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Abstract

Reinforcement learning (RL) has proven remarkably effective at improving
the accuracy of language models in verifiable and deterministic domains
like mathematics. Here, we examine if current RL methods are also effective
at optimizing language models in verifiable domains with stochastic out-
comes, like scientific experiments. Through applications to synthetic data
and real-world biological experiments, we demonstrate that Group Relative
Policy Optimization (GRPO) induces overconfident probability predictions
for binary stochastic outcomes, while Proximal Policy Optimization (PPO)
and REINFORCE Leave-One-Out (RLOO) yield well-calibrated models.
We show that removing group standard normalization in GRPO fixes its
miscalibration and provide a theoretical explanation for why normalization
causes overconfidence. Our results provide new evidence against the use
of standard normalization in GRPO and help pave the way for applications
of RL for reasoning language models beyond deterministic domains.

1 Introduction

Reinforcement learning (RL) has achieved remarkable success at improving the accuracy of
language models in verifiable domains like mathematics and coding (OpenAl, 2024; Shao
et al., 2024; Kimi Team, 2025). In particular, recent success has been achieved by optimizing
language models to generate chain-of-thought text before responding to a prompt (often
called “reasoning”) with supervision from a verifier. Current research has focused primarily
on domains where proposed answers are deterministically correct or incorrect.

We posit that an important next step for the reasoning RL paradigm is to expand to domains
with verifiable yet stochastic answers. For example, scientific experiments, which are subject
to random variation, could serve as powerful verifiers for optimizing language models
beyond current written knowledge. Scientific reasoning models trained in this manner
could support hypothesis generation, experimental design, and decision making through
both their predictions and generated reasoning traces. Other potentially impactful settings
for training reasoning models with stochastic outcomes include model alignment, which
considers human behaviors and preferences (Ziegler et al., 2020; Ouyang et al., 2022), and
even model uncertainty estimation, which is important for high-stakes decision making and
can be framed as modeling the probability that a prediction is correct (Band et al., 2024).

In this paper, we examine whether three popular algorithms for reasoning RL in determin-
istic domains, namely GRPO (Shao et al., 2024), PPO (Schulman et al., 2017), and RLOO
(Kool et al., 2019; Ahmadian et al., 2024), are also effective in settings with binary stochastic
outcomes. Through applications to synthetic data and real-world biological experiments, we
demonstrate that models trained to maximize observation likelihoods with GRPO predict
highly overconfident outcome probabilities, while models optimized with PPO and RLOO
are well calibrated (Fig. 1 and 2). We find that GRPO can be modified for better calibration
by removing the group standard normalization term and provide a theoretical justification
for why normalization causes overconfidence. In sum, our results provide new evidence
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Figure 1: Group standard normalization in GRPO induces overconfident predictions of
stochastic outcome probabilities. Top: Probability prediction task. Bottom: Synthetic data
experiment results. Models trained with PPO, RLOO, and GRPO with no standard normal-
ization are well calibrated, while models trained with GRPO are extremely overconfident.

against the use of standard normalization in GRPO, highlight the value of unbiasedness as
a design principle for policy gradients, and help support future applications of reasoning
RL beyond deterministic domains.

2 Preliminaries

RL with Language Models Reinforcement learning methods cast autoregressive language
models as stochastic policies 7y that specify actions (selecting new tokens) based on the
current state (the prompt and prior generated tokens). We consider a setting with outcome
supervision, where the goal is to maximize the expected reward received from a verifier
that scores the correctness of a response given the ground-truth answer. While current work
focuses primarily on settings with deterministic answers, we consider answers that may be
stochastic conditional on the prompt.

Value and Advantage Functions The state value function V7 (s) is defined as the expected
reward from following policy 7t from state s, and the state-action value function Q" (s, a) is
defined as the expected reward of following policy 7 from state s when the next action is
set to be a. The advantage function A™(s,a) = Q" (s,a) — V7 (s) is the expected increase in
reward from selecting a as the next action from state s relative to an action sampled from 7.

