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Abstract

We introduce FalconWing, an ultra-light (150 g) fixed-wing platform for indoor,1

vision-based autonomy. Controlled indoor settings enable year-round, repeatable2

UAV experiments but impose strict mass and maneuverability limits, motivating a3

sensor-minimal design. FalconWing couples a lightweight hardware stack (137 g4

UMX airframe, 9 g analog FPV camera, offboard compute) with a world model5

composed of a photorealistic 3D Gaussian Splat (GSplat) simulation environment6

and a system-identified nonlinear dynamics. We validate FalconWing on two tasks7

without IMU or motion capture: leader-follower visual tracking and autonomous8

visual landing. Policies are trained via imitation entirely inside the world model,9

augmented with domain randomization over appearance and geometry. In sim-10

ulation, our best learned policy attains 100% success across three unseen leader11

maneuvers and is robust to appearance shifts. For landing, a policy trained purely12

in the world model transfers zero-shot to hardware, achieving an 80% success rate13

over ten indoor trials. We will release hardware designs, GSplat scenes, dynam-14

ics parameters, and ROS workflows, positioning FalconWing as an open-source15

benchmark and educational kit for world-model-driven vision-based fixed-wing16

autonomy.17

1 Introduction18

Figure 1: Left: Our ultra-light 150 g fixed-wing aircraft for indoor aerial research, equipped with a FPV camera
and ROS-enabled autonomous control. Middle: Onboard view for leader-follower visual tracking using a digital
camera. Right: Onboard view during autonomous landing using an analog camera.

Autonomous fixed-wing aircraft are attractive for delivery [1], navigation [2, 3], and environmental19

monitoring [4] due to their energy efficiency and long endurance. Vision-based aerial autonomy [5,20

6] is important in GPS-denied zones, but it is challenging for fixed-wing aircraft: the vehicle must21

maintain airspeed to generate lift; it is governed by nonlinear aerodynamics; and the onboard video22

stream can degrade due to vibration and turbulence.23
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Existing research on fixed-wing UAVs addresses these challenges using relatively large [7, 8, 9,24

10] and sensor-rich platforms [2, 3] with GPS/GNSS, lidar, high-resolution cameras, and onboard25

computation. While these platforms are suitable for large-scale outdoor experiments, such experi-26

ments typically require large, regulated airspaces and are constrained by weather and time-of-day27

limitations, reducing accessibility and experimental throughput. In contrast, indoor spaces, such28

as our 40×20×5 m flying arena (Figure 3), as well as typical university gyms, auditoriums, and29

stadiums, provide weather/time-independent controlled environments where experiments can be30

scheduled year-round, thus enabling more frequent, repeatable, and accessible experiments and31

controlled perturbations (e.g., fan-generated wind).32

Indoor flight, however, imposes tight weight and maneuverability constraints: every additional gram33

raises the minimum required airspeed and thus increases the minimum turning radius. A 150 g aircraft34

requires approximately 7 m/s minimum airspeed and an 8.7 m minimum turning radius (derivations35

in the Appendix); a 300 g aircraft (e.g., adding a 174 g Jetson Orin) would require about 10 m/s and a36

17.7 m turning radius. This shows that existing heavy and sensor-rich research platforms [2] with37

onboard computation are often impractical to maneuver within a small space (e.g., 20 m indoor width)38

and leaves an important yet under-explored design gap for a lightweight, sensor-minimal fixed-wing39

UAV suitable for iterative and reproducible indoor experiments.40

To address this gap, we introduce FalconWing, a vision-based fixed-wing aircraft research platform41

weighing just 150 g with a 9 g analog camera and off-board computation. FalconWing couples (i)42

a sensor-minimal hardware stack supporting both manual and autonomous modes (Section 3) with43

(ii) a world model comprising a photorealistic Gaussian Splat (GSplat) simulator (Section 4.1) and a44

system-identified nonlinear dynamics model (Section 4.2).45

To demonstrate FalconWing’s capability, we tackle two challenging aerial tasks without using IMU46

or motion capture: leader–follower visual tracking in simulation of the world model (Section 5) and47

zero-shot sim-to-real transfer of a vision-based autonomous landing controller in indoor environments48

(Section 6). In the visual-tracking case study, building on FalconGym [5], we design a vision49

controller that removes reliance on known target states and IMU by decoupling perception from50

control and training with domain randomization applied to GSplat renders. Experiments show51

that our vision policies improve generalization to unseen maneuvers and appearance shifts. In the52

autonomous-landing case study, a vision policy trained purely in the world model transfers zero-shot53

to hardware, achieving an 80% success rate over ten indoor trials without fine-tuning.54

