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ABSTRACT

Multivariate time-series (MTS) data from multiple sensors often vary across do-
mains due to factors like sensor misalignment, reattachment, or individual dif-
ferences, posing significant challenges for domain generalization (DG). Existing
methods inadequately address the alignment of domain-specific spatial dependen-
cies across different domains in MTS data, as they often assume a unified invariant
spatial structure and overlook the distributional discrepancies arising from vary-
ing sensor relationships. To address this limitation, we propose ASAM (Adaptive
Spatial Dependency Alignment in MTS Data for Domain Generalization), a novel
framework that adaptively aligns spatial dependencies across domains. ASAM
proposes a DG layer with domain generalization loss function and two-view reg-
ularization loss functions to align spatial dependencies between domains adap-
tively. We adopt a two-phase approach to align different sets of domains effec-
tively. An input-aware graph generation process and a GNN-based DG layer,
coupled with the domain generalization loss function, adaptively align the spa-
tial dependencies learned in the second phase with those from the first phase,
ensuring a more precise alignment. We additionally incorporate a two-view reg-
ularization method to effectively capture underlying spatiotemporal information
comprised of spatial decorrelation loss and Gaussian kernel loss. Our theoreti-
cal analysis demonstrates that ASAM effectively assimilates information bottle-
neck, ensuring robustness across diverse distributions. Extensive evaluations of
the four real-world datasets show ASAM outperforms ten recent baselines. To the
best of our knowledge, this work is among the first to explore DG approaches for
MTS data by focusing on spatial dependency alignment. Our code is available at
https://anonymous.4open.science/r/ASAM.

1 INTRODUCTION

In the context of analyzing human-related behavior with multivariate time-series (MTS) data, it
is essential to identify the complex interplay between multi-sensor structure and concurrent time-
series features. There are several task-specific feature learning methods regarding inherent spatial
and temporal aspects of MTS data to capture intricate spatiotemporal features of the data (Yi et al.,
2024; Cai et al., 2024). Specifically, recent studies adopt a Graph Neural Network (GNN) structure
to obtain structural information between sensors (Wang et al., 2024a;b). Yet, sensor-driven MTS
data often display varying signal values under different conditions—such as data collected from
different individuals or from the same person at different times with sensor reattachment (Farina
et al., 2014; He et al., 2023), resulting in multiple separate domains related to multi-sensor (spatial)
dependencies.

Domain generalization (DG) methods have recently attracted significant attention to mitigate the
distribution shifts. DG methods are especially practical for the healthcare field where access to the
target domains is rigorously restricted due to privacy concerns (Deng et al., 2024; Zhang et al.,
2021). Applying previous feature-learning methodologies in the DG settings has certain constraints,
as they primarily focus on learning spatial features within the observed domains without any consid-
eration of domain information, as shown in Figure 1-(a). This approach reduces their effectiveness
in addressing distribution shifts in unseen domains, such as the case of T1 in the figure. Moreover,
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Figure 1: Comparison between two existing works and ours. It displays a multi-domain setting with
S1, S2, and S3 as source domains for training and T1 as target domain for inference. Lowercase
and uppercase letters beside the sensors represent learned sensor features with the given domain-
specific information and domain-generalized information, respectively. The ‘Module’ learns spatial
alignment information from domain-specific to domain-generalized spatial dependency.

most DG methods tend to overlook the discrepancy of spatial dependencies across domains. There
are some studies besides the MTS sensor data that propose graph-based DG approaches (Miao et al.,
2022; Sui et al., 2022) that account for spatial dependencies by extracting invariant graph structures.
However, these methods remain limited in addressing the distributional discrepancies arising from
distinct sensor dependencies for domains in MTS sensor data. As depicted in Figure 1-(b), existing
methods that focus on extracting a domain-sharing uniform spatial structure may produce subpar
performance on a target domain that exhibits significantly different sensor relations with the ob-
served domains, as on T1 in the figure. Therefore, results may be inconsistent depending on how
well the target spatial structure matches the invariant spatial structure captured in the source domain.
To the best of our knowledge, DG approaches specifically tailored for MTS data, considering the
discrepancy of spatial dependencies across domains, have not been extensively examined.

To address the limitations of previous research, we propose ASAM (Adaptive Spatial Dependency
Alignment in MTS Data for Domain Generalization) by adaptively aligning spatial dependencies. As
shown in Figure 1-(c), ASAM optimizes an adaptive spatial alignment module, transitioning from
spatial dependencies with domain-specific features (a, b, c, d) to spatial dependencies with domain-
generalized features (A, B, C, D), and this alignment module is robust against various spatial-wise
distributions T1 that occur in MTS sensor data. For instance, in the target domain T1 shown in
Figure 1, where both types of existing methods may struggle, the module of ASAM adaptively
aligns domain-specific features, such as ‘a’ and ‘b’, with domain generalized features, ‘C’ and ‘D’,
enabling effective generalization. ASAM proposes a domain generalization layer (DG layer) and a
domain generalization loss for DG in MTS sensor data to align across numerous unseen domains.
ASAM is optimized through a two-phase approach, with each phase involving distinct input-source
data to facilitate spatial alignment, as the given source domain set (S1, S2, S3) is divided into two
parts —S1 and S2 for the phase 1, and S3 for the phase 2 at random — as depicted in Figure 1. The
initial phase comprehensively captures overall feature information with a spatiotemporal model,
while the second phase focuses on learning inter-domain information by incorporating the DG layer
and its loss function. Specifically, we propose a loss function designed to ensure that the embedding
processed by the DG layer closely resembles the non-processed embedding. In addition, a two-
view regularization loss is incorporated to enhance the capability of the alignment by regularizing
to obtain underlying spatiotemporal features from the first phase. We theoretically demonstrate that
our DG layer assimilates invariant information from the first phase data, thus confirming that the
DG layer is robust on various distributions.

