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ABSTRACT

Sliced Mutual Information (SMI) is widely used as a scalable alternative
to mutual information for measuring non-linear statistical dependence.
Despite its advantages, such as faster convergence, robustness to high
dimensionality, and nullification only under statistical independence, we
demonstrate that SMI is highly susceptible to data manipulation and
exhibits counterintuitive behavior. Through extensive benchmarking and
theoretical analysis, we show that SMI saturates easily, fails to detect
increases in statistical dependence, prioritizes redundancy over informative
content, and in some cases, performs worse than correlation coefficient.
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1 INTRODUCTION

Mutual information (MI) is a fundamental and invariant measure of nonlinear statistical
dependence between two random vectors, defined as the Kullback-Leibler divergence
between the joint distribution and the product of marginals (Polyanskiy and Wu, 2024):

I(X;Y) = KL[IF’X7Y | Px ® Py].

Due to several outstanding properties, such as nullification only under statistical indepen-
dence, invariance to invertible transformations, and ability to capture non-linear dependen-
cies, MI is used extensively for theoretical analysis of overfitting (Asadi et al., 2018; Negrea
et al., 2019), hypothesis testing (Duong and Nguyen, 2022), feature selection (Battiti, 1994;
Vergara and Estévez, 2014), representation learning (Bachman et al., 2019; Butakov et al.,
2025; Hjelm et al., 2019; Tschannen et al., 2020; Velickovi¢ et al., 2019), and studying the
mechanisms behind generalization in deep neural networks (DNNs) (Butakov et al., 2024;
Goldfeld et al., 2019; Shwartz-Ziv and Tishby, 2017; Tishby and Zaslavsky, 2015).

In practical scenarios, Py - and Py ® Py are unknown, requiring MI to be estimated from
finite samples. Despite all the aforementioned merits, this reliance on empirical estimates
leads to the curse of dimensionality: the sample complexity of MI grows exponentially with
the number of dimensions (Goldfeld et al., 2020; McAllester and Stratos, 2020). A common
strategy to mitigate this issue is to use alternative measures of statistical dependence that
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are more stable in high dimensions. However, such measures usually offer only a fraction
of MI capabilities. Therefore, it is crucial to maintain a balance between robustness to the
curse of dimensionality and the ability to detect complex dependency structures.

To strike this balance, popular techniques often retain MI as a backbone statistical measure
but employ dimensionality reduction before estimation. While some studies explore sophis-
ticated nonlinear compression methods (Butakov et al., 2024; Gowri et al., 2024), others
favor more scalable linear projection approaches (Fayad and Ibrahim, 2023; Goldfeld et al.,
2022; Goldfeld and Greenewald, 2021; Greenewald et al., 2023; Tsur et al., 2023). Among
the latter group, the Sliced Mutual Information (SMI) (Goldfeld et al., 2022; Goldfeld and
Greenewald, 2021) stands out, leveraging uniform random projections:

. _ 1 1 Ty. 4T
SI(X;Y) = b }é }g 107 X; ¢TY) d6 do. (1)

Uniform slicing allows SMI to maintain some crucial properties of MI (e.g., being zero if
and only if X and Y are independent), while remaining completely free from additional
optimization problems (e.g., from finding optimal projections, as in (Fayad and Ibrahim,
2023; Tsur et al., 2023)). Combined with fast convergence rates, this has established SMI as
a scalable alternative to MI: computing the former typically requires orders of magnitude
less time than neural MI estimation (several seconds vs. several hours for SOTA diffusion
MI estimators (Franzese et al., 2024; Kholkin et al., 2025)). Consequently, it has been widely
adopted for studying DNNs (Dentan et al., 2024; Wongso et al., 2022; 2023a; 2023b; 2025),
deriving generalization bounds (Nadjahi et al., 2023), independence testing (Hu et al., 2024),
auditing differential privacy (Nuradha and Goldfeld, 2023), feature selection (Goldfeld and
Greenewald, 2021) and disentanglement in generative models (Goldfeld et al., 2022).

Despite its popularity, the research community has largely overlooked potential shortcom-
ings of SMI. Some studies prematurely attribute their results to underlying phenomena
without rigorously investigating whether they stem from artifacts introduced by random
projections. Furthermore, existing works fail to comprehensively address issues related to
random slicing, focusing primarily on suboptimality of random projections for information
preservation (Fayad and Ibrahim, 2023; Tsur et al., 2023).

Contribution. In this article, we address this gap by systematically analyzing SMI across
diverse settings, demonstrating that it frequently exhibits counterintuitive behavior and
fails to accurately capture statistical dependence dynamics. Our key contributions are:

1. Saturation and Sensitivity Analysis. Our theoretical analysis and experiments
reveal that SMI saturates prematurely, even for low-dimensional synthetic prob-
lems, and fails to detect significant increases in statistical dependence.

2. Redundancy Bias. We refute the prevailing assumption that SMI favors linearly
extractable information by constructing an explicit example where introducing such
structure increases MI and even linear correlation, but decreases SMI. In fact, we
show that SMI prioritizes information redundancy over information content. We
argue that this bias can lead to catastrophic failures in some applications.

3. Curse of Dimensionality. We revisit the dynamics of SMI for increasing dimen-
sionality and argue that SMI is, in fact, cursed, with the curse of dimensionality
manifesting itself not through sample complexity, but via asymptotic decay to zero
in high-dimensional regimes due to diminishing redundancy.

4. Reestablishing the Trade-off. Finally, we discuss to which extent the aforemen-
tioned problems can be solved by using non-uniform/non-random slicing strategies,
and how they affect the trade-off between scalability and utility.

In Section 2, we provide the necessary mathematical background. Section 3 overviews the
related literature. Section 4 consists of our main theoretical results (see Section B for proofs).
In Section 5, we employ synthetic benchmarks to show the disconnection between dynamics
of MI and SMI. Sections 6 and 7 illustrate that SMI maximization may result in degenerate
solutions, contrary to MI maximization. Finally, we discuss our results in Section 8.
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2 PRELIMINARIES

Elements of Information Theory. Let (Q,F,P) be a probability space with sample
space (2, g-algebra &, and probability measure P defined on F. Consider random vectors
X:Q—R% and Y :Q — R% with joint distribution Py y and marginals Py and Py,
respectively. Wherever it is needed, we assume the relevant Radon-Nikodym derivatives
exist. For any probability measure Q that is absolutely continuous w.r.t. P (denoted Q « P),
the Kullback-Leibler (KL) divergence is KL[Q || P] = Eq [log %3] , which is non-negative and
vanishes if and only if (iff) P = Q. The mutual information (MI) between X and Y quantifies
the divergence between the joint distribution and the product of marginals:

dP
I(X;Y) = Elogﬁ —KL[Pxy || Px ®Py].
When P, admits a probability density function (PDF) p(X) with respect to (w.r.t.)
the Lebesgue measure, the differential entropy is defined as h(X) = — E[log p(X)], where
log(-) denotes the natural logarithm. Likewise, the joint entropy h(X,Y) is defined
via the joint density p(X,Y’), and conditional entropy is h(X |Y) = —E[logp(X | Y)] =
—Ey []E x|y log p(X | Y)j Under the existence of PDFs, MI satisfies the identities

I(X;Y) = h(X)—h(X |Y)=h(Y)—h(Y | X) = h(X) + h(Y) — h(X, ). (2)

Sliced Mutual Information. In this work, we denote by u,; the normalized Haar
(uniform) probability measure on a compact manifold M, i.e., the unique bi-invariant
measure satisfying py (M) = 1. Hence, to sample uniformly from specific spaces we write
W~ iy, 0 ~ piga-1, A ~ “Sgﬂﬁd)’ indicating draws from the Haar measures on orthogonal
group O(d) = {Q € R™?: QTQ = QQ" =1}, the unit sphere S 1 = {X e R? : | X||, = 1},
and the Stiefel manifold St(k,d) = {Q € R¥* : QTQ = I}, respectively.

