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ABSTRACT

Predicting physical dynamics from raw visual data remains a major challenge in
AI. While recent video generation models have achieved impressive visual qual-
ity, they still cannot consistently generate physically plausible videos due to a lack
of modeling of physical laws. Recent approaches combining 3D Gaussian splat-
ting and physics engine can produce physically plausible videos, but are hindered
by high computational costs in both reconstruction and simulation, and often lack
robustness in complex real-world scenarios. To address these issues, we intro-
duce Neural Gaussian Force Field (NGFF), an end-to-end neural framework
that integrates 3D Gaussian perception with physics-based dynamic modeling to
generate interactive, physically realistic 4D videos from multi-view RGB in-
puts, achieving two orders of magnitude faster than prior Gaussian simulators.
To support training, we also present GSCollision, a 4D Gaussian dataset featur-
ing diverse materials, multi-object interactions, and complex scenes, totaling over
640k rendered physical videos („4 TB). Evaluations on synthetic and real 3D sce-
narios show NGFF’s strong generalization and robustness in physical reasoning,
advancing video prediction towards physics-grounded world models.

1 INTRODUCTION

From a very young age, infants can understand basic physical principles about the world (Spelke &
Kinzler, 2007). When growing older, humans develop a robust and intuitive understanding of the
3D physical world, enabling them to rapidly infer an object’s geometry and physical properties from
complicated visual input and predict its future dynamics using humans’ “intuitive physics engine”
(Battaglia et al., 2013; Pramod et al., 2025).

However, current AI systems fail to achieve such robust and generalizable physical prediction. Re-
cently, video generation models have made significant progress in producing visually realistic dy-
namics, highlighting their potential to serve as “world simulators” by predicting plausible future
events (Ho et al., 2022; Yang et al., 2024; Yu et al., 2025). However, they often lack basic physical
commonsense such as object permanence, solidity, and gravity, despite being trained on millions of
videos (Kang et al., 2025; Motamed et al., 2025). This limitation hinders the ability of AI agents to
effectively interact with real-world physical environments.

Achieving human-level physical reasoning in AI has two fundamental challenges. (i) Learning
effective object representations from RGB inputs for simulation and rendering. Although numer-
ous studies have achieved significant progress in predicting physical dynamics, these efforts depend
heavily on precise and structured object-centric data (Rubanova et al., 2024; Ma et al., 2023; Li et al.,
2025) or implicit volumetric encoding with Neural Radiance Fields (NeRF) that are hard to ground
in physics (Driess et al., 2023; Xue et al., 2023b). Particle-based methods (Whitney et al., 2024)
alleviate this problem but require an additional pretrained renderer to produce multi-view consistent
rendering results, which limit their scalability to complex real-world objects. (ii) Learning generaliz-
able physical dynamics and laws. Large pretrained video generation models, such as video diffusion
models, tend to overfit superficial visual features like surface texture, ambient shadowing, or spatial
occlusions within the training data distribution (Kang et al., 2025). In Out-of-distribution (OOD)
scenarios, these models tend to retrieve patterns from training cases in a case-based manner (Li et al.,
2022; Kang et al., 2025), rather than acquiring a robust capacity for physical reasoning (Shiri et al.,
2024). Recent methods using Gaussian splatting for physical dynamics prediction represent scenes
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GSCollision: Gaussian Physical Reasoning Dataset 

Neural Gaussian Force Field
Novel-background Generalization Novel-view 4D Generation
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Force-prompted Interactive GenerationEnhanced OOD Generalization

Figure 1: Capabilities of NGFF. NGFF is a physics-grounded video prediction framework that unifies percep-
tion and dynamics to model complex interactions and synthesize 4D videos. Built on Gaussian representations
and force fields, it enables novel-view and novel-background synthesis as well as force-prompted interactive
generation (Section 4.3). Moreover, NGFF achieves strong spatial and temporal generalization in dynamic pre-
diction (Section 4.2) and can be effectively adapted to real-world scenarios (Section 4.4).

as sets of Gaussian points, capturing object properties like position and velocity (Xie et al., 2023;
Lin et al., 2025b; Jiang et al., 2025a; Zhang et al., 2025). While effective for modeling simple inter-
actions (Zhobro et al., 2025), these approaches face scalability issues and struggle with generalizing
to complex environments with pre-defined simulators and intractable parameters (Xie et al., 2023).

To address these challenges, we propose the NGFF, a physics-grounded neural framework based
on force modeling that learns generalized physical representations for multi-object interactions and
generates interactive 4D scenes from pure multi-view RGB images. NGFF first encodes the input
images into high-dimensional features and decodes them into a 3D scene of Gaussian points with ob-
ject semantics through a feed-forward geometry transformer (Wang et al., 2025a;b). Then, a neural
operator predicts object-centric force fields, which are integrated through an Ordinary Differential
Equation (ODE) solver to simulate object movement and deformation. The predicted Gaussians are
then rendered rapidly to produce multi-view videos that are congruent with physical reality. NGFF
demonstrates three key capabilities, as illustrated in Figure 1. First, by reasoning force fields from
object Gaussians and integrating them through ODE solvers, NGFF predicts physically grounded
dynamics and exhibit enhanced OOD generalization across complex interactions. Second, it sup-
ports force-prompted interactive generation through the learned force field. Third, the object-aware
3D Gaussian representation enables efficient geometric reconstruction and multi-view background-
agnostic video generation. Fourth, the neural field representations enable robust predictions when
transferred to real-world scenarios.

To train and validate our framework, we construct GSCollision, a novel benchmark for 4D Gaussian-
based physical reasoning with diverse rigid and soft body physics and rich visual complexities,
covering a broad spectrum of physical phenomena such as falling, multi-body collision, rotation,
sliding, and containment. To ground our simulations in realism, we utilize real-world scenes from
the WildRGBD (Xia et al., 2024) dataset as backgrounds. We evaluate our method in three set-
tings: dynamic prediction, video generation, and real-world prediction. The experimental re-
sults demonstrate that NGFF not only generates high-quality predictive videos but also achieves
physically plausible simulations in unseen scenarios and supports rapid transfer to the real world,
surpassing state-of-the-art (SOTA) particle-based dynamic prediction models such as Pointformer
(Wu et al., 2024b), and video generation models such as Veo3 (DeepMind, 2025), NVIDIA Cos-
mos (NVIDIA et al., 2025), and PhysGen3D (Chen et al., 2025). Our work successfully bridges the
gap in recent Gaussian-based simulation methods (Zhang et al., 2025; Jiang et al., 2025a; Zhobro
et al., 2025) by simultaneously capturing both the high visual complexity of scenes and the complex
physical interactions among multiple objects.
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2 RELATED WORK

Physical reasoning and visual dynamics prediction are fundamental challenges in developing AI sys-
tems with human-like intuitive physics. Benchmarks based on the Violation-of-Expectation (VoE)
paradigm and interactive environments have been proposed to test agents’ ability to capture spa-
tial structures and fundamental physical laws (Piloto et al., 2022; Dai et al., 2023; Bakhtin et al.,
2019; Allen et al., 2020; Bear et al., 2021; Li et al., 2023a). Building on these benchmarks, visual
dynamics prediction methods attempt to model the underlying scene dynamics. Neural simulator
approaches typically rely on Graph Neural Networks (GNN)-based architectures with mesh, SDF,
spring-mass, or particle-grid representations (Sanchez-Gonzalez et al., 2020; Bear et al., 2021; Allen
et al., 2023; Rubanova et al., 2024; Jiang et al., 2025a; Zhang et al., 2025), which succeed in simu-
lating various materials but often struggle to generalize to complex, out-of-distribution interactions.
In parallel, differentiable physics simulators such as MPM-based Gaussian formulations (Xie et al.,
2023; Lin et al., 2025b; Chen et al., 2025) achieve high physical fidelity, but they suffer from high
computational cost and slow simulation speed, limiting their scalability. To support both simulation
and rendering, scene representations have evolved from point clouds and NeRFs (Shi et al., 2024;
Whitney et al., 2024; Driess et al., 2023; Xue et al., 2023a; Li et al., 2023b) to 3D Gaussian Splat-
ting (Kerbl et al., 2023), which provides photorealistic quality and real-time performance. Recent
advances accelerate 3D reconstruction via feed-forward prediction (Wang et al., 2025a; Jiang et al.,
2025b; Wang et al., 2025b; Zhobro et al., 2025). Our work builds upon this trajectory by unifying
feedforward Gaussian-based scene representations and neural dynamics modeling to enable gener-
alizable physical reasoning across multi-object interaction in real-world scenarios. Detailed related
work about physical reasoning, visual dynamics prediction, and scene representations for simulation
and rendering can be found in Appendix D.

