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ABSTRACT

While real-world applications increasingly demand intricate scene manipulation,
existing instruction-guided image editing benchmarks often oversimplify task com-
plexity and lack comprehensive, fine-grained instructions. To bridge this gap, we
introduce CompBench, a large-scale benchmark specifically designed for com-
plex instruction-guided image editing. CompBench features challenging editing
scenarios that incorporate fine-grained instruction following, spatial and contex-
tual reasoning, thereby enabling comprehensive evaluation of image editing mod-
els’ precise manipulation capabilities. To construct CompBench, We propose an
MLLM-human collaborative framework with tailored task pipelines.Furthermore,
we propose an instruction decoupling strategy that disentangles editing intents into
four key dimensions: location, appearance, dynamics, and objects, ensuring closer
alignment between instructions and complex editing requirements. Extensive eval-
uations reveal that CompBench exposes fundamental limitations of current image
editing models and provides critical insights for the development of next-generation
instruction-guided image editing systems.

1 INTRODUCTION

Recent advances in instruction-guided image editing have pursued user-friendly and efficient manipu-
lation of visual content. While such systems aim to simplify complex editing workflows, real-world
applications often demand intricate instructions including spatial relationships, appearance details,
and implicit reasoning. This necessitates the development of models with comprehensive capabilities
in visual grounding, contextual understanding, and complex reasoning, thereby presenting substantial
challenges to existing methodologies. However, as demonstrated in Figure 2, existing instruction-
guided image editing benchmarks, e.g., Emu Edit (Sheynin et al., 2024), MagicBrush (Yang et al.,
2022a), and ReasonEdit (Huang et al., 2024b), exhibit critical limitations in assessing these essential
capabilities, primarily in three aspects:

Lack of Scene Complexity. A key limitation of current benchmarks is their insufficient scene
complexity, which hampers the representation of intricate visual structures inherent in real-world
images. This stems from two main factors.

First, the prevalent use of synthetic images from text-to-image generation models, such as Stable
Diffusion (Rombach et al., 2022), in previous benchmark construction (Yu et al., 2024; Ma et al.,
2024) results in scenes with sparse spatial layouts, limited foreground object diversity, minimal
occlusions, and simplistic textures and lighting conditions. Such artificial compositions lack dense
object interactions, natural clutter, and photorealistic qualities essential for evaluating practical editing
capabilities. Even when incorporating real images from datasets, such as COCO (Lin et al., 2014),
these benchmarks often present oversimplified scenarios with elementary compositions insufficient
for evaluating models on complex spatial relationships and interactions among multiple objects.

This problem is further exacerbated by benchmark design choices, wherein creators often deliberately
exclude highly complex scenes featuring heavy occlusions, intricate details, or dynamic elements
due to the challenges they pose for ground truth construction. While this practice facilitates more
controllable evaluation, it creates a concerning discrepancy between benchmark performance and
real-world applicability.
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Object Addition

Instruction: add a white-bodied red-spotted fish with its 
head pointing to the lower left on top of a yellow fish

Object Removal

Instruction: remove the tiger on the upper right

Object Replacement

Instruction: replace the upper left 
white car with a black car

Instruction1: add a white duck on the upper left
Instruction2: add a black and white duck facing directly forward near the feeding bowl

Multi-turn Editing

Multi-object Editing

Instruction: remove the left one between the 
two zebras far behind the zebra herds and the 
zebra hunted  by the lion

Instruction: remove the farthest tiger 
from the water

Instruction: raise the head of the left giraffe 
while bend the head of the right one

Instruction: move the airplane on the ground 
to the middle under the two flying ones

Instruction: shift the view to the right to reveal the 
building with the 'APTEKA' sign, resembling a café

Implicit Editing

Action Editing Location Editing Viewpoint Editing

Instruction1: remove the bird in the middle
Instruction2: remove the top bird

Instruction: add a boy in black and blue top 
looking at the zebras on the left and a man in blue 
top with glasses looking at the boy on the right

Figure 1: Examples of CompBench. The figure showcases diverse instruction-guided image editing
tasks across nine categories: object addition, object removal, object replacement, multi-object editing,
multi-turn editing, implicit reasoning, action editing, location editing and viewpoint editing.
Consequently, image editing models may attain high metric scores on these relatively simplified
benchmarks, yet remain inadequate for real-world editing tasks that demand advanced scene under-
standing and manipulation. For instance, in reasoning-based tasks, InstructPix2pix (Brooks et al.,
2023) exhibits a notable performance decline on our CompBench compared with ReasonEdit (Huang
et al., 2024b), showing decreases of approximately 2.5 in PSNR, 0.02 in SSIM, and 0.4 in CLIP-Score.

Limited Instruction and Task Comprehensiveness. Beyond their oversimplified visual scenes,
current benchmarks are further constrained by the narrow scope of editing instructions and tasks,
failing to reflect the complexity of real-world user demands. Most existing datasets rely on simplis-
tic, atomic-level instructions (e.g., “change the dog to a cat”) that lack contextual reasoning, and
compositional logic typical of real user requests. In reality, user instructions often require complex
reasoning and manipulation. These include multi-object editing (“remove the dog and the cat”), edits
based on spatial relationships (“add a man to the right of the woman”), or action editing that modifies
dynamic states (“make the man in white bend down more”). Current benchmarks, however, largely
neglect these sophisticated task categories. This deficiency in instruction and task diversity prevents
models from being rigorously tested on the full spectrum of challenges encountered in real-world
applications. Consequently, their performance can be artificially inflated on simple tasks, providing
an incomplete and misleading evaluation of true robustness and practical applicability.

Deficiencies in Edited Image Quality. Another critical limitation of current benchmarks is the
suboptimal quality of their edited images. Many existing datasets exhibit two predominant issues that
compromise their reliability: (1) instruction-alignment inaccuracies, where the edited output fails to
precisely fulfill the specified modifications. (2) conspicuous visual artifacts, such as geometric dis-
tortions, background inconsistencies, or semantically incoherent objects. These quality deficiencies
introduce substantial noise into performance evaluations, potentially leading to misleading assess-
ments of model capabilities. Consequently, such benchmarks may fail to effectively discriminate
between truly sophisticated editing systems and those that merely produce superficially plausible but
flawed results.
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Table 1: Comparison of existing image-editing datasets and benchmarks. Our benchmark supports
seven core editing tasks, including multi-object, action and viewpoint editing, which are absent from
most prior benchmarks. Scenario complexity is quantified by four indicators: Avg. Obj. (average
number of objects per image), Avg. Cat. (average number of object categories per image), OCC
(percentage of images that contain occluded objects), and OOF (percentage of images that contain
out-of-frame objects). Details of these metrics can be found in Appendix C. Across all four metrics,
our benchmark exhibits the highest complexity, underscoring its suitability for rigorous evaluation.