The k-sliced mutual information (k-SMI) (Goldfeld et al., 2022) between X,Y is defined as

SIL(X;Y) = / / (OTX;@TY) dugy(r,a,)(©) dpssi(r,a,) (P),
St(k,d,) v St(k.d,,)
Setting k = 1 recovers the standard sliced mutual information (1).

3 BACKGROUND

Merits of SMI are straightforward and have been investigated thoroughly (Goldfeld et al.,
2022; Goldfeld and Greenewald, 2021). We remind the reader of the most important of them:

1. Scalability enabled by low-dimensional projections.

2. Nullification Property (i.e., SI(X;Y) = 0 iff X and Y are independent), which
stems from the projections being random and independent.

In contrast, demerits of SMI are not very obvious and not well-covered in the literature. In
this section, we recapitulate and analyze previous works which address the shortcomings of
SMI. To facilitate the analysis, we divide them into three main categories.

Suboptimality of random slicing. Tsur et al. (2023) and Fayad and Ibrahim (2023)
argue that a uniform slicing strategy can produce suboptimal projections, impairing SMI’s
ability to capture dependencies in the presence of noisy or non-informative components. To
address this issue, Tsur et al. (2023) proposed max-sliced MI (mSMI), which selects non-
random projectors that maximize the MI between projected representations. This approach
is also claimed to improve interpretability and convergence rates.

However, deterministic slicing may overlook dependencies captured by non-optimal compo-
nents. To mitigate this, Fayad and Ibrahim (2023) extend the max-sliced approach by
optimizing SMI over probability distributions of projectors, with regularization to maintain
slice diversity. While the authors emphasize that optimization should occur over joint
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distributions, their motivation primarily addresses the issue of non-optimal marginal distri-
butions of 8 and ¢ — specifically, the presence of non-informative components in X and
Y. We contend that this represents only a partial understanding of the problem, as many
SMI artifacts arise from other factors. Needless to say that optimization over probability
distributions is also a heavy burden, which does not align with the slicing philosophy.

Data Processing Inequality violation. A fundamental property of MI is that it cannot
be increased by deterministic or stochastic processing. Furthermore, MI is preserved under
invertible transformations. This is formalized by the data processing inequality (DPT).

Theorem 3.1. (Polyanskiy and Wu (2024, Theorem 3.7)) For a Markov chain X - Y —
Z,(X;Y) > I(X; Z). Additionally, if Z = f(Y) where f is invertible, then equality holds.

In contrast to MI, SMI violates the DPI (Goldfeld and Greenewald, 2021, Section 3.2).
While the intuition behind DPI is clear (raw data already contains full information, and
processing can only destroy it), the implications of DPI violation are less straightforward.

Existing works suggest that SMI’s violation of DPI can reflect a preference for linearly
extractable features, framing this as a useful property that aligns with the informal
understanding of “practically available” (i.e., easily accessible) information (Goldfeld and
Greenewald, 2021; Wongso et al., 2022; 2025). However, this interpretation can be misleading
if the factors behind SMI increases are misidentified. Our analysis reveals that this is indeed
the case, as SMI exhibits more inherent biases than previously recognized.

Asymptotics in high-dimensional regime. Convergence analysis suggests that the
sample complexity of SMI estimation is far less sensitive to data dimensionality compared
to that of MI. In fact, it has been argued that the estimation error may even decrease
with dimensionality in some cases (Goldfeld et al., 2022, Remark 4). However, this behavior
may result from SMI vanishing as dimensionality grows. Specifically, (Goldfeld et al., 2022,
Theorem 3) provides an asymptotic expression (as d — oo) for SMI between jointly normal
X and Y, which decays hyperbolically with d under some circumstances.

To date, no explanation for this phenomenon has been provided in the literature. We
therefore elaborate on this finding by deriving non-asymptotic expressions, along with
experimental results for non-Gaussian data, which reveal further nuances behind the decay.

4 THEORETICAL ANALYSIS

We start our analysis with considering a simple example, which (a) admits closed-form
expression for SMI and (b) highlights severe problems of the quantity in question.

Lemma 4.1. Consider the following pair of jointly Gaussian d-dimensional random vectors:

(X,Y) ~ N(O, (,}1 ’}I)), pe(—1;1).

In this setup, MI and SMI can be calculated analytically:

d 5 0> 3 d 9

where 4 F, is the generalized hypergeometric function. Additionally, the following limits hold:

lim I(X;Y) = 400 lim S(X;Y)=0
d—o0 d—o0

p?2—1 p2—1 d—

lim I(X;Y) =400  lim SI(X;Y) = ¢(d — 1) —w(%) —log2 < %

with 9 being the digamma function.

Note that while MI correctly captures the growing statistical dependence as d — oo (since
additional components contribute shared information), SMI drops to zero, exposing a
fundamental problem. We interpret this behavior as a distinct manifestation of the curse
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Figure 2: Saturation of SI(X;Y) as function of I(X;Y’)/d for the example from Lemma
4.1, non-normalized (left) and normalized (right) versions. Note that the problem becomes
more prominent in higher dimensions, both because of lower plateau and faster saturation.

of dimensionality: as d grows, SMI uniformly decays to zero and becomes ineffective for
statistical analysis. We also provide a less tight, but more general result in Section C.

The second pair of limits reveals another critical flaw of SMI. When p? — 1, the X-Y
relationship becomes deterministic — a property MI reflects successfully. In stark contrast,
SMI remains bounded by a dimension-dependent factor that decays hyperbolically. Further-
more, plotting SMI against MI shows this bound is reached prematurely, demonstrating
SMTI’s rapid saturation with increasing dependence (Figure 2). In this saturated regime,
SMI becomes effectively insensitive to further growth in shared information. Moreover, this
renders estimates of SMI for different dimensionalities fundamentally incomparable, as they
are theoretically bounded by factors depending on d.

These phenomena can not be explained by suboptimality of individual projections. In fact,
each individual projection is optimal, as (T X;Y") does not depend on 6 in this particular
example. The proof of Lemma 4.1 suggests that the problem arises from the majority of
pairs of projectors being suboptimal, yielding near-independent 8" X and ¢'Y in the most
outcomes, even for d = 2. Although similar analysis for k-SMI is extremely challenging, we
argue that the problems in question prevail even when employing k-rank projectors.

Proposition 4.2. Under the setup of Lemma 4.1, k-SMI has the following representation

1 k k o
Sk(X3Y) = =3 / > log(1— p2A;) p(A) A, p(A) oc [T1A; = Al T (1 — A @212
[0,1]% =1 e

i<j

*)
Remark. 4.3. As d grows, (x) asymptotically concentrates A; near zero, driving Sl to zero.
We argue that the limitations we uncovered can be attributed to a strong bias of SMI
toward information redundancy. That is, SMI favors repetition of information across

different axes, and suffers from the curse of dimensionality if X and Y have high entropy.
The following proposition and remark present a simple example to clarify this bias.