We rigorously evaluated our model using several real-world datasets, including sEMG and human
activity recognition (HAR) datasets. Empirical analyses affirmed the model’s superior efficacy com-
pared to ten recent baselines.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

Domain generalization (DG) intends to close the gap between the source and target data distri-
butions. Since the distribution shift problem can occur in various fields, including computer vi-
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Figure 2: Illustration of the overall flow of ASAM. The upper left section of the figure illustrates
the two-phase flow of ASAM, featuring S1, S2, ..., and S5 as the source domains. The proposed
spatial alignment domain generalization, which incorporates the domain generalization layer and its
associated loss function used in the second phase, is illustrated in Section (a). Section (b) presents
the two-view regularization method for extracting intrinsic features from the spatiotemporal model.

sion (Thota & Leontidis, 2021), natural language processing (Glorot et al., 2011), and graphs (Miao
et al., 2022; Fan et al., 2022), the attention of DG is actively increasing. Most DG approaches try to
discern the invariant information, and it can be classified into two: preventing the main model from
overfitting to the source data and learning domain invariant information. The first approach utilizes
data manipulation (Wang et al., 2022) or incorporates extra learning like meta-learning (Qin et al.,
2023) and self-supervised learning (Kim et al., 2021). The latter approach dissects the representation
into domain-specific and domain invariant information (Miao et al., 2022).

Applying existing DG approaches to multivariate time-series data is challenging because of its com-
plex correlations with spatial and temporal aspects. Previous works mainly focus on capturing time
dependent factors (Deng et al., 2024; Hu et al., 2022). (Qian et al., 2021) utilizes DG for sensor-
based human activity recognition based on the variational autoencoder (VAE) framework, incorpo-
rating two encoders to disentangle domain-agnostic and domain-specific representations. (Lu et al.,
2022) proposes the DG method exploiting the local and global correlation among segments of a
single time-series data to learn domain invariant temporal features. However, these approaches only
focus on the temporal correlation, while spatial dependency across domains is also essential in the
MTS domain. There are several graph-based DG studies (Miao et al., 2022; Sui et al., 2022; Fan
et al., 2022) that employ causality-based approaches to identify non-causal substructures and iso-
late domain invariant graphs. However, these methods extract a single invariant spatial dependency
that may be suboptimal in MTS sensor data that has various distinct distributions. ASAM, on the
other hand, aligns the spatial dependency across domains, which is more robust on various distinct
distribution settings like MTS sensor data.

2.2 SPATIAL ALIGNMENT IN DOMAIN ADAPTATION SETTING

Domain generalization (DG) and domain adaptation (DA) both intend to close the gap between the
source and target data distribution. The main difference between them lies in the access to target
data: domain adaptation leverages target data during training, whereas domain generalization relies
exclusively on the source data without utilizing target data. Domain adaptation allows some informa-
tion according to their problem setting, such as target domain data feature for unsupervised domain
adaptation (UDA).

Even though there are some differences between UDA and domain generalization, there are some
studies of UDA on MTS data that considers spatial information. Most methods (Lu & Sun, 2024)
find the domain-invariant information similar to existing DG methods as described in Figure 1-
(b). However, there is a study that similarly considers the spatial correlations (Wang et al., 2023).
They typically adopt a fixed sensor matching approach to consider the sensor structure of MTS
data (Wang et al., 2023). This assumption raises concerns in cases such as a left-handed user in the
source domain and a right-handed user in the target domain. Our work can symmetrically align the
sensor dependencies, addressing the potential limitations of (Wang et al., 2023).
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3 METHODOLOGY

3.1 PROBLEM DEFINITION

Each instance within this dataset can be represented as X ∈ RN×T , where N indicates the number
of sensors (channels) and T denotes the number of timestamps. The dataset can be formalized as
D = {(X (i),Y(i))}DOM

i=1 , where DOM indicates the number of domains and X (i), Y(i) are the
data and label set of i-th domain respectively. The whole dataset D can be decomposed into source
domain set DS and target domain set DT . The set of target domains DT is utilized in the inference
stage and is non-accessible during the model learning process. In ASAM, the source domain set DS

is randomly divided into two subsets, DSph1
and DSph2

, where DSph1
is the first phase domain set

and DSph2
is the second phase domain set.

3.2 OVERALL FRAMEWORK

This section presents our proposed model on multivariate data. The overall structure of our model is
depicted in Figure 2. As illustrated in the figure, our training process is divided into two phases. In the
first phase, the spatiotemporal model fθ is exclusively trained usingDSph1

, where θ is the parameter
of the spatiotemporal model, which incorporates a spatial layer and a temporal layer. The spatial
layer captures the spatial sensor relations in a single domain, and its representation is denoted as Z ∈
RN×T . The temporal layer then processes Z and obtains the holistic spatiotemporal representation
C ∈ RF×T, where F is the feature dimension of each temporal dimension. For the experiment, to
validate the effectiveness of the proposed spatial alignment-based domain generalization, we adopt
a simple spatiotemporal model composed of a GNN and LSTM for the spatial and temporal layers,
respectively. The details of the spatiotemporal structure are provided in the Appendix. The second
phase integrates the domain generalization layer (DG layer) aπ before the spatiotemporal model
fθ, constructing domain generalization model gπ,θ, where π is the parameter for the DG layer.
The objective of the second phase is to adaptively align the spatial dependency of DSph2

to spatial
structure extracted from the first phase domain DSph1

. We process the second phase model in the
inference stage to align unseen domainDT into the source domains. The DG layer employs a GNN-
based approach with input-driven adjacency matrix generation to adaptively address diverse spatial
structures of unseen domains. A domain generalization loss function is applied in the second phase to
align the spatial dependency across domains, enabling the domain generalization layer to learn input-
aware spatial alignment. We further introduce a two-view regularization loss across both phases to
effectively identify the spatial alignment by regularizing the spatiotemporal model to focus more on
underlying features.

The following sections explain the proposed spatial alignment domain generalization method and
two-view regularization. Furthermore, we will outline the final loss functions used to optimize our
model and analyze the time complexity of ASAM. A theoretical analysis exhibits that the proposed
loss functions lead to domain generalization for the MTS sensor data.

3.3 SPATIAL ALIGNMENT DOMAIN GENERALIZATION

A solution for adapting to various unseen distributions with consistent results is to adaptively align
the unseen domain’s spatial dependency to the trained spatial dependency. Since extracting invari-
ant distribution with an assumption of shared spatial structure across domains may induce deficient
results at inference, as we discussed in Figure. 1, we propose a spatial alignment domain general-
ization method. We address the distribution shift by adopting an additional domain generalization
layer and loss function in the second phase which aligns the spatial dependency across domains.