3 METHOD

In this section, we define our task as a 4D video prediction problem and introduce a two-stage
approach. The first stage focuses on feed-forward object-level 3D Gaussian reconstruction, while
the second stage employs an ODE-based neural dynamic simulator to predict 4D physics-grounded
videos (Figure 2). We then show that our framework can scale effectively with large-scale world
data and quickly adapt to real-world simulation scenarios.

3.1 PROBLEM FORMULATION

Given a set of N unposed RGB images of a static scene I0 “ tI0ppkq PRHˆWˆ3 | k “ 1, . . . , Nu,
captured from different views pk PR6, our goal is to model the temporal evolution of the scene’s
geometry, appearance, and physical dynamics, synthesizing future views Itppq at arbitrary time
steps t PT and camera poses p PR6.

We represent the initial scene using M 3D Gaussians G0 “ tg0,iu
M
i“1, extracted from the initial

observations I0. A neural dynamics model fθ is trained to predict the Gaussian state at the next time
step Gt`1 “ fθpGtq. To render an image from any viewpoint at time t, we use Gaussian splatting
Ît,k “ RenderpGt, pkq.

The overall learning objective jointly optimizes the dynamic model parameters θ and the initial scene
representation G0:

min
θ,G0

ÿ

t,k

LpÎt,k, It,kq`L1
pĜt,Gtq. (1)

where L is the image reconstruction loss and L1 regularizes the predicted Gaussians.

3.2 NEURAL GAUSSIAN FORCE FIELD (NGFF) FRAMEWORK

3.2.1 FEED-FORWARD 3D RECONSTRUCTION

Geometric and appearance reconstruction. Following VGGT (Wang et al., 2025a) and π3 (Wang
et al., 2025b), we adopt a pretrained transformer-based geometry encoder and three separate de-
coder heads for predicting camera poses p, Gaussian centers µ and Gaussian attributes pα, r, s, cq.
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Figure 2: Overall framework of NGFF. Starting with unposed RGB inputs, a feed-forward model first re-
constructs the scene as a set of 3D Gaussians. These Gaussians are then segmented into distinct objects and
refined to mitigate noise and resolve occlusions. Subsequently, a point encoder transforms the Gaussians into
feature representations. A DeepONet estimates a physics-grounded Gaussian force field, which is integrated
with ODE solvers to predict the next-step dynamics. The Gaussians are predicted and rendered iteratively.

Each input image is first patchified into token sequences tk using DINOv2 (Oquab et al., 2023).
The combined tokens ttkuNk“1 from all N views are processed by a L-layer Alternating-Attention
Transformer to capture global geometric features. For the camera and point head, the feature tokens
are then decoded by a pixel-shuffling decoder (Shi et al., 2016). For the splatter head, we simply
incorporate a convolutional upsampling layer followed by a direct RGB shortcut (Ye et al., 2025)
from the input image to preserve high-frequency details and enhance apperance reconstruction.

Object-centric reconstruction. To obtain the object-centric representations essential for physics
simulation, we first employ a pretrained video segmentation model SAM2 (Ravi et al., 2024), to
generate pixel-wise instance masks from the input images. These masks are then back-projected
onto the Gaussian points via a voting scheme, partitioning the set of Gaussians G into K instance
groups, denoted as Gk “ tg PG | labelpgq “ ku. To address occlusions and invisible parts from inputs,
we further adopt a refining module leveraging a 3D asset generation model DiffSplat (Lin et al.,
2025a) and Simp3q pose estimation to enhance the topological quality of the Gaussian object given
single-view images. Details can be found in Appendix B.2

3.2.2 ODE-BASED NEURAL DYNAMICS SIMULATOR

We adopt an explicit force field representation to model the object’s transformation, rotations, and
local deformation under physical interactions and external forces. By learning physics-grounded,
generalizable representations through explicit force field modeling, NGFF can model physical inter-
actions between various rigid and soft bodies in a unified way and achieve few-shot generalization.

Force field prediction. The core of our Neural Force Field (NFF) framework is grounded in the
physical principle of a force field—a vector field Fp¨q that determines the force Fpzqptqq acting on a
query object q based on its state zqptq at time t. We assume that the local point cloud is sufficiently
expressive to encode physical properties for simulation. The state vector zqptq “ thq, sqptq, 9sqptqu

encapsulates both geometric and dynamic attributes of the object, including: (1) Semantic features
hq: object-level features encoded from current Gaussian centers using PointNet (Qi et al., 2017), (2)
Zeroth-order states sqptq: local point cloud xptq PRMˆ3, center of mass cptq PR3, and orientation
(Euler angles) θptq PR3, and (3) First-order states 9sqptq: local point cloud velocity 9xptq PRMˆ3,
velocity of center of mass 9cptq PR3, and angular velocity 9θptq PR3.

We adopt a unified approach to model both rigid and soft body dynamics. For a scene with K inter-
acting objects, we represent the global transformation force field Fglobalp¨q PR6—encompassing
both translational and rotational components—using a neural operator over a relational graph
N “ pV,Eq, where V “ tz0ptq, . . . , zK´1ptqu denotes object nodes and E encodes physical con-
tacts. Inspired by relational inductive biases in graph-based models (Battaglia et al., 2018) and
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neural operator learning (Lu et al., 2021), we define the force field as:

Fglobal
pzqptqq “

ÿ

iPN pqq

W
´

fηpziptqqdfϕpzqptqq

¯

`b, (2)

where N pqq denotes the set of neighboring objects in contact with q, fη and fϕ are neural en-
coders with learnable parameters, and d is the element-wise product. The projection matrix
W PRdhiddenˆdforce and bias b PRdforce map the hidden features to force vectors. This formulation
captures a variety of interactions such as contact, sliding, and gravity.

To model local deformations in soft bodies, we introduce a neural network Φ that predicts the point-
wise local stress field Flocalp¨q PRMˆ3 based on a Contact Area Mask (CAM) that highlights the
contact regions:

Flocalpzqptqq “Φ
`

Fglobalpzqptqq,CAM,xqptq, 9xqptq
˘

. (3)

The final force field unifies rigid and soft-body predictions as:
Fpzqptqq “

`

Flocal,Fglobal˘ . (4)
Trajectory decoding via ODE integration. To recover continuous and physically plausible trajec-
tories, we integrate the learned force field using a second-order ordinary differential equation (ODE)
solver. The trajectory of an object is computed as:

zqptq “ ODESolve pzqp0q,F, 0, tq , (5)

sptq “ sp0q`

ż t

0

9sptq dt, 9sptq “ 9sp0q`

ż t

0

Fpzqptqq dt. (6)

This formulation bridges learned neural force fields and physical dynamics simulation in a fully
differentiable manner.

3.2.3 TRAINING

The feed-forward reconstruction module is initialized with pretrained π3 parameters, where the fea-
ture encoder, point head, and camera head are frozen, and the splatter head is trained on WildRGBD
using RGB and geometric consistency losses to align predicted and rendered depth maps. The neu-
ral dynamics simulator is trained on synthetic data with MSE loss to match Gaussian configurations
and motion trajectories to MPM simulations.