Proposition 4.4. Let X and Y be d,, d,-dimensional random vectors respectively, with

d,,d, < k. Let A € Rm=*d: B € R™v*% be full column rank. Then Sl (AX;BY) = I(X;Y).

x) Y

Corollary 4.5. Consider the following pair of Gaussian d-dimensional random vectors:

w05 7) s,

where J = 1- 1T with 17 = (1,...,1). Then Sl (X;Y) = (X;Y) = —%log(l — p?).

Remark. 4.6. Applying 1 - el to X and Y from Lemma 4.1 individually yields the example
from Corollary 4.5. Therefore, this linear transform increases SMI despite decreasing MI.
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4.1 EXTENSION TO OPTIMAL SLICING

Although our work primarily focuses on conventional (average) SMI, as it is the most widely
used variant, we also provide some intuition regarding the limitations of its “optimal”
counterparts: maz-sliced MI (mSMI) (Tsur et al., 2023) and optimal-sliced MI (oSMI) (Fayad
and Ibrahim, 2023). Since mSMI is a special case of 0SMI without regularization, we restrict
our discussion to it, though our reasoning extends to oSMI as well. The k-mSMI is defined as:

SL(X;Y) = sup (OTX;2TY). (3)
O¢€ St(d,,k), ®€ St(d,,k)

The following proposition highlights the shortcomings of linear compression: even in a simple
Gaussian setting, mSMI captures only a subset of dependencies and can exhibit opposite
trends to MI. This occurs, for instance, when dependencies become more evenly distributed
across components, which again returns us to the redundancy bias.

Proposition 4.7. (Tsur et al. (2023, Proposition 2)) Let (X,Y’) ~ N (g, X)), with marginal

covariances E x, Ly and cross-covariance ¥ yy. Suppose the matrix X4?¥ vy 2,7 exists,

and let {pz} denote its singular values in descending order, where d = min(d,,,d, ). Then

1 & _ 1 &
i=1 i=1

5 SYNTHETIC EXPERIMENTS

To complement our theoretical analysis and address complex, non-Gaussian cases, we
conduct an extensive benchmarking of SMI using synthetic tests from (Butakov et al., n.d.),
based on the works of (Butakov et al., 2024; Czyz et al., 2023). These tests are designed
to evaluate MI estimators. However, here we do not assess whether SMI estimates converge
to ground-truth MI values. SMI is a distinct measure of statistical dependance, and should
not be viewed as an approximation of MI. Instead, our analysis focuses on the relationship
between the two measures: since MI captures the true degree of statistical dependence,
opposing trends in MI and SMI reveal problems with the latter quantity.

For the experiments, we use correlated normal, correlated uniform, smoothed uniform and
log-gamma-exponential distributions, for which the ground-truth value of MI is available.
To increase the dimensionality, we use independent components with equally distributed
per-component MI. For each distribution, we vary both the data dimensionality (d) and
the projection dimensionality (k < d). In Section G, we also utilize MI-preserving mappings
to transform low-dimensional Gaussian vectors into high-dimensional synthetic images, as
described in (Butakov et al., 2024); the examples of such images are displayed in Figure 3.

To estimate MI between projections, we use the KSG estimator (Kraskov et al., 2004) with
the number of neighbors fixed at 1 (higher values are suboptimal, see Section F), 10* samples
from (X,Y) and 128 samples from (O, ®). For each configuration, 10 independent runs with
different random seeds are conducted to compute means and standard deviations.

To experimentally verify the saturation, we plot SMI against MI normalized by dimension-
ality d in Figure 4. The plots clearly show that SMI reaches a plateau relatively early for
all the featured distributions. The results for the normal distribution also align well with

(a) 2D Gaussians (b) Rectangles

Figure 3: Examples of synthetic images from additional experiments in Section G. Note that
images are high-dimensional, but admit latent structure, which is similar to real datasets.
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Figure 4: SMI results on synthetic benchmarks. Mean values and standard deviations across
10 runs are reported, 10* samples from X,Y and 128 random projections were used.
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Figure 5: Saturated values of k-SMI versus data dimensionality d for 1-SMI (left) and
2-SMI (right) for correlated normal (corr. N'), correlated uniform (corr. U), smoothed
uniform (sm. U) and log-gamma-exponential (LGE). Log scale illustrates the 1/d trend.

those from Lemma 4.1. We further confirm the saturation of k-SMI for k € {2,3} and for
complex datasets from (Butakov et al., 2024) experimentally in Section G. Finally, we plot
the saturated values against d on a log-log scale, demonstrating that the 1/d trend from
Lemma 4.1 also holds for non-Gaussian distributions.

Overall, the results strongly support our findings, showing saturation and uniform decay
with increasing dimensionality across a wide range of settings, from low-dimensional distri-
butions to high-dimensional images.

6 SMI FOR INFOMAX-LIKE TASKS

Since mutual information is interpretable and captures non-linear dependencies, it is widely
used as a training objective. Many applications involve maximizing MI (InfoMax) for feature
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selection (Battiti, 1994; Sulaiman and Labadin, 2015; Vergara and Estévez, 2014; Yang and
Gu, 2004) and self-supervised representation learning (Bachman et al., 2019; Butakov et al.,
2025; Hjelm et al., 2019; Tschannen et al., 2020; Velickovié¢ et al., 2019). However, due to
the curse of dimensionality, it was instead proposed to maximize SMI for feature extraction
(Goldfeld and Greenewald, 2021) and disentanglement in InfoGAN (Goldfeld et al., 2022).

In this section, we argue that SMI is not a suitable alternative to MI for InfoMax tasks: since
SMI exhibits a strong preference for redundancy, SMI maximization may lead to collapses.

Representation learning. To demonstrate SMI’s redundancy bias, we examine learning
compressed representations through information maximization (Deep InfoMaz) (Hjelm et
al., 2019). This approach is known to be equivalent to many popular contrastive self-
supervised methods (Butakov et al., 2025).

In Deep InfoMax, an encoder network f is trained to maximize a lower bound on I(X; f(X)),
where X represents input data and f(X) its compressed representation. This method is
theoretically sound, as maximizing MI ensures the most informative embeddings under
the latent space dimensionality constraint. For our study, we replace MI with SMI in this
framework. This substitution is straightforward since both MI and SMI admit Donsker-
Varadhan variational lower bounds (Donsker and Varadhan, 1983):

. — _ T(X,Y
(X;Y) = Sup [Be, , T(X,Y) —log(Ep_gp, €7V,

T T
SIL(X;Y) = s Eo o [IEPX,Y TO'X,2'Y,0,0) — log(IEPX@,PY eT(@7X,2 Yv@@))] ,

(4)

where T is a critic function, which is also approximated in practice by a neural network.
For detailed derivations of these bounds, we refer the reader to (Belghazi et al., 2018) (MI)
and (Goldfeld et al., 2022; Goldfeld and Greenewald, 2021) (SMI).

We strictly follow the experimental protocol from (Butakov et al., 2025). In particular, we
use MNIST handwritten digits dataset (Deng, 2012), employ InfoNCE loss (Oord et al.,
2019) to approximate (4), use convolutional network for f and fully-connected network for
T. Latent space dimensionality is fixed at d = 2 for visualization purposes. Small Gaussian
noise is added to the outlet of the encoder to combat representation collapse (Butakov et al.,
2025). For more details, see Section I. We focus on this simple setup because our objective
is to show that SMI produces degenerate results even in elementary tasks, making more
complex configurations unnecessary for this demonstration.

Results are presented in Figure 6. As expected, maximization of SMI immediately leads to
collapsed representations, while conventional InfoMax yields embeddings with low redun-
dancy (their distribution is close to V' (0,I)). This behavior is consistent across different runs.

