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Abstract

Sensitivity analyses reveal the influence of various modeling choices on the outcomes of statistical
analyses. While theoretically appealing, they are overwhelmingly inefficient for complex Bayesian
models. In this work, we propose sensitivity-aware amortized Bayesian inference (SA-ABI), a
multifaceted approach to efficiently integrate sensitivity analyses into simulation-based inference
with neural networks. First, we utilize weight sharing to encode the structural similarities between
alternative likelihood and prior specifications in the training process with minimal computational
overhead. Second, we leverage the rapid inference of neural networks to assess sensitivity to data
perturbations and preprocessing steps. In contrast to most other Bayesian approaches, both steps
circumvent the costly bottleneck of refitting the model for each choice of likelihood, prior, or data
set. Finally, we propose to use deep ensembles to detect sensitivity arising from unreliable approx-
imation (e.g., due to model misspecification). We demonstrate the effectiveness of our method in
applied modeling problems, ranging from disease outbreak dynamics and global warming thresh-
olds to human decision-making. Our results support sensitivity-aware inference as a default choice
for amortized Bayesian workflows, automatically providing modelers with insights into otherwise
hidden dimensions.

1 Introduction

Statistical inference aims to extract meaningful insights from empirical data through a series of analytical procedures.
Acknowledging that each of these procedures involves a myriad of implicit choices and assumptions, any single
analysis hides an iceberg of uncertainty (Wagenmakers et al., 2022). We consider sensitivity analysis as a formal
approach to shed light on this very iceberg of uncertainty.

For instance, global warming forecasts can change depending on the assumed earth system model. In other words:
Climate change analyses can be sensitive to the underlying observation model (i.e., likelihood; see Experiment 2). Yet,
the likelihood is not the only model component that can induce sensitivity. The prior assumptions, the approximation
algorithm, and the specifics of the collected data contribute further uncertainty to the results (Bürkner et al., 2022).
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Figure 1: Our proposed approach for sensitivity-aware amortized Bayesian inference (SA-ABI). Stage 1: During
training, a distribution p(CL, CP ) over plausible likelihood and prior choices is encoded via context variables CL

and CP in a deep ensemble of neural approximators. Stage 2: During inference, we cast costly model refits as a
near-instant neural network prediction task conditioned on user-specified context C. Our amortized neural approach
unlocks fast large-scale sensitivity analyses of all components in a Bayesian model: likelihood (CL), prior (CP ),
data (CD), and approximator (CA). Experiment 3 uses V = 8 100 variations in prior and data alongside M = 20
deep ensemble members. The resulting amortized sensitivity analysis encompassing V · M = 162 000 approximate
posteriors would have been infeasible with existing methods.

Classical sensitivity analyses rely on costly model refitting under each configuration and quickly become infeasible
for both likelihood-based (e.g., MCMC; Neal, 2011) and simulation-based inference (SBI, Cranmer et al., 2020).

Recently, SBI methods have been accelerated through amortized Bayesian inference (ABI; Radev et al., 2020;
Gonçalves et al., 2020; Avecilla et al., 2022), where neural networks learn probabilistic inference tasks and com-
pensate for the training effort with rapid inference on many unseen data sets. As we demonstrate in this paper, this
directly enables a large-scale assessment of data sensitivity. However, assessing likelihood, prior, and approxima-
tor sensitivity remains extremely challenging in standard ABI applications, which may be costly to train even for a
single configuration. To address this gap, we investigate sensitivity-aware amortized Bayesian inference (SA-ABI)
and demonstrate that it unlocks highly efficient and multifaceted sensitivity analyses in realistic ABI applications
(cf. Figure 1). Our main contributions are:

1. We conceptualize sensitivity via implicit context variables and integrate established methods for sensitivity
analysis into amortized Bayesian inference;

2. We investigate a context-aware neural architecture to quantify likelihood and prior sensitivity at inference
time with minimal computational overhead and no notable loss of accuracy;

3. We assess approximator sensitivity via deep ensembles and data sensitivity via the near-instant ABI inference;
4. We demonstrate the utility of SA-ABI for Bayesian parameter estimation as well as Bayesian model compar-

ison in three real-world scenarios of scientific interest, investigating sensitivity under up to 162 000 configu-
rations.

2 Background

What follows is a brief overview of Bayesian parameter estimation, model comparison, amortized Bayesian inference,
and learnable summary statistics. Readers familiar with these topics can safely jump directly to Section 3.

2.1 Bayesian Inference

Bayesian Parameter Estimation In Bayesian parameter estimation, the key quantity is the posterior distribution,

p(θ |x) = p(x |θ)p(θ)
p(x) , (1)
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which combines the likelihood p(x |θ) with prior information about parameter distributions p(θ), normalized by the
(analytically intractable) marginal likelihood p(x).

Bayesian Model Comparison In many scientific applications, no single generative model can provide the ultimate
explanation for a data set x. Instead, a set of models M = {M1,M2, . . . ,MJ} is plausible. Bayesian model
comparison aims to find the “best” model within M. In (prior-predictive) Bayesian model comparison, a model’s
marginal likelihood p(x | Mj) now takes the central role:

p(x | Mj) =
∫
p(x |θ,Mj) p(θ | Mj) dθ. (2)

Marginalizing the likelihood over the parameter space automatically encodes Occam’s razor through a preference
for models with limited prior predictive flexibility (MacKay, 2003). The posterior model probabilities of competing
models can be computed as

p(Mj |x) = p(x | Mj) p(Mj)∑
M p(x | M) p(M) , (3)

where p(M) is the prior distribution over the model space.

2.2 Simulation-Based Inference

Both Bayesian parameter estimation and model comparison have traditionally been limited by the ability to efficiently
evaluate a model’s likelihood density p(x |θ). Likelihood-based methods (e.g., MCMC) assume that the distributional
family of the likelihood is explicitly known and can be evaluated analytically or numerically for any pair (x,θ).
Differently, simulation-based approaches only require simulations from a simulation program G,

x = G(θ, ξ) with ξ ∼ p(ξ |θ),θ ∼ p(θ), (4)

with latent program states or “outsourced” noise ξ. A single execution of such a program corresponds to generating
samples from the Bayesian joint model (θ,x) ∼ p(θ,x), since the execution paths of the simulation program define
an implicit likelihood (e.g., Cranmer et al., 2020; Diggle & Gratton, 1984; Marin et al., 2012)

p(x |θ) =
∫
δ(x−G(θ, ξ)) p(ξ |θ) dξ, (5)

where δ is the Dirac delta function. However, the above equation (5) is analytically intractable for any simulation
program of practical interest, turning simulation-based inference into a computational challenge.

2.3 Amortized Bayesian Inference

Amortized Bayesian inference (ABI) leverages simulations from G to solve Bayesian inference tasks with neural
networks in real time after an initial training phase. To achieve this, neural networks learn to encode the relationship
between simulated data and model states during training. As a result, costly probabilistic inference is replaced with a
neural network prediction task. For parameter estimation, generative neural networks act as conditional neural density
approximators of the parameter posterior p(θ |x) (Greenberg et al., 2019; Radev et al., 2020). Model comparison, on
the other hand, can be framed as a probabilistic classification problem which is addressed with discriminative neural
networks to approximate posterior model probabilities p(M |x) (Pudlo et al., 2016; Radev et al., 2021a).

2.4 End-to-end Summary Statistics

Common neural density estimators hinge on fixed-length vector-valued inputs – a requirement that is violated by
widespread data formats such as sets of i.i.d. observations or time series. To this end, previous research explored
ways to learn end-to-end summary statistics for flexible adaption to the individual data structure and inference task
(Chan et al., 2018; Wiqvist et al., 2019; Radev et al., 2020; Chen et al., 2020; 2023). In a nutshell, a summary
network hψ compresses input data x of variable size to a fixed-length vector of learned summary statistics hψ(x) by
exploiting probabilistic symmetries in the data (e.g., permutation-invariant networks for exchangeable data; Bloem-
Reddy & Teh, 2020). The resulting embedding is fed to an inference network fϕ that approximates the posterior (e.g.,
with a conditional normalizing flow). The summary network hψ and the inference network fϕ are simultaneously
trained end-to-end in order to learn optimal summary statistics for the inference task.
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3 Methods

3.1 Extending the Amortization Scope

Sensitivity Sources as Context Variables The PAD framework (Bürkner et al., 2022) defines a Bayesian model as a
combination of the joint Probability distribution p(θ,x | M), which can be factorized into likelihood p(x |θ,M) and
prior p(θ | M), the posterior Approximator, and the observed Data xobs. Building on this decomposition, we define
sensitivity to a component of a Bayesian model as the extent of change in inferential results induced by perturbations
in any of these components (Bürkner et al., 2022). We will refer to the opposite of sensitivity as robustness: When an
inference procedure is robust, it is not sensitive to changes in model components.