3.3 CAPABILITIES OF NGFF

Dynamic prediction as operator learning of force fields NGFF formulates dynamics prediction
as operator learning over explicit force fields, unifying rigid and deformable objects in a shared state
space. Neural operators on relational graphs capture contact, collision, and deformation, enabling
scalability to multi-body systems and generalization across spatial, temporal, and compositional
shifts.

Video generation as efficient rendering of physical trajectories By combining feed-forward 3D
Gaussian reconstruction with learned force fields, NGFF links perception and simulation. Differen-
tiable Gaussian splatting renders trajectories that are both photorealistic and physically consistent,
supporting viewpoint transfer, contextual variation, and interactive interventions.

Real-world transfer Gaussians provide a disentangled interface between noisy visual inputs and
underlying dynamics, while force-field neural operators capture physics through robust representa-
tions. Together, these components facilitate sim-to-real transfer by adapting dynamics to real-world
RGB data while maintaining physical consistency.

4 EXPERIMENTS

4.1 DATASET

Building on prior physical reasoning benchmarks (Bakhtin et al., 2019; Bear et al., 2021; Greff
et al., 2022; Li et al., 2023a), we introduce GSCollision, a 3D Gaussian-splats physical reasoning

5
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Figure 3: GSCollision dataset. (a) Distribution of 10 representative objects across density and material hard-
ness, measured by Young’s modulus on a log scale. Softer items (e.g., cloth, rope, pillow) occupy the lower-left
region, while harder and denser objects (e.g., bowl, phone) lie on the upper-right. (b) Composition of the
dataset, totaling 4.25 TB with 3200 scenes and 640 k videos. The pie chart illustrates the storage distribution
across different simulation splits (train and test), with additional components such as multi-view images of
initial scenes and other files. (c) Gallery of representative frames across training, longer time, compositional,
novel-view, and novel-background splits.

dataset constructed with MPM simulators (Xie et al., 2023) that capture both rigid and deformable
bodies. By adopting a Gaussian-based representation, GSCollision naturally bridges perception and
reasoning: visual observations can be directly grounded in physically consistent predictions, while
the predicted states can be rendered into videos with fast, differentiable pipelines.

GSCollision comprises 10 everyday objects with diverse material properties and densities, ranging
from soft items like pillows and ropes to rigid objects such as balls and phones. Randomly sampling
object compositions and positions within a 3D box yields 3,200 physical scenarios involving both
object–object and object–ground interactions. Among these, 2,700 three-object scenes are used for
training, while 500 are reserved for testing. The test set introduces distributional shifts, including
300 unseen three-object scenes, 100 four-object scenes, and 100 six-object scenes, thereby providing
both compositional and scaling challenges.

The dataset spans a wide range of physical dynamics—falling, collisions, rotation, sliding, and
containment—across scenarios such as stacked towers, container-based setups, and collision-driven
interactions. Each sequence consists of 100 simulation steps, corresponding to approximately two
seconds of real time. A statistical overview of the dataset is provided in Figure 3.

4.2 DYNAMIC PREDICTION

We define four splits of generalization to validate NGFF, including positional generalization, tem-
poral generalization, compositional generalization, and external force generalization. (1) Spatial
generalization tests whether the model can predict dynamics at unseen object positions, requiring
accurate spatial extrapolation or interpolation of forces. (2) Temporal generalization assesses the
ability to sustain stable, accurate predictions over longer rollouts than seen in training. (3) Compo-
sitional generalization (Lake & Baroni, 2023) evaluates performance on novel object combinations
and larger numbers of interacting objects (4–6), requiring reasoning about unseen multi-body dy-
namics.

We benchmark NGFF against several SOTA particle-based prediction methods, including GCN
(Kipf & Welling, 2017), and Pointformer (Wu et al., 2024b), as well as Material Point Method
(MPM)-based simulators parameterized with estimates from Vision Language Models (VLM) (Chen
et al., 2025). Baseline definitions are provided in Appendix C.1, and evaluation metrics are detailed
in Appendix C.2. As shown in Table 1, NGFF consistently outperforms the baselines across all
generalization splits, delivering significant improvements in modeling long-term and multi-object
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Table 1: Performance comparison of dynamic prediction across generalization splits. Evaluation metrics
consist of the Root Mean Squared Error (RMSE) between predicted and ground-truth trajectories, the Final
Position Error (FPE), the correlation coefficient R, and the average inference time over 100 steps. Arrows
indicate whether higher (Ò) or lower (Ó) values are better. NGFF w/o deform. indicates NGFF without modeling
of soft body deformation.

Model Spatial Temporal Compositional Time
(s) ÓRMSE Ó FPE Ó R Ò RMSE Ó FPE Ó R Ò RMSE Ó FPE Ó R Ò

VLM-MPM 0.306 0.774 0.299 0.328 0.901 0.300 0.358 0.904 0.305 39.29
GCN 0.134 0.479 0.406 0.174 0.590 0.400 0.145 0.509 0.347 0.346
Pointformer 0.096 0.394 0.623 0.129 0.537 0.604 0.162 0.594 0.434 0.183
NGFF w/o deform. 0.110 0.459 0.595 0.144 0.600 0.578 0.131 0.546 0.515 0.303
Our NGFF 0.082 0.326 0.661 0.107 0.419 0.652 0.104 0.409 0.571 0.363
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Figure 4: Qualitative results of dynamic prediction. NGFF more accurately matches ground-truth trajectories
than graph-, transformer-, and MPM-based baselines when predicting unseen rigid–soft body interactions. See
more visualization in Appendix F.1.
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Figure 5: Qualitative results of interactive generation. Red arrows indicate external forces. The left scene
illustrates how lifting the pillow influences its dynamics, while the right scene shows that pulling the cloth
leftward causes the ball to rotate and slide. For Cosmos and Veo3, we use the following prompts, respectively:
“modify the pillow in the video after it falls to the ground between 3.2 and 4s to show a significant, sudden
external force stretching it upward into the air, with interactions with panda and miku”, and “modify the clothing
in the video between 3.2s and 4s to show a significant, sudden external force stretching it leftward”.

dynamics. Notably, its inference speed is approximately two orders of magnitude faster than MPM-
based approaches.

4.3 VIDEO GENERATION

When evaluating from the perspective of video generation, we consider compositional, novel-
background, novel-view, and interactive generation as they span the key dimensions of gen-
eralization required for robust video prediction. (1) Compositional generation tests gen-
eralization to novel object arrangements, including unseen positions and up to six objects
not present during training. (2) Novel-view generation evaluates consistency and real-
ism from unseen viewpoints, ensuring that models disentangle dynamics from appearance
while maintaining coherent spatiotemporal representations. (3) Novel-background genera-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

V
eo

3
C

os
m

os
Ph

ys
G

en
3D

N
G

FF
G

T

Figure 6: Qualitative results of video generation. The comparisons illustrate that NGFF better preserves
coherent object shapes, physically plausible interactions, and consistent backgrounds in the generated videos,
whereas other video generation models often produce distortions, unstable dynamics, or inconsistent scenes.

tion assesses robustness to previously unseen backgrounds, requiring models to preserve ob-
ject dynamics and physical plausibility while adapting to new visual contexts. (4) Interac-
tive generation probes adaptability under external perturbations (e.g., random forces), testing
whether models capture causal physical interactions rather than merely memorizing trajectories.

Table 2: Video generation across generalization splits.
Higher is better. Comp., NB, NV, and All represent compo-
sitional, novel-background, novel-view, and comprehensive
split that considers all three aspects, respectively. Note that
Cosmos performs generalization in the novel-view setting,
while NGFF performs a harder novel-view-synthesis task.

Model Split
VLM Eval. Human Eval.