Gaussian channel. We also refute SMI’s preference for linearly extractable information
by considering X,Y such that covX =1, Y = AX + N(0,02]), and diag AAT = I; this is a
Gaussian channel with energy constraints (Cover and Thomas, 2006). Generally, [(X;Y) is

(a) MI — max; 2000 epochs. (b) SMI — mz;x, 10 epochs. (c) SMI — maxx7 2000 epochs.

Figure 6: Visualizations of embeddings from the representation learning experiments, with
points colored by class. Note that mutual information maximization (left) produces clustered
low-redundancy representations, while SMI maximization results in immediate collapse.
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Figure 7: Changing the condition number of A in the Gaussian channel experlment (Y =
AX + N(0,0%1,;)) for normal X ~ N(0,1;) (left) and uniform X ~ U0; \/ ] (right).
We perform 10 runs with 10* samples, 128 projections, and use o = 0.3, d =

maximized by a well-posed A, since decorrelated features are more robust to isotropic noise.
However, the results in Figure 7 highlight SMI’s preference for ill-posed A (i.e., matrices

with high condition number x(A) £ |A] - |A71]). More information is in Section D.

7 REPLICATION STUDY

Since our work highlights fundamental problems with SMI, we revisit the experiments from
the original SMI articles (Goldfeld et al., 2022; Goldfeld and Greenewald, 2021; Tsur et al.,
2023) to reassess their results. We are especially interested in the feature extraction and
independence testing, because these setups might suffer from the redundancy bias and
SMTI’s decay to zero. Section H provides more details.

Feature extraction. In (Goldfeld and Greenewald, 2021), the following toy problem
is considered: SI(AX; BY) — max, g, where X ~ N(O I,), Y=1-¢]X+N(0,1,), and
A, B € R¥4 are feature selection matrices. The redundancy bias suggests that optimal A, B
are singular, with all columns other than the first being zero — a property reflected in the
original results (Goldfeld and Greenewald, 2021, Figure 3).

To highlight that SMI fails when the number of relevant features increases, we consider the
following example: X ~ N (0,1,;), Y = 221 e;X; + N(0,1,), where m controls the number
of features. In addition to maximizing k-SMI, we also learn A, B through MI maximization.
In the latter case, we use A, B € R¥*? to impose a dimensionality bottleneck. For MI and k-
SMI maximization, we reuse the NNs from Section 6 and perform 10 runs with 10 samples.

The quality of feature extraction is assessed via the effective rank (Roy and Vetterli, 2007)
of the matrices formed by the first m columns of A and B respectively. Figure 9 illustrates
that MI maximization yields effective rank close to k, confirming its ability to recover all
relevant features. In contrast, k-SMI results in a low effective rank regardless of k, revealing
its redundancy bias. A visual analysis of the matrices in Figure 10 and Section H.1 also
supports our findings.

Independence testing. Goldfeld et al. (2022); Goldfeld and Greenewald (2021) report
consistently superior performance of SMI over MI for independence testing when the data
dimensionality d is fixed. We replicate their protocol for the distributions from Section 5
but introduce a critical modification. Instead of evaluating each d separately, we pool SMI
(and MI) estimates across multiple dimensions (d € {2, 10,20, 30}) for each sample size n
and compute a single ROC-AUC from the mixed-dimensional data. For a fair comparison,

Figure 9: Effective rank versus k for feature Figure 10: Matrices A for SMI — max
extraction; 10 runs with 10* samples, m = 6. (left) and MI — max (right), m =k = 4.
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I(X;Y) is fixed at 2 nat, and KSG (Kraskov et al., 2004) is used as a backbone MI estimator.
We conduct 100 runs for each d.

As shown in Figure 11, and in contrast to (Goldfeld et al., 2022; Goldfeld and Greenewald,
2021), SMI performs worse under this more realistic setting where a single threshold must
work across varying dimensions. These experiments reveal that SMI’s discriminative power
can drop sharply even when the ground truth MI is constant, causing dependent high-
dimensional cases to yield SMI values that overlap with independent low-dimensional cases.
Consequently, it is hard to consider SMI reliable enough for independence testing, unless
the dimensionality is fixed in advance.
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Figure 11: Independence testing: ROC-AUC versus sample size for correlated normal,
correlated uniform, smoothed uniform and log-gammma-exponential (left-to-right, 2 nat).

8 DiIscussION

Results. Sliced mutual information (SMI) has been proposed as a scalable alternative to
Shannon’s mutual information. While SMI enables efficient computation in high-dimensional
settings and satisfies the nullification property, our findings reveal critical deficiencies that
undermine its reliability for feature extraction and related tasks.

We demonstrate that SMI saturates rapidly, failing to capture variations in statistical depen-
dence. This makes it difficult to distinguish between intrinsic SMI fluctuations and genuine
changes in dependence structure. Furthermore, we invalidate the common hypothesis that
SMI favors linear features through a counterexample where even correlation coefficients
reflect dependence more faithfully than SMI, which exhibits inverted behavior.

In high dimensions, SMI decays with increasing dimensionality, contrary to MI’s monotonic
behavior. This is established analytically for Gaussian cases and validated empirically across
diverse synthetic experiments. Consequently, SMI variations may reflect redundancy or high-
dimensional artifacts without a principled way to disentangle these factors.

Impact. Thanks to fast convergence rates and the absence of additional optimization
problems, SMI has been widely applied across various fields of statistics and machine
learning. Given our findings, it is therefore crucial to recognize how the inherent biases of
SMI affect practical applications.

The works (Chen et al., 2023; Goldfeld et al., 2022; Goldfeld and Greenewald, 2021)
propose using SMI in a Deep InfoMax setting. However, we demonstrate that maximizing
SMI can lead to collapsed solutions due to the redundancy bias. Meanwhile, (Dentan et
al., 2025; Shaeri and Middel, 2025; Wongso et al., 2022; 2023b; 2023a; 2025) study deep
neural networks by measuring SMI between intermediate layers. Yet, as our analysis reveals,
changes in SMI do not always reflect true shifts in statistical dependence; they may instead
result from differences in layer dimensionality, redundancy in intermediate representations,
low sensitivity in saturated regimes, or other factors. Finally, (Nuradha and Goldfeld, 2023)
suggests using SMI for independence testing in differential privacy tasks. We contend that
this approach poses critical issues, as SMI estimates can become statistically indistinguish-
able from zero in high-dimensional or low-redundancy settings.

Limitations. While we support our claims with both theoretical analysis and experi-
mental evidence, we were able to derive precise analytical expressions for the Gaussian case
only. Nevertheless, our findings are more than sufficient to expose fundamental limitations
of SMI, and to support all the claims we made.
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Ethics statement. This work is not subject to any ethical concerns.

Reproducibility statement. To ensure reproducibility of our results, we provide
complete proofs in Section B and implementation details in Section I. We also provide our
code for the experiments in the supplementary material.

LLM usage. Large Language Models (LLMs) were used only to assist with rephrasing
sentences and improving the clarity of the text.
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A SUPPLEMENTARY THEORY

Lemma A.1. (Polyanskiy and Wu (2024, Example 2.4)) h(NV (g, X)) = 3 log((2me)* det ).
Corollary A.2. For (X,Y) ~ N (u,X) with non-singular ¥

1 1 1
I(X;Y) = ilogdetZX + §logdetEy — ilogdetE

1 d
=—5 > log(1—p}),
=1

where ¥, 3y are marginal covarlances Yy 1s cross-covariance, d = min(dz,dy) and
l
{pl} are singular values of X 22 xy 2y

Proof of Corollary A.2. Combining Lemma A.1 and (2) yields the first result. Now note that
_1 1 _1 _1
I(X;Y) = I(EXZX;EYZY) = I(UTEXZX;VEY2Y>,

_1 _1
where Udiag(p;)V" is the SVD of ¥,°% vy 2,%. Now note that

(i) (s (k) *5).

from which we arrive at the second expression. O

Lemma A.3. Let A € R"™™ be full column rank matrix, and © ~ pg, r) Then OTA is
full-rank with probability one.

