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Abstract

Contrastive Language-Image Pre-training (CLIP) generates versatile multimodal
embeddings for diverse applications, yet the specific information captured within
these representations is not fully understood. Current explainability techniques
often target specific tasks, overlooking the rich, general semantics inherent in
the representations. Our objective is to reveal the concepts encoded in CLIP
embeddings by learning a surrogate representation, which is expressed as a linear
combination of human-understandable concepts evident in the image. Our method,
which we term EXPLAIN-R, introduces a novel approach that leverages CLIP’s
learned instance-instance similarity to train a surrogate model that faithfully mimics
CLIP’s behavior. From the trained surrogate, we derive concept scores for each
input image; these scores quantify the contribution of each concept and act as the
explanation for the representation. Quantitative evaluations on multiple datasets
demonstrate our method’s superior faithfulness over the baseline. Moreover, a
user study confirms that our explanations are perceived as more relevant, complete,
and useful. Our work provides a novel approach for interpreting CLIP image
representations, enhancing the user interpretability of representations and fostering
more trustworthy AI systems.

1 Introduction

The CLIP model [1] exemplifies the success of representation learning, which aims to create general-
purpose embeddings applicable to a multitude of downstream tasks. These representations have
become integral to numerous applications, including text-to-image generation (e.g., Stable Diffu-
sion [2]), Large Multimodal Models [3, 4, 5], and open-set object detection [6, 7]. The widespread
adoption and diverse applications of learned representations like CLIP emphasize the need to un-
derstand their underlying semantics. Therefore, effective explanation methods are required to
characterize the information encoded within these representations. As these learned embeddings
are inherently task-agnostic and depend only on the input data, their explanations should therefore
describe the information they hold, regardless of any specific downstream application.

Explaining general-purpose representations presents a significant challenge for traditional eXplainable
AI (XAI) techniques. Methods such as GradCAM [8], LIME [9], and Integrated Gradients [10] are
fundamentally designed to explain model predictions for specific tasks or classes. For instance, Grad-
CAM utilizes class-specific gradients to generate activation maps, while LIME approximates local
decision boundaries. Critically, this inherent focus on task-specific predictions prevents their general-
ization to explaining the underlying representations. A more recent line of work [11, 12] approaches
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this challenge using matrix-factorization techniques, such as Non-negative Matrix Factorization
(NMF), to find low-rank decompositions of embeddings. While such methods can produce bases that
effectively reconstruct the original embeddings, the resulting basis is not inherently interpretable and
requires further analysis to discern its meaning.

To address these limitations, we propose EXPLAIN-R (EXPLAIN-Representations), a novel method
designed to generate interpretable conceptual explanations for CLIP image representations, indepen-
dent of downstream tasks. By design, EXPLAIN-R discovers human-understandable concepts from
each input image. Our method utilizes these discovered concepts to construct a surrogate representa-
tion, which is then trained to mimic the behavior of the original CLIP embeddings. Post-training, our
method computes concept scores that quantify the influence of each discovered concept on an input’s
representation. Our contributions are as follows:

• We introduce EXPLAIN-R, a novel method for learning a faithful surrogate representation
of CLIP image embeddings, which is formed by linearly combining interpretable concepts,
and propose a theoretically-motivated algorithm for its training.

• Extensive quantitative experiments across multiple datasets validate the faithfulness of
EXPLAIN-R, demonstrating that the surrogate representation accurately preserves the
predictive behavior of the original CLIP model.

• We establish via a user study that EXPLAIN-R produces explanations considered relevant
to the input image, sufficiently complete to explain the model’s capabilities, and useful for
overall model comprehension.

2 Related Work

Interpreting CLIP vision encoder. Existing methodologies for explaining CLIP models can be
broadly categorized into several distinct lines of work, each adopting a unique approach. Pixel
attribution techniques [13, 14, 15, 16] identify input regions influencing model outputs via heatmaps.
Being visually accessible, they can explain the “where” but fall short in explaining the “what” [11].
For instance, a visual explanation highlighting the poodle in an image does not clarify if the model
recognizes a “poodle” specifically or merely a “dog”. Mechanistic interpretability methods [17,
18, 19] pursue a different strategy, associating human concepts with internal model components
(e.g., neurons, attention heads). Concept Bottleneck Model [20, 21, 22, 23] aims to substitute the
opaque representation with an explicit concept layer. However, CBMs typically focus on task-specific
predictions rather than explaining the versatile representation that is applicable to multiple tasks.
In contrast, our method focuses on generating interpretable concept-based explanations for these
abstract image representations directly. Furthermore, our method can be extended to provide concept
explanations for zero-shot tasks without additional training.

Concept-based representation explanations. One specific line of work aims to find a concept
basis spanning the representation space using matrix decomposition [12, 11, 24, 25]. These methods
typically factorize dataset embeddings via SVD or NMF into a smaller basis and corresponding
coefficient matrices. Although capable of achieving low reconstruction error, the resulting basis
vectors are not inherently interpretable by design. Their semantic meaning needs to be inferred
through subsequent analysis, like visualizing top activating inputs [12, 11]. SpLiCE [26], the most
relevant prior work, decomposes CLIP image features into sums of text features using the CLIP text
encoder. However, imperfections in the text encoder can lead to spurious or unrelated concepts (as
observed in Section 4.2), potentially causing confusion for the user. Our method distinguishes itself
from these approaches through its design for inherent interpretability: the discovered concepts are, by
construction, explicitly linked to the input image, and do not rely on the text encoder. Furthermore,
our proposed similarity-matching training strategy yields superior faithfulness while preserving the
surrogate model’s simplicity and interpretability.