Datasets / Benchmarks Size Types Task Complexity
Local Multi-turn Multi-obj. Implicit Action Location Viewpoint Avg. Obj. Avg. Cat. Occ. Rate OOF. Rate

Datasets
InstructPix2pix (Brooks et al., 2023) 313K 4 8.71 4.16 79.36 81.39
EditWorld (Yang et al., 2024) 8.6K 1 8.01 4.45 76.67 72.00
UltraEdit (Zhao et al., 2024) 4M 9 7.68 4.70 75.30 78.10
SEED-Data-Edit (Ge et al., 2024) 3.7M 6 6.21 3.82 63.82 81.40
HQ-Edit (Hui et al., 2024) 197K 6 8.22 4.84 66.97 60.30
AnyEdit (Yu et al., 2024) 2.5M 25 6.95 4.37 60.45 57.20
ImgEdit (Ye et al., 2025) 1.2M 13 9.01 4.72 69.65 69.14

Benchmarks
MagicBrush (Yang et al., 2022a) 10K 5 9.22 5.04 91.71 78.34
EMU_Edit (Sheynin et al., 2024) – 8 8.38 5.19 78.51 83.60
Reason-Edit (Huang et al., 2024b) 0.2K - 4.93 3.09 54.30 52.28
I2EBench (Ma et al., 2024) 2K 16 7.03 4.20 68.78 66.40
GEdit-Bench (Liu et al., 2025) 0.6K 11 9.96 4.93 67.67 65.40
Complex-Edit (Yang et al., 2025) 1K 24 9.23 4.77 78.29 72.98
Ours* 3K 9 13.58 5.87 98.47 86.38

Instruction: What would happen if the dog 
stumbled and it slid under snow?

Instruction: replace 
the eagle with a parrot

Instruction: shift the 
horse in the image

Instruction: have a squirrel 
be looking at the vase

Instruction: remove the motorcycle from the street Instruction: change the color of fire 
hydrant to lavender

Instruction: change the red 
raspberry to a tangerine

Instruction: change the 
student to a professor

Instruction: make the 
pug a bulldog

Instruction: remove the 
white goose in the middle 
of the three geese

Instruction: add a red 
fish with black spots on 
the bottom left

Instruction: have the 
white cat jumping landing 
on the grass

Instruction: remove the 
second leftmost and the 
rightmost white goose

Instruction: make the 
two cars running on the 
road a little closer

Instruction: replace the
man with a stripped shirt
with a black person

Figure 2: Comparison between current datasets or benchmarks and our CompBench. First
row: failed cases of other benchmarks. These results fail to maintain background consistencies or
introduce noticable artifacts into the editing region. Second row: Examples of other benchmarks.
These cases lack scene complexity and instruction comprehensiveness. Third row: Examples of our
CompBench. Our benchmark features complex real-world scenarios with precise instructions.

To address the aforementioned issues, we introduce CompBench, the first large-scale benchmark for
instruction-based image editing in complex scenarios, specific examples are illustrated in Figure 1.
Our benchmark offers the following three major advantages:

Realistic and Complex Scene Composition. As shown in Table 1, Our benchmark encompasses
scenes that embody the diverse and realistic complexities present in real-world settings. We compare
CompBench with existing datasets and benchmarks across four dimensions: average number of
objects, average number of object categories, overall object occlusion rate, and out-of-frame object
rate. Details of these metrics are shown in Appendix C. CompBench consistently surpasses prior
benchmarks in all these metrics. Notably, our average number of objects per image is approximately
36.3% higher than the second best (GEdit-Bench (Liu et al., 2025)), demonstrating the heightened
complexity and diversity of our scenes.

Comprehensive Task Coverage and High Difficulty Level. As depicted in Figure 4(a), CompBench
encompasses five major categories, consisting of local editing, multi-editing, action editing, scene
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spatial editing, and complex reasoning, spanning a total of nine tasks. These tasks are designed
to challenge six core capabilities, with a detailed analysis of our benchmark’s difficulty for each
provided in the Appendix B. Additionally, we propose an Instruction Decomposition Strategy to
improve the clarity and precision of image editing instructions. Specifically, we structures editing
instructions along four dimensions: spatial positioning (e.g., “left of the table”), visual attributes
(such as color or texture), motion states (e.g., “flying”), and object entities. This structured approach
converts potentially ambiguous requests into well-defined specifications without sacrificing the
natural expressiveness of instructions. By systematically covering each aspect of an editing operation
while preserving the flexibility of natural language, our method produces instructions that are both
intuitively understandable and technically precise for complex image editing tasks.

High-Quality Data Curation. Every sample in CompBench is meticulously constructed through
multiple rounds of expert review, ensuring the highest quality of edits. Unlike other benchmarks
where editing failures are common, all data in CompBench represent successfully executed editing
results, with SSIM (Structural Similarity Index Measure) scores significantly outperforming those of
other datasets, as illustrated in Figure 4(b). This rigorous quality control ensures that CompBench
provides a reliable assessment of model performance in realistically complex editing scenarios.

2 RELATED WORKS

Instruction-guided Image Editing. Instruction-guided image editing enables efficient image manip-
ulation using only textual editing instructions, eliminating the need for manual mask or explicit visual
inputs and better aligning with user intent. Diffusion models (Ho et al., 2020), particularly Stable Dif-
fusion (Rombach et al., 2022) (SD), facilitate this task significantly by supporting explicit text inputs.
Methods built upon diffusion models such as InstructPix2pix (Brooks et al., 2023), has greatly im-
proved editing effectiveness. InstructPix2pix leverages large language models (LLMs) (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020; Touvron et al., 2023) and text-to-image (T2I) (Ramesh
et al., 2021; 2022; Saharia et al., 2022; Rombach et al., 2022) models to generate large-scale datasets
and trains a diffusion model that is capable of following natural language instructions. HIVE (Zhang
et al., 2024) introduces a reward model that leverages human feedback to align edits with human
preferences. Approaches such as SmartEdit (Huang et al., 2024b), MGIE (Fu et al., 2023), and
Step1X-Edit (Liu et al., 2025) integrate image and instruction representations using multi-modal
large language models (MLLMs) (Li et al., 2022; Alayrac et al., 2022; Liu et al., 2023; Wang et al.,
2024), injecting these capabilities into diffusion models for more precise control. AnyEdit (Yu
et al., 2024) constructs an extremely large-scale multi-task dataset and adopts a mixture-of-experts
(MoE) (Fedus et al., 2022; Du et al., 2022) architecture to better accommodate diverse editing tasks.
SEED-X (Ge et al., 2024) utilizes a visual tokenizer to unify image comprehension and generation,
establishing a unified multi-granularity comprehension and generation model that enhances editing
performance. GoT (Fang et al., 2025) incorporates Generation Chain-of-Thought (Wei et al., 2022)
reasoning into the editing process, allowing for more refined, step-by-step edits. Recently, FLUX.1
Kontext (Labs et al., 2025) applies flow matching to build a unified image generation and editing
model. Bagel (Deng et al., 2025) adopts a decoder only architecture to construct a multimodal
understanding and generation model. Qwen-Image-Edit (Wu et al., 2025), the editing model of
Qwen-Image (Wu et al., 2025), demonstrates strong text rendering and image editing capabilities.