A GNN-based domain generalization layer (DG layer) is proposed with input-driven adjacency ma-
trix generation in which spatially related information is preserved for aligning distinct distributions.
The input-driven graph is constructed solely with the given feature matrix designed to learn relations
that are salient to the input features. Consequently, the edge weight between sensors with similar fea-
tures is designed to be higher, while it is lower for those with dissimilar features. Therefore, the edge
weight between sensors that is likely to be aligned is preferred to have high values and vice versa.
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The similarity matrix Adg ∈ RN×N can be expressed as follows:

Adg = σ(
(W1X)(W2X)⊺√

dk
), (1)

where W1 and W2 are learnable weight matrices to capture the intricate relationships between
multi sensor inputs, X is the input MTS data, and dk is the scaling factor. σ is the row-wise soft-
max function to make a normalized adjacency matrix. The relation of each sensor is calculated by
considering the temporal features of every sensor. Therefore, depending on the input, the similarity
matrix potentially possesses different spatial correlations among multiple sensors.

With the generated graph, the DG layer applies GCN (Kipf & Welling, 2017) to aggregate messages
as follows:

Hdg = AdgXWdg, (2)

where Hdg ∈ RN×T is the representation obtained via the domain generalization layer, and Wdg is
the weight of a GNN that does not change the dimension. The DG layer adaptively modifies the fea-
ture by considering the sensor correlation of the input, accommodating new source data effectively.

Furthermore, we propose a new loss function which aligns the spatial dependency. The domain
generalization loss is computed by minimizing the discrepancy between two embeddings obtained
from different phase models. Zori (= Spatial(X)) is the embedding that passes the learned spatial
layer from the first phase model, and Zdg (= Spatial(Hdg)) is acquired by processing the additional
domain generalization layer before the spatial layer (Spatial), as shown in Figure 2. In other words,
Zdg can be interpreted as the embedding of the spatial-wise transformed input data. Finally, the loss
term on the domain generalization layer can be formulated like:

Ldg = ∥Zori − Zdg∥2F , (3)

where ∥A∥2F is the Frobenius norm of matrix A. The loss function can be interpreted as minimizing
the variance between two representations: one processed by the DG layer and one that is not pro-
cessed. This approach facilitates the optimization of the DG layer to achieve better spatial alignment
of unseen distributions, enabling the model to learn invariant features with the difference of spatial
relations taken into account.

3.4 TWO-VIEW REGULARIZATIONS

This section introduces a two-view regularization technique composed of channel decorrelation loss
and Gaussian kernel loss. By applying the loss functions to both spatial and temporal layers, the spa-
tiotemporal model can capture essential information specific to each sensor by reducing redundancy
from complicated spatial dependency and preserving short-term temporal signals, which helps the
DG layer to effectively learn to align multiple spatial dependencies.

Channel Decorrelation Loss While the spatial layer effectively merges information from multi-
ple related sensors, an excessive focus on spatial relationships can lead to over-amplifying the spatial
dependencies to the first phase source data, consequently diminishing the model’s robustness to dis-
tributional shifts. To refine the model’s capability in capturing general spatial relations, we propose
the channel decorrelation loss. Accordingly, the channel decorrelation loss acts as a regularizer that
emphasizes the information specific to each sensor, and it can be expressed as:

Lspa = ∥D− I∥2F , (4)

D = ZZ⊺, s.t.Z = {Zori,Zdg} (5)

where D ∈ RN×N is the feature correlation matrix constructed by the hidden representation Z
from the spatial layer. I in equation 4 is the identity matrix with the same dimension as D. The
loss function, which reduces the gap between D and I, induces each channel to retain its essential
information, alleviating the redundant data and noise from the exaggerated consideration of domain-
specific spatial correlations. Depending on the phase in which this loss function is applied, what Z
indicates differs: Zori derived from the first phase input, and Zdg with the second phase input.
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Algorithm 1 Computing the Gaussian kernel loss, Ltemp

1: Input: the output of LSTM layer, C

2: def GAUSSIAN(d, σ = 1.0):
3: return exp

(
− d2

2σ2

)
4: Initialize dist matrix and kernel matrix with zeros of size T × T
5: td matrix← C⊺C
6: dist matrix[i, j]← |i−j|

T , ∀i, j = 0, 1, . . . , T − 1
7: kernel matrix[i, j]← GAUSSIAN(dist matrix[i, j]), ∀i, j = 0, 1, . . . , T − 1
8: Ltemp ← ∥td matrix− kernel matrix∥2F

Gaussian Kernel Loss The Gaussian kernel loss serves as an additional regularizer to effectively
capture and maintain short-term signals, a widely recognized and intuitive approach. This approach
facilitates that temporally close representations remain similar while temporally distant representa-
tions become progressively more distinct. The Gaussian kernel loss, Ltemp, can be derived as de-
scribed in Algorithm 1. In the algorithm, the td matrix represents the time dependency matrix,
which is similar to temporal correlation matrix, and the dist matrix in line 8 denotes a matrix
where each element represents the distance from the diagonal of the kernel matrix. By utilizing
dist matrix as an argument for the GAUSSIAN function, the kernel matrix is formulated, with
higher values along the matrix’s diagonal compared to areas further from the diagonal. The temporal
regularization loss minimizes the discrepancy between the time dependency matrix and the kernel
matrix. Since td matrix is the spatiotemporal representation, regularizing the temporal dependency
positively impacts identifying the intrinsic spatial relations among sensors.

3.5 TIME COMPLEXITY ANALYSIS

Compared to the existing MTS spatiotemporal models, ASAM additionally proposes a DG layer and
three loss functions. The time complexity of each is discussed below. The time complexity of adap-
tive GNN for DG-layer is O(N2T ), where N is the number of channels and T is the dimension of
initial features, ensuring efficiency. Additionally, the two-view regularization loss involvesO(N2T )
for channel decorrelation and O(F 2T ) for Gaussian kernel loss, with notation corresponding to the
main paper. Finally, the time complexity of ASAM is O(N2). We note that N , which is the num-
ber of sensors, is inherently limited by practical constraints, thereby reducing concerns about time
complexity.

3.6 TRAINING

The two phases of the training process proceed in such a way that one ends and the other begins. For
each phase dataset (DSph1

and DSph2
), batches are constructed regardless of multi-source domain

information shuffling all data belonging to the specific phase.

In the first phase, we train the spatiotemporal model (fθ). Subsequently, we employ a MLP structure,
clf , to reshape the final input C to match the number of class labels. The class probability can be
represented as:

ŷ = clf(flatten(C)), (6)

where flatten is a function that reshapes the embedding into a 1-dimensional vector. Finally, we
optimize our model with the cross-entropy loss Lce. With the two-view regularization loss defined
earlier, our final loss function for the first phase can be denoted as below:

LP1 = Lce + λ1Ltemp + λ2Lspa, (7)

where λ1 and λ2 are hyperparameters controlling the impact of both regularization losses.