Policy Gradients Policy gradient methods optimize policy 7y by directly estimating the
gradient of the expected reward with respect to policy parameters. Let g be a prompt, a be
the true answer, 0 = (01, ...,0¢) be a sequence of response tokens, and r(o, a) be the final
reward received from the verifier. From the policy gradient theorem (Sutton et al., 1999)
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is an unbiased estimate of the policy gradient, where | is an empirical sample mean,
st = (g,0<¢) is the state at step t (the prompt and prior tokens), and baseline b(s;) is a
function of the current state. A common choice is b(s;) = V(s;), which makes the baselined
reward equivalent to an estimate of the advantage A(st, 0;). The policy gradient estimator
can be interpreted as as increasing the probability of actions with above average expected
rewards and decreasing the probability of actions with below average expected rewards.



Each of the three algorithms considered in this paper (GRPO, PPO, and RLOO) are policy
gradient methods. We discuss the different strategies these methods take for advantage

estimation and deviations from the policy gradient estimator §*C below.

Advantage Estimation for Policy Gradients Consider sampling G responses from a single

prompt, and let r = (1, ..., 7g) be the rewards for these responses. Let A; ; be the estimated
advantage for token ¢ in response i. PPO, RLOO, and GRPO then have the following
advantage estimators:

Algorithm Advantage estimator Ai,t Unbiased PG?

PPO ri— le(si,t) Yes

RLOO ri — mean(rj;) Yes
ri—mean(r)

GRPO (No Std Norm) r; — mean(r) No (proportional)

PPO uses Generalized Advantage Estimation (GAE) (Schulman et al., 2018) and learns an

explicit model of the value function Vy, as a baseline (we focus on the unbiased variant of
GAE). To avoid the computational costs associated with learning an explicit value model,
RLOO and GRPO instead compute a Monte Carlo estimate of the value using multiple
responses generated from the same prompt. Specifically, RLOO subtracts the mean reward
from the other sampled responses, yielding an unbiased advantage estimate, while GRPO
subtracts the mean reward from all responses and divides by the standard deviation, which
is biased. We also consider a variant of GRPO without standard normalization, which
yields a policy gradient estimate that is proportional to an unbiased estimate. We note
that RLOO and GRPO uses the same advantage estimate for each token, which can be
interpreted as casting question answering as a bandit problem where generating the full
response corresponds to a single action.

Clipped Policy Gradients The primary contribution of PPO was to introduce a clipped
policy gradient estimator to stabilize training when performing multiple gradient updates
on a single batch of rollouts (at the cost of introducing bias). The clipped estimator is
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When applied on-policy, 779 = 7y ,, and the clipped estimator reduces to the vanilla policy

gradient. The clipped policy gradient is also used in GRPO and can be applied with any of
the advantage estimators discussed above.

3 Experiments

3.1 Problem Statement

We consider the following probability prediction task: given a prompt g and binary answer
a € {0,1}, predict the probability that 4 = 1. Training data consists of question-answer
pairs (g;,4;)|Y.;, where observed answers 4; are sampled from some unknown probability
distribution a; ~ p(A|q;). We apply RL for this task with the reward function defined as the
log-likelihood of the observed answer under the model predicted probability.

3.2 Maetrics

We evaluate model predictions for both calibration and classification performance. To mea-
sure calibration, we visualize reliability plots and compute the Expected Calibration Error
(ECE). ECE is computed by binning predicted probabilities (we use 10 bins) and computing



Synthetic Data CRISPR Screen

Algorithm ECE(l) AUROC (1) Acc. (1) ECE(}) AUROC (1) Acc. (1)
GRPO 0.239 0.75 0.75 0.292 0.69 0.67
GRPO (NoStd.)  0.002 0.82 0.75 0.036 0.72 0.68
RLOO 0.002 0.82 0.75 0.040 0.72 0.68
PPO 0.005 0.82 0.75 0.038 0.72 0.67

Table 1: Evaluation metrics from probability prediction experiments. Across applications
to synthetic data and real-world biological experiments, we find that GRPO achieves poor
ECE and AUROC relative to GRPO without standard normalization, RLOO, and PPO. All
algorithms perform nearly identically on accuracy with predicted probabilities thresholded
at 0.5, which does not require well-calibrated predictions.

the average difference between the frequency of positive instances and mean predicted
probability in each bin, weighted by the number of points. We measure classification per-
formance with both the Area Under the Receiver Operator Characteristic (AUROC) and
accuracy of predicted probabilities thresholded at 0.5.