To enable systematic and comprehensive investigations of sensitivity, we consider sources of perturbations as context
variables that implicitly shape inferential results (see Figure 1) and can be cheaply varied as conditioning variables (or
hyperparameters) in our simulation-based approach. In contrast, standard Bayesian workflows treat context variables
as fixed and thus cannot typically investigate their effect explicitly without re-doing the entire analysis.

In the following, we denote context variables as CL (likelihood), CP (prior), CA (approximator), CD (data), and refer
to the entirety of context variables as C = (CL, CP , CA, CD). Accordingly, we refer to posteriors with explicitly
encoded context variables as p(θ |x, C) for parameter estimation and p(Mj |x, C) for model comparison.

Sensitivity-Aware Training Before discussing key facets of practical sensitivity analysis, we describe extensions to
standard simulation-based training that allow these analyses to be performed efficiently. Specifically, we eliminate the
necessity of retraining neural approximators for every aspect of a sensitivity analysis by incorporating the Training
contexts CT = (CL, CP ) into the network’s amortization scope (Radev, 2021). Since we realize CA via deep en-
sembles and CD only during inference (see Section 3.2), neither of these contexts influences the training objective of
single ensemble members.

For sensitivity-aware parameter estimation (PE), we incorporate the contextCT into the standard negative log-posterior
objective via

LPE(ϕ,ψ;CT ) = E
[

− log qϕ(θ |hψ(x), CT )
]
. (6)

The expectation E is here taken over a contextualized joint Bayesian model p(θ,x |CT ), which produces tuples of
training parameters and corresponding data (θ,x) for the given context CT .

Analogously, for sensitivity-aware Bayesian model comparison (BMC), we can target the approximate posterior model
probability qϕ(M |hψ(x), CT ) via the cross-entropy

LBMC(ϕ,ψ;CT ) = E
[

−
J∑

j=1
IMj

log qϕ(Mj |hψ(x), CT )
]
, (7)

where the expectation E is taken with respect to a contextualized generative mixture of Bayesian models
p(Mj |CT ) p(x | Mj , CT ) producing tuples of model indices and associated simulated data (Mj ,x). The indica-
tor function IMj

denotes a one-hot encoding for the true model index, i.e., IMj
= 1 if Mj is the true model.

To achieve the desired amortization over any set of context variables CT , we define a prior distribution p(CT ) over the
domains of CT and minimize the context-aware (CA) loss:

LCA(ϕ,ψ) = E
[
L(ϕ,ψ;CT )

]
, (8)

where the (outer) expectation runs over p(CT ) and L can be either LPE or LBMC. We believe that uniform distributions
are a reasonable choice of p(CT ) for sensitivity analyses and employ them in all experiments. Nevertheless, p(CT )
can be tailored to specific modeling needs, such as giving more weight to approximating a preferred baseline setting.
In practice, we approximate Eq. 8 using standard mini-batch gradient descent over a finite data set D = {CT ,θ,x}
for parameter estimation, or D = {CT ,Mj ,x} for model comparison.

Our approach seamlessly generalizes to other strictly proper losses (Gneiting & Raftery, 2007) which can be used as
training objectives for amortized inference (Pacchiardi & Dutta, 2021). For the sake of generality, we can introduce
a function S that quantifies the fidelity of a conditional distribution qϕ ∈ Q for predicting a target quantity y ∈ Y
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Table 1: Overview of our taxonomy for sensitivity in Bayesian inference via context variables. The rightmost column
conveys that our context-aware (CA) loss function LCA in Eq. 8 enables the amortization over both likelihood (CL)
and prior (CP ) contexts during training.

Context Sensitivity source example Implementation LCA required?

CL Likelihood Structural model assumptions Multiple simulator configurations ✓
CP Prior Expert knowledge Multiple prior configurations ✓
CA Approximator Simulation gaps Deep ensemble ✗
CD Data Influential observations Multiple data configurations ✗

(Gneiting & Raftery, 2007). Thus, S : Q × Y → R is a function of some qϕ and y (e.g., θ or Mj) which can easily
be written to incorporate arbitrary conditions for qϕ, such as summarized data hψ(x) and context CT , resulting in
S(qϕ(y |hψ(x), CT ),y). Ideally, we would like to treat the expected score as an optimization objective

L(ϕ,ψ;CT ) = Ep∗(x,y)

[
S(qϕ(y |hψ(x), CT ),y)

]
, (9)

which for strictly proper scoring functions S would guarantee qϕ(y |hψ(x), CT ) = p∗(y |x) under perfect conver-
gence (Gneiting & Raftery, 2007; Pacchiardi & Dutta, 2021). However, we usually cannot directly access the analytic
expectation over the unknown true data-generating distribution p∗(x,y). Thus, to achieve tractable amortization, we
use the model-implied distribution p(x,y | M) as a proxy for the (unknown) true data generating process p∗(x,y)
and optimize the former objective in expectation over the simulator outputs (i.e., one or more Bayesian probabilistic
models).

With this expansion of the amortization scope, we achieve amortization across all sensitivity dimensions C =
(CL, CP , CA, CD) during inference. What that means in practice is that, at inference time, we can simply “turn
a knob” on any of the sensitivity dimensions and obtain the resulting posterior in an instant. A natural question
that immediately arises is whether the resulting sensitivity-aware posterior is less accurate than the corresponding
fixed-context posterior. Intuitively, the answer depends on the sampling diversity of the contextualized joint model
p(x,y, CT ) and the potential for reaping the benefits of weight sharing: If the associated likelihood and prior varia-
tions instantiate generative models with wildly different behaviors, weight sharing may not be advantageous, resulting
in diminishing returns from amortized training over the context variables CT . Fortunately, the set of plausible choices
for a given modeling problem typically leads to similar generative patterns, so that weight sharing is much more effi-
cient than separate approximation. Indeed, our experiments demonstrate this for several representative model families
even under small simulation budgets. Nevertheless, if amortization over very different simulators is desired, we rec-
ommend increasing the expressiveness of the neural approximator, the simulation budget, and the allotted training
time. The following section describes sensitivity sources and actionable manipulation strategies for each sensitivity
dimension (see Table 1 for an overview).

3.2 Sources of Sensitivity

Likelihood and Prior Sensitivity Varying likelihood context variables are ubiquitous in simulation-based inference.
Structural decisions within the simulator(s) may constitute context variables (e.g., the underlying scientific model, see
Experiment 2) or exogenous experimental factors, such as design matrices, indicator variables, or time scales. Typical
examples for prior context might be as simple as the scales of prior distributions, or as complex as different experts
eliciting discrete sets of qualitative (e.g., non-probabilistic) domain knowledge. Moreover, both likelihood and prior
can be continuously tempered to strengthen or weaken their influence. For example, power-scaling exponentiates
densities with a parameter γ > 0, resulting in p(θ)γ for prior power scaling and p(y |θ)γ for likelihood power scaling
(Kallioinen et al., 2021).

We make all known pieces of likelihood and prior context explicit by incorporating CL and CP into the generative
model. This enables amortization over these context variables, which drastically increases the generalization space of
the trained neural approximator. During inference, the specific set of likelihood and prior can simply be selected by
passing the respective CL and CP configurations. Amortization over the context space leverages structural similarities
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between context configurations via weight sharing. Compared to separate training, this minimizes the associated
computational cost and is especially beneficial whenever only finite training data is available (see Experiment 2).

Approximator Sensitivity We define approximator sensitivity as the variability of inferential results due to the ap-
proximation method employed. To isolate approximator sensitivity in ABI, it seems helpful to (i) distinguish between
a closed world (i.e., simulations) and open world (i.e., empirical data) setting; and (ii) realize an approximator context
CA via a deep ensemble of M equally configured and independently trained neural networks {(ϕ(m)),ψ(m)}M

m=1. 1

In the closed-world setting, ground truth values for the approximation targets y (i.e., θ or Mj) are available. Thus,
we can readily validate amortized neural approximators on thousands of simulated data sets from the model(s) under
consideration. We propose to additionally measure performance variability between the ensemble members to detect
approximator sensitivity due to finite training or suboptimal convergence. After validating the approximator in the
closed world, we consider the open-world setting, where the true data-generating process is unknown.