In the second phase, the new source data initially passes through the domain generalization layer,
followed by the spatiotemporal layer utilized in the first phase (gπ,θ). The relation between two
model, fθ and gπ,θ, can be represented like:

gπ,θ(X) = fθ(aπ(X)), (8)

6
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where aπ indicates the domain generalization layer. An additional invariance loss term is incorpo-
rated in this phase. The loss function for the second phase is given by:

LP2 = Lce + λ2Lspa + λ3Ldg, (9)

where λ3 is the hyperparameter to adjust the effect of invariance loss. In configuring the model, hy-
perparameters (λ1, λ2, and λ3) were deliberately constrained within a narrow range. This approach
was adopted to reduce the model’s sensitivity to hyperparameter values. We note that, in inference,
class labels are predicted using the second phase model.

3.7 THEORETICAL ANALYSIS ON THE DOMAIN GENERALIZATION LAYER

We yield theoretical analysis of the newly proposed loss functions (Ldg and Lspa). The loss functions
can be associated with the information bottleneck principle (Tishby & Zaslavsky, 2015; Wu et al.,
2020). Before going into the details, we first introduce additional notations.

Notations DG is the domain generalization adopted signal. P (X) and P (X|Y ) denote the dis-
tribution of random variable X and the distribution of X conditioned by Y . I(X,Y ) denotes the
mutual information between two random variables X and Y . I(X,Y |A) implies the conditional
mutual information of X and Y given random variable A.

Theoretical Analysis We designate the second phase representation as Zdg . Through the assump-
tion of setting the distribution of P (Zdg) and P (Zdg|X) as Gaussian, we can lead to the following
Theorem:

Theorem 1. Optimizing Ldg and Lspa corresponds to not only maximizing the mutual information
between the embeddings from the second phase (domain generalization) and the input X but also
minimizing the conditional mutual information of Zdg and DG conditioned by the input. We can
express like:

min(Ldg + Lspa)⇒ max I(Zdg,X) and min I(Zdg, DG|X). (10)

The first term on the right-hand side means that the embedding Zdg expresses the input data X. The
second term indicates that Zdg should contain more invariant information relative to the input X.
Satisfying the two terms indicates robustness to domain generalization because the domain general-
ization layer can transform the data distribution of the second phase into the data distribution of the
first phase. The proof of Theorem 1 is in the Appendix. We further define the information bottleneck
under the MTS sensor data that suffers from the domain shift.

Definition 1 (MTS sensor-based information bottleneck). The multivariate time series (MTS)
sensor-based information bottleneck tries to maximize the mutual information between the input
and the second phase embedding while minimizing the overlapping information between the domain
generalization signal and the corresponding signal. It can be formulated as:

IBMTS = I(X,Zdg)− βI(DG,Zdg), (11)

where β is the hyperparameter that controls the mutual information loss. IBMTS indicates the multi-
variate time series (MTS) sensor-based information bottleneck. According to Definition 1, satisfying
the information bottleneck for sensors is observing the property that is robust to distribution shift.

Theorem 2. If β is bounded in [0, 1], then lowering the losses defined on the domain generalization
layer is identical to maximizing the sensor information bottleneck.

min(Ldg + Lspa)⇒ max IBMTS. (12)

Therefore, applying the losses on the domain generalization layer extracts relevant and meaningful
information from different distribution data, which in turn enhances the performance of our model.
In other words, the variance between two embeddings utilized in the loss function is minimized
regardless of the input domain.

7
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Table 1: Overall performance comparison on the MTS sensor dataset, evaluated by accuracy. Bold-
faced indicates the best result, and underlined results represent the second-best models.

Dataset Feature learning Domain generalization ASAM
(Our model)PICCA TCN 2SRNN SimpleAtt STCN-GR GNN-SD GSAT CAL GREA DisC

Ninapro DB 5 80.09 76.76 80.52 80.26 75.12 84.76 88.95 88.54 61.64 88.63 87.95
SD-gesture 84.78 72.79 88.44 87.54 69.04 63.36 85.15 86.78 84.15 86.19 93.04

HHAR 65.38 64.07 60.16 71.64 72.42 70.85 52.71 69.02 67.94 67.54 74.63
UCI-HAR 77.77 75.53 79.81 89.87 86.37 87.59 89.00 85.69 73.74 84.11 92.42
Average 77.01 72.29 77.23 82.33 75.74 76.64 78.95 82.51 71.87 81.62 86.94

Table 2: DG model performance comparison for cross-subject task evaluated by accuracy. The per-
formances of 5 scenarios for each dataset are presented. Columns denote the different target domains
for the scenarios. Avg. is the average performance of 5 scenarios. In each column, the boldfaced
score denotes the best result and underlined results are the second-best models.

Models HHAR UCI-HAR
subject 1 subject 2 subject 3 subject 4 subject 5 Avg. subject 1 subject 2 subject 3 subject 4 subject 5 Avg.

GSAT 35.98 48.85 63.56 62.85 52.33 52.71 94.70 96.48 88.64 80.73 84.46 89.00
CAL 59.16 82.29 36.06 80.67 86.94 69.02 89.40 76.54 82.65 89.73 90.15 85.69

GREA 50.68 83.69 60.78 63.18 81.37 67.94 55.96 54.25 86.12 81.64 90.77 73.74
DisC 40.18 90.25 39.15 82.87 85.26 67.54 94.37 84.75 84.54 82.45 74.46 84.11

ASAM 52.03 92.44 53.26 83.7 91.74 74.63 97.36 92.96 83.91 92.21 95.69 92.42

4 EXPERIMENT

4.1 DATASET AND BASELINES

We experiment with four datasets: two surface electromyography (sEMG) sensor datasets for hand
gesture classification and two human activity recognition (HAR) datasets for human activity recogni-
tion. Ninapro DB5, which includes 6 repetitions and 53 hand gesture labels, and SD-gesture, which
includes 4 repetitions and 18 static and dynamic hand gesture labels, which are proposed in (Lee
et al., 2023). Furthermore, we utilized two additional human activity recognition datasets (HHAR
and UCI-HAR) to compare the accuracy of the human activity recognition task.

