
Under review as submission to TMLR

Execution-based Code Generation using Deep Reinforce-
ment Learning

Anonymous authors
Paper under double-blind review

Abstract

The utilization of programming language (PL) models, pre-trained on large-scale code cor-
pora, as a means of automating software engineering processes has demonstrated consider-
able potential in streamlining various code generation tasks such as code completion, code
translation, and program synthesis. However, current approaches mainly rely on super-
vised fine-tuning objectives borrowed from text generation, neglecting unique sequence-
level characteristics of code, including but not limited to compilability as well as syn-
tactic and functional correctness. To address this limitation, we propose PPOCoder, a
new framework for code generation that synergistically combines pre-trained PL models
with Proximal Policy Optimization (PPO) deep reinforcement learning. By utilizing non-
differentiable feedback from code execution and structure alignment, PPOCoder seamlessly
integrates external code-specific knowledge into the model optimization process. It’s im-
portant to note that PPOCoder is a task-agnostic and model-agnostic framework that can
be used across different code generation tasks and PLs. Extensive experiments on three
code generation tasks demonstrate the effectiveness of our proposed approach compared to
SOTA methods, achieving significant improvements in compilation success rates and func-
tional correctness across different PLs. The source code for PPOCoder can be found at
https://anonymous.4open.science/r/PPOCoder-9658/.

1 Introduction

Recent years have seen a surge of attention towards the use of deep learning and neural language models to
automate code generation and other software engineering processes, as a means to enhance developer pro-
ductivity. The software development process encompasses a variety of code generation tasks, including code
completion (Code2Code) (Li et al., 2018), code translation (Code2Code) (Zhu et al., 2022b), and program
synthesis (NL2Code) (Li et al., 2022). Inspired by the great performance of pre-trained neural language
models (LMs) in different natural language processing (NLP) tasks, these pre-training techniques have been
recently employed on large-scale code corpuses to automate code generation tasks. Examples of such pre-
trained models include CodeBERT (Feng et al., 2020), CodeGPT (Lu et al., 2021), PLABRT (Ahmad et al.,
2021), and CodeT5 (Wang et al., 2021). However, the code domain faces some unique challenges. For exam-
ple, given that the generated code is intended for machine execution as opposed to human comprehension,
it is imperative that the generated code maintains syntactic and functional correctness, i.e., being able to
pass the compilation and unit tests.

Despite the advancements of pre-trained code models, they are heavily influenced by NLP’s self-supervised
masked language modeling (MLM) and often struggle to ensure the syntactic and functional correctness of
the generated codes. Authors of (Chen et al., 2021c) have shown that up to 70% of codes generated by these
models can be non-compilable. To improve code generation towards syntactic and functional correctness,
several approaches are followed: (i) filtering and repairing the non-compilable synthesized programs (Kulal
et al., 2019), (ii) using energy-based generation models with compilability constraints (Korbak et al., 2021),
and (iii) using reinforcement learning (RL) fine-tuning mechanisms (Wang et al., 2022; Zhong et al., 2017;
Le et al., 2022). However, existing approaches are often tailored to a specific programming language (PL) or
task, e.g., (Le et al., 2022) is exclusively designed for program synthesis in Python and (Roziere et al., 2020)
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Figure 1: An overview of the proposed PPOCoder framework. The actor and critic networks are first
initialized from the pretrained PL model for the desired task. Following the sampling of a synthetic program
from the stochastic policy, the reward is determined using the execution feedback and the ground truth
target code. The values are estimated by the critic network. Finally, both actor and critic networks are
updated based on the obtained values and returns.

only targets code translation tasks in Python, Java, and C++ PLs. Therefore, current methods are not
easily transferable to other different code generation tasks and PLs. To tackle this challenge, we propose
PPOCoder, illustrated in Fig. 1, a PPO-based RL framework for code generation that incorporates non-
differentiable feedback derived from code execution (i.e., syntactic or functional correctness) and structure
alignment (i.e., syntactic and semantic matching scores) as external, code-specific knowledge into the model
optimization. PPOCoder utilizes the PPO (Schulman et al., 2017) algorithm for RL optimization which is
based on the proximal actor-critic advantage policy gradient objective and a trust region mechanism, making
the model optimization more stable and less sensitive to new environments (tasks, PLs, or datasets). Also,
PPOCoder integrates discrete compiler feedback with the syntactic and semantic matching scores between
the generated codes and executable targets. This integration reduces the sparsity of the reward function,
leading to a better guidance of the policy to generate code that is more closely aligned with the correct
targets. To the best of our knowledge, our work is the first one to integrate pre-trained PL models with
PPO and incorporate non-differentiable code structure elements into the feedback. Inspired by InstructGPT
(Ouyang et al., 2022), PPOCoder also incorporates the KL-divergence penalty into the reward function to
control explorations and prevent drastic deviations from the distributions already acquired by the pre-trained
PL model. Prior works (Le et al., 2022) have employed token-level matching (i.e., cross-entropy) loss during
both pre-training and fine-tuning stages to constrain these drastic deviations; however, this token-matching
objective frequently results in model memorization and restricted performance when faced with new tasks
and datasets. We observe that incorporating the KL-divergence penalty effectively minimizes the likelihood
of memorization, fostering a more controlled and efficient exploration that generalizes adeptly to diverse
code generation tasks and PLs. To summarize, the major contributions of this paper are as follows:

• We present a PPO-based RL framework for code generation, PPOCoder, that utilizes non-differentiable
feedback derived from execution and structure alignment as the external source of knowledge in model
optimization. PPOCoder provides a more stable and generalizable model optimization that is less sensitive
to new environments (tasks, PLs, or datasets).

• We develop a new reward function based on the discrete compiler feedback (compilation or unit test
signal when available) received at the end of the generation episode as well as the syntactic and semantic
matching scores between the AST sub-trees and DFG edges of the sampled generations and the correct
targets.

• We reduce the chance of memorization by incorporating a KL-divergence penalty into reward instead of a
cross-entropy loss used in earlier works to control explorations and prevent deviations from the pre-trained
model.
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• We demonstrate the effectiveness of PPOCoder through an extensive set of experiments across diverse code
generation tasks (code completion, code translation, program synthesis) and PLs (C++, Java, Python,
C#, PHP, C). PPOCoder outperforms the SOTA baselines, improving the compilation rate and functional
correctness over different PLs. We also investigate the benefits of PPOCoder’s reward elements and PPO
optimization through ablation study.

The organization of the remainder of this paper is as follows: In Section 2, existing code generation meth-
ods utilizing pre-trained models, structure-based approaches, and RL methods for sequence generation are
summarized. Section 3 delves into the specifics of our proposed PPOCoder method, including its various
components. The experimental evaluation of our method on three code generation tasks: code completion,
code translation, and program synthesis tasks, as well as the ablation study and case study, can be found in
Section 4. Finally, the paper concludes in Section 5.