In summary, our contributions are: (i) FalconWing platform: we design an ultra-light indoor fixed-55

wing platform with ROS integration, safety mechanisms, and dual operating modes, paired with a56

world model consisting of photorealistic GSplat and system-identified dynamics; (ii) Demonstration57

on two challenging case studies: utilizing FalconWing’s world model, we train vision-only controllers58

that (a) track a leader with unseen maneuvers and appearance perturbations in simulation and (b)59

perform autonomous landing with zero-shot transfer achieving 80% success on real hardware.60

2 Related Work61

Fixed-Wing Autonomy Traditional approaches to fixed-wing autonomy rely heavily on external62

sensors such as GPS and IMUs for state estimation and control. For example, [2] demonstrated63

accurate vision-aided navigation using GNSS, IMU-assisted Kalman filtering, while [3] achieved64

agile maneuvering with high-precision motion capture systems. Some work tries to mitigate reliance65

on tracking sensors by adding learning-based perception modules like faster R-CNN [9] and YOLO66

[10] for pose estimation but still requires high-fidelity digital cameras. [11, 12, 13] have attempted67

vision-based flight for landing, but all of those platforms rely on large, heavy platforms (e.g., 1-5kg)68

with multi-sensor suites, making them impractical for agile, indoor, or GPS-denied scenarios.69

Neural Scene Representation in Robotics Neural scene representations like Gaussian Splat70

[14] have recently emerged as powerful tools for photorealistic 3D scene reconstruction. Variants71

and extensions have been applied to diverse robotics tasks, including 3D scene editing [15], pose72

estimation [16, 17] and navigation [18]. NeRF2Real [19] and RialTo [20] demonstrate the potential73

real-to-sim-to-real transfer for ground robots and robot arm manipulation, by constructing a simulation74

based on real images, and deploy simulation-trained model to real world again. [5, 6] achieves zero-75

shot drone navigation using policies trained in neural scene representation.76
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3 FalconWing Hardware Stack77

Figure 2: Architecture of FalconWing Hardware: a light 9 g FPV camera mounted on the fixed-wing plane
streams images to the ground control station, where images are published to ROS. The controller reads published
image plus buffered past controls, computes new flight control, and sends it via ROS to an Arduino. The Arduino
writes these commands into the Spektrum NX-8 trainer port, closing the vision-based control loop over radio.
The human pilot can instantly reclaim control at any time via a transmitter switch.

Base Airframe The platform builds on the UMX Turbo Timber® (Figure 1 Left), a hobby-grade78

airframe chosen for its lightweight design (137 g), integrated electronic speed controller (ESC) and79

flight controller, and off-the-shelf parts availability. Its durable foam fuselage withstands crashes80

during iterative testing, while the 70 cm wingspan with flaps balances maneuverability and provides81

extra lift.82

Vision System A 9 g RunCam Spotter® analog FPV camera provides onboard vision. Mounted83

along the fuselage centerline via a custom 3D-printed bracket (5 g), the camera avoids propeller84

occlusion and preserves the center of gravity. Images are transmitted via a 5.725 GHz analog link to a85

ground control station, where a diversity receiver forwards the signal to a USB capture card. The86

card streams 640×480 RGB frames at 100 Hz into a ROS topic, enabling real-time processing. An87

LC filter is also connected to the camera to reduce high-frequency noise from motor vibrations. We88

also provide the option to switch to a digital camera, if users value image quality over light-weight.89

Control Interface Autonomous flight is enabled through the Spektrum NX-8® transmitter’s trainer90

port (Figure 2). An Arduino Mega 2560 bridges ROS and the transmitter via rosserial-python,91

translating four-channel pulse-position modulation (PPM) signals (throttle, aileron, elevator, and92

rudder) between ROS messages (20 Hz) and the transmitter’s serial interface.93

Operating Modes We configure two modes that support safe experiments:94

• Manual Mode: A human pilot flies via the NX-8. The Arduino logs pilot commands and time-95

synchronized images to ROS to build datasets for system identification and controller training.96

Because we retain the 13.5 g Horizon Hobby receiver (Fig. 1) and its integrated flight controller97

(with IMU), expert pilots can perform robust manual flight and aerobatics if desired. Switching to98