As a simulation-based method, ABI assumes that simulations are a faithful representation of a system’s real behavior
(Dellaporta et al., 2022). Hence, simulation gaps, where atypical data violate this assumption, threaten its credibility
(Schmitt et al., 2023; Cannon et al., 2022). Simulation gaps can be considered to cause an out-of-distribution (OOD)
setting at inference time: For example, Cannon et al. (2022) observed that misspecification-induced simulation gaps
result in neural approximators exhibiting the typical OOD behavior of unstable predictions (Ji et al., 2022; Shamir
et al., 2021; Liu et al., 2021). Therefore, we can leverage the proven OOD detection capabilities of deep ensembles
(Lakshminarayanan et al., 2017; Fort et al., 2019; Yang et al., 2022) to detect simulation gaps in ABI. Specifically, we
hypothesize that variability across the M ensemble members in the open world despite consistent performance in the
closed world indicates a simulation gap. Concretely, we expect a simulation gap to translate into high variability in
the predictive distribution of the unknown targets y given empirical data xobs,

q̃(y |xobs) = Ep(ϕ,ψ | D) [qϕ(y |hψ(xobs))] (10)

which is approximated by the deep ensemble (Lakshminarayanan et al., 2017) and can be augmented with arbitrary
context CT .

When we train a deep ensemble with M members, we clearly need to repeat the training loop M times. Crucially
though, we can simulate a single training set upfront and then re-use the simulated training data for all ensemble
members. This not only reduces the stochastic dependence by keeping the training data constant but also drastically
reduces the computational cost in most realistic tasks where simulations are expensive. Finally, our ensemble approach
can be easily extended to combine information from all ensemble members for potentially more accurate inference
(e.g., via simulation-based stacking, Yao et al., 2023) or investigate hyperparameter sensitivity via hyperparameter
ensembles (Wenzel et al., 2020). Hyperparameters that are particularly relevant in SBI include the architecture of
the summary network (e.g., inductive bias induced by the architecture, number of learned summary statistics), the
choice of inference network (e.g., architecture, number of trainable weights), and common hyperparameters that are
ubiquitous in deep learning (e.g., learning rate, regularization).

Data Sensitivity Statistical inference relies on finite samples to draw conclusions about populations. As such, any
analysis is influenced by the properties of this particular sample. For instance, analysis outcomes might radically
change under different preprocessing choices, such as handling extreme or missing data points, even if these choices
only affect a small subset (Simmons et al., 2011; Broderick et al., 2023).

There are two straightforward strategies to assess this data sensitivity: (i) To assess a disproportionally large influence
of single data points (also known as influential observations), a context CD of alternative data manifestations can be
realized via small perturbations of the empirical data set, for instance via bootstrapping or leave-one-out folds; (ii)
to analyze the effect of specific preprocessing decisions, we can generate data set variations for all combinations of
reasonable decisions, which in turn constitutes CD. For example, Kristanto et al. (2024) identify 17 debatable prepro-
cessing steps with 102 choice options in graph-based fMRI analysis, resulting in hundreds of potential manifestations
of the final data set.

1Although Bayesian neural networks offer appealing uncertainty quantification properties, we focus on deep ensembles for their practical
implementation advantages (Lakshminarayanan et al., 2017; Wilson & Izmailov, 2020).
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Both strategies require a large amount of model refits, which is computationally infeasible for MCMC or non-
amortized simulation-based approximators. In contrast, ABI methods can amortize across data sets of variable sizes
(Radev et al., 2020), enabling rapid inference on a large number of data set variations.

3.3 Evaluating Sensitivity

Quantitative Sensitivity We can easily quantify sensitivity via a divergence metric D between target probability
densities (Kallioinen et al., 2021; Roos et al., 2015): For an acceptable upper bound ϑ based on domain knowledge, a
model is robust if

D
[
p(g(y) | x, Ci)

∣∣∣∣ p(g(y) | x, Cj))
]
< ϑ, (11)

for arbitrary context realizations Ci and Cj , where g(y) is a pushforward variable (e.g., predicted quantities) or a
projection of the full target posterior onto a subset y′ ⊆ y.

Measures from the family of F-divergences offer principled metrics for D (Csiszár, 1964; Ali & Silvey, 1966; Liese
& Vajda, 2006). In Bayesian model comparison, the model posterior containing the probabilities for each Mj follows
a discrete categorical distribution. Thus, obtaining F-divergences, such as the KL divergence, is straightforward (see
Experiment 3, Figure 5b). In Bayesian parameter estimation, the posterior is typically not available as a closed-form
density but as random draws. Thus, we prefer a probability integral metric, such as the maximum mean discrepancy
(MMD; Gretton et al., 2012), which can be efficiently estimated from posterior samples (see Bischoff et al., 2024, for
a recent discussion of other suitable choices).

Qualitative Sensitivity Although quantitative sensitivity patterns provide detailed insights, sensitivity analysis is of-
ten ultimately interested in qualitative robustness, i.e., invariance of analytical conclusions to the contextC (Kallioinen
et al., 2021; Bürkner et al., 2022). For instance, an analyst might ask whether two choices of context variables C1
and C2 contain a certain parameter value within a specified highest density interval (HDI), or lead to the selection of
the same model Mj . Making decisions based on a posterior distribution can be formalized via a decision function
L : P → A which maps distributions p ∈ P (or their approximations) to possible qualitative conclusions or actions
for a given problem a ∈ A. Formally, qualitative robustness is expressed with the indicator function

R(Ci, Cj) =
{

1 if L
(
p(y |x, Ci)

)
= L

(
p(y |x, Cj)

)
0 otherwise

(12)

which yields 1 if a conclusion is invariant to the choice of arbitrary context realizations Ci or Cj , and 0 otherwise.
Note that our definition trivially generalizes to more than two choices of context variables C.

4 Related Work

Extending the amortization scope Wu et al. (2020) proposed a variational inference (VI) algorithm that amortizes
over a family of probabilistic generative models. This meta-amortized VI approach learns transferable representations
and generalizes to unseen distributions within the amortized family. The dependence on an analytically tractable
likelihood function makes this approach inapplicable to simulation-based inference, while sequential approaches that
enable likelihood-free VI (Wiqvist et al., 2021; Glöckler et al., 2022) lack the amortization properties essential for
sensitivity analysis (see Table 2). Schröder & Macke (2023) perform amortized inference on a set of models by
combining model comparison and parameter estimation into a single mixture generative model. On a related note, Dax
et al. (2021) avoid training separate neural approximators for gravitational-wave parameter estimation by conditioning
on detector-noise characteristics. Our SA-ABI method integrates ideas from amortization scope extension in a unified
framework, enabling amortization over any plausible prior, likelihood, and data configurations while also assessing
approximator sensitivity.

Likelihood and prior sensitivity The posterior distribution clearly depends on the likelihood and prior, and a large
body of research has studied the sensitivity to both likelihood and prior (for an overview, see Insua & Ruggeri, 2012;
Depaoli et al., 2020). In non-amortized Bayesian inference, several approaches aim to avoid costly model refits by
estimating the effects of local likelihood or prior perturbations on a given posterior, for example, via the infinitesimal
jackknife (Giordano et al., 2018; 2019) or Pareto-smoothed importance sampling (Kallioinen et al., 2021). However,
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Table 2: Comparison of the suitability of posterior approximation methods for sensitivity analysis in Bayesian infer-
ence.

VI MAVI SNVI MCMC IJ IS ABI SA-ABI

Can handle intractable likelihoods ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓
Amortized likelihood & prior sensitivity ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Amortized data sensitivity ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

VI: Variational Inference; MAVI: Meta-Amortized Variational Inference; SNVI: Sequential Neural Variational Inference; MCMC:
Markov Chain Monte Carlo; IJ: Infinitesimal Jackknife; IS: Importance Sampling; ABI: Amortized Bayesian Inference; SA-ABI:
Sensitivity-Aware ABI (ours).

these approaches require an analytically tractable likelihood function and rather expensive refits to evaluate data sen-
sitivity. SA-ABI, in contrast, allows for a direct assessment of posteriors under different CL and CP contexts while
eliminating likelihood tractability restrictions and the computational burden of refits (see Table 2). Our approach al-
lows sensitivity analyses under drastic perturbations, which is not possible via established methods that rely on MCMC
and importance sampling (e.g., when the scaling factor γ approaches zero; Kallioinen et al., 2021). In Experiment 3,
we demonstrate how our method enables prior sensitivity analyses up to a scaling factor of γ = 0.1.

Approximator sensitivity Recent work has employed deep ensembles for posterior approximation (Balabanov et al.,
2023; Tiulpin & Blaschko, 2022) or, within the scope of simulation-based inference, for improving estimation perfor-
mance (Modi et al., 2023; Cannon et al., 2022), but not for quantifying the sensitivity induced by the approximation
procedure. Schmitt et al. (2023) developed a method to detect simulation gaps in amortized Bayesian parameter esti-
mation via out-of-distribution detection. We adopt a similar perspective on simulation gaps but focus on quantifying
the resulting sensitivity in both parameter estimation and model comparison based on the variability of ensemble mem-
bers. Beyond the identification of simulation gaps, SA-ABI has the crucial advantage of directly assessing the real-life
impact of a simulation gap in terms of unreliable approximation.