2 Related Work
2.1 Pretrained Models for Code Generation
Recent research has focused on using pre-trained neural language models (LMs) in natural language process-
ing (NLP) to automate code generation tasks leveraging large-scale pre-training on the extensive code corpus
data available in open-source repositories (Lu et al., 2021; Zan et al., 2022; Niu et al., 2022). Notable examples
of these pre-trained models are: (i) CodeBERT (Feng et al., 2020), which conducts encoder-only pretraining
using Masked Language Modeling (MLM) and Replaced Token Detection tasks; (ii) CodeGPT (Lu et al.,
2021), a comparable decoder-only GPT-based pre-trained model introduced alongside the CodeXGLUE
benchmark; (iii) PLABRT (Ahmad et al., 2021), an encoder-decoder transformer model pre-trained employ-
ing the denoising autoencoding (DAE) objective; and (iv) CodeT5 (Wang et al., 2021), another encoder-
decoder pre-trained model subsequently proposed, built upon the T5 (Raffel et al., 2020) architecture and
trained with code data in eight programming languages However, these pre-trained PL models tend to rely
heavily on self-supervised MLM for text generation, while grappling with maintaining code-specific sequence-
level attributes such as syntactic and functional correctness in the generated codes.

2.2 Leveraging Structure in Code Generation
Lately, there has been a surge of interest in combining PL models with logical constructs such as abstract
syntax trees (ASTs) (Kim et al., 2021; Rabinovich et al., 2017; Wang & Li, 2021), code sketches (Nye et al.,
2019), and data-flow graphs (DFGs) (Yasunaga & Liang, 2020; Guo et al., 2021). For example, Graph-
CodeBERT (Guo et al., 2021) uses DFGs to incorporate semantic information, but its decoder is completely
unaware of the code structures. StructCoder (Tipirneni et al., 2022) presents a pre-trained structure-aware
encoder-decoder architecture, where both the encoder and decoder components are cognizant of syntax and
semantic relations. However, despite these efforts, many code generation models still struggle to ensure the
syntactic and functional correctness of the generated codes. The primary reason is the misalignment between
code-specific evaluation metrics and model optimization objectives. In other words, these models are not
optimized for the non-differentiable code-specific objectives, leading to shortcomings in their performance.

2.3 RL for Sequence Generation
RL has been used to optimize non-differentiable metrics in sequence generation tasks (Ranzato et al., 2016;
Bahdanau et al., 2017), such as using the REINFORCE (Williams, 1992) algorithm to improve BLEU
(Papineni et al., 2002a) and ROUGE (Lin, 2004) scores in translation and summarization models. Recently,
InstructGPT (Ouyang et al., 2022) have introduced Reinforcement with Human Feedback (RLHF) which
shows that language models fine-tuned with RL can better follow non-differentiable human feedbacks. Unlike
text generation, code generation requires not only syntactic but also functional correctness as the generated
code must pass compilation and unit tests for machine execution. Recently, execution-guided approaches
(Chen et al., 2019; Ellis et al., 2019; Chen et al., 2021b) and RL-based fine-tuning mechanisms (Wang et al.,
2022; Zhong et al., 2017; Le et al., 2022) are used to enhance the quality of generated codes. For example,
(Le et al., 2022) has recently studied the integration of RL with unit test signals in the fine-tuning of the
program synthesis models. However, existing RL-based methods still encounter several limitations. They
are often designed for a particular task (e.g., only program synthesis) or a particular PL (e.g., only Python),
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Figure 2: Overview of the PPOCoder with actor and critic models. The action is sampled from the policy
based on the given source data x (NL or PL). Then, a reward is obtained for each action to guide and control
policy updates. The reward function is composed of four elements: (a) compiler feedback; (b) syntactic
matching score based on ASTs; (c) semantic matching score based on DFGs; and (d) KL-divergence penalty
between active policy and the reference pretrained model. The critic model estimates value based on the
obtained reward and PPOCoder will be optimized with PPO, which takes into account both value and policy
optimization.

receive a sparse and discrete compiler signal only at the end of the generation episode, and are susceptible
to memorization and poor performance on unseen data due to the use of token-matching loss in the RL
fine-tuning step to prevent drastic deviations from the pre-trained PL model. Our model, PPOCoder, is
designed to be both task- and model-agnostic, allowing the RL framework to be flexible for a wide range of
code generation tasks and PLs. This is achieved by incorporating a PPO-based framework that combines
compiler feedback with code structure elements such as matching scores between the AST sub-trees and
DFG edges in the reward function, and employs a KL-divergence penalty to minimize large deviations, while
reducing the chance of model memorization.

3 PPOCoder

PPOCoder provides a systematic mechanism for fine-tuning code generation models using deep reinforcement
learning (RL) by effectively and efficiently incorporating compiler feedback and structure alignments as extra
knowledge into the model optimization, thereby enhancing the quality of the generated codes in terms of
code-specific sequence-level features such as syntactic and functional correctness. Fig. 2 shows the general
structure of our proposed PPOCoder model with the policy network (actor) πθ responsible for code generation
actions and the value function (critic) Vπ responsible for the return estimations. They are both learned with
the proximal policy optimization (PPO) approach taking reward R. As shown in Fig. 2, the total reward is
composed of four elements: (i) compiler feedback; (ii) syntactic match score; (iii) semantic match score; and
(iv) KL-divergence penalty. We provide further details about each of these components in the subsections
below.
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3.1 Problem Formulation
The code generation procedure can be formulated as a sequential discrete finite-horizon Markov Decision
Process (MDP) with the use of RL in which an agent interacts with the compiler over discrete horizon T which
is equivalent to the maximum number of generated code tokens. The proposed PPOCoder is formulated as
follows:

State S: The state of environment at each time-step, denoted as st = (ŷ<t, x), st ∈ S, is determined by the
source PL/NL data x, as well as the set of generated tokens before t, ŷ<t.

Action A: The PL model chooses the action at each time-step, denoted as at = ŷt, at ∈ A, which is
equivalent to the generated token at time-step t.

Policy πθ(at|st): The stochastic policy network parameterized by θ is the downstream code generation
model that predicts the next token conditioned on the previously generated tokens and the source data, so,
πθ(ŷt|ŷ<t, x) : S → ∆(A) where ∆(A) denotes the probability distribution over all actions (e.g., target vo-
cabulary). The next action ŷt will be decided based on the top-k sampling from this probability distribution.
Policy is initialized with the pretrained reference PL model ρ, i.e., π0

θ(.) = ρ.

Reward R: The reward R(ŷ, x, y) will be obtained at the end of the generation episode (i.e., after generating
the < endoftokens > token) based on the generated code’s syntactic and functional correctness as well as
its alignment with executable codes. The reward function R(.) is composed of different components which
are explained in Section 3.2.

Advantage Ât
π: Inspired by the Generalized Advantage Estimator (GAE) (Schulman et al., 2016), the

advantage at time-step t is defined as follows.