PhysR PhotoR PhysR PhotoR

Cosmos

Comp. 0.34 0.42 0.29 0.43
NB 0.26 0.46 0.30 0.41
NV 0.39 0.42 0.26 0.39
All 0.20 0.32 0.28 0.41

Cosmos
tuned

Comp. 0.26 0.35 0.57 0.58
NB 0.38 0.36 0.60 0.60
NV 0.49 0.40 0.63 0.62
All 0.24 0.36 0.59 0.58

NGFF-V

Comp. 0.47 0.42 0.56 0.55
NB 0.56 0.42 0.63 0.61
NV 0.44 0.38 0.55 0.54
All 0.30 0.35 0.55 0.55

Veo3 All 0.29 0.41 0.53 0.64

PhysGen3D All 0.19 0.35 0.57 0.58

We evaluate the generated videos with
both VLMs and human annotators, focus-
ing on physical realism and visual quality,
measured by Physical Realism (PhysR)
and Photo Realism (PhotoR), respectively.
The evaluation metrics are detailed in
Appendix C.2. As shown in Figure 6
and Table 2, NGFF learns generalizable
physical representations from complex ob-
servations, surpassing prior SOTA video
generation methods—including diffusion-
based models such as NVIDIA Cosmos
(NVIDIA et al., 2025) and Google Veo3
(DeepMind, 2025), as well as the physics-
engine-based PhysGen3D (Chen et al.,
2025)—in terms of physical accuracy in
unseen scenarios, while achieving compa-
rable, though slightly lower, visual qual-
ity due to 3D reconstruction error. In ad-
dition, the object-centric Gaussian repre-
sentation enables NGFF to generate novel
views with novel backgrounds (see Ap-
pendix E). Finally, Figure 5 demonstrates
its capability for interactive video gener-
ation: through ODE-based force modeling, NGFF produces physically plausible interventions,
whereas competing methods fail to preserve consistency under external perturbations.

4.4 REAL-WORLD EXPERIMENTS

We aim to deploy the trained NGFF model in real-world applications. A key challenge in this
transition is the sim-to-real gap, which arises due to uncertainties in both perception and physical
properties. In Figure 7, we present the results of real-world predictions made by large video genera-
tion models—Veo3, Cosmos, and Cosmos after fine-tuning on our GSCollision dataset. While both
Veo3 and Cosmos produce visually high-quality videos, they fail to accurately capture real-world
gravity and object interactions. Moreover, after fine-tuning, Cosmos tends to overfit the training
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(a) Experimental setup

(b)Recorded initial images

(c) Real Veo3 Cosmos-base Cosmos-tuned GCN Pointformer NGFF

Figure 7: Real-world results. (a) Experimental setup in the real world, where 10 Pocket 3 cameras are used
to capture multi-view dynamic videos of objects dropping onto a table. (b) Initial multi-view frames captured
from the real-world setup. (c) Comparison of model predictions with ground truth. While large video generation
models produce visually high-quality results, they fail to accurately simulate physical phenomena, such as the
emergence of additional objects, unrealistic gravity, and incorrect collisions. In contrast, NGFF shows more
robust and physically accurate predictions.

data, resulting in unreliable predictions. In contrast, our NGFF generates more accurate trajectories
that closely match real-world behavior. Further details on our experimental setup can be found in
Appendix C.3.

5 DISCUSSION

Predicting 4D physical dynamics from minimal observations. Our method currently relies on
multi-view inputs to reconstruct reliable 3D Gaussian, yet humans can often anticipate future dy-
namics from a single snapshot. Bridging this gap requires extending NGFF to extreme perceptual
constraints such as monocular RGB or partial observations. Promising directions include integrating
stronger generative priors on geometry and physics, or leveraging large-scale pretraining to reduce
reliance on multi-view supervision, thereby moving closer to human-level physical reasoning.

Scaling to diverse objects and complex scenes. Our benchmark covers 10 representative ob-
jects across rigid and soft categories, yet real-world scenarios involve far more varied materials,
articulated structures, and heterogeneous environments. Scaling NGFF to thousands of objects and
compositions will require advances in both data efficiency and representation learning.

Interpretable physics-grounded reasoning. A central motivation of NGFF is to move beyond
black-box video generation toward models that reveal interpretable intermediate states—such as ex-
plicit geometries and force fields. Future research could explore richer forms of interpretability,
such as causal counterfactual reasoning (“what if” interventions) or explicit disentanglement of la-
tent physical properties (e.g., mass, stiffness). Such capabilities would enhance the utility of NGFF
in scientific discovery, robotics, and embodied AI.

6 CONCLUSION

We present NGFF, an efficient end-to-end neural framework that combines 3D Gaussian represen-
tations with physics-based modeling to generate interactive, physically realistic 4D videos from
multi-view RGB inputs. Experiments on both synthetic and real data show that NGFF yields ro-
bust representations, generalizes to unseen scenarios, and outperforms SOTA video generation and
physics simulation methods. Looking ahead, extending NGFF to broader object categories, noisy
inputs, and interactive tasks may enable general-purpose world models that integrate physical con-
sistency with visual realism for robust prediction, reasoning, and planning.

9
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Reproducibility statement To facilitate reproducibility, we document the data generation process
in Appendix A, provide implementation details of our model in Appendix B, describe the setup of
baseline methods in Appendix C.1, outline the evaluation metrics in Appendix C.2, and detail the
collection and processing of real-world data in Appendix C.3. Both the simulation and real-world
datasets will be released on Hugging Face, while the code will be made publicly available on GitHub.
In addition, we are developing an interactive website that allows users to directly experiment with
our model.
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A DATASET CONFIGURATION

To support large-scale evaluation of physically grounded video prediction, we construct GSColli-
sion, a dataset that couples Gaussian splatting with MPM-based simulation. The pipeline described
in Appendix A.1 generates temporally consistent Gaussian trajectories from multi-object scenes
under controlled physics. The dataset is organized into a modular structure (Appendix A.2) that in-
cludes backgrounds, object assets, scene configurations, simulated dynamics, and video recordings,
providing a unified platform for reconstruction and prediction. Finally, we define systematic gener-
alization splits (Appendix A.3) that cover spatial, temporal, and compositional variations, enabling
rigorous testing of model robustness across diverse physical scenarios.

A.1 DATA GENERATION

To construct our dataset, we employ a hybrid pipeline that integrates Gaussian splatting with a GPU-
accelerated MPM engine implemented with Warp (Xie et al., 2023). First, pretrained Gaussian scene
representations are loaded from checkpoints and pre-processed by removing low-opacity kernels,
applying global rotations, and transforming particles to a normalized coordinate system. If available,
segmentation masks are used to reorder particles by object identity, enabling per-object material
assignments and stiffness parameters. Optionally, internal particle filling is performed to increase
density for more accurate simulation.

The pre-processed particle states are then converted into initial conditions for the MPM solver, where
particle volumes, covariance matrices, and object-specific material parameters (e.g., Young’s modu-
lus, density, boundary conditions) are configured. The simulation domain is defined as a cubic grid.
The solver is initialized with either zero or user-specified velocities, and a box-shaped boundary
of size 2 is enforced as defined by the scene configuration. Each particle stores position, velocity,
deformation gradient, rotation, covariance, stress, mass, and density, which are dynamically updated
at each step through the standard particle–grid–particle (P2G2P) pipeline.

During simulation, the solver advances dynamics through substeps, exporting per-frame particle
attributes including positions, covariance matrices, and rotations. These outputs are saved as frame-
wise datasets (e.g., in .h5 format), which preserve all Gaussian attributes required for differentiable
rendering. This process produces temporally consistent particle trajectories aligned with Gaussian
splatting, yielding high-fidelity dynamic sequences that couple perception and physics.

A.2 DATA STRUCTURE

GSCollision is organized into several components that together provide a complete pipeline from
scene configuration to dynamic simulation:

• backgrounds stores environment-specific backgrounds (e.g., table0, table1). Each subdirec-
tory contains camera parameters (camera_2999.pt) and Gaussian point cloud representations
(gaussians_feedforward.ply), enabling consistent scene reconstruction and rendering.