Proof of Lemma A.3. Performing QR decomposition of A yields ©TA = 6TQR Lo (%")R
Since A is full-rank, R is invertible and rank ©TA = rank ©7 (16”). Therefore,

P{OTA is full-tank} = 1 — IP’{@T (16"> is not full—rank} =1.

a
Lemma A.4. (Edelman and Sutton (2008, Theorem 1.5)) Let W ~ ug(q) and partition

with Wy, of size k by k. Then the eigenvalues {)\i}@_ of W;; W/, follow the Jacobi ensemble

A) o< [T = ol? HA”“ 1) R0
i<j

with parameters a = 0,b = d — 2k, and 8 =1 (over R).

Proof of Lemma A.J. Let A; € R¥*4 and A, € R(47%)*4 be independent matrices with i.i.d.
entries from N (0, 1). By stacking A; atop A, and then performing a QR decomposition on
the resulting Gaussian matrix, the orthogonal invariance of the Gaussian law implies that
Q is independent of the upper-triangular factor R and uniformly distributed on O(d).

For a matrix P = diag(py, ..., p;) with i.i.d. p, sampled uniformly from {— 101 1}, we have
QP = < w. Partitioning Q and P into blocks similarly to W, we have Q,;P;; = Wy, for the
top-left block of Q.

The CS decomposition of an orthogonal Q together with invertible R yields the generalized
singular value decomposition (GSVD) of the pair (A, A,):
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Cc S
(4) = (@ 8ayn (9 (58 ) ()
A, Qo1 Qoo U, I A2
where U;,V; € O(k),U,, Vy € O(d — k), and C = diag(cy, ..., ¢;), S = diag(sq, ..., ) with
c; >0, s; >0 in descending order, and c? + s? = 1 for all i. The diagonal entries of C are

known as the generalized singular values of the pair (A;, A,). From this decomposition and
the SVD of W;; = USZVT, one has

U,cVIP,, 2 UV

Since Uy, Vy, and U,V are uniformly distributed on O(k) and independent of C, X, P, we
have C < % by the invariance of the Haar measure under orthogonal transformations. On
the other hand, the generalized singular values {c; } " of a pair (A, A,) follow the law of
the Jacobi ensemble with parameters a =0,b =d — 2k and =1 (Edelman and Sutton,
2008, Proposition 1.2). Therefore, the Squared smgular values of W, follow the Jacobi
ensemble with the same parameters. O

Corollary A.5. The squared inner product |#T¢|?> between two independent random

vectors 0, ¢ ~ pga—1 follows Beta(é, %) Moreover, the shifted inner product (14 07¢)/2

is symmetrically distributed as Beta(45%, 41).

Proof of Corollary A.5. Setting Jacobi parameters k=1,a =0,b=d—2 and g =1, the
density is proportional to x~1/2(1 —z)(4=3/2 on [0,1], Wthh matches the Beta(% %1)
distribution.

Next, observe that §7¢ has a density proportional to (1 —t)“z for ¢ € [~1,1]. Under the
Change of variables 1 ~ Beta,(d; %)

|

B COMPLETE PROOFS
Lemma 4.1. Consider the following pair of jointly Gaussian d-dimensional random vectors:

(X,Y) ~ N(O, (;I ”f)), pe(—1;1).

In this setup, MI and SMI can be calculated analytically:
2

where 3 F, is the generalized hypergeometric function. Additionally, the following limits hold:

lim I(X;Y) =400  lim SI(X;Y) =0
d—oo d—oo

—1 1
lim I(X;Y) =400 lim SIX;Y)=9¢(d—1) — 7,Z)<d—> log2 < ——
p2—1 p2—1 2 d—
with 1 being the digamma function.
Proof of Lemma 4.1. One can acquire |(X;Y) = fg log(1 — p?) from a general expression

for MI of two jointly Gaussian random vectors (see Corollary A.2).

Recall that (OTX , ngY) is also Gaussian with cross-covariance p ' ¢. Therefore, by Corollary
A.2 we have

1
5 Eflog(1—p? [676])].

From Corollary A.5, we note that [67¢|? ~ Beta(3, d—gl), S0

SI(X;Y) =1 (OTX;¢TY | 0,p) = —
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1
SI&:Y) = —ﬁ [ tog(1 = p)(1 - 2)F o da
27 2 0
2 1"(2) 1 )
—L el (1 —2)% L9 2
=Ty ), 09T A b

where the last equality follows from the identity log(1 — z) = —z 3 F (1, 1;2; z) with hyper-
geometric function 4F;. Appling Euler’s integral transform (McBride, 1999, Eq. (2.2.3)) gives

5|(X;Y):p2L+l))/lx
0

24T (31 (5"

(NI

(1 —z)EH) 31 B (1,15 2; p2%2) da

Here ;F, denotes the generalized hypergeometric function.

Finally, we calculate the limit of SI(X;Y) as p? — 1 using properties of beta-distribution.

Denoting 7 = (14 607¢)/2 ~ Beta(%32, 52) (see Corollary A.5), we get

SI(X;Y) =—log2 —Elog(l —n) = —log2 —Elogn = ¢(d — 1) "ﬁ(%) —log 2,

where 1 is the digamma function. Using the bounds on digamma function (Elezovic et al.,
2000), we get

log<w + %) ~ - < () < loge+ H) — -, 5)

we derive an upper bound on this expression:
d — ]. 1 e"p(l) — ]_
—1) - —— | —log2 < ——+1 1+ —
P(d—1) w( 5 ) og _d_1+og<+ y)

To simplify the bound, one can note that e¥™ —1 < 0, as (1) < 0. O
Proposition 4.2. Under the setup of Lemma 4.1, k-SMI has the following representation

1 k k L
SIL(X;Y) = ——/ Zlog(l —p2\,) p(A)dA, p(A) H|)\j — H (1 )\i)(d 2k—1)/2
[0,1]F =1 P

1<j

*)

Proof of Proposition 4.2. Let Qx, Qy ~ Hgy(k,q)- Then [Q;X, QI(Y] ~ N(0,%), where ¥ is
a 2k x 2k covariance matrix with the following block structure

N — I p Q% Qy ]
p QI{QX L

Using the formula for the determinant of a block matrix X yields
L 1 2(07T T T
SIL(X;Y) = —3 E[logdet(X)] = —3 E [log det (I —p (QXQY)(QXQY) )} .