Ât
π =δt + γδt+1 + . . . + γT −t+1δT −1, (1)
δt =rt − Vπ(ŷ<t, x) + γVπ(ŷ<t+1, x),

where γ is the discount rate; rt is the reward at time-step t; and Vπ(st) is the state value function at t which
can be approximated by a dense token-level value head on top of the hidden states of PL model.
Objective: The objective of PPOCoder is to find a policy that maximizes the expected reward of generated
codes sampled from the policy.

max
θ

Ex∼X ,ŷ∼πθ(.|x)
[
R(ŷ, x, y)

]
, (2)

where X is the training set of source data; πθ(.) is the policy network; and R(.) is the reward function. We
formulate the objective function as a maximization of the advantage instead of reward, as shown in Eq. (3),
in order to reduce the variability of predictions.

max
θ

Ex∼X ,ŷ∼πθ(.|x)

[
T∑

t=0
Ât

π

(
(ŷ<t, x), ŷt

)]
, (3)

We adopt the policy gradient to estimate the gradient of non-differentiable reward-based objectives in Eqs. (2)
and (3). Therefore, updating policy parameters for a given source data x can be derived as:

0.95max
θ

LP G
θ = max

θ
Eŷ∼πθ

[
T∑

t=0

(
logπθ(ŷt|ŷ<t, x) Ât

π

)]
, (4)

where 0.85∇θLP G
θ = Eŷ∼πθ

[
T∑

t=1

(
∇θlogπθ(ŷt|ŷ<t, x) Ât

π

)]
, (5)

where ∇θLP G
θ refers to the estimated gradient of objective function based on the policy parameterized by

θ. In order to further reduce the variations and avoid significantly changing the policy at each iteration, the
objective function in Eq. (4) will be reformulated as shown in Eq. (6), called the conservative policy iteration
(CPI).
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LCP I
θ =Eŷ∼πθ

[
T∑

t=0

(
logπθ(ŷt|ŷ<t, x)

logπθold
(ŷt|ŷ<t, x) Ât

π

)]
(6)

=Eŷ∼πθ

[
T∑

t=0

(
ct

π(θ) Ât
π

)]
,

where θold is the policy parameters before the update; and ct
π(θ) is the ratio of log-probabilities from new

and old policies.

3.2 Reward Function
Figure 2 illustrates that the reward of PPOCoder is composed of four different components which are designed
to guide and control actions simultaneously towards generating more executable codes. These components
are designed due to (1) the sparsity of compiler feedback which is only received at the end of code generation
episode; and (2) the high chance of policy divergence from the pretrained PL models. (check Section 4.4
for the reward ablation results). Eq. (7) shows the combination of these different reward terms in the final
reward vector R(ŷ, x, y) ∈ RT with T as the generation episode length.

R(ŷ, x, y) = {rt : t = 1, . . . , T}, (7)

rt = 1(cond)
[
Rcs(ŷ) + Rast(ŷ, y) + Rdfg(ŷ, y)

− βRkl(x, ŷ<t)
]

+ 1(¬cond) [−βRkl(x, ŷ<t)]),

cond = (ŷt == ⟨endoftokens⟩)

where rt is the combined reward at time-step t; Rcs(.), Rast(.), and Rdfg(.) are the compiler signal, syntactic
match score, and the semantic match score reward terms, respectively. Note that, these terms will be received
at the end of the generation episode where ŷt == ⟨endoftokens⟩. The Rkl(x, ŷ<t) is a KL-divergence penalty
between the reference pretrained model and the active policy which is imposed to reward at each time-step
to control actions. β is also the coefficient of penalty to balance the combination of different reward terms.

3.2.1 Compiler Signal
For each source data x, we sample multiple generated codes in the target language based on the current
policy network, ŷ ∼ πθ(.|x). Then, we pass these sampled codes ŷ to a compiler and determine the reward
based on the parsing signal. In case unit tests are available for the source data, the reward is determined
by the functional correctness of generated codes, i.e., passing all unit tests, as shown in Eq. (8). If unit
tests are not provided, compiler returns the syntactic correctness of generated codes (i.e., compilable or
non-compilable) as shown in Eq. (9). This reward term is designed to guide the model to take actions which
can generate higher quality codes in terms of syntactic/functional correctness.

Functional Correctness:

Rcs(ŷ) =


+ 1 , if ŷ passed all unit tests

−0.3, if ŷ failed any unit test
−0.6, if ŷ received RunTime error
− 1 , if ŷ received Compile error

(8)

Syntactic Correctness:
Rcs(ŷ) =

{
+1, if ŷ passed compilation test
−1, otherwise

(9)

3.2.2 Syntactic Matching Score
Since the compiler signal alone is too sparse, we also add additional information to better control and
guide the structure of policy samples. To do so, we define a syntactic matching score Rast(ŷ, y) between the
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generated hypothesis ŷ ∼ πθ(.|x) and the parallel executable target y. The goal is to maximize this matching
score for better compilability or syntactic correctness. We use the abstract syntax tree (AST) to find a tree
representation of the code’s abstract syntax structure. Then, we compare the sub-trees extracted from the
hypothesis and reference target ASTs, respectively, and calculate the syntactic match score as a percentage
of matched AST sub-trees.

0.95Rast(ŷ, y) = Count(ASTŷ ∩ ASTy)/Count(ASTy) (10)

where Count(ASTŷ ∩ ASTy) is the number of matched AST sub-trees between the hypothesis ŷ and reference
y; and Count(ASTy) is the total number of reference AST sub-trees. This score can assess the syntactic
quality of code since the differences between ASTs can be affected by syntactic issues such as token missing
and data type errors.

3.2.3 Semantic Matching Score
To improve the functional correctness, we need to also take into account the semantic matching between
hypothesis ŷ and the executable target y, in addition to their syntactic matching. In PLs, code semantics are
closely related to the dependencies of its variables. As a result, in order to construct a semantic matching
score, we make use of the data-flow graphs (DFGs), a graph representation of code in which the nodes stand
in for variables and the edges for the sources of each variable’s values. We denote DFG of a code Y as
G(Y ) = (V ; E) where V = {v1, . . . , vm} is the set of variables, and ei,j = ⟨vi, vj⟩ is the i → j edge showing
that value of the j-th variable originates from the i-th variable. Then, we calculate the semantic match score
as a percentage of matched data-flows in DFGs.

Rdfg(ŷ, y) = Count(G(ŷ) ∩ G(y))/Count(G(y)) (11)

where Count(G(ŷ) ∩ G(y)) represents the number of matched DFG edges between hypothesis ŷ and reference
y; and Count(G(y)) represents the total number of reference DFG edges. Maximizing this score can guide
and control policy to generate codes which are more aligned with executable target codes in terms of variable
relations, thus, enhancing the semantic quality and logical correctness of the generated codes.