• objects contains individual object assets. Each object (e.g., ball, pillow) includes camera
calibration data (cameras.json) and its corresponding point cloud (point_cloud), serving
as atomic units for scene composition and physical simulation.

• scene_configs provides scene-level configuration files (e.g., 3_0.json, 3_1.json) that spec-
ify object layouts and initialization conditions for simulation.

• scenes contains multi-object scene Gaussians grouped by index (e.g., 3_0, 3_1). Each scene con-
tains different object combinations (e.g., 0_panda_ball_can, 300_miku_miku_pillow),
representing diverse interaction setups.

• mpm stores dynamic Gaussian trajectories simulated with the MPM. Subdirectories mirror those
in scenes, allowing direct correspondence between scene definitions and their physically grounded
dynamics.

• initial contains the multi-view images of the initial scene prior to interaction, serving as the start-
ing point for temporal evolution.

• dynamic records the dynamic videos of object interactions, aligned with initial and mpm, and
used for training and evaluating video prediction models.
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In summary, GSCollision integrates backgrounds, object assets, scene configurations, and both sim-
ulated (mpm) and recorded (initial, dynamic) trajectories. This structure enables systematic con-
struction of complex multi-object environments and provides a unified platform for studying scene
reconstruction, physical simulation, and dynamic prediction.

+-- backgrounds
| +-- table0
| | +-- camera_2999.pt
| | \-- gaussians_feedforward.ply
| +-- table1
| +-- camera_2999.pt
| \-- gaussians_feedforward.ply
+-- objects
| +-- ball
| | +-- cameras.json
| | \-- point_cloud
| \-- pillow
| +-- cameras.json
| \-- point_cloud
+-- scene_configs
| +-- 3_0.json
| \-- 3_1.json
\-- scenes
| +-- 3_0
| | +-- 0_panda_ball_can
| | \-- 100_can_panda_phone
| \-- 3_1
| +-- 300_miku_miku_pillow
| \-- 301_cloth_can_panda
+-- mpm
| +-- 3_0
| | +-- 0_panda_ball_can
| | \-- 100_can_panda_phone
| \-- 3_1
| +-- 300_miku_miku_pillow
| \-- 301_cloth_can_panda
+-- initial
| +-- 3_0
| | +-- 0_panda_ball_can
| | \-- 100_can_panda_phone
| \-- 3_1
| +-- 300_miku_miku_pillow
| \-- 301_cloth_can_panda
+-- dynamic
| +-- 3_0
| | +-- 0_panda_ball_can
| | \-- 100_can_panda_phone
| \-- 3_1
| +-- 300_miku_miku_pillow
| \-- 301_cloth_can_panda

The directory sizes of the dataset is shown in Table A1.

A.3 GENERALIZATION SPLITS

We partition the dataset into 12 groups. Among them, groups 3_0–3_8 serve as the training set,
while group 3_9, 4 and 6 are used to test generalization. Table A2 summarizes the dataset config-
uration and evaluation splits for both dynamics prediction and video generation. The training set is
built from object triplets drawn from ten categories, across groups 3_0–3_8, with trajectories span-
ning 80 simulation steps (1.6s), rendered from 20 viewpoints and 4 backgrounds. For dynamics pre-
diction, we consider three generalization settings: spatial (novel object placements in group 3_9),
temporal (longer rollouts of 100 steps), and compositional (novel object combinations involving
4–6 objects in groups 4 and 6). For video generation, we further define splits for compositional
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Table A1: Directory sizes of the GSCollision dataset. Others contain objects, config files, reconstruction
files, etc.

Directory Size (T) Percentage
dynamic 0.854 20.1%
initial 0.122 2.9%
mpm 2.300 54.1%
backgrounds 0.032 0.8%
scenes 0.061 1.4%
others 0.881 20.7%

Total 4.250 100%

(3_9, 4, 6), novel-view (5 unseen viewpoints), novel-background (held-out backgrounds), and a
comprehensive split that jointly evaluates multiple factors with trajectories extended to 100 steps
(2s). Green cells indicate aspects consistent with training, while blue cells denote novel conditions
used for testing.
Table A2: Statistics of different generalization splits. Green indicates that the training and test data share the
same configuration in certain aspects, whereas blue indicates they are different.

Objects Groups Time span Viewpoints Backgrounds

Training set 3 from 10 kinds 3_0 – 3_8 80 step / 1.6s 20 4

Dynamics prediction

Spatial 3 from 10 kinds 3_9 80 step / 1.6s / /

Temporal 3 from 10 kinds 3_0 – 3_8 100 steps / 2s / /

Compositional 4–6 from 10 kinds 4, 6 80 step / 1.6s / /

Video generation

Compositional 3 from 10 kinds 3_9, 4, 6 80 step / 1.6s 20 4

Novel-view 3 from 10 kinds 3_0 – 3_8 80 step / 1.6s 5 4

Novel-background 3 from 10 kinds 3_0 – 3_8 80 step / 1.6s 20 4

Comprehensive 3–6 from 10 kinds 3_9, 4, 6 100 steps / 2s 5 4

B IMPLEMENTATION DETAILS

B.1 FEED-FORWARD GAUSSIAN RECONSTRUCTION

Starting from uncalibrated RGB images, the initial step is to recover the 3D point cloud structure
of a scene. Traditional optimization-based methods, such as Structure-from-Motion and Multi-
View Stereo, necessitate capturing tens or even hundreds of views, which are often impractical
in real-world scenarios. Recently, feed-forward foundation reconstruction models (Wang et al.,
2025a;b) have emerged as a powerful alternative. Pretrained on massive datasets, these models
perform 3D reconstruction in a single forward pass, enabling lightning-speed scene reconstruction.
This provides the foundation for subsequent neural simulation and planning within the reconstructed
3D representations.

In our experiments, we found that the permutation-equivariant architecture of π3 achieves higher
accuracy in object registration compared to VGGT, a model based on first reference frame recon-
struction. Consequently, we selected π3 as our backbone.

Building upon the π3 model, we introduce modifications to create π3 ´GS for feed-forward Gaus-
sian scene reconstruction. To achieve stronger real-world generalization, we freeze the alternating
attention encoder and the camera head of the pre-trained π3 model. We directly use the predictions
from its point head as the centers, µ, for the Gaussians. Furthermore, we observed that MLP-based
pixel-shuffling is prone to creating artifacts at patch boundaries. Since convolutional operations
yield smoother results, we replaced this with a convolutional upsampling layer in the splatter head.
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Specifically, we first refine the patch features from the transformer encoder with three convolutional
blocks, followed by an upsampling layer and two additional convolutional blocks to eliminate arti-
facts. We also applied a direct RGB shortcut (Ye et al., 2025), composed of 3 Residual CNN blocks
from the input image, to preserve high-frequency details and enhance appearance reconstruction.

We trained the splatter head of our π3 ´GS model on the Wildrgbd (Xia et al., 2024) dataset, which
contains approximately 22,000 scenes. The training was conducted on 8 NVIDIA H100 80G GPUs
for 50 epochs with a global batch size of 24. Both mixed-precision training and gradient checkpoint-
ing were utilized.

B.2 SINGLE-VIEW GAUSSIAN REFINEMENT

Feed-forward reconstruction models that lack a generative prior are inherently limited in handling
challenges such as incomplete observations and occlusions. This deficiency can adversely affect
the topological integrity of the object’s 3D Gaussian representation and, consequently, the fidelity
of subsequent neural simulations. To address this, we propose a pipeline that first completes the
object’s geometry using a 3D asset generation model, followed by a Simp3q point cloud alignment
to register it within the scene.

Initially, the segmented object image is processed through a super-resolution pipeline (Wu et al.,
2024a) to enhance textural details. We then employ a pretrained 3D generative model, DiffSplat
(Lin et al., 2025a), to infer a complete 3D Gaussian representation of the object, conditioned on the
single input view.