We implemented 10 recent baselines, which are categorized into two parts: baselines related to
feature learning (Canonical correlation analysis-based model (Cheng et al., 2018) (PICCA), TCN-
based sEMG model (Tsinganos et al., 2019), Simple Attention (Josephs et al., 2020) (SimpleAtt for
short), RNN-based model with simple multi-step domain adaptation (Ketykó et al., 2019) (2SRNN),
GNN-based model STCN-GR (Lai et al., 2021), self-attention graph generation model for static
and dynamic gestures (Lee et al., 2023) (GNN-SD for short)), and the other for the domain gen-
eralization methods especially in the graph domain (GSAT (Miao et al., 2022), CAL (Sui et al.,
2022), GREA (Liu et al., 2022), and DisC (Fan et al., 2022)). The table, which denotes the compar-
ison between recent domain generalization methods and ASAM and details about the datasets and
baselines, are further discussed in the Appendix.

4.2 EXPERIMENTAL SETTING

We evaluated ASAM on various experiment settings, including the cross-repetition and cross-
subject. The cross-repetition evaluation is applied to the sEMG data since the data distribution
varies even for the same patient. Specifically, the cross-repetition task trains the model with the
source repetition data from the same subject and aims to have robust performance on unobserved
target repetitions from the same subject. The human activity recognition dataset is evaluated with the
cross-subject setting, where each domain is defined as a subject. One subject is defined as the target
domain, and the remaining subjects are treated as the source domain. The remaining source domain
is split into half for phase 1 and phase 2 domains, respectively. We sampled 5 subjects as the target
subjects in both the HHAR and UCI-HAR datasets, and the averaged accuracy of the performance
of 5 subjects is compared with the baselines. Further details about the dataset is discussed in the
Appendix.
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Table 3: Ablation study of accuracy comparison for the loss function, domain generalization layers,
temporal layers, and spatial layers on ASAM.

(a) Loss function
SD-gesture UCI-HAR

w/o Lspa + Ltemp 90.78 80.65
w/o Lspa 91.99 89.98
w/o Ltemp 92.40 87.47

ASAM 93.04 92.42

(b) DG layer
SD-gesture UCI-HAR

w/o DG layer 91.00 85.20
Linear layer 85.41 80.88
MLP layer 83.67 88.26

ASAM 93.04 92.42

(c) Temporal layer
SD-gesture UCI-HAR

TCN 65.88 79.75
Transformer 83.28 85.38

ASAM 93.04 92.42

(d) Spatial layer

SD-gesture UCI-HAR
CNN 88.13 82.45

Attention 83.29 86.09
ASAM 93.04 92.42

Figure 3: Graphs generated by incorporating the DG layer for two domains. The edge indicates the
spatial dependency between the two sensors, and its thickness denotes the magnitude. Subjects A
and B are randomly selected from DSph2

of the UCI-HAR dataset.

4.3 PERFORMANCE COMPARISON

This section presents the results of our proposed model. Our model demonstrates strong perfor-
mance across four datasets, as shown in Table 1, underscoring its effectiveness of spatial alignment
in MTS sensor-related classification tasks. The table indicates that the effects of previous feature
learning and domain generalization methods vary depending on the dataset. However, our ASAM
method significantly alleviates the distribution shift issue in the spatiotemporal domain across var-
ious experimental settings, including both the cross-repetition and cross-subject scenarios. ASAM
outperforms the best competitor by 4.43% on the average performance of all datasets. For the Ni-
napro DB5 dataset, a different domain generalization method slightly outperforms ASAM, but the
performance difference is marginal.

Furthermore, Table 2 exhibits the detailed experiment of the HAR dataset compared with other
domain generalization baselines. The existing domain generalization baselines are not robust on
the HAR dataset, leading to underperformance even compared to the feature learning baselines. As
shown in the table, ASAM outperforms most baselines in various target domain scenarios (subjects).
Specifically, for the UCI-HAR dataset, our model shows consistent results on various scenarios
compared to others, indicating robustness. The performance table with the standard deviation is
included in the appendix.

4.4 ABLATION STUDY

In this section, we conduct an ablation study to verify ASAM’s effectiveness. We illustrate the
generated graph to show the impact of the DG layer that aligns the spatial dependency of domains.
We examine the impact of additional losses, the GNN-based domain generalization model, and
different temporal layers. We also perform a sensitivity analysis on hyperparameters.

Visualization of the Generated Graph We visualize the generated graph on the DG layer to con-
firm its effectiveness in capturing spatial alignment against distribution shifts. The edges between
sensors are established by calculating the cosine similarity between their representations. In other
words, each edge in the visualized graph represents the spatial dependency between two sensors,
with the edge width indicating the strength of dependency. We utilized the graphs before and af-
ter processing through the DG layer, as shown in Figure 3. The figure shows that the input graph
(without the DG layer) varies across distinct subjects (domains) but remains consistent after process-
ing through the domain generalization layer. These results indicate that our domain generalization
effectively aligns the spatial dependencies across different data distributions.
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Figure 4: Hyperparameter sensitivity of the loss functions on the SD-gesture dataset. Specifically,
we illustrated λ1, λ2 on the spatiotemporal model and the effect of λ3 on the domain generalization
model.

Analysis of Loss Functions Table 3 demonstrates the effectiveness of the newly proposed loss
functions. The table shows that the spatial layer’s regularization loss (Lspa) and the temporal layer’s
regularization loss (Ltemp) positively impact performance. This result indicates that employing addi-
tional loss functions is beneficial for capturing spatial alignment across domains more effectively.

Discussions of GNN-based DG Layer An ablation study was designed to compare the perfor-
mance of various domain generalization layer variants. Table 3 compares our model without the
domain generalization layer, our model with a single MLP layer for DG, and our model with three
MLP layers for DG. The results show that ASAM consistently outperforms the other settings. In par-
ticular, when the number of sensors is small, as in the SD-gesture and UCI-HAR datasets, ASAM,
which utilizes the input-driven domain generalization layer, significantly improves performance. An
interesting observation is that employing an adequate domain generalization layer is essential. Ap-
plying linear or multiple linear structures even underperforms compared to the absence of a domain
generalization layer. Therefore, capturing spatial relations with the GNN-based domain generaliza-
tion layer enhances the capability to align spatial dependencies that are robust to the distribution
shift.

Effects of Variations on Temporal and Spatial Layer ASAM adopts the LSTM structure for the
temporal layer. However, there are more advanced sequential models, such as Transformer (Vaswani
et al., 2017) and TCN (Bai et al., 2018). Table 3 supports the effectiveness of applying LSTM to our
temporal data. We conducted a comparison by substituting the temporal layers with Transformer
or TCN structures. The performance of the Transformer and TCN models is comparatively lower
than that of the LSTM, as shown in Table 3. Similarly, we explore variations of the spatial layer
by adopting CNN- and Attention-based models. As shown in the table, the simple GNN-LSTM
structure consistently outperforms these variations, achieving the best performance.