3.3 Experiment 1: Synthetic Data

We begin by characterizing the behavior of each RL algorithm in a minimal synthetic data
experiment with known ground-truth probabilities.

Data We simulate a dataset of 10,000 (g;, c;, ;) triples, representing questions, categories,
and binary answers. Questions are randomly assigned to one of 20 random categories.
For each category, a true category answer rate is sampled from a uniform distribution:
p1, -, P20 ~ Uniform(0,1). Answers are then sampled from the true answer rate for the
question category: a;|q;, ¢; ~ Bernoulli(pe,).

Model We define a minimal “language model” that samples a single token representing
the predicted probability given a question. We parameterize the model as a categorical
distribution pg(a; = 1|q;) = pe(a; = 1|c;), with a learnable parameter for each category /
probability token pair. We use a vocabulary of 99 tokens representing probabilities between
0.01 and 0.99. For experiments with PPO, we define a value model that predicts V(g;) = ,,
where . is a learnable parameter for each category.

Optimization We optimize models using PPO, RLOO, GRPO, and GRPO without standard
normalization both on-policy and off-policy (1 and 10 gradient updates per rollout, respec-
tively). Off-policy models are optimized with the clipped policy gradient estimator, and we
consider clipping thresholds of 0.2 and 0.001 to assess the effects of different clipping rates.

Results Across all settings, we find that GRPO yields highly overconfident probability
predictions: models optimized with GRPO converge to predict the minimum available prob-
ability for categories with true probability < 0.5 and the maximum available probability for
categories with true probability > 0.5 (Fig. 1). In contrast, GRPO without standard normal-
ization, PPO, and RLOO all yield well-calibrated predictions (Fig. 1). These observations
are reflected GRPO’s poor ECE (0.24 vs <0.01) and AUROC (0.75 vs 0.82) relative to the
other algorithms (Tbl. 1). We observe that all considered algorithms perform equivalently
on thresolded accuracy, which does not require calibrated predictions. We also obtain
nearly identical results when training on-policy and off-policy, even when introducing high
clipping rates, which suggests that the clipped policy gradient estimator does not introduce
a systematic bias for probability prediction (Appendix Tbl. 2 and Fig. 6).
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Figure 2: Real-world biological experiment prediction results. We optimize Qwen3-4B to
predict the probability of binary experimental outcomes (will perturbing a target gene have
a strong effect on a specified phenotype in cells?) with rewards derived from real-world
experiments. We find that models optimized with PPO, RLOO, and GRPO with no standard
normalization achieve well-calibrated predictions for held-out test perturbations, while
GRPO predicts highly overconfident probabilities. Error bars represent 95% confidence
intervals.

3.4 Experiment 2: Real-World CRISPR Screen

Next, we evaluate if the conclusions from the synthetic data experiment hold when optimiz-
ing a large language model (Qwen3-4B, Yang et al. (2025)) to predict outcome probabilities
in real-world biological experiments.

Data A key challenge in drug discovery is the identification of genetic causal effects: if a
gene is perturbed with a drug, how will it affect disease state? In recent years, perturb-
seq (Dixit et al., 2016) has emerged as a powerful experimental technique for identifying
causal effects. CRISPR perturb-seq experiments involves perturbing genes with CRISPR
and measuring the effect of those perturbations on gene expression counts for each gene
in individual cells (which can be interpreted as a broad measurement of cell state). For
this experiment, we convert a large perturb-seq dataset from Replogle et al. (2022) into a
binary task: for a given perturbed gene and target gene expression phenotype, predict the
probability that the perturbed gene has a strong effect on the phenotype (full preprocessing
details in Appendix A.5). We sample a balanced dataset of positive and negative instances
for the final dataset and generate validation and test splits with held-out perturbations.

Model We optimize Qwen3-4B to predict the probability that a perturbed gene has a
strong effect on a target phenotype. The model is prompted to predict the probability as a
percentage between 1 and 99 (full prompt in Appendix A.6).