Autonomous Mode requires only a single transmitter toggle.99

• Autonomous Mode: The Arduino subscribes to the ROS topic publishing control commands from100

the vision-based controller and writes these commands to the trainer port, closing the perception-101

action loop. The human pilot can instantly take over by flipping the same switch whenever102

intervention is required.103

Safety Mechanisms To mitigate the risk of degraded analog video during Autonomous Mode, we104

deploy a frame-quality monitor based on the Structural Similarity Index (SSIM) [21]. If the SSIM105

between consecutive frames falls below an empirical threshold for five consecutive frames, we raise a106

flag alerting human pilots to take control immediately.107
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4 FalconWing Software Stack108

In this section, we introduce FalconWing’s software stack, which include 2 variations of photorealistic109

simulation environment (Section 4.1), identified airplane dynamics used for simulation training and110

testing (Section 4.2) and the open-source availability (Section 4.3).111

4.1 Photorealistic Simulation via Gaussian Splatting112

Figure 3: FalconWing’s simulation can render photorealistic images using Gaussian Splat from different poses.
The top row shows 4 real world images taken by the camera, while bottom row displays the corresponding
images rendered by GSplat at the same coordinates.

A photorealistic simulation environment can help mitigate the sim-to-real gap in vision-based control.113

In FalconWing, we synthesize a photorealistic simulation environment G, that can render a photoreal-114

istic image I from any virtual camera pose p in world coordinates, i.e., I = G(p). We achieve this by115

enhancing the original FalconGym [5] pipeline, replacing Neural Radiance Fields (NeRF)[22] with116

Gaussian Splat (GSplat) [14] for faster and better rendering, and eliminating the need for a motion117

capture system.118

Data Collection and Calibration A human operator carried the onboard FPV camera to capture119

approximately 2000 images throughout the indoor arena from diverse viewpoints. We recover camera120

intrinsics and initial poses using COLMAP [23]. Since COLMAP’s coordinate frame is arbitrary,121

we align it to the real-world frame by placing an 80 cm ArUco marker beside the runway (Figure 3).122

Using OpenCV’s ArUco detector, we identify the marker center in a subset of images and treat it as123

the global origin. We then compute the rigid transform between COLMAP and world frames via the124

Kabsch–Umeyama algorithm [24].125

GSplat-based Simulation Construction With calibrated poses, we feed the images and transforms126

into the open-source NeRFStudio Splatfacto pipeline [25]. On an NVIDIA RTX 4090, training127

converges in approximately 15 minutes. The resulting model supports fast rendering with an average128

of 0.004s for a 960x720 image.129

Digital Camera Variant Simulation To accommodate researchers who favor image quality over130

minimal mass, we repeat the above procedure using a digital ArduCam RGB camera. This provides an131

additional digital camera-based simulation environment. Figure 3 qualitatively compares real-world132

images with renders from simulation environment.133

UMX Gaussian Splatting Utilizing the same techniques, we also construct our UMX plane as a134

GSplat asset. By combining the UMX plane’s GSplat model with the flying arena GSplat model,135

we have the capability to place and render a photorealistic leader aircraft in simulation for the136

Leader-Follower case study (Section 5) with the learned dynamics (Section 4.2).137
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4.2 Non-linear System Identification138

With the photorealistic simulation established in Section 4.1, we now aim to obtain a reliable139

dynamics model of our FalconWing aircraft. We adopt a reduced-order kinematic model inspired140

by standard fixed-wing dynamics formulations [26]. Specifically, we represent the aircraft state as141

x = [px, py, pz, θ, γ, ϕ, vx, vy, vz], which captures the aircraft’s position, orientation (pitch, yaw,142

roll), and linear velocity. Note the first 6 state variable is exactly camera (plane) pose p. Our control143

inputs are defined as u = [uT , δa, θc, γc], corresponding to throttle, commanded aileron, elevator and144

rudder. We model the discrete-time non-linear dynamics as a parametric function fK , i.e., fK(xt, ut)145

where K denotes the vector of unknown dynamics parameters we seek to estimate.146