Image Editing Benchmarks. High-quality image editing datasets and benchmarks are crucial for
model training and evaluation. Several notable benchmarks have been proposed: MagicBrush (Yang
et al., 2022a) provides a manually curated 10K dataset covering single-turn, multi-turn, mask-
provided, and mask-free editing tasks. EMU-edit (Sheynin et al., 2024) introduces a challenging
benchmark comprising seven diverse editing tasks. HQ-Edit (Hui et al., 2024) employs a scalable data
collection pipeline to create a high-quality dataset of 200K instruction-guided image editing samples.
SmartEdit (Huang et al., 2024b) introduces Reason-Edit, a small-scale, manually curated benchmark
focused on complex instruction-based image editing. Edit-world (Yang et al., 2024) presents the
concept of world-instructed image editing and creates a dataset featuring instructions in a world
context. I2EBench (Ma et al., 2024) proposes a comprehensive evaluation benchmark with automated
multi-dimensional assessment. UltraEdit (Zhao et al., 2024) develops a scalable framework for
producing large and high-quality image editing datasets, introducing a large-scale instruction-based
dataset. SEED-Data-Edit (Ge et al., 2024) provides a hybrid dataset composed of auto-generated,
real-world, and human-annotated multi-turn editing samples. More recently, ImgEdit (Ye et al.,
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Real-world Complex VOS 
Dataset with Masks

Source Data Collection

Visual Quality Assessment 
and Filtering

Mask Preprocessing

Multi-object 
Mask Spliting

Occlusion and 
Continuity Analysis

Task-specific Pipeline

Object Removal
Object Addition
Object Replacement

Multi-turn
Multi-object

Action
Location
viewpoint

Implicit

CompBench

Task: Implicit Reasoning
Ins: Remove the farthest 

tiger from the water

Post-filtering 9 tasks 3k+ Edits

Figure 3: The construction pipeline of CompBench. The pipeline consists of two main stages: (a)
Source data collection and preprocessing, wherein high-quality data are identified through image
quality filtering, mask decomposition, occlusion and continuity evaluation, followed by thorough
human verification. (b) Task-specific data generation using four specialized pipelines within our
MLLM-Human Collaborative Framework, where multimodal large language models generate initial
editing instructions that are subsequently validated by humans to ensure high-fidelity, semantically
aligned instruction-image pairs for complex editing tasks.

2025) introduces a large scale image editing dataset and a benchmark with multiple aspects. Step1X-
Edit (Liu et al., 2025) construct GEdit-Bench (Liu et al., 2025) featuring real-world user instructions.
Complex-Edit (Yang et al., 2025) adopts a “Chain-of-Edit” pipeline to develop an image editing
benchmark across instructions of different complexity.

3 COMPBENCH

3.1 TASK CATEGORIZATION AND DEFINITIONS

Our complex instruction-guided image editing benchmark, CompBench, contains 3k+ image-
instruction pairs. To enhance the comprehensiveness of evaluation, we categorize editing tasks
into five major classes with nine specific tasks based on their characteristics:(1) Local Editing: fo-
cuses on manipulating local objects, including object removal, object addition and object replacement.
(2) Multi-editing: addresses interactions among multiple objects or editing steps, including multi-turn
editing and multi-object editing. (3) Action Editing: modifies the dynamic states or interactions of
objects. (4) Scene Spatial Editing: alters scene spatial properties, consisting of location editing and
viewpoint editing. (5) Complex Reasoning: requires implicit logical reasoning, including implicit
reasoning. Examples of these tasks can be found in Figure 1.

3.2 DATASET GENERATION

In this section, we detailedly demonstrate the generation process of our CompBench. The overall
pipeline is shown in Figure 3.

Source Data Collection and Preprocessing. To address the scarcity of high-quality paired complex
editing data, we select MOSE (Ding et al., 2023), a video instance segmentation (VOS) dataset
featuring complex scenes with multi-object masks. The dataset undergoes a rigorous preprocessing
pipeline: We first filter low-quality video frames using a mixture of no-reference image quality
assessment metrics (e.g., NIQE (Zhang et al., 2015)) to eliminate blurry, low-contrast, or corrupted
samples. Then, a professional team manually verifies the filtered data, retaining only high-quality
images. For mask preprocessing, multi-object masks are decomposed into single-object masks to
isolate editable entities. A multimodal large language model (MLLM, e.g., Qwen-VL (Wang et al.,
2024)) evaluates mask continuity and occlusion, discarding discontinuous or heavily occluded masks.
Similarly, annotators further check these masks to ensure pixel-level precision.

Task-specific Data Generation Pipelines. To address the unique challenges and diversity of complex
instruction-guided image editing tasks, we design four specialized data construction pipelines tailored
to distinct task categories: (1) local editing pipeline for object-level manipulations (object removal,
object addition, object replacement). (2) action/scene spatial editing pipeline for modifying object
dynamics or scene perspectives (action editing, location editing, viewpoint editing). (3) complex
reasoning pipeline for implicit contextual edits requiring reasoning (implicit reasoning). (4) multi-
editing pipeline for multi-object and multi-turn editing tasks. All pipelines adopt a unified MLLM-
Human Collaborative Framework: multimodal large language models (MLLMs) (Li et al., 2022;
Alayrac et al., 2022; Liu et al., 2023; Wang et al., 2024) generate initial task-specific instructions by
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Figure 4: Characteristics and statistics of CompBench. (a) Task taxonomy of CompBench,
illustrating the full range of task types. (b) SSIM (Wang et al., 2004) comparison among different
datasets and benchmarks. Note that UltraEdit (Zhao et al., 2024) and InstructPix2pix (Brooks et al.,
2023) are datasets, whereas the remaining entries are benchmarks.

analyzing visual scenes and editing goals, followed by human validation to ensure instruction-image
semantic alignment and image editing fidelity. Unsuccessful edits are iteratively re-generated or
discarded, retaining only high-fidelity samples that satisfy both linguistic precision and visual realism.
Detailed implementation procedures for each pipeline are provided in the appendix A.