3.2.4 KL-Divergence Constraint
We incorporate a negative KL-divergence penalty KL(π||ρ) into the reward to prevent the active policy π
deviating away from the pre-trained PL model ρ. The KL-penalty at time t can be approximated as:

Rkl (x, ŷ<t) =KL (π||ρ) ≈ log π (.|x, ŷ<t)
ρ (.|x, ŷ<t)

(12)

= log (π (.|x, ŷ<t)) − log (ρ (.|x, ŷ<t))

where log (π (.|x, ŷ<t)) and log (ρ (.|x, ŷ<t)) are the log-probabilities obtained from the active policy π and
pretrained model ρ at time t given source data x and the previously predicted tokens ŷ<t. This reward term
can control actions and play the role of entropy bonus in controlling exploration and exploitation where
greater β in Eq. (7) provides less exploration and more exploitation.

3.3 Loss Function
We employ proximal policy optimization (PPO) (Schulman et al., 2017) and define the loss function of
PPOCoder as follows.

Lθ = −LCP I
θ + αLV F

θ (13)

0.75LCP I
θ = Eŷ∼πθ

[
T∑

t=0
min

(
ct

π(θ)Ât
π, clip

(
ct

π(θ), 1 − ϵ, 1 + ϵ
)

Ât
π

)]
(14)

0.85LV F
θ = Eŷ∼πθ

[
T∑

t=0

(
Vπ(ŷ<t, x) −

(
Ât

π + Vπold
(ŷ<t, x)

))2
]

(15)

7



Under review as submission to TMLR

where the loss function Lθ is the linear combination of surrogate policy objective function LCP I
θ and the

value function squared error term LV F
θ . Therefore, minimizing loss function leads to the maximization of

the surrogate advantage policy objective (actor optimization) as well as the minimization of value error
(critic optimization). In other words, the actor is guided to maximize the advantage policy objective which
is correlated with maximizing the expected reward as explained in Eqs. (4)-(6); and the critic is enforced to
minimize the token-level value estimation error which is defined based on the difference between the values
of new policy Vπ(ŷ<t) and the estimated dense returns of the old policy Ât

π + Vπold
(ŷ<t). In Eqs. (13)-(15),

ϵ is the proximal policy ratio clip range, and α is the linear combination weight between loss terms of actor
and critic.

Algorithm 1 provides the pseudocode of PPOCoder. For each source-target pair (x, y), we sample multiple
translated hypotheses from the policy network ŷ ∼ πθ(.|x). After generating each hypothesis, we find the
integrated reward based on the reward function defined in Section 3.2, estimate the advantage, calculate
the corresponding PPO loss function, and update the policy and value head parameters based on the final
gradients (as shown in lines 5-21).

Algorithm 1: PPOCoder
Input: Set of parallel source-target code pairs (X ,Y), Pretrained PL model ρ
Output: Finetuned policy with parameter θ based on RL

1 Initialize policy πθ ← ρ
2 for number of epochs until convergence do
3 for (x, y) ∈ (X ,Y) do
4 repeat
5 ŷ ← πθ(.|x)
6 # Calculate Reward
7 Compute Rcs(ŷ) using Eq. (8) or Eq. (9)
8 Compute Rast(ŷ, y) using Eq. (10)
9 Compute Rdfg(ŷ, y) using Eq. (11)

10 Compute Rkl (x, ŷ<t) using Eq. (12)
11 R(ŷ, x, y)← {rt, t = 1, . . . , T} where

12 rt = 1(cond)
[

Rcs(ŷ) + Rast(ŷ, y) + Rdfg(ŷ, y)− βRkl(x, ŷ<t)
]

13 +1(¬cond) [−βRkl(x, ŷ<t)]); using Eq. (7)
14 # Estimate Advantage
15 Ât

π ← rt − Vπ(ŷ<t, x) + γVπ(ŷ<t+1, x); using Eq. (1)
16 # Calculate Loss

17 LCP I
θ ← Eŷ∼πθ

[
T∑

t=0
min

(
ct

π(θ)Ât
π , clip

(
ct

π(θ), 1− ϵ, 1 + ϵ
)

Ât
π

)]
18 LV F

θ ← Eŷ∼πθ

[
T∑

t=0

(
Vπ(ŷ<t, x)−

(
Ât

π + Vπold (ŷ<t, x)
))2

]
19 Lθ ← αLV F

θ − LCP I
θ

20 # Update Model Parameters
21 θ ← θ −∇θLθ

22 until num_samples
23 end
24 end

4 Experiments
We evaluate PPOCoder on three different code generation tasks: (i) Code Completion automatically com-
pletes partial Python code snippets; (ii) Code Translation involves translating between any language-pair
among six different PLs (Python, Java, C#, C++, PHP, C); and (iii) Program Synthesis (NL2Code) gen-
erates a Python function given a natural language (NL) description.

4.1 Code Completion
For this downstream task, we employ the Python corpus in CodeSearchNet (CSN) 1 (Husain et al., 2019).
We extract 50k compilable Python methods with sufficient length (at least 64 tokens) and randomly split the
data to train/val/test sets with 40k/5k/5k samples. We mask the last 25 tokens of the source code and ask

1https://github.com/github/CodeSearchNet#data-details
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the model to complete it. To evaluate the quality of generated codes, three metrics are used: (i) Exact Match
(xMatch) which checks if the prediction is the same as the ground truth, (ii) Levenshtein Edit Similarity
(Edit Sim) (Lu et al., 2021; Svyatkovskiy et al., 2020) which measures the number of single-character edits
needed to match the generated code with the correct target, and (iii) Compilation Rate (Comp Rate) (Kulal
et al., 2019) that shows the success rate of compilation among completed programs. Since unit tests are
not provided, we focus on the syntactic correctness of the completed codes and take the compiler signal as
reward.

Table 1 shows the results of PPOCoder along with the baselines on the code completion task. In this table,
the BiLSTM (Luong et al., 2015) and Transformer (Vaswani et al., 2017) models are not pre-trained. The
GPT-2 (Radford et al., 2019) model was pre-trained on text corpus, while CodeGPT (Lu et al., 2021) and
CodeT5 (Wang et al., 2021) models are pre-trained on the large-scale source code corpus. The reported
results for these pre-trained models are after the fine-tuning step on the code completion task. More details
of the experimental setup are provided in Appendix B It can be observed that CodeGPT and CodeT5 have
a compilation rate of 46.84 and 52.14, respectively, indicating that about half of the generated codes are not
compilable. By employing our proposed PPOCoder framework on the fine-tuned CodeT5 model (PPOCoder
+ CodeT5), the compilation rate improves significantly from 52.14 to 97.68, demonstrating the importance
of incorporating compiler feedback into the model’s optimization and the effectiveness of PPOCoder in code
completion. We can also see that the PPOCoder performs similarly to other SOTA models in terms of Edit
sim and xMatch scores, showing that the actor model effectively explores without deviating much from the
pre-trained model distributions.

Table 1: Results on the code completion task for completing the last 25 masked tokens from CodeSearchNet.