Data sensitivity The fact that analyses are sensitive to the input sample (i.e., data sensitivity) has wide-ranging im-
plications across the sciences. First, the immoderate influence of single data points is closely related to traditional
notions of robustness and simulation-based solutions thereof (Huang et al., 2023; Ward et al., 2022). Framed as a
hostile scenario, adversarial attacks intend to exploit data sensitivity (Goodfellow et al., 2015; Biggio et al., 2012;
Baruch et al., 2019), and adversarial robustness tries to prevent this (see Glöckler et al., 2023, for an ABI applica-
tion). Second, the sensitivity to different preprocessing choices is directly linked to the reproducibility crisis in the
empirical sciences (OSC, 2015; Wicherts et al., 2016). To render this sensitivity tangible, Steegen et al. (2016) intro-
duced the multiverse analysis, which repeats an analysis across all alternatively processed data sets. The concept of
a holistic analysis across plausible data configurations has been continually extended but is typically restricted by the
computational feasibility of large-scale refits (Hall et al., 2022; Liu et al., 2020) or to specific estimation procedures
(Broderick et al., 2023). In summary, our sensitivity-aware method unlocks (i) near-instant analyses of data sensitivity
and adversarial susceptibility; and (ii) rapid multiverse analyses across a wide space of data processing decisions.

5 Experiments

In the following, we demonstrate the utility of our SA-ABI approach on applied, real-data modeling problems of
COVID-19 outbreak dynamics (Experiment 1; prior sensitivity), climate modeling (Experiment 2; prior and like-
lihood sensitivity), and human decision-making (Experiment 3; prior, approximator, and data sensitivity). In each
experiment, we first ensure the trustworthiness of SA-ABI by benchmarking it against standard ABI as the state-of-
the-art approach for amortized inference on simulation-based models. Afterward, we use our validated approach to
obtain insights into sensitivity-induced uncertainties that would have been hardly feasible with existing methods.

All implementations use the BayesFlow library for amortized Bayesian workflows (Radev et al., 2023b). Details for
all experiments, such as model setup, network architecture and training, and additional results are available in the
Supplementary Material.
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Table 3: Experiment 1: Benchmarking approximation quality and time between standard ABI and SA-ABI (ours).

Simulation Method MAE ↓ ECE ↓ PC ↑ Time by # of priors ↓
budget (± SD) (± SD) (± SD) 1 3 1 000

212 = 4 096 ABI 5.63 ± 0.07 0.009 ± 0.0001 0.27 ± 0.05 2min 6min 1 876min
SA-ABI 5.69 ± 0.06 0.005 ± 0.001 0.28 ± 0.01 2min 2min 22min

214 = 16 384 ABI 5.42 ± 0.04 0.008 ± 0.001 0.38 ± 0.006 6min 17min 5 557min
SA-ABI 5.53 ± 0.05 0.006 ± 0.002 0.35 ± 0.005 6min 6min 26min

216 = 65 536 ABI 5.37 ± 0.005 0.01 ± 0.001 0.40 ± 0.007 21min 62min 20 721min
SA-ABI 5.44 ± 0.006 0.009 ± 0.001 0.39 ± 0.01 21min 21min 41min

Note. SD = Standard Deviation. MAE = Mean Absolute Error. ECE = Expected Calibration Error. PC = Posterior Contraction.
Metrics are evaluated on the prior scaling setting γ = 1.0 with N = 1 000 held-out data sets and averaged over ensembles of size
M = 2 for each method. Thus, SDs reflect the within-ensemble variability. Total times for training and inference for M = 1 are
reported (extrapolated for 1 000 prior sensitivity evaluations).
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Figure 2: Experiment 1. (a) All parameters obtained by SA-ABI are well-calibrated over the full context space
CP . (b) The bivariate posterior of best recoverable parameters λ and ψ indicates substantial sensitivity in terms of
uncertainty reduction for ψ, but (c) the posterior predictive distribution appears robust (overlapping median prediction
lines and 90% CIs).

5.1 Experiment 1: COVID-19 Outbreak Dynamics

We set the stage with a straightforward example: Modeling the very early stage of a disease outbreak via a SIR model
(Dehning et al., 2020). We demonstrate that obtaining amortized prior sensitivity insights does not compromise the
approximation performance compared to standard ABI with the same fixed simulation budget. We adopt the simulation
model from Radev et al. (2021b) and use a comparable neural network architecture specialized for time-series data.
During training, we use power-scaling, that is, element-wise exponentiation p(θ)γ , to amortize over different priors.
We sample the scaling factors in log space, γ ∼ exp(U(log(0.5), log(2.0))), to ensure equal amounts of widening and
shrinking. Thus, the prior context CP comprises a vector of scaling powers γ for each of the model parameters.

We first benchmark our SA-ABI approach against individual ABI instances trained solely on the tested baseline setting
γ = 1.0. This allows us to determine the performance trade-off for the amortization scope expansion over CP . Table 3
shows mostly comparable performance of our SA-ABI approach and individual ABI instances with only little trade-
offs across all simulation budget settings, despite SA-ABI spending only a fraction of the simulation budget on the
tested settings. The small variability within the deep ensembles further indicates approximator robustness in the
simulated setting. Lastly, Table 3 highlights the time advantage of our method even for sensitivity analyses that only
consider CP .

Figure 2 shows the prior sensitivity results of our SA-ABI approach for the medium simulation budget of N = 214 =
16 384 simulations: Complementing the low calibration error in the benchmark setting without prior scaling, we also
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Table 4: Experiment 2: Benchmarking approximation quality and
time between standard ABI and SA-ABI (ours) in a limited data set-
ting.

Method MAE ↓ ECE ↓ PC ↑ Time ↓
(± SD) (± SD) (± SD)

ABI 4.2 ± 1.1 0.08 ± 0.07 0.980 ± 0.004 313min
SA-ABI 3.8 ± 1.3 0.04 ± 0.04 0.982 ± 0.015 67min

Note. SD = Standard Deviation. MAE = Mean Absolute Error. ECE = Ex-
pected Calibration Error. PC = Posterior Contraction. Metrics are averaged
over test data from all emission scenarios × climate model settings, resulting
in 18 combinations with a total of N = 2 916 held-out data sets. Thus, SDs
reflect the variability of 18 individual results per method and metric. Total
times for training and inference are reported. All networks use the uninfor-
mative prior context.

observe excellent calibration over the full prior space CP in Figure 2a. The bivariate posteriors for the two parameters
with the best recovery (i.e., transmission rate and noise dispersion) unveil that prior sensitivity only affects the noise
dispersion (see Figure 2b). Despite prior sensitivity in terms of parameter recoverability, model-based predictive
performance is robust to prior scaling (see Figure 2c).

5.2 Experiment 2: Climate Trajectory Forecasting

In this experiment, we study whether model-based global warming forecasts are sensitive to the underlying climate
model, emission scenario, and prior specification. Climate models estimate the solutions of differential equations for
the fluid dynamics and thermodynamics of atmosphere, ocean, ice, and land masses. Since single forecasts can heavily
depend on initial conditions, assumed emission scenarios, and the chosen climate model, modern global warming
estimates build on a multitude of simulated trajectories (Riahi et al., 2017; Zelinka et al., 2020; Joshi et al., 2011).

However, trajectories simulated from climate models typically start in pre-industrial times, are not explicitly condi-
tioned on any information since 1850, and are only available in a limited number. In their pioneering work, Diff-
enbaugh & Barnes (2023) combine neural networks trained on simulated trajectories with recent observational data
to predict global warming trends and forecast when critical thresholds are reached. Here, we demonstrate the utility
of our approach for efficiently assessing the sensitivity of model-based predictions in terms of qualitatively different
assumptions regarding the underlying models, emission scenarios, and prior distributions.

Given a high-dimensional spatial observation dataset of surface temperatures (see Figure 3b, right), we are inter-
ested in temperature development predictions of different climate models under different future emission scenarios,
specifically the time until a global mean surface temperature threshold is exceeded. Framed as a Bayesian parameter
estimation task, we model the time-to-threshold θ and explicitly incorporate the climate model and an emission sce-
nario (i.e., SSP1-3) in a likelihood context CL. Furthermore, we encode a weakly informative prior θ ∼ U(−40, 41)
that encompasses the full range of values present in the training data vs. an informative Gaussian prior N+(10, 10),
truncated to positive values based on the IPCC sixth assessment report (Lee et al., 2021), in a prior context CP (see
Figure 3c. During training, the neural approximator learns to infer θ from simulated observations with the correspond-
ing context. For each training example, we extract the ground truth θ from later stages of the simulated trajectory
(see Figure 3b). At inference time, the network processes an unseen real observation xobs from the year 2023 with a
context that specifies an emission scenario, a climate model, and a prior configuration. The output is the contextualized
approximate posterior p(θ |xobs, C).