Instruction Decomposition Strategy. To enhance the clarity and precision of editing instructions, we
propose a structured framework that organizes editing instructions along four aspects: spatial position-
ing, visual attributes, motion states, and object entities. This approach transforms ambiguous editing
requests into well-defined specifications while maintaining natural expressiveness. The method
employs a two-phase generation process: first, an MLLM produces dimension-aware instruction
candidates by analyzing visual contexts. Then human experts refine these to ensure precision and
consistency. By systematically addressing each aspect of the editing operation while preserving
the flexibility of natural language, this framework enables the creation of instructions that are both
intuitively understandable and technically precise for complex image editing tasks.

Characteristics and Statistics. As illustrated in Figure 4(a), our benchmark comprises 5 major
categories encompassing a total of 9 complex editing tasks, yielding 3k+ image editing samples with
corresponding complex instructions. Details of subtasks can be found in Appendix B.2. Since we
lack global captions for pre-edited and post-edited images, we employ the Structural Similarity Index
Measure (SSIM) (Wang et al., 2004) to evaluate the semantic consistency between image pairs as a
quality assessment metric. As shown in Figure 4(b), CompBench achieves notably higher SSIM than
other datasets and benchmarks.

Notably, our dataset features significantly more challenging editing tasks, each requiring compre-
hensive capabilities such as visual grounding and complex reasoning. Detailed analysis of core
competencies essential for our benchmark are discussed in Appendix B. To systematically evaluate
scene complexity, we adopt multiple quantitative indicators such as average number of scene ob-
jects and categories. These metrics demonstrate that our benchmark exhibits substantially higher
complexity compared to existing benchmarks.

4 EXPERIMENTS

4.1 SETTINGS

Baselines. Given that our study specifically targets instruction-guided image editing tasks, we
restrict our selection to instruction-guided image editing models and exclude approaches based on
global description guidance. The evaluated models include: InstructPix2pix (Brooks et al., 2023),
MagicBrush (Yang et al., 2022a), HIVE (Zhang et al., 2024), Smart-edit (Huang et al., 2024b),
MGIE (Fu et al., 2023), HQ-Edit (Hui et al., 2024), CosXL-Edit (Stability AI, 2024), UltraEdit (Zhao
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Table 2: Evaluation results on local editing, multi-object editing and implicit reasoning. LC-T
denotes local CLIP scores between the edited foreground and the local description. LC-I refers to the
CLIP image similarity between the foreground edited result and ground truth (GT) image. Top-three
evaluation results are highlighted in red (1st), blue(2nd), and green (3rd).

Model
Local Editing Multi-object Editing Implicit Reasoning

Foreground Background Foreground Background Foreground Background
LC-T ↑ LC-I ↑ PSNR(dB) ↑ SSIM ↑ LPIPS ↓ LC-T ↑ LC-I ↑ PSNR(dB) ↑ SSIM ↑ LPIPS ↓ LC-T ↑ LC-I ↑ PSNR(dB) ↑ SSIM ↑ LPIPS ↓

InstructPix2pix (Brooks et al., 2023) 19.445 0.777 21.416 0.695 0.137 19.624 0.779 20.200 0.658 0.162 19.007 0.793 21.806 0.683 0.125
MagicBrush (Yang et al., 2022a) 20.067 0.798 23.415 0.744 0.088 19.878 0.800 23.524 0.727 0.092 19.526 0.828 22.145 0.714 0.106
HIVE-w (Zhang et al., 2024) 19.820 0.770 19.908 0.641 0.198 20.024 0.775 19.594 0.609 0.224 18.634 0.777 20.268 0.602 0.219
HIVE-c (Zhang et al., 2024) 19.236 0.772 21.741 0.689 0.147 19.585 0.781 21.560 0.663 0.155 18.938 0.786 22.168 0.666 0.132
Smart-edit-7B (Huang et al., 2024b) 20.034 0.798 24.398 0.761 0.073 19.888 0.803 23.959 0.731 0.090 19.743 0.832 23.058 0.732 0.096
MGIE (Fu et al., 2023) 18.957 0.780 20.572 0.708 0.175 19.830 0.788 18.296 0.692 0.274 17.728 0.801 24.432 0.780 0.088
CosXL-Edit (Stability AI, 2024) 19.029 0.778 20.442 0.706 0.156 19.550 0.788 20.382 0.682 0.171 18.269 0.794 20.984 0.681 0.161
HQ-Edit (Hui et al., 2024) 18.316 0.734 12.240 0.419 0.441 19.163 0.757 12.987 0.412 0.421 18.864 0.767 12.321 0.396 0.452
UltraEdit (Zhao et al., 2024) 19.618 0.786 22.938 0.783 0.145 20.022 0.795 22.326 0.719 0.164 18.350 0.784 23.374 0.717 0.145
AnyEdit (Yu et al., 2024) 19.932 0.794 22.769 0.714 0.125 19.875 0.809 22.789 0.697 0.129 19.588 0.816 20.271 0.639 0.191
SEED-X (Ge et al., 2024) 17.933 0.780 21.466 0.805 0.139 19.092 0.795 20.638 0.788 0.158 17.467 0.784 21.506 0.709 0.134
GoT (Fang et al., 2025) 20.268 0.807 24.675 0.890 0.067 19.919 0.804 21.296 0.826 0.127 19.237 0.820 24.738 0.860 0.088
Step1X-Edit (Liu et al., 2025) 20.501 0.817 23.371 0.882 0.078 20.213 0.828 22.696 0.873 0.089 19.312 0.850 23.435 0.869 0.082
Bagel (Deng et al., 2025) 21.059 0.838 27.692 0.935 0.045 20.434 0.842 24.370 0.917 0.069 19.719 0.874 28.756 0.918 0.052
FLUX.1 Kontext (Labs et al., 2025) 21.329 0.821 25.612 0.941 0.049 20.983 0.836 24.013 0.938 0.064 19.606 0.867 25.330 0.932 0.061
Qwen-Image-Edit (Wu et al., 2025) 21.522 0.829 24.968 0.891 0.072 21.058 0.836 21.927 0.810 0.121 20.067 0.860 22.787 0.774 0.124