Hybrid State Estimation Since no motion capture system is yet available in our flying arena,147

we must estimate ground-truth states purely from visual input. We propose a hybrid vision-based148

state-estimation pipeline: when the aircraft is close enough to the ArUco marker and it’s detectable by149

the OpenCV ArUco library, we directly use its estimates; otherwise, we utilize a neural network-based150

inverse Gaussian Splat (iGSplat) model to infer camera poses from single RGB frames. Although151

iterative pose-optimization methods such as iNeRF [16] can estimate camera poses accurately, they are152

computationally expensive. Therefore, we train a single-shot neural network architecture for efficient153

inference. Specifically, our iGSplat model employs a Vision Transformer (ViT) backbone pretrained154

on ImageNet-21k [27, 28]. We freeze early transformer layers to leverage general visual feature155

extraction, adding a trainable regression head for direct camera-pose estimation. To circumvent156

discontinuities inherent in angular regression, our network predicts sine and cosine values of pitch,157

yaw, and roll angles, subsequently recovering angular orientations via a trigonometric transformation.158

System Parameter Identification through Least Square We collect a dataset DI = {(It, ut)}159

by recording images and pilot inputs during Manual Mode landings (Section 3). Applying our160

hybrid estimator yields pose sequences {pt}, which we differentiate to obtain velocity and form161

state-action pairs Dx = {(xt, ut)}, where frames corrupted by significant analog noise or yielding162

clearly implausible pose estimations are manually removed. Using the cleaned dataset, we solve163

K∗ = argmin
K

∑
(xt,ut)∈Dx

∥∥fK(xt, ut)− xt+1

∥∥2
2

via nonlinear least squares (SciPy). The optimized parameter setK∗ yields a reliable dynamics model164

for controller design and training in simulation.165

4.3 Open-source Software Package166

In addition to the hardware part list and user manual, we also plan to open-source the complete167

FalconWing software stack including: two photorealistic simulation environments (analog and digital168

camera variants) and system-identified dynamics parameters with everything packed in a conda169

environment for easy distribution. This digital twin is designed as an open-source reusable benchmark170

for future research in vision-based fixed-wing control.171

We next demonstrate FalconWing’s capabilities through two of the most challenging aerial tasks:172

visual tracking (Section 5) and visual autonomous landing (Section 6). Note that although our173

FalconWing hardware (Section 3) does carry a self-leveling flight controller, which researchers may174

choose to employ in their applications, we deliberately disable the autopilot assists for both case175

studies so as to isolate pure vision-policy performance.176

5 Case Study: Leader-Follower Visual Tracking177

In this case study, we consider the problem of visual tracking, where the follower UMX aircraft needs178

to track a leading UMX aircraft using vision. Fixed-wing leader-follower visual tracking is vital for179

tasks such as search-and-rescue, delivery and aerial navigation. Yet visual tracking is challenging180

due to the small size of the aircraft (in our case, 70cm×52cm) in the image space, its nonlinear181

underactuated dynamics, and the lack of ground-truth state feedback.182

In the following subsections, we develop three distinct neural visual tracking policies and evaluate183

their ability to track under three types of leader representative maneuvers: a left-turn S-shape descent,184
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Figure 4: Trajectory plot and onboard perception view for the Leader-Follower Case Study: our vision-based
policy on the follower can closely track the leaders with three different leader maneuvers. The annotated red part
on the onboard images indicating the mask detection result described in Section 5.2.

a right-turn S-shape ascent, and a right-turn sharp climb, as shown in Figure 4. As shown in Table 1,185

we measure the tracking performance using 3 key metric: (i). Success Rate (SR), fraction of trials186

where the follower maintains visual lock on the leader throughout all frames; (ii) Average Tracking187

Error (ATE), defined as the average displacement between the leader and the follower minus the188

initial tracking offset; (iii) Average Runtime(ART), per-frame inference time of the control policy.189

5.1 Vision Controller: Direct Imitation Learning190

Building on FalconGym’s [5] success in quadrotor navigation via imitation learning, we started191

by designing an end-to-end vision policy that maps onboard RGB images directly to fixed-wing192

control commands, while addressing three key limitations of FalconGym: (i) reliance on known target193

positions, (ii) dependence on IMU readings, (iii) heavyweight dual-ViT architecture. To overcome194

these constraints, our network ingests only the current image It and a history of the past 30 control195

inputs ut−30:t−1, which implicitly encode temporal state information and fuses them via a lightweight196

self-attention module (green box, Figure 2), thereby eliminating explicit pose estimation and IMU197

usage while reducing model size for faster inference time. We empirically try out different length of198

history and find 30 being a suitable length of history that balances model size and effectiveness.199