Optimization We optimize models with PPO, RLOO, GRPO, and GRPO without standard
normalization using Verl (Sheng et al., 2024). Each algorithm is applied off-policy (8 updates
per sampled training batch) with the clipped policy gradient estimator. Models are trained
for 16 epochs with train batch size 512 and 4 rollouts per sample (details in Appendix A.7).

Results Consistent with the synthetic data experiment, we find that optimization with
GRPO results in highly overconfident probability predictions (ECE=0.29), while GRPO with
no standard normalization, PPO, and RLOO yield well-calibrated models (ECE<0.04, Fig. 2
and Tbl. 1). GRPO again performs poorly on AUROC (0.69 vs 0.72 from the other algorithms)
and all models are similarly accurate. We also find that the clipped policy gradient, which
was used for all models in this experiment, did not cause biased probability predictions.
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Figure 3: Bias in GRPO advantage estimates explains overconfident predictions. Advantages
are computed with a log-likelihood reward. Left: Under a uniform policy, both GRPO and
GRPO without standard normalization closely approximate the true advantages. Middle:
Under a policy concentrated on the true probability, GRPO overestimates the advantage of
overconfident predictions. Right: As the policy becomes increasingly overconfident, GRPO
increasingly overestimates the advantage of more overconfident predictions. This pattern
creates a positive feedback loop towards increasingly overconfident predictions consistent
with our experimental observations.

4 Theoretical Analysis

Finally, we analyze why standard normalization in GRPO induces overconfident predictions.
Recall that GRPO reinforces actions based on their estimated advantage: actions that have
large advantages are made more likely, while actions with negative advantages are made
less likely. We will show that standard normalization causes GRPO to overestimate the
advantage of overconfident predictions, resulting in overconfident policies (Fig. 3).

In Appendix A.1, we derive expressions for the expected advantage estimates from GRPO
with and without standard normalization. Let 4 be a prompt with stochastic answers
a ~ Bernoulli(p), let p be a predicted probability that 2 = 1, and let r(p,a) be a reward
function such as the log-likelihood reward r(p,a) = alog p + (1 — a)log(1 — p). The true
advantage for prediction p is then

Alg, p) = p(e(p,1)) = ) + (1 = p)(x(p, 0) — o)
where pi1 = Eprq, () [1(', 1)] and po = Ep . (g [1(P',0)]. We show that the expected
advantage estimate for GRPO without standard normalization is
ANO- R G-1 R R
E [ANOSTO(g,p)| = 2= A(q, ) < A(g, p)

This means that the policy gradients using GRPO without standard normalization are
approximately unbiased (up to a constant factor), consistent with the calibrated predictions
we observed experimentally. In contrast, the advantage estimate for GRPO is approximately

1
o1 +e€

E[AP(q,p)] ~ p(r(p,1)) — ) + (1= p)(x(p,0) — po)

0p+€

where 07 = Ep [std(r(p,1))], oo = Ep [std(r(p,0))] and p denotes samples of G model
predictions from the prompt. We observe that the approximate GRPO advantage expression
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introduce a policy-dependent bias that we analyze empirically.

coefficients, which

In Fig. 3, we visualize empirical estimates of the expected advantage for GRPO with and
without standard normalization with a log-likelihood reward (estimation details in A.2).
Under a uniform policy, the advantage estimates from both methods closely approximate the
true advantage (left column). As the policy begins to concentrate around the true probability,
we observe that GRPO starts to overestimate the advantage of overconfident predictions,
while the unnormalized estimates remains accurate (center column). This will cause GRPO
to reinforce overconfident predictions more strongly than the true probability, resulting
in overconfident policies. Finally, we observe that under a very overconfident policy,
GRPO’s advantage estimates will have an even more extreme bias towards overconfident
predictions, while GRPO without standard normalization remains approximately unbiased
(right column). These observations are consistent with our approximate GRPO advantage
expression: as the policy concentrates above 0.5, oy becomes larger than oy, resulting in a
reduced weight on the penalty for overconfident predictions (Appendix Fig. 5).

To summarize, group standard normalization in GRPO’s advantage estimates creates a
policy-dependent bias that pushes policies towards overconfident predictions. While our
analysis focused on a log-likelihood reward, we also consider rewards based on other strictly
proper scoring rules in Appendix A.3.

