
TidyBot++: An Open-Source Holonomic
Mobile Manipulator for Robot Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract: Exploiting the promise of recent advances in imitation learning for mo-1

bile manipulation will require the collection of large numbers of human-guided2

demonstrations. This paper proposes an open-source design for an inexpensive,3

robust, and flexible mobile manipulator that can support arbitrary arms, enabling4

a wide range of real-world household mobile manipulation tasks. Crucially, our5

design uses powered casters to enable the mobile base to be fully holonomic, able6

to control all planar degrees of freedom independently and simultaneously. This7

feature makes the base more maneuverable and simplifies many mobile manipu-8

lation tasks, eliminating the kinematic constraints that create complex and time-9

consuming motions in nonholonomic bases. We equip our robot with an intuitive10

mobile phone teleoperation interface to enable easy data acquisition for imita-11

tion learning. In our experiments, we use this interface to collect data and show12

that the resulting learned policies can successfully perform a variety of common13

household mobile manipulation tasks.14
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Figure 1: We develop an open-source mobile manipulator with a holonomic base (left), and show
that it can perform a variety of household tasks in a real apartment home (right).

1 Introduction16

Imitation learning from real-world data is starting to show very promising results in robotics for both17

fixed-arm robots [1, 2, 3, 4, 5, 6, 7] and mobile manipulators [8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18

18, 19, 20, 21]. However, one key bottleneck is the availability of data. Unlike in natural language19

processing, which can train on readily-available data from the internet, real-world data for training20
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robot policies is much harder to come by. As a result, scaling data collection of robotic tasks has21

become a high-interest research direction. Recent efforts have collected large robot learning datasets22

to address this [22, 23, 24, 25, 26, 27]. These datasets were largely collected on fixed-arm robot23

setups. However, to bring robots to their full potential, mobility is important as it will enable many24

more tasks in realistic household settings [8].25

We believe that one reason there are so few data collection and learning efforts in mobile manipu-26

lation is the lack of suitable research hardware. Existing commercial options for mobile bases are27

often tailored towards industrial or warehouse use cases, and may be ill-suited for household envi-28

ronments due to their large size. They are also often expensive and are typically subject to kinematic29

constraints.30

In this work, we propose an open-source design for a mobile base designed to carry a robot arm sized31

for use in household environments. In addition to being inexpensive, flexible, and easy to assemble,32

our base is holonomic: able to independently move in any of the three degrees of freedom (DoFs)33

on the ground plane—(x, y, θ)—at any time. We argue that this is an important advantage for more34

intuitive teleoperation, and greatly increases the ease of acquiring large amounts of training data for35

real-world imitation learning.36

Nonholonomic robots, such as differential drive (wheelchair-like) or Ackermann drive (car-like)37

platforms, have constrained degrees of freedom in their motion. The most notable consequence of38

this is that they cannot move sideways. For example, cars cannot directly drive sideways into a39

street-side parking spot and must execute a multi-step parallel-parking maneuver.40

Figure 2: A simplified illustration of caster wheels
on a holonomic base.

In contrast, holonomic robots have no kine-41

matic constraints and can simultaneously and42

independently control all three degrees of free-43

dom. An example of a holonomic vehicle com-44

mon in everyday life is an office chair, which45

can be smoothly pushed or rotated in arbitrary46

directions. This is enabled by the design of the47

caster wheels (Fig. 2), which have an offset be-48

tween the vertical axis of the swivel mechanism49

and the roll axis of the wheel. This offset is50

a crucial design feature of casters and is what51

makes the office chair fully holonomic. It creates a lever arm that causes the wheel to trail behind52

the vertical axis of the swivel as the chair moves, automatically aligning the wheels to the direction53

of movement. Without a caster offset, the vehicle would be omnidirectional (capable of moving in54

any direction) but still nonholonomic, as the wheels have to be manually aligned to face the direction55

of desired motion before the vehicle can begin moving. Overall, holonomic drive is preferred for56

maximum maneuverability.57

Our holonomic base uses a powered-caster drive mechanism [28]. It is driven by four motorized58

casters, and can be thought of as a motorized office chair. The ability to steer all four wheels59

makes the base omnidirectional, and the caster offset makes the base holonomic, allowing it to60

instantaneously accelerate in any direction as it does not need to first align the wheels to the direction61

of motion.62

A holonomic mobile base enables easier teleoperation and kinesthetic teaching for collecting im-63

itation learning data. Everyday tasks such as opening doors and cabinets often require sideways64

motions of the mobile base to improve the workspace of the arm during execution. This useful65

motion is not immediately available with a differential drive base. Instead, the robot has to replan66

vehicle trajectories to satisfy nonholonomic constraints, which costs extra motion and time with no67

added value to the task. A holonomic mobile base, on the other hand, can be much more reactive. It68

can be moved arbitrarily in any direction no matter the current configuration, allowing an operator69

to make fine adjustments to the positioning of the base.70
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A holonomic base is also useful for policy learning and inference. Recent real-robot imitation learn-71

ing works have converged on the use of position representations, as they are more stable and less72

noisy compared to velocities. However, a nonholonomic mobile base can only be controlled in ve-73

locity mode [8, 16]. A holonomic base, on the other hand, can be directly commanded to go to a74

task space position (x, y, θ) in a repeatable manner, as it can independently control all DOFs with75

no constraints. In our experiments, we show that we can indeed train high-performing policies for76

our robot across several mobile manipulation tasks in a real apartment home. Additionally, we show77

that policies can be learned more easily with data collected from a holonomic base compared to a78

nonholonomic one.79

To facilitate easy data collection with our new mobile manipulator, we also develop a mobile phone80

teleoperation interface. The interface uses the WebXR API [29] to stream the real-time 6-DoF pose81

of the mobile phone to a computer, which maps the phone motion to corresponding motions of82

the mobile base or arm via low-level control. WebXR is supported on most modern Android and83

iOS phones, so our interface does not require purchase of a separate teleoperation device. In our84

experiments, we use this teleoperation interface to collect data for training our policies.85