The generated Gaussian asset resides in a normalized, object-centric coordinate system, which is
inconsistent with the object’s true scale and pose in the scene. To place the generated object ac-
curately, we introduce a Simp3q registration algorithm that combines visual feature matching with
gradient-based optimization. First, we render a set of images tIku by orbiting the generated as-
set at multiple elevations. For each rendered image Ik, we use SuperGlue (Sarlin et al., 2020) to
establish matches with the original input image Iin, and select the view that yields the maximum
number of 2D correspondences, denoted as C2D “ tppi,p

1
iquNi“1. These 2D matches are then lifted

to 3D, C3D “ tpPi,P
1
iquNi“1, by identifying the 3D points in the respective point clouds, Pgen and

Pobs, that are closest to the corresponding camera rays. For initialization, we estimate the scale
sinit from the ratio of the point clouds’ bounding box volumes and solve for an initial 6-DoF pose
rRinit|tinits PSEp3q using the Kabsch algorithm within a RANSAC framework. Subsequently, we
jointly refine the similarity transformation T PSimp3q by minimizing the Chamfer distance between
the transformed generated point cloud and the observed point cloud via gradient descent:

pR˚, t˚, s˚q “ arg min
RPSOp3q,tPR3,sPR`

LCDpsRPgen `t,Pobsq

The entire registration process can be done within a few seconds.

B.3 NEURAL GAUSSIAN FORCE FIELD (NGFF)

Our framework builds upon a neural interaction–based dynamics predictor, which integrates object-
level interaction modeling, boundary constraints, and stress field prediction into a differentiable
ODE solver. The overall design couples four components: an Interaction Network (IN), a Stress
Prediction Network (StressNet), boundary and collision modules, and a neural ODE–based temporal
evolution module.

Interaction Network (IN) The IN module captures both geometric and state-dependent interac-
tions among multiple objects. Each object is first encoded using a hierarchical PointNet backbone
that extracts global geometric features from point clouds. State descriptors—including center of
mass (CoM), orientation angles, linear and angular velocities—are embedded through multilayer
perceptrons. Pairwise object relations are modeled via a branch–trunk structure: branch features
encode relative states between objects, while trunk features preserve object-specific information.
Their interaction is combined through element-wise multiplication and mapped to output forces
and torques. To ensure physical consistency, the IN explicitly detects inter-object collisions and
boundary contacts. Collision forces are masked by an intersection matrix, while boundary forces
are predicted by a dedicated boundary network conditioned on both geometry and state features.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Stress Prediction (StressNet) Beyond rigid-body dynamics, the model accounts for distributed
internal responses by predicting per-point stress fields. StressNet takes as input the local point
coordinates, velocities, and the aggregated forces and torques from IN and boundary interactions.
A shared MLP extracts local features, followed by a global max-pooling to capture object-level
context. These are fused and projected to pointwise stress outputs. The design enforces rotation
consistency by transforming predicted forces and stresses between global and local frames via dif-
ferentiable Euler-angle rotation matrices.

Boundary and Collision Modules Physical validity is further maintained through two auxiliary
functions: collision detection computes pairwise point distances between objects to construct over-
lap masks, which gate non-contact interactions; boundary detection evaluates the proximity of ob-
ject points to the simulation domain limits, producing boundary masks to trigger repulsive boundary
forces.

Temporal Evolution with Neural ODE To simulate motion, NGFFobj integrates the above pre-
dictors into a continuous-time dynamics system solved via the torchdiffeq ODE framework. The
system state comprises point positions, point velocities, CoM and angular states, along with stress
distributions. At each step, the IN outputs interaction forces and torques, and StressNet provides
stress derivatives, which are combined with external forces (if any) and gravity. The resulting ac-
celerations are integrated forward in time using either explicit Euler or adaptive-step solvers. This
formulation enables stable long-horizon rollout while preserving differentiability for learning-based
optimization.

Training The model is trained on 8 NVIDIA H100 80GB GPUs for 1001 epochs for 48 hours. The
learning rate starts at 1ˆ10´5 and decays to a minimum of 1ˆ10´7. The architecture consists of 4
layers with a hidden dimension of 200. The batch size is set to 9 per node, and each epoch involves
80 steps with a chunk size of 80. The ODE method used is Euler with a step size of 2ˆ10´2, and a
threshold of 5ˆ10´2 for collision detection is applied during training.

C EXPERIMENTAL SETUP

C.1 BASELINES

C.1.1 GRAPH CONVOLUTIONAL NEURAL NETWORKS (GCN)

We adopt a Graph Convolutional Network (GCN) to model dynamics. Each object is represented
by a set of keypoints, which serve as graph nodes, and edges are constructed using a radius-based
neighbor search with a threshold. The node features are obtained by concatenating the 3D position
and velocity of each keypoint.

The network consists of multiple GCNConv layers, where each layer performs message passing
to aggregate information from neighboring nodes, followed by ReLU nonlinearities. A final fully
connected layer predicts the residual update of position and velocity for each node. Prediction is
performed in an autoregressive manner: at each step, the model updates the current state with the
predicted residuals and rolls out the trajectory over multiple steps.

The GCN is trained on a single NVIDIA H100 80GB GPU with a learning rate starting at 1ˆ10´3,
which decays to 1ˆ10´4. The model consists of 4 layers, each with a hidden dimension of 128.
A batch size of 30 is used, with 80 steps per epoch, and the training runs for 500 epochs. At each
step, the model processes 3000 samples, with data processed in chunks of 80 to ensure efficient
memory usage. The dynamic model used in this setup is GCN, which is specifically designed to
handle graph-structured data and learn complex relationships.

C.1.2 POINTFORMER

Pointformer directly models interactions across all object keypoints. Each keypoint is embedded
using a positional encoding derived from its 3D coordinates, followed by a linear projection into a
high-dimensional latent space. The set of embedded keypoints from all objects is then processed by
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a stack of multi-head self-attention layers, allowing each point to attend to and aggregate information
from all others in the scene.

To handle variable numbers of objects and keypoints, a padding mask is applied to prevent attention
from propagating through invalid nodes. The transformer output is normalized and projected back
into the point space via a feedforward head to predict residual updates for each keypoint’s position.
As in the GCN baseline, prediction proceeds autoregressively over multiple rollout steps, generating
a sequence of future trajectories.

Unlike GCNs, which rely on local neighborhood graphs, PointFormer captures global interactions
across all keypoints through self-attention. This enables the model to represent long-range depen-
dencies and complex multi-object dynamics, but at the cost of higher computational complexity due
to quadratic attention scaling.

The Pointformer is trained on 4 NVIDIA H100 80GB GPUs for 60 hours. The model is trained with
a learning rate starting at 5ˆ10´4, decaying to a minimum of 5ˆ10´6. The architecture consists
of 3 layers and a hidden dimension of 128, with dropout 0.1. The batch size is set to 8 per node,
with a total of 2001 epochs, and each epoch involves 80 steps with a chunk size of 80.

C.1.3 VLM-MPM

We employ Gemini-2.5-flash to infer the Young’s modulus and density from 20 training videos. The
estimated parameters are subsequently normalized to align with the value ranges required by the
MPM simulator. The prompt used is:

For each object in the videos, estimate the object’s density in kilograms
per cubic meter and its Young’s modulus in Pa. Return an json array

of objects in JSON where each object has fields: name, density,
youngs_modulus. Do not include extra text, only valid JSON that
matches the schema. The objects you need to estimate are: {objects}.

The following simulations are identical to those employed in data generation.

C.1.4 COSMOS-PREDICT2

Cosmos-Predict2 is a World Foundation Model trained by NVIDIA, designed to simulate and predict
the future state of the world as video. It can serve as a foundation for training physical AI systems in
digital environments. The model balances both visual quality and physics awareness and is capable
of generalizing to downstream tasks with a small amount of post-training.

We performed full-parameter fine-tuning on the Cosmos-Predict2-2B-Video2World-480P-16FPS
model. For this process, we utilized a total of 216K video clips from the GSCollision dataset, which
amounts to 17.28 million frames, each with a resolution of 448ˆ448.