Table 3: Evaluation results on multi-turn editing.
Model Turn1 Turn2

Foreground Background Foreground Background
LC-T LC-I PSNR SSIM LPIPS LC-T LC-I PSNR SSIM LPIPS

InstructPix2pix (Brooks et al., 2023) 19.424 0.784 21.073 0.676 0.142 19.818 0.776 17.607 0.568 0.238
MagicBrush (Yang et al., 2022a) 19.977 0.812 24.020 0.730 0.089 20.253 0.811 21.244 0.682 0.134
HIVE-w (Zhang et al., 2024) 19.784 0.781 20.040 0.621 0.196 20.129 0.761 17.291 0.532 0.272
HIVE-c (Zhang et al., 2024) 19.756 0.787 21.330 0.660 0.155 19.812 0.778 18.346 0.590 0.217
Smart-edit-7B (Huang et al., 2024b) 19.876 0.817 24.632 0.740 0.080 20.050 0.807 23.404 0.724 0.104
MGIE (Fu et al., 2023) 19.355 0.801 21.563 0.731 0.143 19.695 0.798 18.382 0.655 0.223
HQ-Edit (Hui et al., 2024) 18.987 0.755 12.950 0.410 0.422 18.935 0.740 12.032 0.383 0.499
CosXL-Edit (Stability AI, 2024) 19.389 0.787 20.233 0.679 0.171 19.394 0.771 16.752 0.590 0.301
UltraEdit (Zhao et al., 2024) 19.990 0.792 23.763 0.715 0.116 20.177 0.779 22.917 0.715 0.139
AnyEdit (Yu et al., 2024) 19.953 0.812 23.412 0.711 0.113 20.093 0.803 20.010 0.633 0.188
SEED-X (Ge et al., 2024) 19.139 0.795 21.042 0.792 0.153 18.729 0.753 13.793 0.457 0.404
GoT (Fang et al., 2025) 20.108 0.816 25.089 0.894 0.066 19.939 0.804 21.397 0.825 0.131
Step1X-Edit (Liu et al., 2025) 20.157 0.832 23.987 0.883 0.078 20.262 0.835 20.710 0.822 0.128
Bagel (Deng et al., 2025) 19.919 0.841 28.475 0.946 0.040 20.664 0.853 23.886 0.896 0.087
FLUX.1 Kontext (Labs et al., 2025) 20.061 0.837 25.725 0.951 0.050 21.172 0.843 22.357 0.906 0.095
Qwen-Image-Edit (Wu et al., 2025) 20.328 0.836 24.124 0.834 0.097 21.021 0.837 20.573 0.775 0.157

et al., 2024), AnyEdit (Yu et al., 2024), Seed-X-Edit (Ge et al., 2024), GoT (Fang et al., 2025),
Step1X-Edit (Liu et al., 2025), Bagel (Deng et al., 2025), FLUX.1 Kontext (Labs et al., 2025), and
the recently released Qwen-Image-Edit (Wu et al., 2025).

Evaluation Metrics and Methods. Evaluation metrics for image editing tasks must be well-suited
to the complexity of our scenarios, providing a comprehensive and accurate assessment of editing
performance in complex scenes. Moreover, the metrics should be tailored to reflect the unique
characteristics of different task types.

For tasks including local editing, multi-editing and implicit reasoning, we posit that an effective
editing model should modify foreground objects while preserving background consistency. Therefore,
we apply a foreground-background decoupling strategy, evaluating the editing performance from
both foreground and background perspectives. For background consistency assessment, we compute
three metrics, including PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018), on the
background regions. For the foreground evaluation, we consider two aspects: editing accuracy and
instruction following. For editing accuracy, we measure the similarity between the edited result and
the ground truth (GT) image by comparing their CLIP (Radford et al., 2021) image embeddings in
the foreground region, thereby determining whether the edited foreground visually aligns with the
GT. To assess instruction-following capability, we measure the CLIP (Radford et al., 2021) similarity
between the edited foreground object and the textual description of the target region to evaluate the
model’s ability to interpret and execute the given instructions.

Additionally, for action editing, location editing, and viewpoint editing tasks—where the object’s
morphology, position, or viewpoint may change significantly—the aforementioned automatic metrics
are insufficient for comprehensive evaluation. To address this, we introduce multi-perspective scoring
using GPT-4o (OpenAI, 2024), Qwen2.5-VL-72B (Bai et al., 2025), and human annotators. For each
task, we design tailored prompts for GPT-4o and Qwen-VL, instructing the models to rate editing
performance on a scale from 0 to 10. In parallel, we conduct a rigorous human evaluation by trained
annotators, following standardized scoring guidelines to measure aspects such as background fidelity,
editing intent, instruction following, and artifact presence. Detailed prompt designs and annotation
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Table 4: Comparison on Action, Location, and Viewpoint Editing. Results for GPT-4o, Qwen-72B,
Human Evaluation, and Average scores (top-3 per column highlighted in red, blue, green).

Model Action Location Viewpoint
GPT Qwen Human Avg. GPT Qwen Human Avg. GPT Qwen Human Avg.

InstructPix2pix (Brooks et al., 2023) 3.047 1.124 3.101 2.424 3.425 2.167 2.859 2.859 0.699 0.482 0.036 0.406
MagicBrush (Yang et al., 2022a) 3.511 1.449 3.584 2.848 4.603 2.260 3.717 3.717 0.892 0.410 0.108 0.470
HIVE-w (Zhang et al., 2024) 3.151 1.764 3.067 2.661 4.110 2.192 3.421 3.421 1.494 0.283 0.036 0.604
HIVE-c (Zhang et al., 2024) 3.977 1.596 3.797 3.123 4.192 2.470 3.558 3.558 2.193 0.675 0.145 1.004
Smart-edit-7B (Huang et al., 2024b) 4.233 1.607 4.348 3.771 3.890 2.875 3.505 3.505 2.169 0.590 0.410 1.056
MGIE (Fu et al., 2023) 1.921 1.213 1.797 1.644 1.726 1.795 1.728 1.728 0.205 0.193 0 0.133
CosXL-Edit (Stability AI, 2024) 4.270 2.375 3.966 3.537 5.479 2.493 4.517 4.517 1.916 0.988 0.301 1.068
HQ-Edit (Hui et al., 2024) 1.449 0.528 1.033 1.003 1.425 0.726 1.079 1.079 0.470 0.289 0 0.253
UltraEdit (Zhao et al., 2024) 4.449 1.807 4.235 3.497 4.014 2.055 3.410 1.181 0.494 0.706 0 0.400
AnyEdit (Yu et al., 2024) 3.750 0.978 3.168 2.632 5.068 2.479 4.178 4.178 1.687 0.783 0.072 0.847
SEED-X (Ge et al., 2024) 2.270 1.494 1.685 1.816 3.028 3.247 2.771 2.771 2.241 1.169 0 1.137
GoT (Fang et al., 2025) 3.337 1.989 3.134 2.820 3.625 3.192 3.164 3.164 0.916 0.675 0.446 0.679
Step1X-Edit (Liu et al., 2025) 6.270 3.944 5.348 5.187 5.041 4.479 4.786 4.769 2.470 1.205 0.663 1.446
Bagel (Deng et al., 2025) 6.899 5.056 6.629 6.195 7.137 6.233 6.219 6.530 5.193 3.892 4.663 4.583
FLUX.1 Kontext (Labs et al., 2025) 5.169 3.202 4.517 4.296 3.000 3.110 3.836 3.996 3.471 2.373 3.108 2.984
Qwen-Image-Edit (Wu et al., 2025) 6.910 5.382 6.764 6.352 7.055 5.096 4.658 5.603 6.193 4.470 6.181 5.615