By the invariance of the Haar measure under left and right multiplication, QJ(QY 4 Wi,
where Wy, is a k by k left upper block of the matrix W ~ 4. According to Lemma A.4,
the eigenvalues of W,; W], follow Jacobi ensemble with parameters a = 0,b = d — 2k and

p=1

k
d—2k-1

p(A) o H|)‘j = Ayl H (T—=2Ay) 2

1<j =1
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Thus, we get a general expression for k-SMI
1 k
I Y) = =5 [ > log(1= pA)p(N) A
[0,1]F =

|

Proposition 4.4. Let X and Y be d,, d,-dimensional random vectors respectively, with

d,,d, < k. Let A € R™=>*% B ¢ R™*% be full column rank. Then Sl (AX;BY) = I(X;Y).

x) Yy

Proof of Proposition j.4. Using Lemma A.3 and d,,d, <k, we get that OTA and ®'B are
injective with probability one for independent ©,® distributed uniformly on St(d,, k) and
St(d,, k). Therefore, according to Theorem 3.1, [I(OTAX;®TBY) | ©,®] = I(X;Y) almost
sure. As a result, S, (AX;BY) = 1(OTAX; ®TBY | ©,®) =1(X;Y). O

Proposition 4.7. (Tsur et al. (2023, Proposition 2)) Let (X,Y) ~ N (u, X), with marginal

covariances Z x, Sy and cross-covariance X yy. Suppose the matrix X, vy 3,2 exists,

and let { pl} denote its singular values in descending order, where d = min(d,, dy) Then

(X ——%Zlog (1—p?), S_ ——%Zlog (1—p?).

Proof of Proposition 4.7. Direct corollary of Corollary A.2. O

C GENERAL CASE

While Lemma 4.1 successfully demonstrates severe shortcomings in SMI, it relies exclu-
sively on the Gaussian case. Since real-world data distributions can deviate significantly
from normality, this section analyzes other scenarios where SMI may or may not exhibit
limitations.

We begin with a simple example of discrete random vectors X,Y for which Sl (X;Y) =
[(X;Y) regardless of k and dimensionality.

Exzample. C.1. Let X,Y be any discrete pair random vectors. Then, SI,(X;Y) = I(X;Y).

Proof of Example C.1. Because X and Y are discrete, almost every random projection
mapping is injective on their respective supports. Since MI is invariant under measurable
injective transforms, I(©TX;®TY) = I(X;Y) for almost all fixed © and ®. Therefore, taking
the expectations over ® ~ gy, 4y, © ~ Ugy(k,q,) yields

SL(X;Y) = 1(07X;8TY | ©,®) = I(X;Y).

O

However, this example is simple and does not require dimensionality reduction in the first
place: when dealing with discrete random vectors, the only constraint is the support size.
On the other hand, applying SMI to continuous distributions with independent components
immediately results in saturation.

Lemma C.2. Let X : Q — R? be a random vector with i.i.d. components of unit variance
such that h(X;) = E < oo, and Y 1L X, for ¢ > 2. Then

S1(x:7) < KV (0.1) — ) - 5 o (57 )~ o5 ) |

where the RHS is independent of 1(X;Y).
Proof of Lemma C.2. From the DPI for the Markov chain ®'Y — Y — X; — ©TX, one has
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(0TX;0TY |©,®) <I(07X; X, | O)
h(0TX | ©)+h(X,)—h(0TX, X, | ©).
The first one can be upper bounded as follows
h(0TX | ©) <h(6TX) < kh(N(0,1)),

To get a lower bound on the joint entropy, we first rewrite the (k + 1)-dimensional vector as
a transformation of the k-dimensional X and perform QR-decomposition of the (k+ 1) x

d matrix
eTx) [(eT (I oT LT
() = (eI)X‘ (7 gag) (o Jx =m0

where u = @/||it], with @ = (I—©6T)e;. Here R € RF+1>*(*+1) g 5 full-rank upper-trian-
gular matrix, and U € St(k + 1,d). Then,

h(0TX,X, |©) = h(RTUX | ©) = h(U X | ©) + Elog|det R|.

To lower bound the entropy in the RHS, we make use of the result from (Guo et al., 2006,
Theorem 3):
h(UX | ©) > ETr(Udiag(h(X;),....h(X,))UT) = EETr(00" + u'u) = E (k + 1).

Noting that log|det R| = £ log @[3 = %log(l — ||@Tel||z), the joint entropy bound is
1
h(OTX, X, | ©) > B (k+1)+ 5 Elog(1—[|€7¢,[2).

2 2
Since H@Telnz =03 + ...+ 03, ~ g%i—?g ~ Beta(%, 45*) with i.i.d. Z; ~ N(0,1), one con-
cludes that

d—k d

I(©TX;Y [ ©) < kh(N(0,1)) + E — E(k+1>—§[¢(7> “’(5)]

= kh(V(0,1)) kE——[‘”(%) w@)]

O
Lemma C.3. Under the assumptions of Lemma C.2 holds
1 k 1 1
SILL(X;Y) <k t—=log|1— = -
#(X5Y) <k cons 2°g< d>+d—k 2d’

where “const” is independent of I(X;Y).

Proof of Lemma C.3. By using the inequalities on the digamma function (Elezovic et al.,
2000), one has the following upper bound:

SI(X;Y) < k const — 5 [‘”(di) w@)}

1
< k const — —[log(d 7 k)

)]

k 1
__1 1——~ -
= k const 0g< )—I— %

|

We note that both Lemma 4.1 and Lemma C.2 are much stronger than (Goldfeld and Gree-
newald, 2021, Proposition 1, part 2): the latter merely states that SI(X;Y) < SI(X;Y). For
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instance, given the example from Lemma 4.1, (Goldfeld and Greenewald, 2021, Proposition
1, part 2) yields SI(X;Y) < é [(X;Y), while our result suggests SI(X;Y) < ﬁ, which does
not depend on mutual information. Therefore, the saturation is strong (even I(X;Y) — oo
does not break it) and can not be explained solely by non-optimality of projections.

D (GAUSSIAN CHANNEL

To explore the SMI’s preference for redundant over linearly extractable information, we an-
alyze an additive white Gaussian noise (AWGN) channel. Consider a d-dimensional random
vector X with cov(X) =1, independent noise Z ~ N (0, 021), and the channel output ¥ =
AX + Z, where the matrix A satisfies diag AAT =1 to ensure energy preservation across
dimensions.

In classical information theory, maximizing [(X;Y) with respect to the input distribution
under energy constraints E[X?] = 1 is achieved by X ~ N(0,I) (Cover and Thomas, 2006).
This solution is optimal because decorrelated features provide maximal robustness against
isotropic noise. When the transformation matrix A is well-conditioned (i.e., k(A) £ |A] -
|A7Y| ~ 1), information about X is spread evenly across the dimensions of Y. In contrast,
as shown below, SMI exhibits the opposite preference due to its redundancy bias.

When A =1, the channel decouples into independent scalar channels Y, = X, 4+ Z;. In this
case, linear estimation via the conditional expectation =5 E[X; | ¥;] achieves the optimal
mean squared error (MSE), representing the most efficient linear extraction of information.

Contrary to the theoretical optimality of well-conditioned transformations for mutual infor-
mation, SMI increases with x(A) as shown in Figure 7. This demonstrates that SMI does
not measure linearly extractable information but rather favors redundant information.

SMTI’s preference for ill-conditioned A (high k(A)) arises because such transformations create
strong dependencies among the output features. A high condition number implies that
the components of AX become highly correlated, making the same information available
repeatedly across different one-dimensional projections.