For text conditioning, we used the following prompt for all video clips:

A photorealistic video. Simulate the future dynamics of the foreground
objects falling from the air onto the table. The simulation should
realistically model various physical interactions including
deformation, gravity, collisions between the objects, and their
impact with the surface. Capture the subsequent motions until the
objects come to a complete rest.

For image (video) conditioning, we randomly used 3-5 latent frames (corresponding to 9-17 actual
frames) during training. During testing, we conditioned on the first 13 frames of the video.

The training was conducted on 8 NVIDIA H100 80G GPUs. We trained for 20,000 iterations until
convergence, using an initial learning rate of 2.5ˆ10´4 and a global batch size of 24.

C.1.5 PHYSGEN3D

PhysGen3D transforms a single static image into an interactive, amodal 3D scene capable of simu-
lating physically plausible future outcomes. The framework first reconstructs a complete 3D world
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by leveraging a suite of pretrained vision models to infer geometry, semantics, materials, and light-
ing properties from the input image. This reconstructed scene is then passed to a physics-based
simulator, which uses the MPM to generate object dynamics in response to LLM-inferred phys-
ical parameters. Finally, a physics-based rendering module seamlessly composites the simulated
dynamic objects and their corresponding shadows back into the original scene, producing a coher-
ent and controllable video. PhysGen3D enables fine-grained control over object interactions and
generates motions that adhere to physical laws.

However, the framework’s reliance on single-view reconstruction makes it susceptible to errors in
complex scenarios. The method is primarily designed for scenes with simple geometry and can
fail when dealing with heavy occlusions and multiple objects. The ill-posed nature of inferring 3D
properties from a 2D image can lead to perception failures and parameter estimation errors under
challenging situations. Besides, reliance on MPM simulators makes it slower than neural simulation
methods on modern GPUs.

C.1.6 VEO3

Veo3 is a SOTA diffusion-based video generation model developed by Google DeepMind. It can
interpret complex text prompts, capable of generating smooth and consistent dynamics for people
and objects. It avoids the uncanny or jarring artifacts common in earlier models, producing motion
that is both believable and visually pleasing.

However, during testing, we observed that while Veo3 maintains excellent temporal consistency
during non-strenuous motion, the model still frequently generates outputs that violate fundamental
Newtonian physics principles or object permanence during strenuous events, such as collisions.

C.2 EVALUATION METRICS

In this study, we adopt different metrics for evaluating NGFF. For the accuracy of the predicted
dynamics, we choose RMSE, FPE, and R as our primary metrics. For assessing the video generation
correctness, we employ PhysR and PhotoR.

Root Mean Squared Error (RMSE) The RMSE, defined as the square root of the Mean Squared
Error (MSE), retains the property of penalizing larger deviations but expresses the error in the same
units as the original data. This makes it easier to interpret in physical contexts, as it reflects the
average magnitude of prediction errors relative to true trajectories:

RMSE “

g

f

f

e

1

n

n
ÿ

t“1

pẑt ´ztq2. (A1)

Final Position Error (FPE) The FPE evaluates the difference between the predicted and ground-
truth final positions of an object. This metric is particularly important for goal-oriented physical
reasoning, where accuracy at the endpoint is critical. By focusing on the final state, FPE comple-
ments trajectory-based metrics and ensures that models not only capture motion dynamics but also
predict the ultimate destination correctly:

FPE “ |ẑfinal´zfinal| . (A2)

Position Change Error (PCE) The PCE measures the discrepancy between the predicted and
actual changes in position over time. This metric can be interpreted as an indicator of how accurately
the model captures the object’s velocity throughout its motion:

PCE “ |∆ẑt ´∆zt| . (A3)

Pearson Correlation Coefficient (R) The R coefficient captures the linear correlation between
predicted and actual trajectories. Rather than measuring absolute error, it reflects how well the
model aligns with the overall trajectory pattern. A high value indicates strong agreement in motion
trends, while a low value suggests that the model fails to capture the underlying trajectory structure:

R “

řn
t“1pẑt´ ¯̂zqpzt ´ z̄q

a

ř

t“ 1npẑt´ ¯̂zq2
ř

t“ 1npzt ´ z̄q2
. (A4)
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Figure A1: An example of human study questionaire.

Given that video-generation models like Veo3 and PhysGen3D are closed-source or untrainable,
for which a direct comparison with ground truth would be inequitable, we adopted the qualitative
evaluation framework established by PhysGen3D (Chen et al., 2025) to quantitatively evaluate video
generation quality. This involves leveraging a Vision-Language Model, Gemini-2.5-flash to assess
two key criteria: PhysR and PhotoR.

Physical Realism (PhysR) The PhysR measures how realistically the video follows the physi-
cal rules like collision and gravity and whether the video represents real physical properties like
elasticity and friction.

Photo Realism (PhotoR) The PhotoR measures the overall visual quality of the video, including
the visual artifacts, discontinuities, and id-inconsistency.

The prompt is as follows:

# [video inputs]
I would like you to evaluate the quality of generated videos above based

on the following criteria: physical realism and photorealism. The
evaluation will be based on 10 evenly sampled frames from each video.
Given the original image and the above instructions , please

evaluate the quality of each video on the two criteria mentioned
above. Note that: Physical Realism measures how realistically the
video follows the physical rules and whether the video represents
real physical properties like elasticity and friction. To discourage
completely stable video generation, we instruct respondents to
penalize such cases. Photorealism assesses the overall visual quality
of the video, including the presence of visual artifacts,

discontinuities, and how accurately the video replicates details of
light, shadow, texture, and materials. Please provide the following
details for each video in an json array of videos where each video
object has fields: physical_realism score, photorealism score and
content. The content should be a sentence summarizing the video,
scores should be ranging from 0-1, with 1 to be the best, round to 2
decimal places:

Human evaluation We designed a questionnaire to conduct human evaluation on video generation
quality across different models, as illustrated in Figure A1. A total of 61 participants were recruited
to complete an 80-page questionnaire. At the beginning, we provided a detailed explanation of
two metrics. Each page of the questionnaire contains a 2–3 second video randomly chosen from
all models and generalization splits. Participants are instructed to assess each video based on the
two dimensions above: PhysR and PhotoR. This human study design, accompanied by results from
VLMs, ensures a fair, consistent, and comprehensive evaluation. Detailed distributions of human
evaluation results can be found in Figure A2 and Figure A3
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Figure A2: Detailed distribution of human evaluation results on Physical Realism (PhysR).
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Figure A3: Detailed distribution of human evaluation results on Photo Realism (PhotoR).

C.3 REAL WORLD ENVIRONMENTS

C.3.1 DATA COLLECTION

We collected real-world interaction sequences using a multi-view setup of ten DJI Pocket 3 cameras
arranged around a table in a standard office environment. All cameras were calibrated to share
identical intrinsic parameters, ensuring geometric consistency across views. To induce controlled
dynamics, objects were lifted and released with transparent fishing line, creating falling and collision
events while guaranteeing that each object started from a static state. In total, we recorded 40
dynamic sequences at 50 FPS and 3K resolution. The object set included a cola can, a teddy bear,
and a rubber duck, allowing us to generate diverse two-object and three-object interaction scenarios
with varying mass and material properties.
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C.3.2 VIDEO PROCESSING

For each sequence, we temporally trimmed the videos from the instant of release until all objects
came to rest, typically spanning 50–60 frames. Each frame from every camera view was annotated
with axis-aligned bounding boxes, obtained semi-automatically using SAM2 and refined by manual
correction where necessary to ensure pixel-level accuracy. Object identities were explicitly labeled
to support subsequent use in multimodal learning tasks. To enable 3D reconstruction, all frames were
synchronized across views and processed using a feed-forward pretrained Gaussian-splatting model,
with further refinement using DiffSplat (Lin et al., 2025a), producing multi-view-consistent 3D
Gaussian representations. This pipeline ensured both high-quality geometry recovery and consistent
object-level alignment, establishing a reliable benchmark for evaluating dynamic prediction models
under real-world conditions. See the representative recorded videos in Figure A4, Figure A5, and
Figure A6.
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Figure A4: Recorded multi-view dynamic interaction in the real world. A teddy bear is released above a
cola can and falls onto the table.
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Figure A5: Recorded multi-view dynamic interaction in the real world. A cola can is released above a duck
and falls onto the table.
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Figure A6: Recorded multi-view dynamic interaction in the real world. A cola can is released above a duck,
collides with the teddy bear, and falls onto the table.
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D MORE RELATED WORKS