We reproduce the results of Diffenbaugh & Barnes (2023) without sacrificing predictive accuracy (see Supplementary
Material) and reveal sensitivity to the climate model. Further, Table 4 highlights the advantages of our joint training
method utilizing information from all context configurations via weight sharing, which is especially relevant in the
present limited data setting.
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(a) Sensitivity-aware global warming forecasts.
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Figure 3: Experiment 2. (a) Global warming forecasts are sensitive to the assumed climate model (rows) but not
the emission scenario (SSP; groups of rows) or the prior (dotted: weakly informative prior; solid: informative prior).
(b) Two examples of simulated observations from the climate model ACCESS-ESM1-5 (SSP-3) with known time-
to-threshold (training data) and the current empirical observation that we use for the forecasts. (c) Prior predictive
distributions of the weakly informative prior and the informative prior constituting the prior context CP .

Finally, we study the sensitivity of climate forecasts for a real-world question of societal impact: When will we
reach the 1.5◦C global warming threshold? As depicted in Figure 3a, the answer to this question is sensitive to
the underlying climate model but robust to the assumed emission scenario and informativeness of the prior. This
finding is in accordance with Hawkins & Sutton (2009) who argue that the delayed effects of emission scenarios are
unlikely to show on a short time scale such as the 1.5◦C average warming threshold.

5.3 Experiment 3: Hierarchical Models of Decision-Making

This experiment extends our method to Bayesian model comparison of complex hierarchical models with analytically
intractable likelihoods. The drift-diffusion model (DDM) is a popular stochastic model of decision-making widely
used in cognitive science and neuroscience (Ratcliff et al., 2016). Elsemüller et al. (2023) recently compared four
hierarchical models with ABI to test two proposed improvements of the DDM (referred to as M1): First, allowing
model parameters to vary between experimental trials (M3 and M4) and second, allowing for evidence accumulation
“jumps” via an additional parameter α (M2 and M4), which renders the likelihood function intractable.

Elsemüller et al. (2023) found clear evidence for inter-trial variabilities but unclear results concerning the utility of α.
In this experiment, we examine the sensitivity of these results to (i) the prior (via inference under 81 power-scaling
perturbations of the hierarchical prior on α), (ii) the approximator (via an ensemble of 20 equally configured neural
networks), and (iii) the data (via 100 bootstrap samples). Thus, our comprehensive sensitivity analysis is based on
162 000 posterior model probabilities that are challenging to recover even once using existing methods. We now use the
flexibility of our simulation-based approach to investigate the effects of shrinking and widening the hierarchical prior
on α up to a factor of 10 and thus sample theCP scaling factors during training from γ ∼ exp(U(log(0.1), log(10.0))).
The complexity of amortizing over the prior space is balanced by two aspects: While the scaling only affects the
hyperpriors of the additional α parameter in M2 and M4, scaling up to a factor of 10 leads to much more extreme
variations than the usual perturbations in likelihood-based settings of up to a factor of 2 (Kallioinen et al., 2021).

As before, we benchmark our SA-ABI approach against individual ABI instances trained solely on the tested baseline
setting γ = 1.0, that is, without varying CP during training. Despite amortizing over a wide CP range, we observe
little trade-offs in Table 5, with all ensemble members of both ABI and SA-ABI exhibiting near-perfect performance on
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Table 5: Experiment 3: Benchmarking approximation quality and time between stan-
dard ABI and SA-ABI (ours) in a model comparison setting.

Method MAE ↓ ECE ↓ Accuracy ↑ Time by # of priors ↓
(± SD) (± SD) (± SD) 1 1 000

ABI 0.012 ± 0.01 0.005 ± 0.002 0.99 ± 0.01 66min 66 349min
SA-ABI 0.017 ± 0.01 0.01 ± 0.002 0.985 ± 0.01 66min 415min

Note. SD = Standard Deviation. MAE = Mean Absolute Error. ECE = Expected
Calibration Error. Metrics are evaluated on the prior scaling setting γ = 1.0 with
N = 8 000 held-out data sets (2 000 per model) and averaged over ensembles of size
M = 20 for each method. Thus, SDs reflect the within-ensemble variability. Total
times for training and inference for M = 1 are reported (extrapolated for 1 000 prior
sensitivity evaluations).

M1 M2 M3 M4

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r 
m

od
el

 p
ro

ba
bi

lit
y Approximator 

M1 M2 M3 M4

Approximator & Prior 

M1 M2 M3 M4

Approximator & Data 

M1 M2 M3 M4

Approximator,  
 Prior & Data 

Figure 4: Experiment 3. Our sensitivity-aware posterior model probabilities indicate substantial approximator sensi-
tivity but robustness to additional prior scaling and data perturbations. Dots represent the original results by Elsemüller
et al. (2023).

simulated data. Strikingly, Figure 4 reveals highly inconsistent predictions of the ensemble members on the empirical
data (also for ABI, see Supplementary Material). 2 This stark discrepancy implies the presence of a simulation gap.
Indeed, contrasting the empirical data with the typical set of model simulations (Nalisnick et al., 2019; Morningstar
et al., 2021) in Figure 5a flags the empirical data as out-of-distribution for the deep ensemble. Further, Figure 4
shows a comparatively low sensitivity against perturbing the hierarchical prior on α or the empirical data, with the
medians under all perturbations close to the results by Elsemüller et al. (2023). Viewing deep ensemble predictions
as approximate Bayesian model averaging (Wilson & Izmailov, 2020), we can conclude that the original results hold,
but with substantial OOD uncertainty due to the simulation gap. A closer inspection of prior sensitivity in Figure 5b
reveals (i) quantitative sensitivity to wide specifications of the hierarchical location µα, which increases under narrow
specifications of the hierarchical scale σα, and (ii) qualitative sensitivity to settings of µα concerning the model with
the highest probability, M3.

6 Conclusion

We proposed SA-ABI, an approach for large-scale sensitivity analyses with a keen emphasis on managing uncertainty
in critical, high-impact scenarios. By leveraging amortized inference, our method causes minimal computational over-
head during inference and can be directly integrated into software toolkits for amortized Bayesian workflows (such
as Radev et al., 2023b; Tejero-Cantero et al., 2020). Future work should investigate more efficient approaches to
quantify approximator sensitivity, with specific attention to Bayesian neural networks (Izmailov et al., 2021). Ad-

2Recall that the approximation targets in Bayesian model comparison are (categorical) posterior model probabilities, not posterior distributions
over parameters. Thus, the variability shown in Figure 4 directly reflects the sensitivity caused by perturbing the respective model component(s).
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Figure 5: Experiment 3. (a) The learned summary statistics for the observed data are out-of-distribution (OOD)
relative to the typical set of summary statistics for the model simulations (both distributions marginalized over CP

and CA). (b) The posteriors are quantitatively sensitive to power-scaling of the prior location µα, as indexed by the
ensemble-averaged probability for M3 (left) as well as the KL divergence between the original results by Elsemüller
et al. (2023) vs. scaled model posteriors (right). Notable qualitative sensitivity is present mainly due to different µα

values.

ditionally, whereas arbitrary data and approximator configurations can be explored at any time, likelihood and prior
configurations have to be integrated into the training process. We believe that transfer learning (Bengio et al., 2009;
Zhuang et al., 2021) is a promising tool to resolve this constraint, unlocking further flexibility on all sensitivity facets.
We extend neural Bayesian inference (parameter estimation and model comparison) by amortizing over families of
probabilistic models, as characterized by context variables C. This drastically expands the amortization scope of the
employed neural approximators and constitutes a major leap towards foundation models for probabilistic (Bayesian)
inference. Follow-up research in this direction might further increase the probabilistic model space during the training
stage to facilitate near-universal amortized inference with pre-trained neural networks.
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Supplementary Material

A Frequently Asked Questions (FAQ)

Q: How can I reproduce the results?
Code for reproducing all results from this paper is freely available at https://github.com/bayesflow-org/
SA-ABI.

Q: Can I apply your sensitivity-aware approach to posterior predictive model comparison as well?
Yes! In this work, we focus on prior predictive model comparison, but our ideas directly apply to posterior predictive
metrics (Gelman et al., 2014), such as leave-one-out cross-validation (Vehtari et al., 2017). We recommend the joint
usage of a posterior and a likelihood network as proposed in Radev et al. (2023a) to achieve amortization in this
application.