instructions are provided in Appendix G. Further ablation studies on evaluation metrics, as well as
additional human evaluation results, can be found in Appendix D,H.

4.2 EXPERIMENT RESULTS

The experimental results for local editing, multi-turn editing, multi-object editing, implicit reasoning,
and action/location/viewpoint editing are presented in Tables 2, 3, and 4, respectively. Our key
analysis of the results are as follows: (1) No model dominates across all tasks. Among all evaluated
models, Bagel (Deng et al., 2025) emerges as the most prominent one, achieving top results in 18 out
of 37 metrics (nearly 60%) across 9 tasks. Notably, Bagel (Deng et al., 2025), Qwen-Image-Edit (Wu
et al., 2025), and FLUX.1 Kontext (Labs et al., 2025) consistently deliver superior performance,
securing top-three rankings in the majority of metrics across most tasks, following by Step1X-
Edit (Liu et al., 2025). In contrast, HQ-Edit (Hui et al., 2024) demonstrates substantially inferior
results in nearly all tasks. (2) For multi-turn editing tasks, all models exhibit a notable decline in
background consistency metrics during the second editing round. Among them, SmartEdit (Huang
et al., 2024b) maintains relatively robust performance in second editing turn. (3) Qwen-Image-
Edit (Wu et al., 2025) achieves consistently high scores on the local CLIP scores between the edited
foreground and the local description metric, reflecting its strong instruction-following and semantic
alignment capabilities. In contrast, Bagel (Deng et al., 2025) ranks high on background consistency
metrics, demonstrating its strength in preserving spatial and contextual background information
during editing. (4) For the more challenging action/location/viewpoint editing tasks, Qwen-Image-
Edit (Wu et al., 2025) and Bagel (Deng et al., 2025) perform comparably and significantly outperform
most other models. Step1X-Edit (Liu et al., 2025) also exhibits promising editing performance in
these scenarios.

5 INSIGHTS

In this section, we investigate the underlying factors that lead to varying performances among different
models on our proposed CompBench, and offer perspectives on future research directions for the
field of image editing.

The Critical Role of MLLMs. Through systematic evaluation, we discover a strong correlation be-
tween architectural design and editing performance: multi-modal large language models (MLLMs) (Li
et al., 2022; Alayrac et al., 2022; Liu et al., 2023; Wang et al., 2024; Huang et al., 2024a; 2025; You
et al., 2025; Li et al., 2025) serve as a cornerstone for recent advances in this field. Specifically, for a
fair comparison, we normalize and average the performance scores of all models across five major
tasks, highlighting the top-5 models in Figure 5(a). Furthermore, we present the overall normalized
results in Figure 5(b), aggregated across all tasks. Details on the calculation of the results shown in
the figure can be found in Appendix G. The results reveal that Bagel (Deng et al., 2025) significantly
outperforms others on complex instruction-editing tasks, followed by Qwen-Image-Edit (Wu et al.,
2025), FLUX.1 Kontext (Labs et al., 2025) and Step1X-Edit (Liu et al., 2025). Interestingly, the
top-performing models, excluding the specialized flow-matching model FLUX.1 Kontext, either are
MLLMs or integrate one as a core component. This architecture design empowers them to more
accurately interpret complex instructions and visual context, which is critical for achieving superior
performance on challenging editing tasks.
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(a) (b)

Figure 5: Overall Model Performance.(a) Top 5 model performace in five major evaluation tasks.
(b) Overall model performace across all tasks.

Moreover, we argue that MLLMs enable a unified understanding and generation paradigm. The
best-performing model, Bagel, exemplifies this by jointly learning multimodal understanding and
generation in a single model, yielding shared representations that are both instruction-aligned and
visually grounded. This joint training reduces the mismatch between a planner (understanding
model) and an executor (generation model), enabling the model to first encode complex images and
instructions into semantically coherent multimodal features, which then guide the pixel-space editing
process with high fidelity.

The Importance of Reasoning Ability. In addition to MLLM-driven achitecture design, our analysis
reveals that reasoning ability emerges as another critical contributor to editing performance. This is
evident through two distinct strategies. The first is data-centric: SmartEdit, for example, is trained on
the reasoning segmentation dataset from LISA, which significantly enhances its reasoning capabilities
and leads to outstanding results on multiple tasks. The second is method-centric: GoT introduces
Chain-of-Thought (CoT) (Wei et al., 2022) into the editing process by leveraging MLLMs to generate
reasoning chains. This approach further enhances the model’s understanding of complex instructions
and visual context, facilitating more precise editing.

In summary, our analysis reveals two critical insights for advancing instruction-guided image editing.
Fisrt, MLLMs are pivotal for high-performance editing, providing a unified framework to bridge
the gap between complex textual instructions and visual content. Second, multi-modal reasoning
is foundational for interpreting intricate user intent to ensure high-fidelity edits. These findings
suggeest that future research should prioritize two key directions: (1) developing specialized MLLM
architectures tailored for editing workflows rather than general-purpose vision-language tasks (2)
exploring advanced reasoning-aware training paradigms, such as optimizing reasoning chains via
reinforcement learning (RL) or leveraging dedicated reasoning datasets, to enhance editing precision
and adaptability.