E RELATION TO OTHER MEASURES OF DEPENDENCE

| ® perceived position copula e

o L.
- actual position mutual information @ .

our contribution

e«e optimal-SMI N
° ® max-SMI

° ® SMI

L © correlation i

Estimation complexity

Ability to capture complex statistical dependencies

In our visual abstract, we position SMI as more complex and capable than correlation
analysis but less complex than MI and copulas. In this section, we elaborate on this ranking.

e Copulas provide the most complete description of dependencies of two random
vectors. The joint distribution Py - fully captures probabilistic dependencies, but
includes irrelevant information about marginal distributions Py ® Py-. A copula
Cx,y factors out the former w.r.t. the latter by pinning the marginals to be uniform,
thus describing the pure dependence structure (Fan and Henry, 2021). While
offering full generality, copulas complexity often makes their direct use impractical.
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e Mutual Information (MI) is a measure of statistical dependence, capturing non-
linear relationships between two random vectors. It projects the copula onto a scalar
summarizing dependence strength:

I(X;Y) = EPMI(X;Y) = Elog — XY _(x

(X;Y) = (,)—Ogm(v),
where the log-derivative PMI refers to Pointwise Mutual Information and literally
equals to the copula Cy . Thus, MI is a functional of the copula (Chen et al.,
2025; Ma and Sun, 2011), and if the corresponding PDF exists, one can write

I(X;Y) = — h(Cx.y).

o Sliced Mutual Information (SMI) estimates the mutual information between two
random variables by averaging across one-dimensional projections. It can detect
non-linear dependencies. However, as our work demonstrates, SMI saturates
prematurely, prefers information redundancy, and asymptotically vanishes as the
dimension growth.

¢ Correlation measures linear dependence. It is computationally efficient, but fails to
detect any non-linear relationships.

In summary, our work shows that there exists a fundamental trade-off between computa-
tional scalability of a dependence estimator and its ability to capture rich, high-dimensional
dependencies. We find that SMI, contrary to earlier assumptions, fails to overcome this
trade-off. The cost of its computational benefits are misleading biases. While our findings are
solid, we would like to emphasize that the visual abstract represents our personal, informal
opinion, although it is backed by concrete evidence.

F SELECTING kyy IN KSG ESTIMATOR

In this section, we use the same benchmarks from Section 5 to determine the optimal
number of nearest neighbors (kyy) for the KSG estimator (Kraskov et al., 2004). We focus
exclusively on plain Mutual Information estimation, as it is a direct component of the SMI
estimation task. For each MI value from 0 to 10 in steps of 1, we perform 10 independent
runs with 10* samples each. We then compute the median across these runs and use it to
derive the Mean Absolute Error (MAE) for different distributions and kyy values. These
errors are reported in Table 1. From the results it is evident that kyy = 1 is the best choice
on average. This is consistent with Figure 4 in (Kraskov et al., 2004), where kxy/Nmples —
0 increases accuracy.

Table 1: MAE of the KSG estimates under different distributions and values of kyy.

kxn
Distribution 1 2 3 ) 10 20
Correlated Normal 1.32 147 157 169 187 2.08
Correlated Uniform 145 159 1.68 180 1.98 2.17
Smoothed Uniform 142 157 1.67 1.80 1.98 2.18
Log-Gamma-Exponential 0.41 0.52 0.60 0.72 0.91 1.15

G ADDITIONAL EXPERIMENTS

In this section, we conduct supplementary experiments to evaluate SMI under a broader
range of setups.
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G.1 LOW-DIMENSIONAL SYNTHETIC TESTS

We begin by assessing k-SMI on the same set of benchmarks from Section 5. The results for
k =1,2,3 are presented in Figure 4, Figure 13, and Figure 14, respectively. Notably, satu-
ration remains consistent even for k =d — 1 (i.e., when only one component is discarded).

Next, we examine a setup involving randomized distribution parameters, following the
methodology of (Butakov et al., n.d.). Among other adjustments, this includes random-
izing per-component mutual information (e.g., assigning interactions unevenly in this
experiment). In some cases (e.g., the log-gamma-exponential distribution), this increases
linear redundancy, as component pairs with higher mutual information also exhibit higher
variance in this particular scenario. Our results are displayed in Figure 15.

Due to numerical constraints, we do not track 1(X;Y)/d in this particular setup, instead
plotting the results against the total mutual information. While this makes saturation
slightly less evident, the general trend of SMI decreasing with d remains observable. We also
highlight the log-gamma-exponential distribution (Figure 15d), where SMI is less prone to
saturation under parameter randomization due to the reasons mentioned earlier.

G.2 SYNTHETIC IMAGES

Using the MI-preserving smooth injective mappings from (Butakov et al., n.d.), we
reproduce the synthetic datasets used in (Butakov et al., 2024). These datasets consist of
high-dimensional images (see Figure 3) with known ground-truth mutual information. The
results presented in Figure 16 again prove our findings.

G.3 REAL IMAGES WITH SYNTHETIC COPULAS

Following the technique proposed in (Lee and Rhee, 2024), we conduct additional experi-
ments on the MNIST dataset. We consider the Markov chain:

X, — C = G — X,
where C} and C, are random class variables, and X, X, represent random images drawn
from classes C; and C,, respectively. We control the mutual information I(C;;C,) using

the noisy symmetric channel framework from (Lee and Rhee, 2024). If images are selected
independently given the class pair, it can be shown that 1(X;; X5) = I(C}; C,).

We vary I(Cy;C,) from 0 to log(#classes) (its theoretical maximum) and conduct 10
independent runs. The resulting values of k-SMI, averaged over 10 independent runs, are
presented in Table 2. These results also indicate saturation of SMI. Moreover, one can also
notice that SMI between independent is non-zero and only twice as small compared to the
case |(X;; X,) = 2.3 nats, which highlights the curse of dimensionality.
Table 2: SMI results (in 1073 nats) for the experiments with MNIST dataset.
[(X;; X,), nats
00 05 10 15 20 23
SI(X;; X5), 1073 nats  2.89 2.88 3.80 4.68 5.73 5.77

H REPLICATION STUDY: DETAILS

The original papers on k-SMI and max-SMI feature several experiments on independence
testing and InfoMax tasks (Goldfeld et al., 2022, Section 5; Goldfeld and Greenewald, 2021,
Sections 4.2,4.3; Tsur et al., 2023, Section 5). In this section, we attempt to replicate these
tests to understand how their results align with our analysis.
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Figure 13: 2-SMI results on synthetic benchmarks. Mean values and standard deviations
across 10 runs are reported, 10* samples from X,Y and 128 random projections were used.
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Figure 14: 3-SMI results on synthetic benchmarks. Mean values and standard deviations
across 10 runs are reported, 10* samples from X,Y and 128 random projections were used.
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Figure 15: SMI results on synthetic benchmarks. Mean values and standard deviations
across 10 runs are reported, 10* samples from X,Y and 128 random projections were used.
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Figure 16: Results of synthetic experiments with high-dimensional image-based distribu-
tions for k-SMI. We report mean values and standard deviations computed across 10 runs,
with 10* samples used for MI estimation and 128 for averaging across projections.
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H.1 FEATURE EXTRACTION

Here, we reproduce and elaborate on the InfoMax-like feature extraction experiments. In
contrast to the tasks described in Section 6 of our work, (Goldfeld and Greenewald, 2021,
Section 4.3) considers a supervised feature extraction setting. In this setup, the shared
information between f(X) and g(Y) is maximized with respect to the functions f and g.

Toy Gaussian example. Here we consider two families of Gaussian baselines: high
redundancy (X,Y”) and low redundancy (X,Y”):

X, Z~N01,), XUZ Y =Z+) 1-¢]X Y'=Z+) ¢-€X,

where 17 = (1,...,1) and m controls the number of components that are injected into Y.
Setting d =10 and m =1 for (X,Y”) recovers the experiment from (Goldfeld and Gree-
newald, 2021). However, to highlight SMI’s deficiencies, we will adhere to the low redundancy
benchmark, according to which a proper feature extraction should result in the selection of
at least m features.