3 Methodology

This section details EXPLAIN-R, a novel method for interpreting CLIP image representations through
a learned concept surrogate model. EXPLAIN-R constructs a surrogate embedding from a linear
combination of interpretable concepts grounded in the image. The process encompasses three key
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Figure 1: EXPLAIN-R methodology overview. (1) Concept Identification: Image captions are
processed into a concept vector ci. (2) Surrogate Learning: The surrogate f , with parameters W,b,
is trained to mimic the CLIP image embedding by matching image-to-text (P f

i ,P e
i ) and text-to-image

(not visualized) similarity distributions using a KL divergence loss. Symbol
⊗

denotes cosine
similarity followed by softmax. (3) Explanation: Explanatory concept scores for the representation
of the image xi are obtained by projecting the rows of W onto f(ci) and weighing by ci.

steps, visualized in Fig. 1: (1) discovery of interpretable concepts from the image dataset to build
a vocabulary C; (2) learning a surrogate model that transforms these image-specific concepts into
an embedding that maintains similarity with text embeddings; and (3) computation of concept
scores to quantify each concept’s contribution, thus providing an explanation for the image’s CLIP
representation.

Notations. Let {(xi, ti)}ni=1 be an image-text dataset. CLIP’s image encoder eI(·) and text encoder
eT (·) yield L2-normalized representations in Rd. For each image xi, we obtain the concept vector
ci ∈ R|C| and form the augmented dataset S = {(xi, ci, ti)}. The surrogate model f : R|C| → Rd is
defined as f(ci;W,b) = σ(ciW + b). Here W ∈ R|C|×d is a matrix where rows are the (learned)
concept basis vectors, b ∈ Rd is a bias, and σ(·) is the L2 normalization operator. The surrogate
function linearly transforms the concepts into the embedding space, which is then normalized.

3.1 Captions-based concept identification

Explaining generic, task-agnostic image representations with open-ended concepts necessitates
concept identification methods that are scalable, task-independent, and yield intuitive, human-centric
concepts. Our work is directed towards developing such an approach.

However, existing concept identification paradigms are largely incompatible with achieving these
combined objectives. For instance, (i) supervised concept detectors [27, 28, 29] require labeled data
for predefined concepts, limiting their scalability for open-ended concept discovery. (ii) LLM-based
concept generation [30, 22, 21] is typically designed to yield task-specific concepts (e.g., for class
discrimination), which lacks the task-independence required for general representation understanding.
(iii) Furthermore, directly employing CLIP’s alignment scores [31, 23] can produce unintuitive
concept associations, as CLIP’s training objective aligns images with full sentences or captions rather
than prioritizing the descriptive accuracy of individual words or concepts in a human-like manner.

To obtain explanations that are intuitive, broadly applicable, and thus more aligned with our objectives,
we advocate sourcing concepts from data reflecting typical human image descriptions. Image captions
are ideal as they tend to describe a diverse range of image features (such as objects, attributes, and
actions). This descriptive characteristic means that concepts derived from captions are largely
purpose-neutral, making them well-suited for explaining task-agnostic representations. This caption-
based approach also offers benefits such as transparency into how concept scores are derived. While
human-annotated captions are preferred, those from advanced models [3, 4] (trained to emulate
human styles via metrics correlated with human judgment [32, 33]) offer a scalable alternative. Based
on these ideas, we formulate the concept representation for an image xi as a vector ci ∈ [0, 1]|C|,
where each component ci,k quantifies the prominence of the k-th concept from a global vocabulary C
within human-like descriptions of xi, empirically measuring its descriptive likelihood.
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The construction of the vocabulary C and the concept vectors ci proceeds systematically. First, we
compile an initial, comprehensive vocabulary by extracting all nouns, verbs, and adjectives from the
image captions across the dataset. This raw vocabulary is then pruned to create C by removing overly
frequent terms, as these are often less discriminative, guided by an adjustable threshold to control
the desired concept sparsity (i.e., the average number of active concepts per image). Subsequently,
for each image xi, its concept vector component ci,k is computed as z/m, where m is the number
of captions associated with xi, and z is the frequency of the k-th concept (from C) within those m
captions. The resulting concept vector, ci, reflect the qualities of an image that are emphasized in
typical human descriptions.

3.2 Learning interpretable surrogate representation

Previous works [26, 11] on finding concept-based explanations focus on high-fidelity numerical
reconstruction of the embeddings. For example, the baseline SpLiCE attempts to maximize the cosine
similarity between the reconstructed and the original embedding. While a numerically identical
reconstruction would entail perfect faithfulness, achieving this ideal is often infeasible in the presence
of interpretability constraints like sparsity. Moreover, given that CLIP is trained to capture bimodal
relationships, unimodal similarities can behave unintuitively, as pointed out in [34]. This makes
optimizing for the similarity between an original embedding and its reconstruction a less reliable
method to capture CLIP’s bimodal behavior.

Our proposed approach alternatively focuses on what is learned with CLIP’s contrastive objective.
We posit that CLIP’s contrastive training, which requires distinguishing an image’s paired caption
from numerous alternatives, leads to a rich similarity distribution over texts, and vice versa. This
pattern of similarity to other inputs, we argue, offers insights into CLIP’s behavior that previous
methods overlooked. Consequently, our surrogate model, f , is trained to reproduce this distribution
of similarities, without specific downstream task supervision.