6 CONCLUSION

In this work, we introduce CompBench, the first large-scale benchmark specifically designed for com-
prehensive evaluation of instruction-guided image editing. Our meticulously constructed benchmark
encompasses five major categories with nine specialized tasks targeting complex image manipula-
tion scenarios, comprising over 3,000 high-quality image editing pairs with corresponding natural
language instructions. We conduct extensive experimental evaluation across 16 state-of-the-art
instruction-guided image editing models on all benchmark tasks to systematically assess the capa-
bilities and limitations of contemporary editing systems and validate the efficacy of our evaluation
framework. The experimental findings from CompBench not only reveal significant performance
gaps in current models but also yield valuable insights that elucidate promising research directions for
advancing next-generation image editing systems with enhanced reasoning abilities and fine-grained
control.
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A IMPLEMENTATION DETAILS

A.1 SOURCE DATA COLLECTION AND PREPROCESSING

The primary data collection and preprocessing pipeline has been described in section 3.2. For
initial quality assessment of MOSE data, we employed four no-reference metrics (NIQE (Zhang
et al., 2015), MANIQA (Yang et al., 2022b), MUSIQ (Ke et al., 2021), and CLIPIQA (Wang et al.,
2023)). All images were systematically evaluated using these metrics, with the scores subsequently
normalized and equally weighted to compute a composite value for filtering purposes. In terms of
mask preprocessing, we decomposed multi-object masks into discrete single-object representations
and utilized a multimodal large language model (specifically Qwen-VL (Wang et al., 2024)) to
quantitatively assess mask continuity and occlusion levels, with the corresponding prompts illustrated
in Figure 6. The comprehensive data preprocessing workflow underwent rigorous multi-round review
and verification by a dedicated team of domain experts, thereby ensuring the exceptional quality and
reliability of the final dataset.
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As a Dynamic Transformation Evaluator, your primary function is to assess the quality and realism of an 
object's movement or action within a scene, using two images: an original version and an edited version 
where the object has performed some action. Users will provide these images alongside the description of 
the intended action. Your task is to evaluate whether the action appears natural and physically plausible, 
maintains visual coherence with the scene, preserves appropriate motion blur and deformation consistent 
with the action, and ensures the edited object maintains proper interaction with its surroundings 
(including shadows, reflections, and contact points). Strictly provide your evaluation in a dict format, 
rating the quality of the dynamic transformation on a scale from 0 to 10, with 0 meaning poorly executed 
action and 10 meaning perfectly executed action. For example: {"score": 10, "reason": "Explanation here."} 
Please focus solely on providing your assessment in this dictionary format, avoiding any additional 
comments or extraneous details. IMPORTANT: When comparing the images, look for any evidence of the 
described action, even if subtle. Consider partial success in your scoring - even minor action changes that 
maintain scene consistency should receive appropriate partial credit. Only score 0 if the images are 
completely identical or if there's absolutely no attempt to implement the specified action. DO NOT 
SUPPOSE THE ACTION IS ACTUALLY IMPLEMENTED

As an Object Movement Evaluator, your primary function is to assess the rationality and integration of an 
object's new position within a scene, using two images: an original version and an edited version where the 
object has been moved. Users will provide these images alongside the description of the movement. Your 
task is to evaluate whether the object's new position obeys physical laws, maintains consistency with 
lighting and perspective, aligns with the overall context of the scene, and ensures background consistency 
between the original and the edited image. Strictly provide your evaluation in a dict format, rating the 
suitability of the object's new position on a scale from 0 to 10, with 0 meaning poor integration and 10 
meaning excellent integration. For example: {"score": 10, "reason": "Explanation here."} Please focus solely 
on providing your assessment in this dictionary format, avoiding any additional comments or extraneous 
details. IMPORTANT: First verify if the two images show evidence of object relocation. Even if the 
change is subtle, if background consistency is maintained well, provide a score that reflects the quality of 
integration. Only score 0 if the images are completely identical or if there's no attempt to move the 
specified object as instructed. Consider partial success in your scoring - minor changes with good 
background consistency should receive appropriate partial credit.

As a Viewpoint Transformation Evaluator, your primary function is to assess the quality and realism of a 
scene viewed from a different angle, using two images: an original version and an edited version where the 
camera viewpoint has changed. Users will provide these images alongside the description of the intended 
viewpoint change. Your task is to evaluate whether the new viewpoint maintains consistent spatial 
relationships between objects, correctly reveals or occludes elements based on the new angle, preserves 
proper perspective and foreshortening, maintains consistent lighting and shadows appropriate to the new 
viewpoint, and ensures texture and detail consistency across surfaces now viewed from different angles. 
Strictly provide your evaluation in a dict format, rating the quality of the viewpoint transformation on a 
scale from 0 to 10, with 0 meaning poorly executed viewpoint change and 10 meaning perfectly executed 
viewpoint change. For example: {"score": 10, "reason": "Explanation here."} Please focus solely on providing 
your assessment in this dictionary format, avoiding any additional comments or extraneous details. 
IMPORTANT: First verify if the two images (original and edited) actually show the same scene from 
different viewpoints. If they appear to be different scenes entirely or the viewpoint change is not evident, 
score 0 and explain that no proper viewpoint transformation was detected.
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close to each other
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move the bird close 
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Figure 6: Prompts of Editing Evaluation.

Mask Spliting 
& Filtering

MLLM

High-Quality 
VOS Dataset

Inpainting
(w blend)

MLLM 
Rate

Manual 
Check

(II) Object Removal 

remove the tiger on the upper right

Local 
Caption 

MLLM 
Coarse

Human 
Refine

add a similar tiger to 
the right of the top tiger

(I) Object Addition 

ground

a tiger

Candidate Target 
Object Generation

a black bear
a lion
grass
......

Inpainting
(w blend)

(III) Object Replacement 

Instruction
Generation

replace the tiger on the upper 
right with a black bear

Figure 7: Local Editing Pipeline.

A.2 TASK-SPECIFIC DATA GENERATION PIPELINES

Due to the distinct characteristics of different tasks, we have designed specialized pipelines for data
generation tailored to related task categories. The specific workflows for each pipeline are as follows:
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Original Image Edited Image
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+Dilation
+Gaussian blurring blending
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+Gaussian blurring
+Possion blending

Figure 8: Comparison of Different Blending Operations.
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Figure 9: Action/Scene Spatial Editing Pipeline.
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from the water

MLLM 
Coarse

Human 
Refine

(VII) Implicit Reasoning
Figure 10: Complex Reasoning Pipeline.