Our holonomic mobile base is low-cost ($5–6k USD) and designed from the ground up to optimize86

for mobile manipulation research productivity. We will fully open source all aspects of this system,87

including the hardware design, mobile phone teleoperation interface, policy learning setup, and low-88

level controller. We will also create a documentation webpage for the mobile base, including bill89

of materials (BOM), a hardware assembly guide with videos, and 3D CAD files. We believe these90

components can help democratize access to highly maneuverable mobile manipulators, increase91

ease and practicality of mobile manipulation data collection, and improve research reproducibility92

by providing a standardized and reusable robot platform.93

Our key contributions in this work are thus: (1) an open-source design for a holonomic mobile94

manipulator, (2) a mobile phone teleoperation interface for easily collecting data with the mobile95

manipulator, and (3) demonstration that our system is capable of learning policies.96

2 Related Work97

Data collection for mobile manipulation. To address the lack of robotics data for learning ma-98

nipulation policies, several works have developed data collection platforms. The majority of these99

platforms are built for fixed-arm setups [30, 31, 25, 32]. For example, the DROID dataset [25] was100

collected on a standardized setup with an arm mounted on a portable table. The authors use an101

Oculus controller to teleoperate the robot. However, this controller must remain in view of four IR102

receivers which can lead to unexpected motion if the controller moves out of view and back. Similar103

to our work, RoboTurk [30, 33] used a mobile phone to teleoperate fixed-base robot arms which104

is a much more flexible solution and does not require purchasing a dedicated teleoperation device.105

However, their system suffers from drift as they only rely on IMU measurements and do not use the106

camera. MART [32] and MOMART [34], which extend RoboTurk to multi-arm and mobile ma-107

nipulation, respectively, suffer from similar shortcomings and have not been demonstrated on real108

robots. In our work, we use the WebXR API [29], which combines IMU data with visual odometry109

based on the phone’s camera to mitigate drift. TeleMoMa [35] is a teleoperation framework that110

supports multiple teleoperation interfaces and three commercially-available, high-cost robots (for a111

detailed comparison to our low-cost base, see Tab. ??). One of the supported teleoperation devices112

is a mobile phone app based on ARKit, similar to what we use. Our interface is based on WebXR,113

which leverages ARKit on iPhone but works on Android as well.114

There are several works that propose data collection devices that are hand-held by the human demon-115

strator [31, 11] but in this case the demonstrator does not get direct feedback on whether a demon-116

stration is kinematically feasible by the robot. Of those approaches, Dobb·E [11] proposes a low-cost117

reacher-grabber stick with a mounted iPhone to record data. The authors then train visuomotor poli-118

cies on this data that are deployed on a differential drive Stretch robot [36]. Mobile ALOHA [8] is119

a dual-arm mobile manipulation platform capable of performing an impressive array of household120

tasks. However, the robot’s differential drive base and large footprint limits its maneuverability, and121
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Figure 3: Our mobile base is designed to be modular and easily reconfigurable. It has very few
components and can be assembled in 1 to 2 days.

the arms are not able to reach the ground. Furthermore, the teleoperator is strapped to the back of122

the platform far away from the end effectors, which can make it hard to teleoperate precise actions.123

For our system, the teleoperator can freely walk around the scene and get very close when precision124

is required.125

3 Hardware Design126

We designed this mobile base concept from the ground up to optimize for mobile manipulation127

research productivity. It is simple, low-cost ($5–6k), and modular (Fig. 3). The core is the drive128

system, which is based on readily available components from the FIRST Robotics Competition129

(FRC) [37] ecosystem. A basic frame built out of aluminum T-slot extrusions carries the four mo-130

torized caster modules that are powered through a fused power distribution panel by a sealed lead131

acid (SLA) battery. There are many similar components in the FRC ecosystem that could be used132

to build similar systems. The large and active community of FRC users and vendors ensures that133

components are well-documented and readily available.134

4 Experiments135

In these experiments, we aim to show that our teleoperation interface can collect useful demonstra-136

tion data to successfully train policies for a variety of household mobile manipulation tasks.137

4.1 Imitation learning138

Table 1: Imitation learning results
Task Success rate

Open fridge 10/10
Wipe countertop 9/10
Load dishwasher 7/10
Take out trash 10/10
Load laundry 7/10
Water plant 6/10

We used our phone teleoperation interface to collect139

demonstrations for the 6 tasks shown in Tab. 1. We col-140

lected 100 demonstrations for the shorter open fridge task141

and 50 for all others. Data collection for each task took142

between 1 and 2 hours for 50 episodes, including over-143

head for environment resets.144

We then used the data to train a diffusion policy [1] for145

each task. We trained each policy for 500 epochs and146

evaluated them by running 10 episodes of policy rollouts.147

Success rates are shown in Tab. 1. Note that while diffusion policies are typically trained using 200148

to 300 demonstrations, we found that 50 was already sufficient for the robot to learn to complete the149

task successfully. Performance can likely be further improved with more data. These results show150

that our system is capable of learning high-performing policies for useful tasks in real homes.151
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