We now formally state the surrogate learning problem. The distribution of image-to-text similarities
of the i-th image for the original model is defined as:

P e
i (j) =

exp(eI(xi)
⊤eT (tj)/τ)∑

k exp(eI(xi)⊤eT (tk)/τ)
. (1)

where τ is the temperature. The similarity distribution for the surrogate is analogously given as:

P f
i (j) =

exp(f(ci)
⊤eT (tj)/τ)∑

k exp(f(ci)
⊤eT (tk)/τ)

. (2)

Likewise, the text-to-image similarity distribution Qe
j and Qf

j are obtained by modifying the normal-
izing factor in the denominator of (1) and (2) to sum over image indices. Faithfulness in a surrogate
model necessitates that its output similarity distributions, P f

i and Qf
j , closely mirror those of the

target model, P e
i and Qe

j , as these distributions determine predicted probabilities and outputs. To
promote such faithfulness, we propose minimizing the Kullback-Leibler (KL) divergence between
these corresponding distribution pairs. This makes the distributions more similar by reducing the
information available to distinguish between them [35]. In this case, the KL divergence also has
an intuitive interpretation: the term DKL(P

e
i ∥ P f

i ), for instance, is the average difference of log
probability between P e

i and P f
i , weighted by P e

i . Taking the expectation of the divergence over the
dataset, we obtain the final loss function:

L(W,b) =
1

2n

 n∑
i=1

DKL(P
e
i ∥ P f

i ) +

n∑
j=1

DKL(Q
e
j ∥ Qf

j )

 . (3)

We note that this loss function have been used in conjunction with various other mechanisms
(weak/strong augmentation, momentum encoders, etc.) for self-supervised learning from scratch [36].
However, our motivation (encouraging faithfulness) and use case (XAI) is completely different, and
to the best our ability, the idea of training a surrogate by distilling instance-instance similarity has not
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ImageNet 2017 Val 6718 (crane), 32759, 21300  Figure 2: Example images from ImageNet and their top concepts, ranked by CLIP representation
concept score vi. In case of ambiguity, the concepts are annotated with their part of speech. The
images are labeled as crane, microwave, and barometer respectively. We visualize the top seven
concepts for brevity; our surrogate representations contain 15-20 concepts.

been explored for XAI. Finally, note that our choice of a linear surrogate promotes interpretability by
allowing computation of projection-based concept scores as in Section 3.4. It is also consistent with
assumptions in existing works [12, 11], including the baseline [26].

3.3 Algorithm for Surrogate Learning

In this section, we present our algorithm for optimizing (3). As we will show, naively using mini-batch
optimization for (3) leads to a biased gradient. This is a common problem for contrastive losses
and their variants, which existing works circumvent by either using a larger batch size (for example,
OpenAI uses a batch size of 32,768 on 256 GPUs to train the CLIP model [1]), using a queue of past
samples [37, 36], or using non-contrastive losses [38, 39]. Instead, our solution to correct this bias
does not require large batch size and it is theoretically motivated.

We will focus only on DKL(P
e
i ∥ P f

i ) since the procedure for optimizing DKL(Q
e
j ∥ Qf

j ) can be
derived analogously. From the definition of KL divergence, the first part of (3) can be equivalently
written as (c.f. Appendix B.2 for more detailed derivation):

1

|S|2
∑
i∈S

∑
j∈S

1

g(eI , eT ;xi, tj ,S)
· log g(f, eT ; ci, tj ,S), (4)

where g(f, eT ; ci, tj ,S) = 1
|S|
∑

k∈S exp
(

f(ci)
⊤eT (tk)−f(ci)

⊤eT (tj)
τ

)
. The gradient w.r.t. f is

then given by:

1

|S|2
∑
i∈S

∑
j∈S

1

g(eI , eT ;xi, tj ,S)
· 1

g(f, eT ; ci, tj ,S)
· ∇g(f, eT ; ci, tj ,S).

At each iteration, we only have access to a mini-batch of triplets B = {(xi, ci, ti)} of batch size
B. The obtained mini-batch gradient estimator is simply replacing S with B in the above equation.
However, due to the non-linearity of the reciprocal function 1/·, the expectation over B is not equal
to the true gradient. Thus the mini-batch estimator is a biased estimator of the true gradient. To solve
this problem, we use two moving average sequences u and v to approximate g(eI , eT ;xi, tj ,S) and
g(f, eT ; ci, tj ,S) respectively:

ut+1,i = (1− γ1)ut,i + γ1
1

|Bt|
∑
k∈Bt

exp

(
eI(xi)

⊤eT (tk)

τ

)
, (5)

vt+1,i = (1− γ2)vt,i + γ2
1

|Bt|
∑
k∈Bt

exp

(
f(xi)

⊤eT (tk)

τ

)
, (6)

where γ1, γ2 ∈ (0, 1] are two hyperparameters. Then we can approximate g(eI , eT ;xi, tj ,S) and
g(f, eT ; ci, tj ,S) using ut+1,i/ exp

(
eI(xi)

⊤eT (tj)/τ
)

and vt+1,i/ exp
(
f(ci)

⊤eT (tj)/τ
)
, respec-

tively. The benefit of using the moving average technique is that now we can guarantee that the
distance between the estimators and the true values (g(eI , eT ;xi, tj ,S) and g(f, eT ; ci, tj ,S)) di-
minishes to 0 in expectation, instead of remaining at a constant level O(1/B) if the moving average
technique is not used [40, 41]. We present the pseudocode and full derivation in Appendix B.2.
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Concepts for ‘mixing bowl’
.09clay
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.02potter
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.01hand

Ours top concepts:
.37sand
.18castle
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.09kid
.05sandy
.05try
.02reach

SpLiCE top concepts:
.13sand
.06team building
.05archaeological
.03geology
.02interacting
.02small group
.01bullying

ImageNet 2017 Val 36952, SUN397 test-1 15558(a) Image of class “potter’s wheel” misclas-
sified as “mixing bowl” by CLIP. Note the
significant contribution of the bowl con-
cept, which is a main predictor for the
“mixing bowl” class, as seen in Fig. 6.