5 Discussion

Many important tasks, from scientific experimentation to preference modeling, require
reasoning about the likelihood of stochastic outcomes. We showed that reasoning language
models optimized to predict the probability of binary stochastic outcomes from samples
with GRPO are highly overconfident, while models optimized with PPO and RLOO are well
calibrated (all using a log-likelihood reward). We identified a bias in GRPO’s advantage
estimate due to group standard normalization as the relevant difference between these
algorithms, and provided a theoretical explanation for why this bias causes overconfidence.
We also found that using the clipped policy gradient introduced by PPO did not impact
calibration in our experiments.

Our results fit into a broader set of findings that biased policy gradients can lead to unex-
pected behavior for reasoning language models. For example, Liu et al. (2025) introduce
Dr. GRPO, a modification of GRPO designed to eliminate terms that introduce bias. They
propose to remove length normalization, which they find biases models to longer outputs,
and to remove group standard normalization, which they interpret as a question-level
difficulty bias. Our work identifies a novel negative impact of standard normalization in
GRPO and supports unbiasedness as a useful design principle for policy gradient methods
in reasoning RL.

We note that there are other possible framings of the outcome probability task explored in
this paper. For example, one could directly estimate the probability of stochastic outcomes
and train models to accurately predict these continuous values. While summarizing un-
certainty can be useful, this approach requires having robust probability estimates ahead
of time, which may be unavailable or model dependent, and limits the opportunity for
the reasoning model to learn to make more precise estimates. Alternatively, one can train
only on deterministic tasks and hope for transfer to stochastic settings (for example, we
observe better than random zero-shot predictions on the CRISPR task in Appendix Fig. 8),
though this limits the available data and tasks for training models. Overall, we believe
that modeling stochastic outcomes from observed samples is an important capability for
reasoning RL and that it is useful to characterize algorithms for this setting.

Finally, we presented an initial application of RL to train reasoning models directly from
noisy biological experiments. While we found that RL can yield calibrated predictions for
held-out experiments, these predictions do not necessarily reflect rigorous reasoning about
uncertainty in the model’s chain-of-thought. We are excited to further investigate how to
train models to reason rigorously about uncertainty and support scientific discovery.
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A Appendix

A.1 Analysis of Bias in GRPO Advantage Estimates

Let g be a prompt and a ~ p(A|q) = Bernoulli(p) be a stochastic binary answer for the
prompt. Let p be a predicted probability that 2 = 1 from model 7. Let r(p, a) be a reward
based on a strictly proper scoring rule such as the log-likelihood r(p,a) = alogp + (1 —
a) log(1 — p) or Brier score r(p,a) = —(a — p)?. Proper scoring rules have the property that
the expected value is maximized by the true probability and have been shown to be effective
rewards for training calibrated classifiers (Band et al., 2024).

The true advantage estimate for prompt g and prediction p is

Aq,p)=Q™(q.,9)—V"(q)
= Eqp(alg) [1(P: )] = Eamp(alg)prrmy () [ (P', 2)]
= pr(p,1) + (1= p)r(p,0) —Ep [pr(p’,1) + (1 - p)r(p’,0)]
= p(r(p,1) +p1) + (1 — p)(x(p,0) + po)

where p1 = Egy (o) [1(P, 1)] and po = Egy () [1(p',0)].

Next, we compare the advantage estimates from GRPO (Shao et al., 2024) to the true
advantage to characterize any biases. Without loss of generality, we will set the index of the
prediction whose advantage we are estimating to i (p = p;) and define p = (py, ..., pg) ~
79(q) to be the set of G predictions in the group sampled from the same prompt g. We define
Pixj to be the predictions in the group other than p;. We see that the expected advantage for
GRPO without standard normalization is

E opalg), ANO_STD(%@} = Eup,, [r(pi,a) — mean(r(p, a))]
Pji~79(4)
Eapi [r(ﬁz,a) - (r(@»a) +];r<p],a>)]
— | (x(pn) — gx(pin)) = S By (70)
= OB, [r(pi,) ~ Eple(p )]
= %A(M)

We see that the estimate is proportional to the true advantage, though it is attenuated by
a factor of é A fully unbiased estimate can be achieved with the advantage from RLOO
(Kool et al., 2019), which exclude p; from the mean baseline.