Q: Are there limits to the distributional shapes that can be explored in CL and CP ?
The only requirement for distributions in the likelihood and prior context is being able to simulate data from the
resulting model. Besides that, SA-ABI gives modelers full flexibility in specifying any theoretically meaningful
alternative formulations without concerns about analytically tractable likelihoods, unlike MCMC methods.

Q: How exactly did you encode the context variables CL and CP in a suitable format for the neural network in
your experiments?
In Experiment 1 and Experiment 3, each prior distribution over a parameter is continuously tempered by power-
scaling. Consequently,CP is encoded by a vector holding the scaling factors for each prior component. In Experiment
2, both CL and CP consist of discrete choices and are therefore passed to the inference network in one-hot-encoded
vectors.

B Methods: Additional Details

B.1 Hypothesis Testing for Quantitative Sensitivity

We can employ a sampling-based (frequentist) hypothesis test to determine the probability of observed D(· || ·) esti-
mates (hitherto referred to as D̂) under the null hypothesis of zero difference between p(θ |x, Ci) and p(θ |x, Cj).
For this, we can construct an approximate sampling distribution of D̂ under the null hypothesis via bootstrap or per-
mutation tests based on multiple draws from p(θ |x, Ci). Based on the approximate sampling distribution, we can
then obtain a critical D̂ value for a fixed Type I error probability δ and compare it to the observed one. The power of
such a test will generally be high when having access to many draws from p(θ |x, Ci) and p(θ |x, Cj), a requirement
that is easily met in the context of ABI.

C Experiments: Implementation Details and Additional Results

C.1 Benchmarking Metrics

For the benchmarks conducted in Experiment 1 and Experiment 2, we measure three complementary performance
metrics on J unseen test data sets {D(j)

o }J
j=1 with known ground-truth parameters {θ(j)

∗ }J
j=1. For each data set D(j)

o ,

we obtain a set {θ(j)
s }S

s=1 of S posterior draws from the neural approximator qϕ(θ | D(j)
o ). We summarize each metric

into a single measure across all test data sets and parameters for a given neural approximator and test setting (e.g.,
γ = 0.5 in Experiment 1).
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We use the Mean Absolute Error (MAE) to measure the overall error between posterior draws θ(j)
s and ground-truth

parameters θ(j)
∗ :

MAE = 1
J

J∑
j=1

∣∣∣∣∣ 1
S

S∑
s=1

(
θ(j)

s − θ(j)
∗

)∣∣∣∣∣ . (13)

Further, we assess uncertainty calibration via the Expected Calibration Error (ECE). In Bayesian parameter estimation,
all uncertainty regions Uq(θ | D) of the true posterior p(θ | D) are by definition well-calibrated for any quantile
q ∈ (0, 1) (Bürkner et al., 2022), such that:

q =
∫∫

I[θ∗ ∈ Uq(θ | D)] p(D | θ∗) p(θ∗)dθ∗dD, (14)

with I[·] denoting the indicator function. Simulation-based calibration (SBC; Talts et al., 2018) measures miscalibra-
tion via deviations from this equality. We estimate the ECE via the median SBC error of 20 linearly spaced credible
intervals with quantiles of q ∈ [0.5%, 99.5%]. 3 Lastly, we measure Bayesian information gain via the median
Posterior Contraction (PC) across data sets, defined as 1 − Var(Posterior)/Var(Prior) (Betancourt, 2018).

C.2 Experiment 1: COVID-19 Outbreak Dynamics

Model Setup: We consider a simple SIR model where individuals are either susceptible, S, infected, I , or recovered,
R. Both infection and recovery are modeled with a constant transmission rate λ and recovery rate µ, respectively. The
model is described by a system of ordinary differential equations (ODEs),

dS

dt
= −λ

(
S I

N

)
, (15)

dI

dt
= λ

(
S I

N

)
− µ I, (16)

dR

dt
= µ I, (17)

with N = S + I + R denoting the total population size. In addition to the ODE parameters λ and µ, our model
includes a reporting delay parameterD and a noise dispersion parameter ψ, which jointly influence the (noisy) number
of reported infected individuals via

I
(obs)
t ∼ NegBinomial(I(new)

t−D , ψ), (18)

with I(new) = λ(StIt/N). The negative binomial distribution allows for modeling dispersion, i.e., variation of the
variability independent of the mean, which is considered likely for early phases of the COVID-19 pandemic (Blumberg
et al., 2014; Braumann et al., 2021). For our implementation, we transform the parameterization in Equation 18 with
mean I

(new)
t−D and dispersion ψ to the numpy library’s implementation of the negative binomial distribution with

number of successes n and probability of success p:

n = ψ (19)

σ =
I

(new)
t−D + 1
ψ(I(new)

t−D )2
(20)

p =
σ − I

(new)
t−D

σ
. (21)

The fifth estimated model parameter is the initial number of infected individuals I0.

We use the same prior specification as Radev et al. (2021b), which is displayed in Table 6 along with the respective
power-scaling scheme. Figure 6 shows the behavior of the prior predictive distributions under different power-scaling
values γ.

3In Experiment 3, we use the ECE formulation by Naeini et al. (2015) for probabilistic classification.
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Figure 6: Experiment 1. Prior predictive distributions under different scaling parameters γ.

Table 6: Experiment 1. Power-scaled prior distributions for all parameters.

Parameter Symbol Power-scaled prior distribution

Transmission rate λ LogNormal(log(0.4), 0.5/√γ1)
Recovery rate of infected individuals µ LogNormal(log(1/8), 0.2/√γ2)
Reporting delay (lag) D LogNormal(log(8), 0.2/√γ3)
Initial number of infected individuals I0 Gamma(2γ4 − γ4 + 1, 20/γ4)
Noise dispersion ψ Exponential(5/γ5)

Note. Our parameterization follows the numpy library’s implementation of the respective distribution.

We use time-series data from the first two weeks of the COVID-19 pandemic in Germany provided by the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University, licensed under CC BY 4.0. 4

Neural Network and Training: Our neural network architecture follows a simplified version of the design imple-
mented by Radev et al. (2021b): We use a recurrent network with gated recurrent units as summary network and a
conditional invertible network as inference network.

All computations for this experiment were performed on a single-GPU machine with an NVIDIA RTX 3070 graphics
card and an AMD Ryzen 5 5600X processor. Simulating 16 384 training data sets took 8 seconds and subsequent
offline training for 75 epochs took 6 minutes.

Additional Results: We further investigate SA-ABI and ABI for potential reductions in approximation performance
due to amortized prior sensitivity in the medium simulation budget setting of 214 = 16 384. Figure 7 and Figure 8 show
similar parameter recovery in the baseline γ = 1.0 setting, both limited by the small number of T = 14 data points
available. Figure 9 and Figure 10 demonstrate that calibrated predictions are nevertheless mostly achievable, with
equal patterns between SA-ABI (Figure 9) and standard ABI (Figure 10) for the baseline setting. Figure 11 additionally
contains MMD hypothesis tests that clearly show sensitivity of the parameter posterior to the prior specification.

4https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_
covid_19_time_series/time_series_covid19_confirmed_global.csv
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Figure 7: Experiment 1. Simulation-based recovery of the context-aware neural approximator used in our experiment
for γ = 1.0 (simulation budget of 214 = 16 384).
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Figure 8: Experiment 1. Simulation-based parameter recovery of a single-prior neural approximator trained with the
same configuration and simulation budget (214 = 16 384) as in our experiment but without CP (i.e., on the baseline
γ = 1.0 setting).

Benchmark Details: All results of Experiment 1 except the benchmark operate in a standardized parameter space
to align the different parameter scales. To eliminate the influence of standardization mismatches across the tested
settings, the networks trained for the benchmark use the original (unstandardized) parameters. We further employ
ensembles of size M = 2 to check for potential approximator sensitivity affecting the stability of the benchmarking
results and observe stable results within the ensemble members (i.e., no approximator sensitivity). All networks are
trained for 75 epochs.
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Figure 9: Experiment 1. Simulation-based calibration of the context-aware neural approximator used in our experi-
ment for contexts γ ∈ {0.5, 1.0, 2.0} (simulation budget of 214 = 16 384).