Pre-intervention
.05aquarium
.04coral (a.)
.03coral (n.)
.02anemone
.01underwater
.01grow
.01reef

Post-intervention
.06aquarium
.12anemone
.05underwater
.04grow
.03sea
.03colorful
.03alage

Concepts for ‘barometer’
.060barometer
.047clock
.025meter
.022gauge
.020dial
.016change (n.)
.013mechanical

Concepts for ‘wall clock’
.054clock
.042barometer
.020meter
.019change (n.)
.016gauge
.016dial
.012mechanical

ImageNet 2017 val 5427, 21300 (b) Class concept scores of the same image for different
classes. The contribution of concepts varies in strength
depending on the target class.

Figure 3: Class concept attribution score for ImageNet images.

3.4 Interpreting representations with projection-based concept scores

This section introduces a method for attributing the CLIP image representations to their underlying
concepts. Standard attribution methods, such as SHAP [42], typically rely on the notion of a prediction
to operate. In contrast, our approach leverages the linearity of the explainer f to efficiently computes
concept attribution scores vi(k). Building upon this, we further develop a cross-modal attribution
score vi,j(k) to quantify how concept k modulates the similarity between image i and text j.

We begin by expanding the functional form of the surrogate f(ci) = σ(Wci + b), which yields:

f(ci) = σ

(∑
k∈C

ci,kWk + b

)
, (7)

where Wk is the column of W corresponding to the embedding of the k-th concept. Equation (7)
shows that each concept contributes a term ci,kWk to the pre-normalized representation. A term
is considered to have a greater influence if it aligns with the direction of the final representation
f(ci). We quantify this alignment with the scalar projection of ci,kWk onto f(ci), which we
define as the initial score: ṽi(k) = ci,kW

⊤
k f(ci). Note that summing the projection recovers

the pre-normalization magnitude, i.e.,
∑

k∈C ṽi(k) + b⊤f(ci) = ∥Wci + b∥. To obtain scores
reflecting the relative contribution of each concept while ignoring the bias term, we normalize them
by λi =

(
∥Wci + b∥ − b⊤f(ci)

)−1
. We define the final attribution score vi(k) as:

vi(k) := λiṽi(k) = λici,kW
⊤
k f(ci). (8)

This score vi(k) quantifies the normalized contribution of the k-th concept, based on the linear
relationship between the k-th concept embedding and the final surrogate representation f(ci), such
that

∑
k∈C vi(k) = 1.

Cross-model concept scores. We adapt this projection-based approach to attribute the cross-
modal similarity between the i-th image and the j-th text to individual concepts k. Recall that
the text embedding is eT (tj), and the similarity is computed as si,j = f(ci)

⊤eT (tj). We aim to
understand how each concept k influences the similarity si,j . Analogous to before, we project the
contribution vector onto the direction of the text embedding eT (tj) to obtain the unnormalized score
ṽi,j(k) = ci,kW

⊤
k eT (tj). The final cross-modal attribution score is then:

vi,j(k) = λi,jci,kW
⊤
k eT (tj), (9)

in which the normalization factor λi,j =
f(ci)

⊤eT (tj)
(Wci)⊤eT (tj)

makes the scores vi,j(k) sum to si,j over all
concepts.

6



Ours top concepts:
.28bird
.18crane
.13dry (a.)
.08tall
.05bill (n.)
.05prey
.05vegetation

SpLiCE top concepts:
.11great blue
.07crane
.04individual
.03stalk
.03wildlife
.03banded
.03pheasant

Ours top concepts:
.40microwave (n.)
.08counter
.08sign
.06stainless
.05microwave (v.)
.04tray
.04metal

SpLiCE top concepts:
.08microwave
.07cleaning machine
.04push button
.04classical music
.03bilingual
.03sounds
.02fax

ImageNet 2017 val 6718 (crane), 32579

Ours top concepts:
.28bird
.18crane
.13dry (a.)
.08tall
.05bill (n.)
.05prey
.05vegetation

SpLiCE top concepts:
.11great blue
.07crane
.04individual
.03stalk
.03wildlife
.03banded
.03pheasant

Ours top concepts:
.40microwave (n.)
.08counter
.08sign
.06stainless
.05microwave (v.)
.04tray
.04metal

SpLiCE top concepts:
.08microwave
.07cleaning machine
.04push button
.04classical music
.03bilingual
.03sounds
.02fax

ImageNet 2017 val 6718 (crane), 32579Ours top concepts:
.44screw
.12stainless
.08bolt
.07fastener
.07surface
.06screw (v.)
.03metal

SpLiCE top concepts:
.13manufacturers
.06screwed
.06zinc alloy
.05implant
.04bolts
.04cheap key
.04repair kit

Ours top concepts:
.44screw
.12stainless
.08bolt
.07fastener
.07surface
.06screw (v.)
.03metal

SpLiCE top concepts:
.13manufacturers
.06screwed
.06zinc alloy
.05implant
.04bolts
.04cheap key
.04repair kit

Ours top concepts:
.37sand
.18castle
.16beach
.09kid
.05sandy
.05try
.02reach

SpLiCE top concepts:
.13sand
.06team building
.05archaeological
.03geology
.02interacting
.02small group
.01bullying

ImageNet 2017 Val 39189, SUN397 test-1 15558
Figure 4: Comparison between our concepts and the baseline. Images are from the SUN397 (lower
right) and ImageNet (remaining) datasets. The top-left image depicts a crane (bird), while great blue
and pheasant are other species of birds. We show only the top seven concepts for each image. Concept
scores from our method sum to one for each image; SpLiCE’s scores do not have this property.