Finally, we consider the expected GRPO advantage estimate with standard normaliza-
tion. We define o1 = Ep (o) [std(r(p, 1))] and 09 = Ep_r, (g [std(x(p,0))]. We make the
simplifying assumption that group size G is large so that ]Ef,], Lime(q) [std(r(p,1))] = &1
and ]Ef,], Limta(4) [std(r(p,0))] ~ 0p, and will ignore the dependency between the mean and
standard deviation of group rewards. We have:

10



S0, 5] = E, 4 [r(ﬁ,a) — mean(r(p, a))
S, [0 P)] = Bon | iattp,an +

o D)= T(P,0) — o
=P 0 +e€ +(1=p) op+e€
1 R N
= e P )+ e (1= p) (2P, 0) + io)

We see that the approximate expected advantage estimate from GRPO has the same weighted

reward terms as the true advantage with the addition of new i and -1 coefficients.
1t+€ opt+e€

These coefficients make the GRPO advantage estimate biased in a policy-dependent manner,
which is analyzed in Figures 3, 4, and 5.

A.2 Advantage Empirical Estimate Details

We compute the empirical GRPO advantage estimates in Fig. 3 for a log-likelihood re-
ward using group size G = 1000, true probability p = 0.7, and 100,000 samples of
p = (p1,.... Pg) ~ mp. P011C1es are categorical distributions over predicted probabilities
(0.01,0.02, ...,0.99), where categorical log probs are set by discretizing Beta distributions
(Beta(1,1), Beta(5.7, 3), Beta(50,1)). Empirical advantage estimates are plotted for predic-
tions with at least 1,000 observed samples. True advantages are computed exactly.

A.3 GRPO Bias with Other Rewards

While our analysis in the main text focused on a log-likelihood reward, prior work has found
that optimization based on other proper scoring rules (which are maximized in expectation
by the true probability) can yield well-calibrated classifiers (Band et al., 2024). We show
a similar pattern of GRPO advantage estimate biases with a reward based on the Brier
score r(p,a) = —(a — p)? in Fig. 4. We hypothesize that GRPO will yield overconfident
predictions for rewards based on strictly proper scoring rules more generally because they
are strictly concave, which should lead to similar changes in &7 and o, as the policy changes,
but we leave a formal characterization as out of scope for this paper.

Advantage Estimates with Brier Score Reward
True p = 0.7 True p = 0.7

Advantage o0
Estimate -5

-3 !

L
0.00 025 050 075 1.00 0.00 025 0.50 0.75 1.00

i
! 0.02

Policy . i i
Probability | 001 i
0.00 H 0.00 H X
0.00 025 050 075 1.00 0.00 025 0.50 0.75 1.00 0.00 025 050 0.75 1.00
Predicted Probability Predicted Probability Predicted Probability
‘ GRPO = GRPO w/o Std Norm  ---- True Advantage ‘

Figure 4: Analysis of advantage estimates with a reward based on the Brier score. We
observe a similar pattern of overestimated advantages for overconfident probabilities as
observed with a log-likelihood in Fig. 3
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Log-Likelihood Reward Brier Score Reward
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Policy Policy

Figure 5: Empirical estimates of 0y and o7 (standard deviation of rewards within groups
for answers 0 and 1) for the three policies in Figures 3 and 4. As the policies concentrate on
predictions greater than 0.5, 0y becomes larger than 7.

A.4 Synthetic Data Experiment Extended Results

Algorithm Grad Steps / Rollout €,  ECE AUROC  Accuracy
GRPO 1 NA 0.239 0.750 0.751
GRPO 10 0.200 0.239 0.751 0.751
GRPO 10 0.001 0.239 0.751 0.751
GRPO (No Std) 1 NA  0.002 0.823 0.751
GRPO (No Std) 10 0.200 0.005 0.823 0.751
GRPO (No Std) 10 0.001 0.005 0.823 0.751
PPO 1 NA  0.005 0.823 0.751
PPO 10 0.200 0.008 0.823 0.751
PPO 10 0.001 0.008 0.823 0.751
RLOO 1 NA  0.002 0.823 0.751
RLOO 10 0.200 0.004 0.823 0.751
RLOO 10 0.001 0.004 0.823 0.751

Table 2: Extended results from synthetic data experiments. We observe that results are
consistent between experiments with a single update per rollout and multiple updates per
rollout with a clipped policy gradient estimates, even with low clipping thresholds that
encourage high clipping rates.
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Figure 6: Synthetic data training metrics.