We train this multi-modal policy πψ(It, ut−30:t−1) by learning from an expert. The expert state-based200

controller π∗ is first implemented following standard fixed-wing designs [29]. Then we configure the201

leader UMX plane to always to use the expert state-based controller to follow predefined maneuvers.202

And during training data collection, we also configure the follower plane to use the expert state-based203

controller that has access to both leader’s ground truth state x̂t and its own ground truth state xt204

to compute optimal actions u∗t = π∗(xt, x̂t) To broaden the state-action distribution and improve205

robustness, we inject mild Gaussian noise, ut = u∗t +N (0, σ2), into the follower’s expert outputs,206

encouraging slight exploration of off-nominal trajectories without compromising feasibility. We207

render the image It with the leader UMX plane at each state xt using the UMX asset (Section 4.1) in208

FalconWing’s photorealistic simulation and log the expert history and noisy action to form the dataset209

DC =
{
(It, ut−30:t−1, u

∗
t )
}
. This dataset consists of 100 trajectories (with around 8k data pairs) by210

setting random but dynamically feasible waypoints for leader UMX to explore. We then optimize the211

policy parameters ψ by minimizing the mean squared error between predicted and expert actions:212

L(ψ) = 1

|DC |
∑

(It,ut−30:t−1,u∗
t )∈DC

∥∥πψ(It, ut−30:t−1)− u∗t
∥∥2
2
.

We refer to this policy as “RGB” in Table 1, because the visual input to the controller is a RGB image.213

While “RGB” attains high SR and low ATE on the training trajectories, it fails to generalize to unseen214
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leader maneuvers. This is consistent with the observation in FalconGym [5] that a single end-to-end215

vision policy tends to specialize to a single scenario. We believe this overfitting failure mode happens216

because the leader UMX occupies only a small fraction of image pixels, so the network overfits to217

background appearance rather than learning a transferable representation of the leader aircraft.218

5.2 Vision Controller: UMX Mask Detection219

To improve generalization and avoid overfitting, we decouple perception from control: a UNet [30]220

first predicts a binary mask of the leader from the onboard RGB image; a lightweight ResNet then221

consumes the mask together with the past control history to output the next action. We denote this222

approach as “Mask” in Table 1.223

Training the UNet also leverages our UMX GSplat assets (Section 4.1). We synthesize the perception224

training dataset by sampling leader plane poses across the arena workspace and spawning the follower225

aircraft (camera) at feasible viewpoints (ensuring the leader is roughly front-facing). Because the226

poses of Gaussians corresponding to the leader’s wing tips and nose-tail endpoints are known and the227

camera matrix is calibrated, we can approximate the aircraft as a 3D ellipsoid and project it onto the228

image plane to obtain ground-truth masks using standard geometry with traditional computer vision229

techniques. We collect 3000 pairs of RGB images and masks image to train for this UNet. After230

training the UNet, we apply the same imitation-learning setup as in Section 5.1 but train the controller231

to map mask and past controls to the current action. For visualization purposes, we annotate the mask232

as red, as shown in Figure 4.233

This “Mask” approach reduces reliance on background cues and yields a more scalable leader-follower234

policy than “RGB”, as shown in Table 1. However, it is not completely immune to perception errors:235

in one unseen maneuver, the UNet confuses the leading UMX with a bright window pattern (similar236

white stripes), producing an incorrect mask and steering the follower toward the background window,237

as shown in Figure 6.238

5.3 Vision Controller: RGB + Mask239

To further mitigate such perception failures that causes downstream control problems, we introduce240

“RGB+Mask,” which stacks the predicted binary mask as a fourth channel on top of the RGB241

image and repeats the imitation-learning procedure. The additional appearance context helps both242

disambiguate false positives and reduces overfitting, improving both SR and ATE across both training243

and unseen maneuvers (Table 1). The trade-off is increased inference time due to two sequential244

networks (mask prediction followed by a 4-channel ResNet), which makes hardware deployment at245

runtime risky.246

5.4 Domain Randomization247

Beyond pose and camera sampling, we apply domain randomization to mask detection to enhance248

robustness and reduce sim-to-real gaps. Specifically, we perturb the leader UMX’s gaussians (Section249

4.1) by varying leader’s scale and color via injecting noise into colors associated with the leader’s250

Gaussians. Figure 8 illustrates the three perturbations (brightness, salt-pepper noise and scaling) used251

during training.252

5.5 Experiment Setup & Tracking Performance Analysis253

For safety, all leader-follower experiments are conducted in simulation, and the vision policy is254

ran on a 4090; sim-to-real validation of FalconWing appears in the next autonomous landing study255