0.0 0.5 1.0
0.05

0.00

0.05

 E
C

D
F

0.0 0.5 1.0 0.0 0.5 1.0
Fractional rank statistic

D

0.0 0.5 1.0

I0

0.0 0.5 1.0

Figure 10: Experiment 1. Simulation-based calibration of a single-prior neural approximator trained with the same
configuration and simulation budget (214 = 16 384) as in our experiment but without CP (i.e., on the baseline γ = 1.0
setting).
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Figure 11: Experiment 1. MMD hypothesis tests confirm sensitivity to prior specification in the parameter space.
The blue density represents samples under the null distribution of zero difference between γ = 1.0 and the scaled
posteriors (red; γ = 0.5 or γ = 2.0.), the yellow lines mark the area with a δ = 5% rejection probability.
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C.3 Experiment 2: Climate Trajectory Forecasting

Data: Climate models (CM) are typically differential equations describing all relevant components of the Earth
system and their couplings. Socioeconomic pathways (SSPs) provide comprehensive scenarios of future developments
by describing qualitatively different trajectories of future emissions. Following standard practice, we append the
associated radiative forcing in the year 2100 to the SSP identifier (e.g., SSP1-2.6 refers to the SSP1 scenario with
radiative forcing of 2.6W/m2). Given a CM, an SSP, and an initial condition (IC), high-dimensional trajectories of
many observables can be simulated from the underlying model. Here we restrict the analysis to the air temperature at
the surface (TAS).

Simulations produce trajectories TASCM, SSP, IC(x⃗, t) where x⃗ is a spatial coordinate on the Earth’s surface and t is
a time between 1850 and 2100. From this, the area-weighted global mean surface air temperature (GSAT) can be
computed, which is the key indicator of global warming over pre-industrial levels.

All data used in this experiment is freely available to download: For the climate model simulation outputs, we use data
from the Earth System Grid Federation.5 For the observational data set for 2022, we use data from Berkeley Earth,
licensed under CC BY 4.0.6 We include all climate models that have archived at least 10 trajectories for the future
emission scenarios SSP1, SSP2, and SSP3 in our analysis. We reshape all data to a 2.5 × 2.5 longitude-latitude grid
and compute yearly differences to the baseline period (1951 to 1980). The warming threshold is defined relative to
the pre-industrial period 1850 to 1900, from which we can directly obtain the time-to-threshold parameter θ for each
tuple of year, model, and trajectory ensemble.

Model Setup: Our model setup focuses on the time θ until the 1.5◦C warming threshold is reached, but can easily
be adapted to arbitrary temperature thresholds. We realize a prior context CP for θ by two discrete prior choices:
First, a weakly informative prior, θ ∼ U(−40, 41), that encompasses the full range of values present in the training
data of simulated climate warming trajectories. Second, a more informative Gaussian prior, N+(10, 10), truncated to
include only positive values. This prior is based on the IPCC sixth assessment report stating that the central estimate
of crossing the 1.5◦C threshold lies in the early 2030s (Lee et al., 2021).

Table 7: Overview of the climate models included in each SSP emission scenario.

Climate Models SSP1-2.6 SSP2-4.5 SSP3-7.0

ACCESS-ESM1-5 ✓ ✓ ✓
CanESM5 ✓ ✓ ✓
CESM2 ✓
CNRM-ESM2-1 ✓
GISS-E2-1-G ✓ ✓
IPSL-CM6A-LR ✓ ✓
MIROC-ES2L ✓ ✓ ✓
MIROC6 ✓
UKESM1-0-LL ✓ ✓

The likelihood is obtained from the simulated trajectories of the climate models. For a given time-to-threshold θ and
climate model (encoded in the likelihood context CL), trajectories of the respective climate model are selected in
ensembles of 10. We first identify the year of threshold exceedance of the mean global surface temperature across
a trajectory ensemble. 7 Afterwards, a random ensemble and trajectory are chosen. Finally, the likelihood algo-
rithm returns the spatial temperature pattern that is θ years prior to the year of threshold exceedance in the simulated
trajectory.

5https://esgf.llnl.gov/
6https://berkeleyearth.org/data/
7Averaging over trajectory ensembles smoothes out the chaotic internal variability to obtain a more stable estimate. In contrast, the IPCC defines

the year of threshold exceedance as the middle of a 20-year averaging window. Diffenbaugh & Barnes (2023) show that resulting forecasts are
insensitive to the chosen definition.
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Neural Network and Training: We z-standardize data and parameters before passing them to the neural approx-
imator. As summary network, we use a dense network that parallels the architecture used in Diffenbaugh & Barnes
(2023): Inputs come in the form of 72x144 temperature grids and are flattened. Two hidden layers of 25 units with
ReLU activation are followed by 8 output units of learned summary statistics. During training, we additionally em-
ploy dropout regularization with a dropout probability of 0.4 on the initial layer of the summary network to mitigate
overfitting. As inference network, we use a conditional invertible neural network. Since normalizing flows require
more than one dimension, we add a dummy standard normal parameter.

Training the neural approximator took approximately 70 minutes on a consumer notebook with a 6-core AMD Ryzen
5 5625U CPU and without a dedicated graphics card, underscoring the wide applicability of our method.

For the individual ABI instances trained for the benchmark, each instance was trained on data of a specific scenario ×
climate model setting. We used the same network architecture for separate and joint training to enhance comparability,
but note that the hyperparameters may not be optimal for the respective data size settings. Joint training was conducted
on 80 epochs, whereas we chose a smaller number of 15 epochs for the separate training to mitigate overfitting.

Additional Results: To validate our approach, we compute the mean absolute error (MAE) of the point estimate
(posterior mean) θ̂ to the true value θ∗ on a held-out validation set. Figure 12a shows good recovery across climate
models, true time-to-threshold θ∗, and SSPs. To parallel the evaluation procedure of Diffenbaugh & Barnes (2023),
who did not differentiate between the climate models, we use a flat prior via the prior context CP and marginal-
ize predictions over all climate models contained in CL. Figure 12b shows that our sensitivity-aware approach does
not sacrifice predictive accuracy and further enables the identification of biased estimates for MIROC6 in the SSP1-
2.6 scenario as the main limitation to better performance. Figure 13 provides an additional perspective via standard
simulation-based recovery and calibration plots. Overall recovery is high, but calibration plots indicate notable under-
confidence of the posteriors, implying that the networks systematically overestimate the variance of time-to-threshold
θ predictions. We hypothesize that this is due to an underperforming summary network which we nevertheless keep
the same as in Diffenbaugh & Barnes (2023) for the sake of comparability.
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(a) Weakly informative prior. Recovery with CL information about the respective climate model given is good (total
MAE of 2.0) across climate models, true time-to-threshold θ∗, and SSPs.
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(b) Weakly informative prior. Recovery without CL information about the respective climate model given – all predic-
tions are not only obtained for the appropriate climate model, but all climate models contained in CL and afterwards
averaged. This leads to a validation setup comparable to Diffenbaugh & Barnes (2023). The mean absolute error
(MAE) of 3.0 years for SSP3-7.0 indicates that our approach does not sacrifice predictive accuracy in comparison to
Diffenbaugh & Barnes (2023), who report MAE between 2.7 and 3.8 years for the same task (eyeballed values from
boxplots reported in the appendix).
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(c) Informative prior. Recovery with CL information about the respective climate model given, here restricted to
positive θ values due to the truncation of the prior. Recovery is good with a total MAE of 1.2.

Figure 12: Experiment 2. Recovery of time-to-threshold on held-out validation data.
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(a) Weakly informative prior.
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(b) Informative prior.

Figure 13: Experiment 2. Standard simulation-based metrics of recovery and calibration on held-out validation data
for both prior contexts CP . All results are marginalized over the likelihood context space CL (i.e., climate models and
emission scenarios).
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C.4 Experiment 3: Comparing Hierarchical Models of Decision-Making

Model Setup: The drift-diffusion model (DDM; Ratcliff et al., 2016; Ratcliff, 1978) models binary decision out-
comes and their associated response times with the following stochastic ordinary differential equation:

dx = v dt+ ξ
√

dt (22)
ξ ∼ N (0, 1), (23)

with dx denoting the change in evidence accumulation, v denoting the rate of evidence accumulation, and ξ the noise
of evidence accumulation. Additional parameters of the model include the non-decision time t0 (e.g., encoding and
motor response), the decision threshold a, and the bias towards a decision option zr.

The Lévy flight model (LFM; Voss et al., 2019) relaxes the Gaussian noise assumption by using the more general
α-stable distribution, leading to an unknown analytical form of the likelihood:

dx = v dt+ σdξ (24)

ξ ∼ AlphaStable(α, µ = 0, σ = 1√
2
, β = 0), (25)

with the additional stability parameter α which shall also be estimated.

Additionally, there is a debate about whether the model parameters v, zr, and to should have a fixed value over the
course of an experiment (basic models) or be allowed to vary (full models) throughout the experiment (Lerche & Voss,
2016; Boehm et al., 2018). Therefore, we compare the following four models in this experiment:

• Basic DDM (M1): The classic four-parameter formulation with the model parameters v, t0, a, and zr.