Model xMatch Edit Sim Comp Rate
BiLSTM 20.74 55.32 36.34
Transformer 38.91 61.47 40.22
GPT-2 40.13 63.02 43.26
CodeGPT 41.98 64.47 46.84
CodeT5 42.61 68.54 52.14
PPOCoder + CodeT5 42.63 69.22 97.68

4.2 Code Translation
We use the XLCoST 2 (Zhu et al., 2022a) dataset for the code translation task which is a parallel dataset
that includes solutions for problems related to data structures and algorithms in six languages: C++, Java,
Python, PHP, C, and C#. In our experiments, we only use the compilable filtered parallel data in source
and target language pairs. Table 6 in Appendix C shows the detailed statistics of these compilable filtered
samples across all six PLs. To evaluate the quality of translated codes, we use two metrics: (i) Comp
Rate that measures compilation success rate, and (i) CodeBLEU (Ren et al., 2020) score which combines
the weighted BLEU (Papineni et al., 2002b) based on the code-related keywords with the the syntactic
and semantic alignment measures. As unit tests are not available for parallel language pairs, we focus on
syntactic correctness with the help of compiler signal.

Table 2 presents the results of PPOCoder on code translation along with the baselines. In this table, column
and row headers represent the translation source and target PLs, respectively. The Naive Copy baseline (Lu
et al., 2021) simply copies the source code as the output, showing how similar two PLs are. The reported
results of pre-trained CodeBERT and PLBART are after fine-tuning on the code translation task for each
language pair. The experimental setup and implementation details are provided in Appendix B. Table 2
demonstrates that incorporating our proposed PPOCoder +CodeT5 improves the overall compilation rate
across all language pairs, in comparison to the SOTA baseline CodeT5. Specifically, we observe an absolute
increase of 9.92%, 22.22%, 21.62%, 13.20%, 7.46%, and 6.11% in the compilation rate for C++, Java, Python,
C#, PHP, and C target PLs, respectively. PPOCoder also obtains a comparable CodeBLEU score to other
baselines, meaning that it does not deviate a lot from the pre-trained code fluency distribution. Among

2https://github.com/reddy-lab-code-research/XLCoST
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high-resource languages, results show relatively greater compilation rate improvements for Python and Java
as target PL. This is likely due to their high-level constructs, such as the absence of pointers and memory
management constructs, which can be a source of errors in languages like C++ and C#. Additionally, Java
and Python feature a more lenient compilation process and extensive runtime error checking, resulting in
many errors that would cause C++ and C# compilation to fail, being detected only at runtime. The table
shows a significantly lower compilation rate for code translation with C as target PL among all baselines.
This is likely due to the limited number of samples with C as a target PL in the dataset (as shown in Table 6
in Appendix C).

Table 2: Performance comparison of PPOCoder and baselines on XLCoST. The column and row language
headers represent the translation source and target languages. The “Overall" column shows the weighted
average scores over six PLs. The best results are shown in bold font.

High Resource Low Resource Overall
Model C++ Java Python C# PHP C

CodeBLEU CompRate CodeBLEU CompRate CodeBLEU CompRate CodeBLEU CompRate CodeBLEU CompRate CodeBLEU CompRate CodeBLEU CompRate
Naive Copy – – 44.56 20.28 17.81 9.73 47.28 21.25 19.83 8.21 63.94 4.62 38.68 12.82
CodeBERT – – 62.56 37.12 36.41 26.72 67.12 38.52 38.77 12.23 21.84 2.31 45.34 23.38

C++ PLBART – – 71.23 44.51 69.09 45.92 74.74 51.86 62.35 53.63 52.76 36.22 66.03 46.42
CodeT5 – – 80.17 59.01 72.83 53.33 73.11 60.31 67.47 68.21 66.02 71.44 71.92 62.46
PPOCoder + CodeT5 – – 81.14 70.33 74.03 63.35 72.93 69.18 68.24 80.02 64.21 79.03 72.11 72.38
Naive Copy 52.32 14.50 – – 36.51 22.16 69.04 41.05 39.91 2.10 54.18 2.10 50.39 16.38
CodeBERT 69.21 30.21 – – 44.51 43.51 74.86 55.01 48.33 10.72 19.53 0 51.28 27.89

Java PLBART 72.41 47.12 – – 70.31 53.79 76.19 45.75 64.06 21.47 46.21 7.22 65.23 35.67
CodeT5 78.52 59.81 – – 75.98 60.61 83.14 70.66 63.54 64.67 64.71 67.89 73.18 64.73
PPOCoder + CodeT5 79.14 82.80 – – 76.65 92.14 85.66 86.80 64.16 90.88 60.52 82.16 73.22 86.95
Naive Copy 37.41 21.47 39.72 17.27 – – 38.52 10.71 43.91 16.84 35.11 0 38.93 13.26
CodeBERT 68.93 42.15 45.76 38.10 – – 40.23 26.10 52.12 31.74 18.32 0 45.07 27.62

Python PLBART 74.49 61.20 63.82 54.59 – – 67.35 44.65 69.86 66.76 39.15 6.12 62.93 46.66
CodeT5 79.86 74.11 74.15 62.74 – – 75.54 58.26 79.83 80.05 56.83 70.81 73.24 69.19
PPOCoder + CodeT5 80.34 88.72 75.12 92.70 – – 76.09 83.33 79.65 93.51 52.15 95.80 72.67 90.81
Naive Copy 44.51 10.74 71.61 13.14 40.09 0 – – 37.79 2.41 60.17 4.52 50.83 6.16
CodeBERT 74.51 18.02 81.25 27.88 50.83 3.75 – – 58.64 6.85 22.93 0 57.63 11.30

C# PLBART 78.38 36.25 80.73 57.19 69.43 6.65 – – 70.12 48.40 54.36 8.00 70.61 31.29
CodeT5 81.49 53.87 84.78 69.73 71.23 56.81 – – 71.46 75.12 67.53 62.00 75.29 63.51
PPOCoder + CodeT5 82.94 68.51 85.77 81.92 70.43 78.61 – – 72.06 82.62 68.11 71.90 75.86 76.71
Naive Copy 26.33 6.12 25.61 10.23 34.66 16.10 26.87 6.41 – – 35.95 0 29.88 7.77
CodeBERT 50.26 11.62 46.81 13.48 56.72 32.86 50.43 13.21 – – 28.45 2.20 46.53 14.67

PHP PLBART 74.43 80.47 70.22 61.96 75.21 86.50 69.17 75.32 – – 56.23 0 69.05 60.85
CodeT5 83.43 84.80 80.09 84.12 85.62 78.12 81.79 83.20 – – 65.14 61.52 79.21 78.35
PPOCoder + CodeT5 85.55 89.50 82.12 90.31 83.26 82.52 83.88 89.80 – – 65.01 76.92 79.96 85.81
Naive Copy 66.41 10.71 59.12 0 40.27 0 59.83 2.10 43.54 0 – – 53.83 2.56
CodeBERT 22.72 6.80 21.19 0 21.34 0 31.52 3.50 21.71 0 – – 23.69 12.06