Analysis of Hyperparameter Sensitivity We conducted an experiment to establish the effect of
different loss functions by adjusting the λ values introduced in Section 3.6. Two experiments were
designed: sensitivity analysis on the phase 1 model (spatiotemporal model) and the phase 2 model
(domain generalization model). The left figure of Figure 4 shows a heatmap of different λ values.
The results show variations in accuracy, with the best performance achieved when λ1 is set to 0.01
and λ2 to 0.00001. We also experimented with the effect of λ3 by fixing λ2 at its optimal value. The
accuracy differences across various hyperparameters of λ3 are shown on the right side of Figure 4.

5 CONCLUSION

We proposed a domain generalization method for MTS data with spatial consideration to mitigate
the distribution shift issue. Additionally, we introduced new loss functions aimed at aligning spatial
dependencies with domains. We also provided theoretical insights indicating that our domain gener-
alization layer and its corresponding loss functions optimally induce the MTS-induced information
bottleneck. The proposed model consistently outperforms most baseline models across four datasets.
To our knowledge, this work is one of the first to investigate domain generalization approaches for
MTS data, specifically emphasizing the alignment of spatial dependencies.
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Table 4: Comparison to other domain generalization models.

GSAT CAL GREA DisC ASAM
Extracting graph structure ⃝ ⃝ ⃝ ⃝ ⃝
Using regularization constraint ⃝ × ⃝ × ⃝
Learning attention weight Edge-level Edge-level Node-level Edge-level Graph-level
Learning w/o input graph × × × × ⃝
Adaptively aligning spatial dependencies × × × × ⃝

A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 DATASETS

Ninapro is a widely-used sEMG dataset for hand gesture recognition task (Josephs et al., 2020;
Ketykó et al., 2019; Côté-Allard et al., 2017). It comprises 10 large databases; we used Ninapro DB
5, which includes data from two MYO armband sensors (16 channels total). The dataset is divided
into Exercises A, B, and C. We utilized the full DB 5 (53 gestures) from 10 subjects, with each
gesture repeated 6 times.

SD-gesture is a sparse sEMG dataset with only 8 channels (Lee et al., 2023). The paper that pro-
posed this dataset focuses on static and dynamic gestures, and our paper names this dataset SD-
gestures. The dynamic gesture indicates that the sensor data of its gestures are acquired when the
subject performs a specific action repeatedly, while the conventional static gesture is acquired by
maintaining the gestures. It is comprised of 18 gestures (14 static, 4 dynamic). This dataset has 4
repetition data on 9 different subjects.

HHAR is a human activity recognition dataset which comprises data from 9 subjects, gathered using
3-channel structured sensors from smartphones and smartwatches (Stisen et al., 2015). It contains 6
human activities as classes.

UCI-HAR is composed of data collected using three different type of sensors: an accelerometer, a
gyroscope, and body sensors, which were utilized on 30 subjects (Anguita et al., 2013). Each subject
executed six distinct activities, including walking, walking upstairs, walking downstairs, standing,
sitting, and lying down.

A.1.2 BASELINE MODELS

We compared ASAM with 10 recent baselines. Each model is described in the following.

PICCA (Cheng et al., 2018) is a model that utilizes Canonical Correlation Analysis (CCA) for the
sEMG domain, maximizing the correlation between the training repetition data and the domain gen-
eralization repetition data. TCN (Tsinganos et al., 2019) applies a TCN structure, a widely used
architecture for sequential data. 2SRNN (Ketykó et al., 2019) is an RNN-based model that utilizes
domain generalization. This model applies a single linear layer to adapt the domain generalization
repetition into the training repetition. It can learn universal representations by applying a two-phase
design similar to ASAM. SimpAtt (Josephs et al., 2020) harnesses an attention mechanism to iden-
tify temporal relations. It first expands the number of sensor dimensions to a higher dimension to
enrich the representations. Then, it applies the attention mechanism to capture temporal relations
for identifying hand gestures. STCN-GR (Lai et al., 2021) is a GNN-based model. Each edge is
treated as a learnable parameter with a range of [0, 1]. The model is divided into a spatial layer and
a temporal layer, which are GNN-based and TCN-based, respectively. GNN-SD (Lee et al., 2023)
is the model that creates a new adjacency matrix based on the input value. This model also splits
the spatial layer and temporal layer. For the spatial layer, they similarly utilize the graph generation
phase and the GNN phase. For the temporal layer, they applied a CNN-based graph with a GLU
layer that reduces the redundancy of the feature matrix.

Additionally, graph domain generalization methods (GSAT (Miao et al., 2022), CAL (Sui et al.,
2022), GREA (Liu et al., 2022), and DisC (Fan et al., 2022)) are adopted as the baselines. GSAT
harnesses the information bottleneck principle to detect task-relevant subgraphs. CAL discovers the
causal pattern and mitigates the graph’s confounding effect. GREA utilizes data augmentation to
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Table 5: Hyperparameters to reproduce our results.

Hyperparamter Ninapro DB 5 SD-gesture HHAR UCI-HAR
lr 0.001 0.001 0.001 0.001

batch size 512 1024 512 512
λ1 1e-2 1e-1 1e-3 1e-3
λ2 1e-5 1e-4 1e-3 1e-3
λ3 0.5 1.0 1.0 0.5
σ 3.0 5.0 1.0 1.0
F 512 512 512 512

improve task-relevant information. DisC disentangles the causal and bias graphs by extracting the
spurious correlations in the graph. The comparison between recent domain generalization meth-
ods and ASAM is shown in Table 4. ASAM utilizes input-driven graph generation to analyze the
entire graph during critical subgraph extraction, while most baselines assign weights to edges in-
dependently to isolate task-relevant subgraphs. Additionally, ASAM uniquely learns sensory inputs
without requiring a predefined physical relationship graph. Finally, ASAM is the only model that
can adaptively align the spatial dependencies to unseen domains.

A.1.3 HYPERPARAMETERS

To ensure the reproducibility of our model, we list the hyperparameters used in ASAM in Table 5.
These parameters were selected based on the validation splits across all datasets. The search space
for the learning rate included [0.0001, 0.001, 0.01, 0.1], and for batch size, we considered [128, 256,
512, 1024]. For hyperparameters related to the loss functions (λ1, λ2, and λ3), our search ranged
from 1e-6 to 1, increasing by a factor of ten at each step. For σ, we explored values from 1.0 to 10.0
in increments of 1. The embedding dimension of the LSTM (F ) experimented with values ranging
from 32 to 1024, specifically using powers of 2 within this range.