(Section 6).256

Baseline. We first evaluate a state-based follower that has access to ground-truth states of both planes257

and uses the same fixed-wing controller as the leader. For each of the three unseen leader maneuvers258

(a left-turn S-shape descent, a right-turn S-shape ascent, and a right-turn sharp climb, shown in 4),259

we run 10 trials with slight variations in initial conditions and report SR, ATE, and ART in Table 1.260

As expected, the state-based baseline achieves the best SR and lowest ATE, and its ART is negligible261

because the computation is basically simple tensor operations.262
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Direct RGB policy. The “RGB” policy closely imitates the expert on its training trajectory but scales263

poorly to unseen leader maneuvers. Its key advantage is runtime: ART ≈ 0.02 s, which can potentially264

fit a 50Hz control loop and is therefore suitable for actual hardware deployment (Section 6).265

Mask-based policy. The “Mask” variant substantially reduces overfitting by conditioning control266

on the predicted UMX mask and past controls, improving SR and ATE across unseen maneuvers.267

However, it is susceptible to perception errors and has slightly higher runtime.268

RGB+Mask policy. Stacking the predicted mask as a fourth channel (“RGB+Mask”) mitigates the269

rare mask failures while retaining the generalization benefits of the Mask approach. It delivers the270

strongest overall SR and ATE among learned policies, but at the cost of the highest ART, which271

complicates hardware deployment.272

Robustness. We further probe robustness of our “RGB+Mask” approach to appearance changes273

using scale and salt-and-pepper perturbations applied at the Gaussian color space. As is shown in274

Figure 7, across 10 runs per condition, the policy remains reliable over a broad range of apparent275

sizes; performance degrades only when the leader is reduced to 50% of its nominal size, where276

detection becomes unreliable. The controller is also robust to salt-and-pepper noise injected on277

leader-associated Gaussians.278

Table 1: Controller Performance for Leader-Follower Case Study
Scenarios Controller Input SR% ↑ ATE [cm] ↓ ART [s] ↓

Training State-based 100% 72 ≈ 0.00
RGB 100% 78 0.02
Mask 100% 91 0.08

RGB+Mask 100% 73 0.13

Unseen State-based 100% 79 ≈ 0.00
RGB 30% 102 0.02
Mask 90% 139 0.08

RGB+Mask 100% 94 0.13

6 Case Study: Vision-Based Autonomous Landing279

In this section, we tackle another most challenging fixed-wing task: vision-based landing and show280

success sim-to-real transfer using our FalconWing platform. Landing is the fundamental of all aerial281

applications and requires precise perception of the runway and tight control of glide slope. Even282

skilled RC (radio-controlled planes) pilots typically need weeks of practice to master consistent283

landings. We tackle vision-based landings to mimic landing in a GPS-denied zone where no ground-284

truth state information is available.285

In the rest of this section, we describe our vision policy for landing (Section 6.1), indoor landing286

setup (Section 6.2) and evaluate vision-based autonomous landing in both simulation and hardware287

(Section 6.3) using the analog FPV camera (selected for its lower mass relative to a digital unit,288

enabling higher agility).289

6.1 Vision Controller: RGB Approach290

We used the “RGB” approach from the previous case study for vision-based control because, as291

indicated by Table 1, only the “RGB” policy comfortably meets the 20Hz hardware control rates.292

Although “RGB” suffers from generalization issues, for landing, overfitting to the specific appearance293

is less problematic because the runway is usually static to the background. We therefore reuse the294

RGB imitation-learning setup from the leader-follower study (Section 5), but train in the simulation295

with the leader asset removed and the objective focused on landing.296

6.2 Indoor Flying Arena Setup for Autonomous Landing297

All hardware trials were conducted in an indoor arena (40m×20m×5m) equipped with a blue landing298

pad (13m×2m×0.1m) placed at one end, as shown in Figure 3 Right. Each trial began with a human299

pilot manually piloting the aircraft to an initial position approximately 20 m from the runway and300

1.5 m above ground, where the landing pad becomes roughly visible to the onboard analog camera.301
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Upon reaching this position, control was switched to Autonomous Mode (Section 3), with the pilot302

instructed to immediately regain manual control if a flag was raised or unsafe behavior was observed.303