D.1 PHYSICAL REASONING

Physical reasoning is a core human ability to understand and interact with the physical world. Be-
sides generating continuous and high-fidelity videos (Ho et al., 2022; Yang et al., 2024), physical
reasoning tackles the challenges to comprehend and reason about the governing physical dynamics
of visual scenes, representing a core capability required for AI systems to achieve human-level in-
tuitive physics abilities. This core skill encompasses two critical domains: First, it involves spatial
reasoning (Shiri et al., 2024) from video inputs, the ability to reconstruct and understand three-
dimensional scenes, including object relationships, spatial configurations, and perspective. Second,
it requires an understanding of fundamental physical laws governing object interactions and gener-
alizing it to OOD scenarios.

Various benchmarks have been proposed to assess the physical reasoning capabilities of both hu-
mans and machines. Previous studies build datasets based on the VoE paradigm to examine agents’
understanding of basic physical concepts (Piloto et al., 2022; Dai et al., 2023). Recent studies ex-
tend the passive observation paradigm to interactive environments, which require the agents to apply
actions to finish tasks (Bakhtin et al., 2019; Allen et al., 2020; Bear et al., 2021; Li et al., 2023a).
Our work builds upon the interactive physical environment to demonstrate the reasoning capability
of our model.

D.2 VISUAL DYNAMICS PREDICTION

Visual dynamics prediction, the task of predicting future frames from visual inputs, has been ad-
dressed through diverse approaches. Neural simulator-based methods commonly employ GNN as
their dynamics backbone due to their relational inductive bias. Early approaches, while capable of
simulating various physical phenomena (Sanchez-Gonzalez et al., 2020; Bear et al., 2021), often fail
on complex materials and physical interactions. More recent approaches inject physics inductive
bias into simulation such as mesh (Allen et al., 2023) or SDF (Rubanova et al., 2024) representation
for rigid bodies and spring-mass models (Jiang et al., 2025a) or particle-grid representations (Zhang
et al., 2025) for deformable objects. Despite their advancements, these methods often struggle with
complex multi-object interaction scenarios and exhibit limited generalization abilities. While our
method adopts a unified representation for different object materials and physical interactions by
predicting force fields.

In contrast, physics simulator-based methods explicitly model scene dynamics using differentiable
simulators. For example, techniques that render scenes into particles via 3D Gaussian rendering and
simulate their evolution with Material Point Method (MPM)-based simulators (Xie et al., 2023; Lin
et al., 2025b; Chen et al., 2025) produce realistic outcomes but rely heavily on strong physics priors
or case-specific optimization, which may not be available in intuitive physics scenarios.

D.3 SCENE REPRESENTATIONS FOR SIMULATION AND RENDERING

Early methods extracted geometry, such as point clouds, directly from RGB-D inputs for simula-
tion and planning (Shi et al., 2024) and trained a separate module for rendering (Whitney et al.,
2024). Later, NeRF enables differentiable rendering and can be jointly optimized for simulation
(Driess et al., 2023; Xue et al., 2023a) at the cost of degraded flexibility due to implicit encoders.
3D Gaussian Splatting has emerged as a powerful alternative, offering photorealistic quality and
real-time performance (Kerbl et al., 2023). The utility of 3D Gaussians extends beyond static ren-
dering; works like PhysGaussian (Xie et al., 2023) have integrated them with Newtonian dynamics
for high-quality motion synthesis. Advances in feed-forward reconstruction significantly accelerate
the reconstruction process by directly inferring Gaussian attributes from unposed multi-view images
(Wang et al., 2025a; Jiang et al., 2025b; Wang et al., 2025b), enabling fast, end-to-end scene creation
suitable for downstream simulations. Our concurrent work 3DGSIM (Zhobro et al., 2025) also em-
ploys feed-forward Gaussian reconstruction and a transformer for prediction. They primarily focus
on single-object dynamics, having limited generalization to multi-object interactions and planning
capability.
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Table A3: Ablation results of NGFF and NGFF without deformation across different generalization set-
tings. Arrows indicate whether higher (Ò) or lower (Ó) values are better.

Setting Method MSE (Ó) RMSE (Ó) PCE (Ó) FPE (Ó) PCC (Ò)

Spatial NGFF w/o deform. 0.01466 0.10971 0.01386 0.45927 0.59506
NGFF 0.00835 0.08199 0.01165 0.32576 0.66111

Temporal NGFF w/o deform. 0.02605 0.14403 0.01421 0.59975 0.57836
NGFF 0.01471 0.10711 0.01167 0.41933 0.65238

Compositional-4 NGFF w/o deform. 0.02092 0.13031 0.01487 0.54689 0.52474
NGFF 0.01052 0.09533 0.01210 0.37274 0.59444

Compositional-6 NGFF w/o deform. 0.01910 0.13249 0.01527 0.54564 0.50577
NGFF 0.01379 0.11268 0.01358 0.44583 0.54707

Table A4: Inference time for different video generation methods Times are measured on a single NVIDIA
H100 80G GPU.

Model Time

NGFF-V 37s (3 objects) / 72s (6 objects)

NGFF-V (w/o refine) 12s (3 objects) / 19s (6 objects)

Pointformer-V 37s (3 objects) / 72s (6 objects)

GCN-V 37s (3 objects) / 72s (6 objects)

PhysGen3D 400s (3 objects) / 590s (6 objects)

Cosmos-predict2-2B 20s

Veo3 11–360s (via API)

E ABLATIONS AND MORE RESULTS

In this section, we provide supplementary results to further analyze the effectiveness and efficiency
of our proposed framework. First, we report an ablation study in Table A3, which compares NGFF
against its variant without deformation modeling across different generalization settings. The re-
sults demonstrate that explicitly modeling deformation consistently improves predictive accuracy,
yielding lower errors (MSE, RMSE, PCE, and FPE) and higher correlations (PCC).

We also benchmark the inference speed of our method against alternative approaches in Table A4.
NGFF-V attains efficient inference (2.5s per sequence on a single H100 GPU), significantly outper-
forming computationally expensive physics-based simulators (e.g., PhysGen3D) while remaining
competitive with large-scale generative models (e.g., Cosmos-predict2-2B and Veo3). Together,
these results highlight that our framework achieves a favorable balance between accuracy, realism,
and efficiency.

F MORE VISUALIZATIONS

F.1 DYNAMIC PREDICTION

We present more visualizations of dynamic prediction in Figures A7 to A11.
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Figure A7: Dynamic prediction results.
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Figure A8: Dynamic prediction results.
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Figure A9: Dynamic prediction results.
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Figure A10: Dynamic prediction results.
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Figure A11: Dynamic prediction results.
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Figure A12: Video generation results from compositional split.
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Figure A13: Video generation results from compositional split.

F.2 VIDEO GENERATION

We present additional visualizations of video generation in Figures A12 to A19.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G
C

N
Po

in
tf

or
m

er
C

os
m

os
(w

/o
tu

ne
)

C
os

m
os

C
os

m
os

(w
/o

re
fin

e)
N

G
FF

G
T

Figure A14: Video generation results from novel-view split.
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Figure A15: Video generation results from novel-view split.
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Figure A16: Video generation results from novel-background split.
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Figure A17: Video generation results from novel-background split.
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Figure A18: Video generation results from comprehensive split.
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Figure A19: Video generation results from comprehensive split.
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