C PLBART 68.45 25.52 38.56 24.10 34.53 6.12 49.51 26.08 45.17 0 – – 47.24 16.36
CodeT5 79.18 46.40 74.12 42.80 66.31 44.60 73.21 41.32 64.28 38.42 – 71.42 42.71
PPOCoder + CodeT5 82.17 46.40 74.30 53.52 62.15 50.14 71.09 51.72 64.37 42.32 – – 70.92 48.82

4.3 Program Synthesis
In this task, we use the APPS (Hendrycks et al., 2021) dataset comprising 10k coding problems of varying
difficulty levels, split 50/50 for train/test sets. The dataset consists of Introductory, Interview, and Com-
petition level problems with respective train/test samples of 2639/1000, 2000/3000, and 361/1000. Each
problem has 23 Python solutions and 21 unit tests on average. To evaluate the generated codes, we employ
the pass@k metric (Chen et al., 2021a) which calculates the percentage of problems for which all unit tests
are passed using k synthetically generated programs per problem. Since unit tests are provided in APPS,
we use them in the PPOCoder’s reward (as defined in Eq. 9).

Table 3 demonstrates the results of program synthesis on the APPS dataset along with other baselines
reported in (Hendrycks et al., 2021) including GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020),
GPT-Neo (Black et al.), Codex (Chen et al., 2021a), AlphaCode (Li et al., 2022) and CodeRL (Le et al., 2022).
The reported results for various models are post-fine-tuning on APPS, except for GPT-3 and Codex. For the
experimental setup details of all methods, please refer to Appendix B. The results indicate that the smaller
encoder-decoder architecture of CodeT5 outperforms larger models, and PPOCoder with CodeT5 further
improves performance, surpassing even larger pre-trained LMs such as GPTs. As demonstrated in Table 3,
PPOCoder +CodeT5 exhibits comparable or even superior pass@k performance than CodeRL+CodeT5,
another RL-based fine-tuning mechanism specifically designed for program synthesis.
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To further evaluate the generalizability of these models, the zero-shot performance of the APPS fine-tuned
models was examined on the MBPP (Austin et al., 2021) program synthesis benchmark, which is a collection
of 974 short (one sentence) problems, each including 1 correct Python solution and 3 corresponding unit
tests. Table 4 shows the results of program synthesis on the MBPP benchmark. Both RL-based methods,
PPOCoder +CodeT5 and CodeRL+CodeT5, fine-tuned on APPS, exhibit remarkable zero-shot performance
on MBPP with a pass@k of 63% and 68%, respectively, surpassing even the largest GPT-137B’s performance
of 61.4%. As observed in Table 4, the proposed PPOCoder +CodeT5 outperforms CodeRL+CodeT5 on
MBPP by a significant margin of 5.2%. This can be attributed to two factors. Firstly, CodeRL integrates
the supervised cross-entropy loss to the RL policy gradient objective to maintain consistency in performance
and prevent deviation from the pre-trained model distribution. However, over-optimization of the supervised
cross-entropy on synthetic data increases the chance of memorization on the APPS training data and leads to
inferior performance on unseen data. PPOCoder regulates deviation by employing the KL-divergence penalty
for generation instead of the supervised cross-entropy loss. This can reduce the likelihood of memorization,
resulting in improved generalizability on the unseen MBPP benchmark. Secondly, CodeRL utilizes the
actor-critic algorithm with REINFORCE reward policy gradient objective, while PPOCoder employs the
PPO algorithm with actor-critic advantage policy gradient objective, and a trust region mechanism to
ensure minimal deviation from the previous policy. This leads to a more stable and generalizable model
optimization for new environments (tasks or datasets).

Table 3: Results of the program synthesis task on the APPS dataset.
pass@1 pass@5 pass@1000

Model Size Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All
Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 O.09 2.25 25.02 3.70 3.23 7.87
AlphaCode 1B – – – – – – – – 17.67 5.24 7.06 8.09
GPT-3 175B 0.20 0.03 0.00 0.06 – – – – – – – –
GPT-2 0.1B 1.00 0.33 0.00 0.40 2.70 0.73 0.00 1.02 – – – –
GPT-2 1.5B 1.30 0.70 0.00 0.68 3.60 1.03 0.00 1.34 25.00 9.27 8.80 12.32
GPT-Neo 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 27.90 9.83 11.40 13.76
CodeT5 60M 1.40 0.67 0.00 0.68 2.60 0.87 0.10 1.06 – – – –
CodeT5 220M 2.50 0.73 0.00 0.94 3.30 1.10 0.10 1.34 – – – –
CodeT5 770M 3.60 0.90 0.20 1.30 4.30 1.37 0.20 1.72 – – – –
CodeRL+CodeT5 770M 4.90 1.06 0.5 1.71 8.60 2.64 1.0 3.51 36.10 12.65 13.48 17.50
PPOCoder +CodeT5 770M 5.20 1.00 0.5 1.74 9.10 2.50 1.20 3.56 35.20 13.35 13.90 17.77

Table 4: Results of the zero-shot transferability on MBPP. Both zero-shot models are finetuned on APPS
and evaluated on MBPP in the zero-shot setting.

Model Size State pass@80
GPT 224M fine-tuned 7.2
GPT 422M fine-tuned 12.6
GPT 1B fine-tuned 22.4
GPT 4B fine-tuned 33.0
GPT 8B fine-tuned 40.6
GPT 68B fine-tuned 53.6
GPT 137B fine-tuned 61.4
CodeT5 60M fine-tuned 19.2
CodeT5 220M fine-tuned 24.0
CodeT5 770M fine-tuned 32.4
CodeRL+CodeT5 770M zero-shot 63.0
PPOCoder +CodeT5 770M zero-shot 68.2

4.4 Ablation Study

To investigate the effect of different components of PPOCoder, we conduct ablation experiments with several
variants of our model, including different reward terms, RL objective terms, action space size, and the number
of synthetic samples. We take the Java-Python translation as a case study and present the results in Fig. 3.
Please check Appendix D for more ablation experiments with other target PLs.
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Figure 3: Ablation experiment results on Java-Python translation with different configurations of (a) reward,
(b) loss, (c) action space size, and (d) number of synthetic samples.

Reward Elements. Fig. 3(a) shows the effect of including different reward terms in the performance of
PPOCoder. Models tested include CodeT5 without RL training, and with RL training utilizing different
combinations of reward terms: cs (compiler feedback), kl (KL-divergence penalty), dfg (semantic matching
score from DFGs), and ast (syntactic matching score from ASTs). Results show that the discrete compiler
feedback alone is insufficient, however, integrating it with the KL-divergence penalty as well as the syntac-
tic/semantic matching score boosts the compilation rate. The best performance is achieved by utilizing all
four reward elements.