• Basic LFM (M2): Equals the basic DDM plus the additional stability parameter α controlling the tail behav-
ior of the noise distribution.

• Full DDM (M3): Equals the basic DDM plus inter-trial variability parameters sv , st0 , and szr
.

• Full LFM (M4): Equals the full DDM plus the additional stability parameter α.

As in Elsemüller et al. (2023), we reanalyze data by Wieschen et al. (2020) (provided by the original authors) con-
taining 40 participants with 900 decision trials each and assume a uniform model prior (i.e., equal prior model proba-
bilities). We use the same hierarchical priors as Elsemüller et al. (2023), who provided a detailed table with all prior
choices. Since they are central to our experiment, we reiterate the priors leading to αm for each participant m here:

µα ∼ N (1.65, 0.15/γ1)
σα ∼ N+(0.3, 0.1/γ2)
αm ∼ NT runcated(µα, σα, 1, 2) for m = 1, . . . ,M.

(26)

Our experiment investigates the sensitivity to different CP , CA, and CD realizations. For CP , we power-scale the
hierarchical prior of α with a wide range of γ ∈ [0.1, 10], which would have been infeasible with existing methods
since they require values close to the mid-range value of no scaling, i.e., γ = 1 (Kallioinen et al., 2021). To ensure
equal amounts of widening and shrinking of the respective distributions during training, we draw the scaling factors
from independent uniform distributions in the log space γ ∼ exp(U(log(0.1), log(10))). Figure 14a displays the
prior predictive distribution of α under different γ configurations. We use 100 bootstrap samples on the trial level
(i.e., within the observations of each participant) for the data context CD and describe the details of the approximator
context CA in the following section.

Neural Network and Training: All 20 members of the employed deep ensemble constituting CA are set up and
trained independently and identically. Each network uses a hierarchical summary network consisting of two permuta-
tion invariant deep set networks (Zaheer et al., 2017) and a standard feedforward network with a softmax output layer
as an inference network.
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(a) Prior predictive distributions of the α parameter under
power-scaling. The yellow line represents the marginal den-
sity for each configuration.
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(b) Prior pushforward distributions of simulated response times
per person contrasted with the empirical distributions per per-
son. Negative response times indicate a decision for the lower
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Figure 14: Experiment 3. Prior distributions. a) Prior predictive distributions of the α parameter under maximum
widening (γ = 0.1), no scaling (γ = 1), and maximum shrinkage (γ = 10) of the hyperpriors µα and σα. (b) Prior
pushforward distributions of the response times simulated by the four compared models (marginalized over γ) and the
empirical response times.

As in Elsemüller et al. (2023), we first pre-train each network on smaller data sets of 40 simulated participants with 100
observations each, and afterwards fine-tune on the full data size of 40 simulated participants with 900 observations.
We use 30 epochs for both phases and an Adam optimizer (Kingma & Ba, 2015) with a cosine decay schedule (initial
learning rates of 5 × 10−4 for pre-training and 5 × 10−5 for fine-tuning).

All computations for this experiment were performed on a single-GPU machine with an NVIDIA RTX 3070 graphics
card and an AMD Ryzen 5 5600X processor. Simulating 40 000 pre-training and 8 000 fine-tuning data sets in the
Julia programming language (Bezanson et al., 2017) took 23 minutes. Training the deep ensemble took 21 minutes for
pre-training and 45 minutes for fine-tuning per network.

Additional Results: Figure 14b displays the prior pushforward distribution of simulated response times and the
empirical response times distributions. The informative priors from Elsemüller et al. (2023) assign high densities
to the central regions of the empirical distribution. Nevertheless, the results of the typical set approach (Nalisnick
et al., 2019; Morningstar et al., 2021) in Figure 15 flag the empirical data as out-of-distribution of each deep ensemble
member.

To ensure that the inclusion of CP in the amortization scope does not lead to a substantially worsened approximation
performance, we trained an additional deep ensemble without CP . Table 8 displays validation performance and
empirical approximations for the ensemble including CP and Table 9 for the ensemble without CP . Including CP

does neither lead to a substantial drop in performance nor qualitatively different model comparison results despite
power-scaling over a wide range.
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Figure 15: Experiment 3. The typical set of learned summary statistics from the model simulations contrasted with
the density of the learned summary statistics from the observed data (both distributions are marginalized over CP but
separated for each ensemble member of CA). The empirical data is flagged as out-of-distribution for each ensemble
member.
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Table 8: Experiment 3. SA-ABI validation performance on 8 000 held-out simulations and predictions on the empir-
ical data of the deep ensemble trained on power-scaled CP context from 0.1 to 10.

Validation Performance Empirical Predictions
ECE Brier Score MAE Accuracy M1 M2 M3 M4

Network 1 0.01 0.01 0.02 0.99 0.00 0.00 1.00 0.00
Network 2 0.01 0.03 0.05 0.96 0.00 0.00 0.92 0.08
Network 3 0.01 0.01 0.01 0.99 0.00 0.00 0.17 0.83
Network 4 0.01 0.01 0.01 0.99 0.00 0.00 0.50 0.50
Network 5 0.01 0.01 0.01 0.99 0.00 0.00 0.96 0.04
Network 6 0.01 0.01 0.01 0.99 0.00 0.00 0.02 0.98
Network 7 0.01 0.01 0.01 0.99 0.00 0.00 0.75 0.25
Network 8 0.01 0.01 0.02 0.99 0.00 0.00 1.00 0.00
Network 9 0.01 0.01 0.01 0.99 0.52 0.03 0.25 0.21
Network 10 0.01 0.02 0.03 0.97 0.00 0.00 0.85 0.15
Network 11 0.01 0.01 0.01 0.99 0.00 0.00 0.37 0.63
Network 12 0.01 0.01 0.01 0.99 0.00 0.00 0.00 1.00
Network 13 0.01 0.01 0.01 0.99 0.00 0.00 0.99 0.01
Network 14 0.01 0.02 0.03 0.98 0.00 0.00 0.99 0.01
Network 15 0.01 0.01 0.01 0.99 0.00 0.96 0.00 0.04
Network 16 0.00 0.00 0.01 0.99 0.97 0.00 0.03 0.00
Network 17 0.01 0.02 0.02 0.98 0.00 0.00 0.62 0.38
Network 18 0.01 0.02 0.03 0.98 0.00 0.00 0.91 0.09
Network 19 0.01 0.01 0.01 0.99 0.00 0.04 0.49 0.46
Network 20 0.01 0.01 0.01 0.99 0.00 0.00 0.08 0.92

Average 0.01 0.01 0.02 0.99 0.07 0.05 0.54 0.33
Std. Deviation 0.00 0.01 0.01 0.01 0.24 0.21 0.40 0.36
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Table 9: Experiment 3. ABI validation performance on 8 000 held-out simulations and predictions on the empirical
data of the deep ensemble trained without CP context.

Validation Performance Empirical Predictions
ECE Brier Score MAE Accuracy M1 M2 M3 M4

Network 1 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.99
Network 2 0.00 0.01 0.01 0.99 0.00 0.00 0.00 1.00
Network 3 0.01 0.01 0.02 0.98 0.00 0.00 0.99 0.01
Network 4 0.01 0.02 0.03 0.98 0.00 0.00 0.60 0.40
Network 5 0.01 0.01 0.03 0.98 0.00 0.00 0.88 0.12
Network 6 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
Network 7 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Network 8 0.01 0.01 0.02 0.98 0.00 0.00 0.00 1.00
Network 9 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00
Network 10 0.00 0.00 0.00 1.00 0.72 0.16 0.11 0.00
Network 11 0.00 0.00 0.00 1.00 0.01 0.42 0.00 0.56
Network 12 0.01 0.02 0.04 0.97 0.00 0.00 0.91 0.09
Network 13 0.01 0.01 0.01 0.99 0.00 0.00 0.00 1.00
Network 14 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
Network 15 0.01 0.01 0.01 0.99 0.00 0.00 1.00 0.00
Network 16 0.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02
Network 17 0.00 0.00 0.00 1.00 0.00 0.25 0.01 0.74
Network 18 0.00 0.00 0.00 1.00 0.00 0.00 0.86 0.14
Network 19 0.01 0.01 0.01 0.99 0.00 0.00 0.00 1.00
Network 20 0.01 0.02 0.04 0.97 0.00 0.00 0.88 0.11

Average 0.00 0.01 0.01 0.99 0.09 0.09 0.41 0.41
Std. Deviation 0.01 0.01 0.01 0.01 0.27 0.24 0.46 0.44
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