = 1 neighbors), 
which in our experiments yields more stable MI estimates.1 For a fair comparison we report 
MI values over 128 random rotations, because it showed numerically improved MI estimates 
for small-size datasets.
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Figure 20:  Independence testing: ROC-AUC versus sample size for correlated normal, 
correlated uniform, smoothed uniform and log-gammma-exponential (left-to-right, 1 nat).

As shown in Figures 11, 20, this pooling causes SMI’s discriminative power to drop sharply, 
while MI’s remains high. The failure occurs because SMI decays with dimension even when 
total mutual information is held constant, so dependent high‑dimensional cases produce 
SMI values that overlap with independent low‑dimensional cases. The slower dimensional 
decay of SMI for LGE distribution (Figures 5, 15), in turn, explain the observed higher 
ROC-AUC. Consequently, SMI is less reliable for independence testing than MI unless the 

1By using the KSG estimator, we observe that ROC-AUC dynamics corresponding to MI come 
into closer agreement with those of SMI, which is not seen when using the less stable Kozachenko–
Leonenko estimator.
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dimensionality is known and fixed in advance, which imposes a strict limitation for practical 
applications where data dimensionality may vary.

I Implementation Details

I.1 Synthetic Experiments

For the experiments from Section 5, we use implementation of Kraskov-Stoegbauer-Grass
berger (KSG) (Kraskov et al., 2004) mutual information estimator and random slicing from 
(Butakov et al., n.d.). The number of neighbors is set to 𝑘NN = 1 for the KSG estimator. 
For each configuration, we conduct 10 independent runs with different random seeds to 
compute means and standard deviations. Our experiments use 104 samples for (𝑋, 𝑌 ) and 
128 samples for (Θ, Φ).
For the experiments from Section 5, we use independent components with equally distrib
uted per-component MI. For the supplementary experiments from Figure 15, parameters of 
each distribution (e.g., covariance matrices) are randomized via the algorithm implemented 
in (Butakov et al., n.d.). This includes randomization of per-component MI (which is done 
using a uniform distribution over a (𝑑 − 1)-dimensional simplex).

For the experiments, we used AMD EPYC 7543 CPU, one core per distribution. Each 
experiment (fixed 𝑘, varying 𝑑) took no longer then 3 days to compute.

I.2 Representation Learning Experiments

Recall that Deep InfoMax requires maximizing a lower bound on 𝖨(𝑋; 𝑓(𝑋)), where 𝑋 is 
input data and 𝑓 is an encoder network. Since 𝖨(𝑋; 𝑓(𝑋)) is typically vacuous, the lower 
bound in question should be selected carefully to (a) be finite and (b) allow for meaningful 
optima. In our experiments, we employ the objective from (Butakov et al., 2025), which 
provably satisfies the requirements above, while also being inherently regularized against 
representation collapse:

𝐼(𝑓(𝑋′); 𝑓(𝑋) + 𝑍) ≤ 𝖨(𝑋; 𝑓(𝑋)),

where 𝑍 is Gaussian and independent, and 𝑋′ represents randomly augmented data.

For experiments on MNIST dataset, we use a simple ConvNet with three convolutional 
and two fully connected layers. A three-layer fully-connected perceptron serves as a critic 
network for the InfoNCE loss. We use the same architecture and loss for SMI maximization. 
As described in (Goldfeld et al., 2022; Goldfeld and Greenewald, 2021), the critic network for 
the SMI lower bound takes Θ𝖳𝑋, Φ𝖳𝑌 , Θ and Φ as inputs. To accommodate the flattened Θ 
and Φ matrices, we increase the network’s input dimensionality; the rest of the architecture 
remains unchanged. The details are provided in Table 3. When maximizing SMI, we generate 
a set of random projectors for each batch of samples from 𝑋, 𝑌 , with one projector per 
sample.

We use additive Gaussian noise with 𝜎 = 0.2 as an input augmentation. Training hyperpa
rameters are as follows: batch size = 512, 2000 epochs, Adam optimizer (Kingma and Ba, 
2017) with learning rate 10−3.

For the experiments, we used AMD EPYC 7543 CPU and Nvidia A100 GPUs. Each 
experiment took no longer then 1 day to compute.
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Table 3: The NN architectures used to conduct the tests on MNIST images in Section 6.

NN Architecture

ConvNet,

24 × 24
images

× 1: Conv2d(1, 32, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)

× 1: Conv2d(32, 64, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)

× 1: Conv2d(64, 128, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)

× 1: Dense(128, 128), LeakyReLU(0.01), Dense(128, dim)

Critic NN for MI,
pairs of vectors

× 1: Dense(2 × dim, 256), LeakyReLU(0.01)
× 1: Dense(256, 256), LeakyReLU(0.01), Dense(256, 1)

Critic NN for SMI,
pairs of vectors

× 1: Dense(2 × k + 2 × dim × 𝑘, 256), LeakyReLU(0.01)
× 1: Dense(256, 256), LeakyReLU(0.01), Dense(256, 1)
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