Loss Elements. Fig. 3(b) represents the results of PPOCoder with different objective configurations.
We observe that the policy gradient objective alone (+PG), i.e., the REINFORCE algorithm, can boost
the performance of the CodeT5 model. The compilation rate further improves by introducing the value
function as critic (+PG+VF), i.e., A2C algorithm. Results show that the best performance is achieved by
utilizing proximal conservative policy iteration with value optimization (+CPI+VF), indicating that the
PPO algorithm performs superior to others on code generation.

Action Space Size. We examine the effectiveness of action space size on PPOCoder’s performance by
adjusting the k parameter in the top − k policy synthetic sampling. Fig. 3(c) shows that when k = 1,
PPOCoder may not be able to have enough exploration for the better possible policy updates. On the other
hand, when k gets too large, PPOCoder may become overwhelmed by many different possible actions and
struggle to learn the optimal policy, leading to degraded performance. Therefore, results reveal that a small
value of k (k = 1) may not provide sufficient exploration, while a large value (k = 50265 (vocab size) ) can
hinder the learning of optimal policy. In the code generation experiments, we usually use the action space
size 5 which provides a good balance for optimal exploration in most cases.

No. of Synthetic Samples. The effect of synthetic policy sample size on PPOCoder’s performance is
examined by modifying the num_samples in Alg. 1. Fig. 3(d) shows that an increase in num_samples
from 1 to 10 improves performance, but further increases lead to a slight decline in performance. This
suggests that while additional synthetic samples can enhance the ability to identify underlying patterns, a
large number of synthetic samples may not be representative of the general population and can negatively
impact performance by causing confusion in model updates.

5 Conclusion

We develop a PPO-based deep reinforcement learning framework for improving the quality of code generated
by PL models. We identified some limitations of traditional objective functions for code generation tasks
and designed a new learning objective that is geared towards PLs as opposed to natural language. We
incorporated compiler feedback and unit tests along with syntactic and semantic related qualitative feedback
(in the form of abstract syntax trees and dataflow graphs) into our RL framework to encourage the model
to generate more syntactically and logically correct code. Results of experiments show the effectiveness of
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our method compared to baselines in improving the syntactic/functional correctness of the generated codes.
The ablation experiments also show the impact of different PPOCoder’s components in the performance.
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A Appendix

B Additional Experimental Setup Details
In all our experiments, we employ batch size of 32, AdamW optimizer with a weight decay of 0.05, and a
learning rate that warms up from 1e − 7 to 2e − 5 over the first 1000 steps, then decays based on the inverse
square root of the number of steps, as outlined in (Loshchilov & Hutter, 2019). We use the tree-sitter
parsing library 3 to identify AST sub-trees for code written in different languages. To construct the data-
flow graph (DFG), we first identify variables by using the leaves of the AST, and then create directed edges
between the variables based on their relations. All of our experiments are implemented with PyTorch and
trained using 4 Quadro RTX 8000 GPUs, with 48GB of RAM.

B.1 Code Completion
We conduct code completion experiments on the CSN dataset with Python programs. For Python compi-
lation, we adopt py_compile 4 library. The BiLSTM baseline is the Seq2Seq Bi-directional LSTM model
taken with the default settings used in (Luong et al., 2015). The transformer baseline is a 6-layer transformer
decoder as used in (Vaswani et al., 2017). BiLSTM and transformer baselines are not pretrained and will be
trained from the random initialization on this task. GPT-2 baseline (Radford et al., 2019) is a decoder-only
transformer and is pretrained on a large-scale text corpus. CodeGPT (Lu et al., 2021) and CodeT5 (Wang
et al., 2021) baselines are both pretrained on a large-scale code corpus with the default GPT-2 (decoder-only)
and T5 (encoder-decoder) architectures. The pretrained CodeGPT and CodeT5 models are also finetuned
on this task, and the PPOCoder +CodeT5 is initialized from the finetuned CodeT5. PPOCoder is imple-
mented with the discount rate γ = 1, KL divergence penalty coefficient β = 0.1, policy ratio clip range
ϵ = 0.2 and the value error coefficient α = 0.001. To sample synthetic hypothesis from the stochastic pol-
icy, we use the top-k sampling with k = 5 as the action space size. We are training PPOCoder +CodeT5
with num_samples = 3 as the number of synthetic samples generated for each sample of the CSN dataset.
Therefore, PPOCoder observes 40K×3=120K input-output sample pairs during RL optimization for this
task. In all code completion experiments on CSN, we set the maximum source and target sequence length
as 400, and the maximum number of epochs as 6.

B.2 Code Translation
We conduct code translation experiments on the XLCoST dataset with programs in six parallel PLs (C++,
Java, Python, C#, PHP, and C). For testing Python compilation, we use the py_compile module that
comes built-in with Python version 3.8.0. For Java compilation, we use the javac compiler, version 1.8.0.
We use gcc version 7.5.0 for C and C++ compilations. Syntax checking for PHP is performed using the php
-l command, PHP version 7.2.24. C# compilation is also checked using the Mono C# compiler, version
4.6.2.0. In the code translation experiments, CodeBERT baseline is an encoder-only pretrained transformer
model. PLBART and CodeT5 are encoder-decoder pretrained transformer models. All these models (i.e.,
CodeBERT, PLBART, and CodeT5) are first pretrained on a large-scale code corpus and then finetuned
on XLCoST for the code translation task of each language pair. Also, in PPOCoder +CodeT5, the policy
network in each language-pair translation is initialized from a CodeT5 model finetuned on that language-
pair. In the implementation of PPOCoder, we use discount rate γ = 1, KL divergence penalty coefficient
β = 0.01, policy ratio clip range ϵ = 0.2 and the value error coefficient α = 0.01. To sample from the
stochastic policy, we use the top-k sampling with k = 5 as the action space size. Also, we train PPOCoder
+CodeT5 with num_samples as 100 for low-resource experiments with C as the source/target language; 20

3https://github.com/tree-sitter/tree-sitter
4https://docs.python.org/id/3.6/library/py_compile.html
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for experiments with PHP as source/target language; and 10 for other translation experiments. For example,
for each source code x in Java-Python translation, we generate 10 synthetic samples based on the policy,
thus, 4, 811 × 10 = 48, 110 (based on Table 6) input-output pairs are used in total to train PPOCoder for
the Java-Python translation. We also set the maximum number of epochs as 15, and the maximum source
and target sequence lengths to 400 for all code translation tasks on XLCoST.