4 Experiments

We conduct experiments using the CLIP ViT-B/32 [1] model to demonstrate that explanations
generated by our method are faithful, interpretable, and useful for users.

Datasets. We use the COCO 2017 [43] validation set, Flickr30k [44], SUN397 [45] test set, and
ImageNet validation set [46] to study the CLIP model’s behavior. These datasets cover a variety
of image themes, including objects in context, internet images, scene understanding, and object
recognition. Details and experiments on more datasets can be found in the Appendix.

Setup. For datasets that contain captions (COCO and Flickr30k), we use the captions as the text ti.
For image-only datasets, we use the BLIP-2 [3] OPT 2.7B model fine-tuned on COCO to obtain 10
captions per image. Then, we perform concept identification (Section 3.1) to obtain 15-20 concepts
per image. We train the surrogate with Algorithm 1 for 150 epochs, with batch size 1024, default
temperature τ = 0.1, and γ1 = γ2 = 0.9. The optimizer used is AdamW with learning rate 10−3.
All experiments are performed on a single A100 GPU. For the baseline SpLiCE [26], we use the
official implementation linked in the paper. We obtain a similar sparsity (average number of concepts
per image) to our method by setting the l1 penalty for each dataset to facilitate a fair comparison. The
vocabulary used for SpLiCE is based on LAION and has a size of 15,000.

4.1 Explanation faithfulness

Emphasizing our focus on post-hoc explanation, we assess the surrogate’s faithfulness quantitatively
by comparing the predictions made using the surrogate representation against those of the original
image embedding. Faithfulness is measured using conventional metrics (e.g., accuracy), with the
target model’s prediction treated as the ground truth. We focus on zero-shot tasks as opposed to
linear probing, since the former relies directly on the image representations and does not depend on a
particular trained probe’s behavior. For zero-shot classification, we report the accuracy. For zero-shot
retrieval tasks, we report the rsum metrics [47, 48] (defined as R@1 + R@5 + R@10) as a concise
summary, instead of individual Recall@K (R@K) values. Detailed retrieval metrics and performance
metrics on the original tasks are provided in Appendix A.1 and A.2.

Table 1: Faithfulness of our method and the baseline on zero-shot retrieval and zero-shot classification.
Higher values are better. The means and 2σ intervals are computed over five runs. We note that the
official implementation of SpLiCE is deterministic.

Method COCO val Flickr30k SUN397 ImageNet val

SpLiCE [26] 393.18 381.41 59.78 51.33
Ours 482.94 ± 4.08 476.47 ± 3.21 62.77 ± 0.22 53.38 ± 0.21
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Figure 5: Average representation concept scores for images in ImageNet “Analog clock” and “Digital
clock” classes.

As shown in Table 1, our surrogate model consistently outperforms the baseline in faithfulness across
diverse datasets and tasks, indicating its effectiveness in replicating the target model’s behavior. This
success demonstrates that faithful surrogate concept representations can be achieved without solely
relying on the minimization of reconstruction mean-squared error, a strategy prevalent in the baseline
and other methods [11, 20, 12].

4.2 Qualitative assessment of representation concepts

We visualize the representation concepts generated by our methods and the baseline to evaluate
their relevance to the image content. We show several images from ImageNet and SUN397 and
their corresponding explanations in Fig. 4, with more details and examples in Appendix A.3. Our
method predominantly discovers concepts highly pertinent to the image content. Our explanations
suggest that the CLIP image representation attends to both the primary subject and its surrounding
context; the top-ranked concept often identifies the main object with high score, while others capture
secondary objects or specific attributes of the primary subject. Conversely, the baseline (SpLiCE)
sometimes produces concepts that, while potentially related, are not depicted (e.g., “great blue,”
“cleaning machine,” “geology”), or are entirely unrelated (e.g., “classical music,” “cheap key”).

Representation Concept score Histograms. Per-image concept scores (exemplified in Fig. 4) can
be aggregated to offer insights into how the CLIP model represents classes of images in a dataset. To
illustrate, Figure 5 presents the aggregated top seven concept scores for two related classes: “analog
clock” and “digital clock”. The analysis reveals distinct patterns: “analog clock” image embeddings
are predominantly characterized by the “clock” concept, whereas “digital clock” images show a more
uniform concept distribution. Notably, while several top concepts like “alarm”, “time”, and “watch”
are common to both, the concepts “digital” and “electronic” effectively distinguish the two classes.

4.3 Class prediction analysis

This section illustrates how class concept scores (vi,j) can be applied to understand model predictions
for a specific class, enabling misprediction analysis. To reiterate for clarity in this context, these
scores, vi,j , quantify how each concept from an image i contributes to its similarity si,j with class j,
and are defined such that their sum equals si,j . This class-specific nature contrasts with task-agnostic
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Figure 6: Average class concept scores for ImageNet classes “potter’s wheel” and “mixing bowl”.
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representation concept scores (vi), which describe the overall image content. Figure 3b analyzes
the class concept scores (vi,j) for a specific image; the task-agnostic representation concepts (vi)
for this same image are depicted in the rightmost panel of Figure 2. For this image, the “barometer”
class prediction is primarily driven by the “barometer” concept (rank 1) followed by “clock” (rank 2),
while the “wall clock” class prediction prioritizes “clock” (rank 1) over “barometer” (rank 2). This
shows that the contribution of individual concepts to vi,j varies significantly with the class.