A.1.4 SPATIO-TEMPORAL MODEL

Spatial Layer We propose a GNN-based model that can capture every sensor’s spatial relations.
The graph is generated by regarding sensor channels as nodes and the relations between two different
sensors as edges. Inspired by the work in (Lee et al., 2023), the graph is constructed with a feature
matrix. Consequently, the edge weight between sensors with similar features is designed to be higher,
while it is lower for those with dissimilar features. The adjacency matrix for the spatial layer As ∈
RN×N can be expressed as follows:

As = σ(
(WQX)(WKX)⊺√

dk
), (13)

where WQ and WK are learnable weight matrices to capture the intricate relationships between
multi sensor inputs, X is the input MTS data, and dk is the scaling factor. σ is the row-wise softmax
function to make a normalized adjacency matrix.

We adopt the Graph Neural Network (GNN) model (Kipf & Welling, 2017) for capturing spatial
dependencies. The primary distinction between the GNN model and ASAM lies in our use of a soft
adjacency matrix, implying that our matrix behaves as if it has varying edge weights. The aggregated
features from the generated graph can be represented as:

hl = AsWlh
l−1 + hl−1, (14)

where hl ∈ RN×T is the hidden representation on the l-th layer, Wl as the weight parameter that
does not change the dimension. h0 is identical to the sensor input x, and hL is Z. We set the number
of GNN layer L as 2 for the experiment.

Temporal Layer In the temporal layer of our model, we utilize the Long Short-Term Memory
(LSTM) layer (Hochreiter & Schmidhuber, 1997) to have the temporal representations. It’s worth
noting that while recent advanced temporal models like the Transformer (Vaswani et al., 2017)
and TCN (Bai et al., 2018) can be applied, they tend to overfit to the main repetition, leading to a
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Table 6: Comparison of execution time per epoch of baselines and ASAM.

Model ASAM PICCA TCN 2SRNN SimpleAtt STCN-GR GNN-SD GSAT CAL GREA DisC
HHAR 2.94 1.54 3.52 1.21 0.32 3.44 3.55 2.88 4.04 3.97 4.01

UCI-HAR 1.69 1.07 2.86 0.32 0.28 2.59 2.77 0.67 0.89 0.91 0.89

Table 7: Overall performance comparison on the MTS sensor dataset with the standard deviation.
Boldfaced indicates the best result, and underlined results represent the second-best models.

Model Ninapro DB 5 SD-gesture HHAR UCI-HAR Average
PICCA 80.09 ± 0.24 84.78 ± 0.78 65.38 ± 23.93 77.77 ± 13.39 77.01
TCN 76.76 ± 2.41 72.79 ± 0.23 64.07 ± 12.80 75.53 ± 11.66 72.29

2SRNN 80.52 ± 0.21 88.44 ± 0.55 60.16 ± 29.01 79.81 ± 21.6 77.23
SimpleAtt 80.26 ± 0.37 87.54 ± 0.69 71.64 ± 14.75 89.87 ± 9.37 82.33
STCN-GR 75.12 ± 0.16 69.04 ± 2.54 72.42 ± 13.22 86.37 ±6.60 75.74
GNN-SD 84.76 ± 0.29 63.36 ± 0.59 70.85 ± 17.35 87.59 ± 5.46 76.64

GSAT 88.95 ± 0.22 85.15 ± 0.81 52.71 ± 10.15 89.00 ± 5.96 78.95
CAL 88.54 ± 0.09 86.78 ± 0.86 69.02 ± 19.06 85.69 ± 5.35 82.51

GREA 61.64 ± 0.09 84.15 ± 4.01 67.94 ± 12.65 73.74 ± 15.50 71.87
DisC 88.63 ± 0.23 86.19 ±0.41 67.54 ± 22.89 84.11 ± 6.35 81.62

ASAM 87.95 ± 0.43 93.04 ± 1.03 74.63 ± 18.22 92.42 ± 4.64 86.94

degraded performance on the test dataset due to distribution differences. The temporal layer can be
expressed as shown below:

C = LSTM(Z), (15)

where C ∈ RF×T is the output of the LSTM layer, where F is the output dimension of the LSTM
layer.

A.1.5 EXTRA EXPERIMENTAL SETTING

Every experiment was conducted on an NVIDIA-RTX A6000 GPU. The average runtime of each
dataset is compared using the average runtime per epoch for a fair comparison. The total number
of trained epochs differs for each dataset due to the early stopping technique we applied. We com-
pared the accuracy by setting the seed to 0 to 5 for consistency. The average runtime per epoch for
the Ninapro DB5 and SD-gesture datasets is 6.15 seconds and 2.77 seconds, respectively. Similarly,
the HHAR and UCI-HAR datasets took 2.94 seconds and 1.69 seconds per epoch. The runtime
depends on the dataset size, with the largest dataset, Ninapro DB5, requiring the most time. The
per-epoch execution time comparison is presented in Table 6. While the execution time of ASAM is
not the shortest among the methods evaluated, it remains comparable to the baselines and demon-
strates efficiency within a practical range. This indicates that ASAM achieves competitive runtime
performance without incurring excessive computational overhead.

A.1.6 PERFORMANCE WITH THE STANDARD DEVIATION

We provide the performance table derived from Table 1 that also includes the standard deviation and
is expressed in Table 7. From the table, we can observe that in the dataset like UCI-HAR, our model
is more robust indicating that aligning the multiple spatial dependencies is crucial in MTS sensor
data.

A.1.7 EXTENDED EXPERIMENT ON HHAR DATASET

We further discuss the limitations of the feature-learning-based methods in the HHAR dataset. For
each evaluation subject (i.e., domain), we compute the average JS-divergence or average accuracy
over all other subjects. A high score indicates a larger distribution discrepancy. Table 8 implies that
when the distribution gap is high between the training data and evaluation data, which is subject 1
or subject 3 in the table, feature-based methods underperform compared to ours.
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Table 8: Performance comparison with the feature learning baselines on the HHAR dataset with
Jensen-Shannon divergence score.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
JS-divergence 0.1304 0.0868 0.1024 0.0978 0.0981

2SRNN 24.00 81.15 27.77 91.32 72.64
SimpleAtt 39.40 88.80 52.63 89.55 87.84
STCN-GR 42.64 93.00 45.91 92.37 72.42

ASAM 52.03 92.44 53.26 83.70 91.74

Table 9: Performance comparison on the MTS sensor anomaly detection dataset SMAP with recall
value.