In our experiments, we closely follow the setup from (Goldfeld and Greenewald, 2021): when
maximizing k-SMI, we use linear f and g, parametrized by R%*? matrices. However, when
extracting features through MI and max-SMI maximization, we have to form a dimension-
ality bottleneck by using R¥*? matrices: otherwise, the best strategy is to extract every
feature. As we show below, SMI does not require this bottleneck, because it is implicitly
biased toward degenerate solutions.

Similar to Section 6, variational representations are employed to conduct the experiments:
the NNs from Section I are trained for 100 epochs; other settings are the same.

To evaluate the quality of the extracted features, we compute the effective rank of the
matrices Ay, B(1.,) formed by the first m columns of A and B respectively. The effective
rank is defined as erank M = exp(H(¢)), where H(o) is the Shannon entropy of the normal-

Figure 17: Feature extraction matrix for the low redundancy setting acquired through
kE-SMI — max for m € {1,2,3,4} (columns) and k € {1,4} (rows).

Figure 18: Feature extraction matrix for the low redundancy setting acquired through
MI — max for m € {1, ...,4} (rows).
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Figure 19: Feature extraction matrix for the low redundancy setting acquired through
1-max-SMI — max for m € {1,...,4} (rows).

ized singular values o of M. If erank A(y,,,,) & m, then all features are extracted without
mixing, while low values of erank A, ,,,) indicate the (numerically) irrecoverable collapse to
mixtures (ill-posed linear combinations of the first m components of X).

Our results, depicted in Figure 9, show that the MI maximization yields effective rank
close to m, confirming its ability to recover all relevant features. In contrast, k-SMI yields
an effective rank that nearly constant regardless of k, revealing its redundancy bias. This
collapse confirms that k-SMI optimization leads to redundant features.

H.2 INDEPENDENCE TESTING

The SMI has been proposed as a scalable alternative to MI for independence testing
(Goldfeld et al., 2022; Goldfeld and Greenewald, 2021; Nuradha and Goldfeld, 2023; Tsur et
al., 2023), which can be framed as a binary classification task. Given estimates of SMI (or
MI) on datasets drawn from either the joint distribution (positive class) or the product of
marginals (negative class, obtained by shuffling), one can apply the threshold for dependence
verification. For each fixed dimension d, and sample size n, we can generate 100 positive
and 100 negative pairs of samples, estimate SMI (or MI), and compute the ROC-AUC over
these 200 scored examples as a function of the number of samples n. The works (Goldfeld
et al., 2022; Goldfeld and Greenewald, 2021) shows that SMI outperforms MI when the
dimension is fixed.

We replicate this protocol with one critical modification. We pool estimates across different
dimensions (d € {2,10,20,30}) for each sample size n, and then compute a single ROC-AUC
from the mixed-dimensional data. Additionally, we fix the ground truth MI to 1 and 2 nat
for each dataset and replace the Kozachenko—Leonenko estimator used in (Goldfeld and
Greenewald, 2021) with the KSG estimator (Kraskov et al., 2004) (using kyy = 1 neighbors),
which in our experiments yields more stable MI estimates.! For a fair comparison we report
MI values over 128 random rotations, because it showed numerically improved MI estimates
for small-size datasets.
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Figure 20: Independence testing: ROC-AUC versus sample size for correlated normal,
correlated uniform, smoothed uniform and log-gammma-exponential (left-to-right, 1 nat).

As shown in Figures 11, 20, this pooling causes SMI’s discriminative power to drop sharply,
while MI’s remains high. The failure occurs because SMI decays with dimension even when
total mutual information is held constant, so dependent high-dimensional cases produce
SMI values that overlap with independent low-dimensional cases. The slower dimensional
decay of SMI for LGE distribution (Figures 5, 15), in turn, explain the observed higher
ROC-AUC. Consequently, SMI is less reliable for independence testing than MI unless the

'By using the KSG estimator, we observe that ROC-AUC dynamics corresponding to MI come
into closer agreement with those of SMI, which is not seen when using the less stable Kozachenko—
Leonenko estimator.
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dimensionality is known and fixed in advance, which imposes a strict limitation for practical
applications where data dimensionality may vary.

I IMPLEMENTATION DETAILS

I.1 SYNTHETIC EXPERIMENTS

For the experiments from Section 5, we use implementation of Kraskov-Stoegbauer-Grass-
berger (KSG) (Kraskov et al., 2004) mutual information estimator and random slicing from
(Butakov et al., n.d.). The number of neighbors is set to kyy = 1 for the KSG estimator.
For each configuration, we conduct 10 independent runs with different random seeds to
compute means and standard deviations. Our experiments use 10* samples for (X,Y) and
128 samples for (O, ).

For the experiments from Section 5, we use independent components with equally distrib-
uted per-component MI. For the supplementary experiments from Figure 15, parameters of
each distribution (e.g., covariance matrices) are randomized via the algorithm implemented
in (Butakov et al., n.d.). This includes randomization of per-component MI (which is done
using a uniform distribution over a (d — 1)-dimensional simplex).

For the experiments, we used AMD EPYC 7543 CPU, one core per distribution. Each
experiment (fixed k, varying d) took no longer then 3 days to compute.

1.2 REPRESENTATION LEARNING EXPERIMENTS

Recall that Deep InfoMax requires maximizing a lower bound on I(X; f(X)), where X is
input data and f is an encoder network. Since |(X; f(X)) is typically vacuous, the lower
bound in question should be selected carefully to (a) be finite and (b) allow for meaningful
optima. In our experiments, we employ the objective from (Butakov et al., 2025), which
provably satisfies the requirements above, while also being inherently regularized against
representation collapse:

I(f(X7); £(X) + Z) <1(X; £(X)),
where Z is Gaussian and independent, and X’ represents randomly augmented data.

For experiments on MNIST dataset, we use a simple ConvNet with three convolutional
and two fully connected layers. A three-layer fully-connected perceptron serves as a critic
network for the InfoNCE loss. We use the same architecture and loss for SMI maximization.
As described in (Goldfeld et al., 2022; Goldfeld and Greenewald, 2021), the critic network for
the SMI lower bound takes ©TX, ®TY, © and ® as inputs. To accommodate the flattened ©
and ® matrices, we increase the network’s input dimensionality; the rest of the architecture
remains unchanged. The details are provided in Table 3. When maximizing SMI, we generate
a set of random projectors for each batch of samples from X,Y, with one projector per
sample.

We use additive Gaussian noise with ¢ = 0.2 as an input augmentation. Training hyperpa-
rameters are as follows: batch size = 512, 2000 epochs, Adam optimizer (Kingma and Ba,
2017) with learning rate 1073.

For the experiments, we used AMD EPYC 7543 CPU and Nvidia A100 GPUs. Each
experiment took no longer then 1 day to compute.
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Table 3: The NN architectures used to conduct the tests on MNIST images in Section 6.

NN Architecture
ConvNet, x 1: Conv2d(1, 32, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)
24 % 94 x 1: Conv2d(32, 64, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)
x X 1: Conv2d(64, 128, ks=3), MaxPool2d(2), BatchNorm2d, LeakyReLU(0.01)
images x 1: Dense(128, 128), LeakyReLU(0.01), Dense(128, dim)
Critic NN for MI, x 1: Dense(2 x dim, 256), LeakyReLU(0.01)
pairs of vectors x 1: Dense(256, 256), LeakyReLU(0.01), Dense(256, 1)
Critic NN for SMI, x 1: Dense(2 x k + 2 x dim x k, 256), LeakyReLU(0.01)
pairs of vectors x 1:  Dense(256, 256), LeakyReLU(0.01), Dense(256, 1)
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