Misprediction analysis. Analysis of class concept scores for mispredicted images can reveal
concepts responsible for incorrect classifications. For instance, Figure 3a presents an ImageNet
image of class “potter’s wheel” that both CLIP and the surrogate misclassified as “mixing bowl”
(a bowl used for cooking). The concepts contributing to this prediction are shown alongside the
image. To determine the typical concepts used for each class, we aggregated the class concept
scores vi,j for both “potter’s wheel” and “mixing bowl”, visualizing the results in Figure 6. This
combined information suggests that the “bowl” concept is the primary driver of the misclassification.
Specifically, the aggregation indicates that “bowl” is, on average, the dominant concept for predicting
“mixing bowl”, while it is notably absent from the top concepts associated with “potter’s wheel”.

4.4 User study

We performed a small scale user study to evaluate the interpretability of our explanations (results
in Fig. 7), largely following the protocol of [26] but with modified criteria. Users were shown 20
random ImageNet images and the top ten concepts from EXPLAIN-R and SpLiCE. The evaluation
centered on three criteria: (1) Relevance: the degree to which concepts pertain to the input image;
(2) Completeness: the extent to which explanations reflect the semantic richness and task-agnostic
characteristics of the image representations; and (3) Utility: the perceived usefulness of each method
for understanding the model’s behavior. Responses were captured using a 5-point Likert scale. User
study findings reveal a significant preference for our explanations across all evaluated criteria. The
statistical significance of these results was established via a one-sided t-test, employing a significance
level of p < 0.05. Additional details of the user study protocol are available in the Appendix.

60 40 20 0 20 40 60
Percentage (%)

Relevance

Completeness

Utility

User Evaluation of EXPLAIN-R vs. SpLiCE

Strongly Prefer EXPLAIN-R
Prefer EXPLAIN-R
Neutral
Prefer SpLiCE
Strongly Prefer SpLiCE

Figure 7: User study results comparing representation explanations generated by EXPLAIN-R and
SpLiCE. Overall, users indicated a clear preference for EXPLAIN-R’s explanations across all three
evaluated criteria.

5 Discussion

In this work, we show that the instance similarities learned by CLIP can be utilized to generate concept
explanations for CLIP image embeddings. Quantitative experiments demonstrated EXPLAIN-R’s
superior faithfulness over baselines in preserving original model predictions, while a user study
confirmed its explanations are more relevant, complete, and useful for model understanding. These
results suggest that our similarity-matching approach offers a promising direction for developing
more faithful and human-aligned explanations for general-purpose representations.

Limitations Our approach, like prior studies [26, 11, 12], assumes that concepts interact linearly
in the embedding space. While EXPLAIN-R significantly improves faithfulness over the baseline,
perfect fidelity remains challenging. This gap may stem from several factors: the target model
might learn concepts that are not easily captured by concise textual descriptions, or there are some
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non-linear concept interactions. A further consideration is our use of a captioning model instead of
human captions. While this makes the approach more feasible and scalable, it also risks the captioner
hallucinating concepts not present in the image, which can negatively affect the relevance of the
explanations. Selecting a properly evaluated captioning model that is suitable for the target image
domain can help minimize this issue.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide quantitative, qualitative experiments, a human evaluation, and a
case study to support our claims in Section 4. Additional metrics and visualizations are
provided in the Appendix (Sect. A.1, A.2, and A.3).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We provide a limitation section in the discussion section (Sect. 5).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not introduce theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode for our Algorithm 1. We describe the dataset used,
metrics, hyper-parameters in the Experiment section (Sect. 4), and provide further experi-
mental details in Appendix B.3. We provide source code and all of the used datasets are
publicly accessible.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code along with instructions to reproduce our results in the
supplemental materials. The datasets we used are publicly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experiments in the Experiments section 4, provide additional
details in Appendix B.3, and provide code in supplemental materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat experiments 5 times and report 2σ error intervals in Table 1 in the
main paper. We state the confidence level and p-value for the user study in Appendix B.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in the experiments section of the paper.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in Appendix B.5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: Our paper explains an existing model. We do not release any data nor train a
new model; therefore our work poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We cite and credit all used asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code comes with documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We describe the protocol for our small-scale user study in Section 4.4 and
Appendix B.4.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Our study pose no more than minimal risk to participant and is ruled exempt
by the instituion’s IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not involved in the core method development of our paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional results

A.1 Retrieval faithfulness metrics

Table 2: COCO retrieval faithfulness metrics. For our method, we report the mean over 5 runs.
Method COCO I→T COCO T→I

R@1 R@5 R@10 R@1 R@5 R@10

SpLiCE [26] 38.12 72.40 86.00 38.26 72.74 85.66
Ours 61.99 89.31 95.51 55.03 86.64 94.46

Table 3: Flickr30k retrieval faithfulness metrics. For our method, we report the mean over 5 runs.
Method Flickr30k I→T Flickr30kT→I

R@1 R@5 R@10 R@1 R@5 R@10

SpLiCE [26] 40.25 70.41 80.65 40.50 69.56 80.04
Ours 66.37 86.32 91.26 60.31 82.79 89.42

Table 2 and Table 3 shows the detailed R@K metrics for COOC and Flickr30k of our method and
SpLiCE, which is supplementary to Table 1 of the main paper.

A.2 Task performance metrics

Table 4: Performance metrics. For our method, we report the mean over 5 runs.
Method COCO I→T COCO T→I SUN397 ImageNet

R@1 R@5 R@10 R@1 R@5 R@10

SpLiCE [26] 32.26 62.94 76.44 29.92 59.22 73.00 52.41 42.91
CLIP ViT-B/32 51.90 81.26 90.24 47.48 77.10 87.08 60.71 61.91
Ours 58.03 85.68 93.19 56.30 84.98 93.09 57.98 52.37

Table 4, 5 presents a comparison of performance metrics (evaluated against dataset ground truth) for
our method, SpLiCE, and the original CLIP model. The baseline is setup similar to the experiment in
Tab. 1. As can be seen in Table 4, our method consistently outperforms the baseline SpLiCE across
tasks given the same sparsity.