A.5 CRISPR Experiment Data Processing

CRISPR perturb-seq screens involve perturbing individual genes with CRISPR (which mod-
ulates the expression of a target gene) and measuring the effect of the perturbation on RNA
transcript counts for all genes in individual cells cell. We use the essential gene CRISPRi
(CRISPR interference) perturb-seq screen in K562 cells from Replogle et al. (2022) for our
experiment. The dataset contains CRISPRi perturbations, which lower gene expression,
that target approximately 2,000 unique genes. We apply consensus non-negative matrix
factorization (c(NMF) (Kotliar et al., 2019) to infer 50 aggregate transcriptional target phe-
notypes and select the top 15 marker genes for each phenotype as defined by the cNMF
method to describe each phenotype. We estimate the effect size of each perturbation on
each phenotype as the difference in mean phenotype values for cells that received the
perturbation and control cells. To define perturbations with strong effects (“hits”), we fit a
cluster model on the perturbation effect sizes for each phenotype and select perturbations
that are highly unlikely in the control cluster. Specifically, we fit a Gaussian Mixture Model
on the effect sizes for each phenotype (number of clusters between 1-4, selected based on
Bayesian Information Criterion) and select perturbations with <1% chance under the cluster
closest to zero as strong effects. To construct a balanced dataset, we select an equal number
of perturbations that are most likely under the control cluster as non-hits. We note that
the dataset is naturally very imbalanced (hits are relatively rare for most phenotypes) but
choose to work with a balanced dataset for simplicity as our primary focus is understanding
the behavior of RL algorithms with stochastic outcomes.

A.6 CRISPR Task Prompt
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Experiment Prediction Prompt

I am planning a perturb-seq screen and plan to assess effects of perturbations on
< a phenotype with the following marker genes: ~~~{pheno_markers} ~".

How likely is a CRISPRi perturbation applied to {pert} to have a strong effect on
— this phenotype? Respond with probability from 1-99, representing 1% to 99%
< chance of a strong effect. Enclose your answer in <answer> </answer> tags.

pheno_markers is a list of 15 marker genes for the phenotype, and pert is the gene perturbed
by the CRISPR perturbation. We also considered prompts that specified the overall frequency
of hits in the dataset, but found that this reduced the zero-shot model performance.

A.7 CRISPR Experiment Details

Models were trained with a log-likelihood reward, with a minimum reward of log 0.01 for
outputs that do not match the required format (corresponding to the worst possible reward
given the prediction range of 0.01-0.99). Each model was trained with batch size 512, group
size 4, max response length 2048, mini-batch size (batches for gradient updates within each
rollout) of 64, learning rate le-6, and KL loss coefficient of 0.001. For PPO, the critic is
trained with mini-batch size 64 and learning rate 1le-5. We train all models without length
normalization as discussed in Liu et al. (2025) to avoid a length bias. Models were trained
for 16 epochs with Verl (Sheng et al., 2024). For PPO, RLOO, and GRPO with no standard
normalization, we select the checkpoint with the best validation reward for evaluation
(epoch 15 / step 180 for all three). We use the same checkpoing from the GRPO run for
consistency (validation reward begins dropping early and we want to understand what
predictions it converges to) (Fig. 7). We generate 4 samples per prompt for test set evaluation

and drop samples with no valid prediction (at most one sample of 5608 predictions for each
trained models).

PPO RLOO GRPO (No Std) GRPO

_ _ _ 08

3 3 3 3

< -0.65 Z —0.65 Z -0.65 =

B ® ® B -10

s 5 5 s

H H H H

& -0.70 & -0.70 & -0.70 & 12

c c c c

] 5 5 ]

O [ [ Q

= 075 = 075 = 075 =14

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
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Figure 7: CRISPR experiment prediction task validation set rewards during training.
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Figure 8: Zero shot predictions on CRISPR task test set with Qwen3-4B.
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