B.3 Program Synthesis
We conduct program synthesis experiments on the APPS dataset with the pair of NL problem descriptions
and Python programs in three difficulty levels: Introductory, Interview, and Competition. In the program
synthesis experiments, GPT-3 and Codex baselines are tested on the APPS dataset in the few-shot settings
without finetuning, while other baselines are finetuned on the APPS with the cross entropy loss. The
PPOCoder +CodeT5 is also initialized from the finetuned CodeT5 on the APPS program synthesis. We use
the pass@k metric to evaluate the functional correctness of a program, where a code is considered correct if
it successfully passes all unit tests designed for the specific problem. In the PPOCoder’s implementation, we
use discount rate γ = 1, KL divergence penalty coefficient β = 0.05, policy ratio clip range ϵ = 0.2, and the
value error coefficient α = 0.001. To sample synthetic hypothesis from the stochastic policy, we use the top-k
sampling with k = 5 as the action space size. We are training PPOCoder +CodeT5 with num_samples = 5
as the number of synthetic samples used for each APPS problem. In all the program synthesis experiments on
APPS, we set the maximum source and target sequence lengths as 600 and 512, and the maximum number
of epochs as 8. We have also evaluated performance of PPOCoder on the MBPP dataset in a zero-shot
setting. We compared the zero-shot performance with GPT and CodeT5 models finetuned on MBPP for 60
epochs with maximum source and target sequence lengths of 400.

C Additional XLCoST Dataset Details
We are using the XLCoST 5 (Zhu et al., 2022a) dataset for code translation experiments with different
language pairs among six parallel PLs (C++, Java, Python, C#, PHP, and C). XLCoST has been created by
scraping solutions off the popular programming tutorial and interview preparation website GeeksforGeeks6.
This kind of multilingual parallel data is perfect for training translation models. The dataset statistics are
provided in Table 5. This dataset is parallel at both program snippet and full program levels. The upper
triangle of Table 5 summarizes snippet-level statistics, and the lower triangle summarizes the program-level
statistics. For the purpose of our experiments in the evaluation of syntactic/functional correctness, we only
use program-level data. It is noteworthy that all programs in this dataset do not successfully compile.
Therefore, in our experiments, we only use the compilable filtered parallel data in both source and target
language pairs. Our hypothesis is that using ground truth data that is free of compilation errors will provide
a stronger signal to PPOCoder for correcting syntactic errors than using the full data, which could also
contain flawed programs. To do so, we designed an automated compilation pipeline that evaluates which
programs in the dataset compile without any errors. Table 6 shows statistics of the compilable filtered
dataset for all languages (except JavaScript which is excluded due to the lack of compilation).

D Additional Ablation Experimetns
Fig. 4 shows the results of additional ablation experiments on the Python-C# translation task for different
reward terms, RL objective terms, action space size, and the number of synthetic samples.

E Case Studies
Fig. 5 shows an example of Java to C++ translation for both CodeT5 and PPOCoder +CodeT5. Similar
to the previous case, it can be observed that the compilation is improved by PPOCoder. For this example,
CodeT5’s translation has these issues: (1) CodeT5 generates a non-standard data type called subset which
takes in a pair of integers. The use of the non-standard data-type without importing it or defining it causes
a compilation error, while PPOCoder +CodeT5 generates the C++ translation using the correct vector
data-type corresponding to ArrayList in the source Java; (2) "Error: Local variable ’i’ referenced before

5https://github.com/reddy-lab-code-research/XLCoST
6https://www.geeksforgeeks.org
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Table 5: dataset statistics. The upper triangle (in bold font) shows the number of parallel code snippets,
and the lower triangle shows the number of parallel programs. JS is short for Javascript.)

Lang C++ Java Py C# JS PHP C

C++
train – 89040 80100 85662 69507 17811 3386
val – 4419 3913 4408 3808 923 352
test – 8059 7228 7922 6965 1647 222

Java
train 9450 – 77759 87065 69341 17853 2996
val 490 – 3938 4437 3826 929 353
test 901 – 7259 8011 7005 1672 238

Py
train 9139 8991 – 75843 67219 17616 2478
val 468 471 – 3922 3750 923 311
test 878 882 – 7215 6861 1655 203

C#
train 9187 9301 8826 – 68093 17873 2958
val 488 491 470 – 3826 928 352
test 890 898 877 – 6961 1668 238

JS
train 8482 8470 8182 8367 – 17117 1875
val 472 475 459 475 – 921 309
test 878 881 864 877 – 1617 200

PHP
train 3056 3068 3003 3071 2971 – 856
val 157 158 153 158 157 – 271
test 303 307 304 307 302 – 183

C
train 402 409 380 394 308 170 –
val 59 59 59 59 59 55 –
test 45 49 48 49 49 43 –

Table 6: dataset statistics after filtering for compilable programs. Javascript is excluded.

Lang C++ Java Python C# PHP C

C++
train – – – – – –
val – – – – – –
test – – – – – –

Java
train 5251 – – – – –
val 266 – – – – –
test 520 – – – – –

Python
train 5325 4811 – – – –
val 266 250 – – – –
test 529 496 – – – –

C#
train 5464 5081 5027 – – –
val 279 262 259 – – –
test 553 513 529 – – –

PHP
train 1758 1595 1785 1764 – –
val 91 85 93 92 – –
test 192 176 201 197 – –

C
train 233 191 169 204 92 –
val 34 34 32 34 33 –
test 28 28 24 29 26 –

assignment": for loop index is “j” but “i” is used later; and (3) "Error: Invalid Syntax" for missing "(" when
calling the function.

Fig. 6 presents a case study of PHP to Python translation for both CodeT5 and PPOCoder +CodeT5
models. We can observe that CodeT5 is unable to translate the code without compilation errors, and the
use of PPOCoder enhances CodeT5’s capability of generating compilable code in the target language while
preserving the code fluency and distributions learned by the pretrained CodeT5. For this example, CodeT5
faces some problems: (1) “Error: Invalid Syntax": The “for” loop should start from next line ; (2) “Error:
Local variable ’i’ referenced before assignment." The for loop index is “j” but index "i" is called in the for
loop; and (3) Semantic Relations: The equivalent of PHP_INT_MAX may be 1000 (or sys.maxsize) in
Python but CodeT5 translates it to int(n/2) which is wrong.

We also looked into an example of program synthesis from APPS. Fig. 7 illustrates a case study of Python
program synthesis for a problem description given in NL. Although both CodeT5 and PPOCoder +CodeT5
generate compilable programs, CodeT5’s generation cannot pass some hidden unit tests that capture different
corners of the problem. These two generated codes are different in the highlighted places. As we can see,
the CodeT5’s generation (1) initializes the 2D array ‘dp’ with ones on both dimensions instead of zeros on
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Figure 4: Ablation experiment results on Python-C# translation with different configurations of (a) reward,
and (b) loss, (c) action space size, and (d) number of synthetic samples.

one dimension; and (2) the for loop inside the nested loop uses the condition k >= j instead of the correct
condition k <= j. Although these differences do not produce any compilation errors, they result in logical
errors and cause unit tests to fail.
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Figure 5: Case study example for Java-C++ code translation. The erroneous snippets are highlighted in
red.
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Figure 6: Case study example for PHP-Python code translation. The erroneous snippets are highlighted in
red.
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Figure 7: Case study example of APPS for Program Synthesis (NL2Code). The problematic snippets are
highlighted in red.
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