6.3 Sim2Real Landing Performance304

We performed 10 autonomous landing trials using our “RGB” vision-based controller in the real-world305

environment. Landing performance was evaluated based on two primary metrics: (1) landing success,306

defined as touchdown within the bounds of the landing pad; and (2) Absolute Lateral Deviation307

(ALD) from the runway centerline at touchdown. Given that our runway width is 2 m, deviations less308

than or equal to 1 m is acceptable. Because our flying arena currently lacks external motion-capture309

infrastructure, we assessed landing accuracy by coating the landing gear with powder and measuring310

the resulting touchdown marks on the runway.311

For accurate simulation comparisons, we recorded the aircraft’s initial Autonomous Mode engagement312

positions, estimated by our iGSplat model, and subsequently replayed each landing attempt in313

simulation with both our learned vision-based controller and the state-based expert controller, enabling314

direct comparison.315

Results are summarized in Table 2. In simulation, both the state based and vision-based controllers316

landed successfully in all ten cases, with mean ALD of 0.15m and 0.37m. Hardware trials achieved317

eight successful landings; the two failures (Runs 3 and 10) occurred after the aircraft was handed318

over with a steep nose-down attitude and the analog video suffered some flicker noise. The average319

ALD (41cm) of the real world trials are slightly larger than in simulation, this is most likely due to320

the difference between dynamics estimates and difference in image rendering quality. Due to the321

lack of ground truth states, we could not run the state-based control in real world for comparison.322

However, additional simulation experiments show the vision policy can handle curved approaches323

and large initial offsets and different altitudes (Figure 5), but these were not flight-tested because of324

space constraints and bank-angle safety limits.325

Table 2: Controller Performance for Landing Case Study

Simulation Real World
State-based Vision-based Vision-based

Run # Success? ALD (cm) ↓ Success? ALD (cm) ↓ Success? ALD (cm) ↓
1 ✓ 42 ✓ 54 ✓ 35
2 ✓ 1 ✓ 4 ✓ 45
3 ✓ 14 ✓ 38 ✗ N/A
4 ✓ 1 ✓ 12 ✓ 40
5 ✓ 27 ✓ 32 ✓ 40
6 ✓ 37 ✓ 74 ✓ 70
7 ✓ 13 ✓ 21 ✓ 20
8 ✓ 14 ✓ 79 ✓ 80
9 ✓ 2 ✓ 32 ✓ 78
10 ✓ 2 ✓ 23 ✗ N/A

7 Conclusion326

We introduced FalconWing, an open-source platform for indoor, vision-based fixed-wing autonomy.327

FalconWing integrates a lightweight (150g) hardware stack with a world-model suite comprising328

photorealistic GSplat simulation and system-identified aircraft dynamics, scheduled to release upon329

publication. We validate FalconWing on two challenging aerial tasks without IMU or motion capture.330

In leader-follower visual tracking, de-coupled perception and control as well as domain-randomized331

GSplat training enable vision policies to generalize to unseen maneuvers and visual perturbations.332

In autonomous landing, an RGB-based policy trained purely in simulation transfers zero-shot to333

hardware, achieving an 80% success rate over ten indoor trials without fine-tuning. Future work334

includes: (i) identify richer dynamics models that incorporating wind disturbances, flap/drag effects,335

and ground effect to narrow residual sim-to-real gaps; (ii) more challenging scenarios: controlled336

wind/lighting changes, and temporary occlusions in leader-follow visual tracking, sharper landing337

approaches.338
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APPENDIX339

Standard lift equation is L = ρV 2SC
2 ≥ mg and coordinated-turn relations is R = V 2

gtan(ϕ) , assume340

g=9.8, UMX wing area S=0.076 m2, air density ρ=1.3 kg/m3, UMX lift coefficient C=0.6, and341

bank angle π
6 .342

Figure 5: Visualization for the autonomous landing case study: Left figure shows the gsplat-based simulation
onboard view. Middle shows the real-world onboard view. Right shows different landing trajectories.

Figure 6: An example of failed detection where perception confuses leading aircraft with the background
window using “Mask” approach in Section 5.2 that leads to downstream tracking error.

Figure 7: Ablation Studies showing that our "RGB+Mask" vision-policy for Leader-follower tracking is
relatively robust to both leader scale and color change in the 3D gaussian space. This shows the potential for a
robust sim-to-real transfer.
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Figure 8: During training, we enable domain randomization in terms of leader gaussians’ color and scale to
improve training and minimize the sim-to-real gap.
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