Furthermore, although designed for post-hoc explanation, our surrogate representation exhibits the
ability to sometimes outperform the CLIP model it explains on the zero-shot tasks we tested, despite
never having access to the dataset labels and only being trained on the similarities produced by
the CLIP model. We hypothesize that performance improvement (when they exists) stems from
the increased robustness of concept-based inputs, which may be less susceptible to common image
degradations such as occlusion, blurriness, or general noise, compared to raw image inputs.

A.3 More visualizations

In Figure 8, we provide a more comprehensive list of concepts of the images visualized in Fig. 4.

A.4 More datasets

In Table 6, we provide more zero-shot classification results on more datasets (Flowers102, Food101).
Our method continues to yield consistent improvements on these fine-grained classification tasks. In
Figure 9, we visualize some results from these datasets.
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Table 5: Performance metrics (continued). For our method, we report the mean over 5 runs.
Method Flickr30k I→T Flickr30k T→I

R@1 R@5 R@10 R@1 R@5 R@10

SpLiCE [26] 36.43 65.03 75.36 36.83 63.50 74.20
CLIP ViT-B/32 67.17 88.90 93.80 63.60 86.78 92.26
Ours 74.53 92.58 96.24 73.60 92.67 96.30

Table 6: Faithfulness metrics for more datasets.
Method Flowers102 Food101
SpLiCE 26.12 51.80

Ours 37.73 63.62

Ours top concepts:

bird .28

crane .18

dry (a.) .13

tall .08

bill (n.) .05

prey .05

vegetation .05

walk (v.) .04

feather .03

morning .03

faced .03

standing .02

grey .01

pointed .01

middle .00

ImageNet 2017 val 6718 (crane), 32579SpLiCE top concepts:

great blue .11

crane .07

individual .04

stalk .03

wildlife .03

banded .03

pheasant .03

foraging .02

foreground .01

hunting .01

identifying .01

marsh .01

wetlands .01

south africa .01

woodpecker .01

Ours top concepts:

microwave (n.) .40

counter .08

sign .08

stainless .06

microwave (v.) .05

tray .04

metal .04

clean (a.) .03

mess (n.) .03

instruction .03

say .02

state (v.) .02

room .02

floor .02

steel .01

SpLiCE top concepts:

microwave .08

cleaning machine .07

push button .04

classical music .04

bilingual .03

sounds .03

fax .02

culinary .02

blank sign .02

cd player .02

depending .02

claimed .02

sanitary .02

laundry room .02

non slip .02

ImageNet 2017 Val 39189, SUN397 test

Ours top concepts:

screw .44

stainless .12

bolt .08

fastener .07

surface .07

screw (v.) .06

metal .03

wrench .03

pink .03

washer .03

use .02

steel .02

shape .02

animal .01

sitting -0.01

SpLiCE top concepts:

manufacturers .13

screwed .06

zinc alloy .06

implant .05

bolts .04

cheap key .04

repair kit .04

screw .03

jual .03

stud earrings .03

bullets .02

capitals .02

wrench .01

clips .01

nickel .01

Ours top concepts:

sand .37

castle .18

beach .16

kid .09

sandy .05

try .05

reach .02

family .02

hand .02

adult .01

SpLiCE top concepts:

sand .13

team building .06

archaeological .05

geology .03

interacting .02

small group .02

bullying .01

children play .01

little children .13

bath shower .00

Figure 8: More comprehensive depiction of concept list from our method and the baseline.

Figure 9: Visualizations for samples from the Flowers102 dataset (upper) and Food101 dataset
(lower).
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B Method details

B.1 Concept identification details

We redescribe our concept identification process step-by-step with more details:

1. (If not already present) obtain the captions for each image by using a captioning model

2. Extract nouns, verbs, and adjectives concepts via part-of-speech tagging with the nltk
library

3. Filter out words not presenting in WordNet, infrequent and overly frequent concepts to
obtain the vocabulary C

4. Estimate concept prevalence score for each image-concept pair to obtain the concept vectors
ci

B.2 Algorithm for Surrogate Learning

Below is the pseudocode for the algorithm described in Section 3.3.

Algorithm 1: Algorithm for Surrogate Learning
Input: CLIP encoders eI , eT , surrogate model f , dataset S, concepts C, temperature τ , batch

size B, number of iterations T
1 for t = 0, . . . , T − 1 do
2 Sample a mini-batch of triplets Bt = {(xi, ci, ti)} from the dataset
3 Update ut+1,i, vt+1,i using (5) and (6) for i ∈ Bt

4 Set ut+1,i = ut,i, vt+1,i = vt,i for i /∈ Bt

5 Compute gradient estimator w.r.t. ft:

1

|Bt|2
∑
i∈Bt

∑
j∈Bt

exp
(

eI(xi)
⊤eT (tj)
τ

)
ut+1,i

·
exp

(
f(ci)

⊤eT (tj)
τ

)
vt+1,i

· ∇g(ft, eT ; ci, tj ,Bt).

6 Update ft+1 from ft using an optimizer

We now present the full derivation of Algorithm 1. We will focus only on DKL(P
e
i ∥ P f

i ) since the
procedure for optimizing DKL(Q

e
j ∥ Qf

j ) can be derived analogously. From the definition of KL
divergence, we can write the first part of (3) as

1

2n

n∑
i=1

DKL(P
e
i ∥ P f

i ) = − 1

2n

n∑
i=1

n∑
j=1

P e
i (j) logP

f
i (j) +

1

2n

n∑
i=1

n∑
j=1

P e
i (j) logP

e
i (j).