2SRNN SimpleAtt STCN-GR GSAT CAL DisC ASAM
SMAP 67.76 70.68 67.53 0 0 0 70.79

A.1.8 ANOMALY DETECTION EXPERIMENT

To strengthen the difference between existing DG methods and ours, we conduct additional exper-
iment on MTS-based anomaly detection in the context of multi-domain. SMAP (Hundman et al.,
2018) is an expert-labeled telemetry anomaly data. From the data, we defined the domain that has
the same channel ID. The dataset is comprised of 25 sensors, and the goal is to detect anomaly sensor
signals. We compare the recall values, which indicate how effectively the models detect anomalies,
against six baselines that achieved at least the second-highest performance in our main experiment
(Table 1). Table 9 exhibits the performance of anomaly detection in terms of a recall value on six
baselines. The results presented in the table demonstrate that while domain generalization-based
models fail to detect abnormal classes effectively, ASAM performs reasonably in identifying anoma-
lies.

A.1.9 EXTENDED EXPERIMENT ON BOILER DATASET

To further demonstrate the versatility of ASAM, we extended our experiments to the Boiler (Shohet
et al., 2019) dataset, as the datasets used in our main experiments predominantly fall under human
activity recognition tasks. The results, presented in Table 10, highlight the potential of ASAM in
non-human-related domains.

The Boiler dataset is commonly utilized in unsupervised domain adaptation tasks, where the ob-
jective is to adapt a single source domain to a single target domain, often yielding near-perfect
accuracy. However, since ASAM operates within a domain generalization (DG) framework, which
requires multiple source domains for generalization, we structured the experiment as follows: the
model was trained using two domains and evaluated on a separate, unseen domain. This approach
inherently introduces more diverse domain information during training. Notably, the accuracy of all
methods, including ASAM, approached 100, suggesting that the Boiler dataset poses relatively low
complexity in a DG setting. Despite this, the results reinforce that ASAM is adaptable across diverse
domains and can be effectively applied to settings beyond human activity recognition.

A.2 EXTENDED THEORETICAL ANALYSIS AND PROOFS

We demonstrate the proofs of Theorem 1 and Theorem 2 in the theoretical analysis section 3.7 of
the main text. We denote ZX as the first phase representation. The relationship between the domain
generalization loss and the entropy of domain generalized representation (H(Zdg|X)) is assumed
as:

minLdg ≈ minH(Zdg|X). (16)
equation 16 is to minimize Ldg and is similar to minimizing the entropy of representation adopted

from DG conditioned by the input. H(ZX|X) = 0) holds since the representation is deterministic if
X is given. Therefore, diminishing the invariance loss has the effect of impelling similar expressions
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Table 10: Performance comparison on the MTS sensor data besides HAR and hand gesture recogni-
tion dataset.

2SRNN SimpleAtt STCN-GR GSAT CAL DisC ASAM
Boiler 99.67 99.09 99.73 99.93 92.23 92.16 99.87

between the representation with the original input (ZX) and the domain generalization representa-
tion (Zdg), is minimizing the right side of equation 16.

Moreover, an extra equation related to the proof is represented as:

minLspa ≈ maxH(Zdg), (17)

indicating that the spatial decorrelation loss is maximizing the entropy of domain-generalized rep-
resentation Zdg. If we assume that Zdg obeys a gaussian distribution, the entropy of Zdg can be
transformed as:

H(Zdg) = −
∫

p(Zdg) log p(Zdg)dZdg

= −E[logN (µdg,Σdg)]

= −E[log[(2π)−D/2|Σdg|−1/2exp(−1

2
(Zdg − µdg)

⊺

Σ−1
dg (Zdg − µdg))]]

=
D

2
log(2π) +

1

2
log |Σdg|+

1

2
E[(Zdg − µdg)

⊺

Σ−1
dg (Zdg − µdg)]

=
D

2
(1 + log(2π)) +

1

2
|Σdg|,

(18)

where µdg,Σdg denotes the mean and the covariance of Zdg. |Σdg| is the determinant of the covari-
ance matrix of Zdg. Therefore, maximizing the entropy is identical to maximizing the covariance ma-
trix. If we assume that λ1, λ2, ..., λN are the N eigenvalues of Σdg, then

∑N
i=1 λi = trace(Σdg) =

N . Finally, we have the following equation:

log |Σdg| = logΠN
i=1λi =

N∑
i=1

log λi ≤ N log

∑N
i=1 λi

N
= 0. (19)

The inequality is due to the Jensen’s Inequality. The equation indicates that the upper bound of |Σdg|
is 1, and it is satisfied when the covariance matrix is the identity matrix. Therefore, maximizing the
entropy of domain-generalized representation matches with optimizing the spatial decorrelation loss.

Restate Theorem 1:
Theorem 1. Optimizing Ldg and Lspa corresponds to not only maximizing the mutual information
between the embeddings from phase 2 (domain generalization) and the input X but also minimizing
the conditional mutual information of Zdg and DG conditioned by the input.

Proof. From equation 16 and two facts: I(Zdg,DG|X) =
H(Zdg|X) − H(Zdg|DG,X), and H(Zdg|DG,X) = 0 since it is deterministic, we can conclude
that our invariance loss is minimizing the mutual information I(Zdg,DG|X). Moreover, from equa-
tion 16, equation 17 and the following equation I(Zdg,X) = H(Zdg) − H(Zdg|X), we can also
state that the newly proposed loss functions for the domain generalization is maximizing the mutual
information I(Zdg,X). Therefore, we conclude the proof since it satisfies the equation 10.

Restate Theorem 2:
Theorem 2. If β is bounded in [0, 1], then lowering the losses defined on the domain generalization
layer is identical to maximizing the MTS information bottleneck.
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Proof. For the Theorem 2, we can decompose the MTS-based information bottleneck as follows:

IBMTS = [H(Zdg)−H(Zdg|X)]− β[H(Zdg)−H(Zdg|DG)]. (20)

Since H(Zdg|DG) = 0 because the representation is deterministic, we can express like:

IBMTS = (1− β)H(Zdg)−H(Zdg|X), (21)

where maximizing the information bottleneck is not only maximizing H(Zdg) but also minimizing
H(Zdg|X). With the equation 16 and equation 17, we complete the proof.
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