Note that e is fixed and we want to optimize only f , we will discard the second term on the right
hand side since it does not involve f . Plugging (1) and (2) into the above equation, we get

− 1

2n

n∑
i=1

n∑
j=1

P e
i (j) logP

f
i (j)

=− 1

2n

n∑
i=1

n∑
j=1

exp(eI(xi)
⊤eT (tj)/τ)∑

k exp(eI(xi)⊤eT (tk)/τ)
· log exp(f(ci)

⊤eT (tj)/τ)∑
k exp(f(ci)

⊤eT (tk)/τ)

=
1

2n

n∑
i=1

n∑
j=1

(
n∑

k=1

exp

(
eI(xi)

⊤eT (tk)− eI(xi)
⊤eT (tj)

τ

))−1

(10)

· log
n∑

k=1

exp

(
f(ci)

⊤eT (tk)− f(ci)
⊤eT (tj)

τ

)
.
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Recall that S denotes the whole dataset, and

g(f, eT ; ci, tj ,S) :=
1

n

n∑
k=1

exp

(
f(ci)

⊤eT (tk)− f(ci)
⊤eT (tj)

τ

)

=
1

n

n∑
k=1

exp

(
f(ci)

⊤eT (tk)

τ

)
/ exp

(
f(ci)

⊤eT (tj)

τ

)
.

Then (10) can be equivalently written as

1

|S|2
∑
i∈S

∑
j∈S

1

g(eI , eT ;xi, tj ,S)
· log g(f, eT ; ci, tj ,S). (11)

The gradient w.r.t. f is given by

1

|S|2
∑
i∈S

∑
j∈S

1

g(eI , eT ;xi, tj ,S)
· 1

g(f, eT ; ci, tj ,S)
· ∇g(f, eT ; ci, tj ,S).

Since we only have access to one mini-batch of data B at each iteration, the obtained mini-batch
gradient estimator is

1

|B|2
∑
i∈B

∑
j∈B

1

g(eI , eT ;xi, tj ,B)
· 1

g(f, eT ; ci, tj ,B)
· ∇g(f, eT ; ci, tj ,B).

However, due to the non-linearity of the reciprocal function, the expectation over B is not equal to the
true gradient. Thus the mini-batch estimator is biased. To address this problem, we use two moving
average sequences u and v to approximate g(eI , eT ;xi, tj ,S) and g(f, eT ; ci, tj ,S) respectively:

ut+1,i = (1− γ1)ut,i + γ1
1

|Bt|
∑
k∈Bt

exp

(
eI(xi)

⊤eT (tk)

τ

)
,

vt+1,i = (1− γ2)vt,i + γ2
1

|Bt|
∑
k∈Bt

exp

(
f(xi)

⊤eT (tk)

τ

)
,

where γ1, γ2 ∈ (0, 1] are two hyperparameters. Then we can approximate g(eI , eT ;xi, tj ,S) and
g(f, eT ; ci, tj ,S) using

ut+1,i/ exp

(
eI(xi)

⊤eT (tj)

τ

)
, and vt+1,i/ exp

(
f(ci)

⊤eT (tj)

τ

)
.

B.3 Experimental details

Datasets. For the Flickr30k dataset, we explain on the full dataset. For the SUN397 dataset, we use
the first official testing split. For the COCO 2017 and ImageNet dataset, we use the validation split.
Following [26], for computational efficiency, the retrieval metrics are computed in batches of size
1000 and averaged over the full dataset.

Training. We use the Amsgrad variant of the AdamW optimizer with learning rate 10−3 and weight
decay 10−6. During training, we distill image-text similarities within the batch following Algorithm 1.
We perform augmentations on both modalities: selecting a random caption as text augmentation, and
random center crop and horizontal flip as image augmentation.

B.4 User study details

The user study involved 10 volunteers who did not receive monetary compensation. The interface
is shown in Figure 10. Notably, we observed that SpLiCE’s weights are often lower than that of us,
since they do not sum to one. To reduce the chance of the user differentiating the two methods based
on the weights, we scaled SpLiCE’s weights for each individual image so that their sum equals ours.

The study was ruled exempt by our institution’s IRB, as no more than minimal risk is posed to the
participants. No identifying information was collected.
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Criteria CI p-value
Relevance 1.61± 0.54 9× 10−8

Completeness 1.69± 0.72 1× 10−6

Utility 1.66± 0.62 4× 10−7

Table 7: The p-values and confidence intervals (CI) for hypothesis testing in our user study. A value of
1 denotes strong preference for EXPLAIN-R, averaged across the 20 shown samples. The hypothesis
tested is whether the population mean is less than 3, which denotes neurality (no preference for
SpLiCE or EXPLAIN-R).

B.5 Broader impacts

Our work addresses the problem of interpreting CLIP image representations in a task independent
manner. EXPLAIN-R provides a tool for users and researchers to inspect the semantic content of the
representation and provide a simple, intuitive summarization of the learned concepts for each image.
For the users, this will enhance transparency and trustworthiness in multimodal representations,
which traditionally relies on downstream evaluation. Researchers can use EXPLAIN-R to inspect
individual embeddings and model predictions, as well as aggregate them over the dataset to obtain a
more holistic view of the concepts learned by the model.
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Figure 10: The interface for our user study. For each input image, we show the top 10 concepts from
both methods, along with the weights. We scale SpLiCE’s weights so they have the same mean as
ours.
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