Local Editing Pipeline for Object-Level Manipulations. As illustrated in Figure 7, given the
preprocessed high-quality VOS dataset, we employ an inpainting model (PowerPaint (Zhuang et al.,
2024)) to execute object removal based on precise object masks. The resultant outputs undergo
rigorous evaluation and refinement through a Multimodal Large Language Model (MLLM) (Li et al.,
2022; Alayrac et al., 2022; Liu et al., 2023; Wang et al., 2024) in conjunction with manual verification.
For instruction generation, we provide the pre- and post-edited images alongside the corresponding
masks, utilizing the MLLM to generate preliminary instructions, which are subsequently refined
manually to ensure they accurately reflect the specific editing operations. To facilitate comprehensive
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Object Removal Subset
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Figure 11: Multi-editing Pipeline.

evaluation, we systematically select and manually annotate captions for the mask regions before and
after editing, thereby generating the definitive Object Removal dataset. For Object Addition data, we
strategically reverse a subset of the Object Removal data and similarly employ MLLM complemented
by manual annotations to construct the corresponding instructions. For Object Replacement, we
implement a candidate target object generation approach, wherein the MLLM analyzes the before-
and-after images and masks from Object Removal to propose plausible, diverse replacement objects
that maintain contextual coherence with the scene’s characteristics. Following manual selection of
appropriate objects, we execute object replacement using the inpainting model, with instructions
formulated analogously to those in the aforementioned tasks.

To further enhance background consistency and overall quality of inpainting results, we implement a
composite post-processing strategy that integrates dilation, Gaussian blurring, and Poisson blending.
Specifically, we first dilate the edges of the target object in the post-editing image, employing a kernel
size of 20. Subsequently, Gaussian blurring is applied to the dilated edges with a kernel size of 15 and
a σX value of 3. Finally, Poisson blending is applied between the original image and the modified
object region in the post-editing image to achieve the definitive result. As illustrated in Figure 8, the
unprocessed edited images (direct inpainting outputs) exhibit noticeable blurriness and diminished
clarity. Initially, we explored a rudimentary blending approach, directly merging the edited region
with the background from the original image. However, this methodology resulted in pronounced
and conspicuous boundaries, compromising the overall blending quality. By incorporating dilation
and Gaussian blurring, the boundary integration improved substantially, yet unnatural chromatic
discrepancies between the edited region and the surrounding background persisted. To address this
limitation, we further integrated Poisson blending, which generated significantly superior results,
yielding natural and seamless integration without perceptible artifacts.

Action/Scene Spatial Editing Pipeline. For action editing and scene spatial editing tasks (including
location and viewpoint editing), as illustrated in Figure 9, we strategically select pertinent data from
the VOS dataset. Specifically, for action editing, we extract frames from the same video sequence
where the background remains consistent, while the objects undergo motion transformations. For
location editing, we identify frames from identical video sequences where the background maintains
constancy, but the object exhibits positional displacement. For viewpoint editing, we select frames
exhibiting perspectival variations within the video. The generation of editing instructions for these
tasks follows a methodology analogous to the local editing pipeline, integrating MLLM capabilities
with meticulous manual refinement.

Complex Reasoning Pipeline. As depicted in Figure 10, for complex reasoning data, we systemati-
cally select a subset of data from the original VOS dataset that demonstrates suitability for implicit
contextual edit instructions, subsequently modifying these instructions through manual intervention
to produce the definitive dataset.

Multi-Editing Pipeline. For multi-object/multi-turn editing illustrated in Figure 11, we composite
results from the object removal subset within the VOS dataset, where multiple object masks coexist
within the same video frame, to generate comprehensive multi-object removal outputs. Conversely,
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this approach establishes the foundation for multi-object addition. For multi-turn editing, the outcome
from manipulating a single object constitutes an initial editing iteration, while the multi-object
composite result represents a subsequent editing phase, culminating in the multi-turn removal
outcome. Similarly, this procedural framework can be applied to multi-turn addition operations. All
associated instructions undergo rigorous manual development and refinement to ensure precision and
clarity.

A.3 EXPERIMENT SETTING DETAILS

Table 5: Configurations Details of Editing Models.

Method Configuration
InstructPix2pix (Brooks et al., 2023) guidance_scale=7.5

num_inference_steps=100
image_guidance_scale=1.5

MagicBrush (Yang et al., 2022a) guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5

HIVEw (Zhang et al., 2024) guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5

HIVEc (Zhang et al., 2024) guidance_scale=7.5
num_inference_steps=100

image_guidance_scale=1.5
Smart-edit (Huang et al., 2024b) guidance_scale=7.5

num_inference_steps=100
image_guidance_scale=1.5

MGIE (Fu et al., 2023) guidance_scale=7.5
num_inference_steps=100

image_guidance_scale=1.5
HQ-Edit (Hui et al., 2024) guidance_scale=7

num_inference_steps=30
image_guidance_scale=1.5

CosXL-Edit (Stability AI, 2024) guidance_scale=7.5
num_inference_steps=20

image_guidance_scale=1.5
UltraEdit (Zhao et al., 2024) guidance_scale=7.5

num_inference_steps=50
image_guidance_scale=1.5

AnyEdit (Yu et al., 2024) guidance_scale=3
num_inference_steps=100

image_guidance_scale=3
SEED-X (Ge et al., 2024) guidance_scale=7.5

num_inference_steps=100
image_guidance_scale=1.5

GoT (Fang et al., 2025) guidance_scale=5.0
num_inference_steps=50
image_guidance_scale=1.0

Step1X-Edit (Liu et al., 2025) guidance_scale=6
num_inference_steps=28

Bagel (Deng et al., 2025) guidance_scale=4.0
num_inference_steps=50

image_guidance_scale=2.0
FLUX.1 Kontext (Labs et al., 2025) guidance_scale=2.5

num_inference_steps=50
Qwen-Image-Edit (Wu et al., 2025) guidance_scale=4.0

num_inference_steps=50
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Evaluation Configurations. We basically use the official settings of all models during evaluation.
Specific configurations of each model are shown in Table 5.

GPU Usage. All experiments using the inpainting model to construct our benchmark were conducted
on 8 NVIDIA A6000 GPUs (48 GB each). The same setup was used during evaluation to meet the
memory and computation demands of all editing models.

B STATISTICS AND CAPABILITY ANALYSIS OF COMPBENCH

B.1 CAPABILITY ANALYSIS

Table 6: Task Competence Analysis. We identify six core competencies essential for complex image
editing. For each competency, the degree required by a task is classified as Low (L, 20), Medium (M,
50), High (H, 80), or Ultra High (UH, 100, bolded for extraordinarily high requirements). The last
column reports the average competence score for each task, calculated by converting each required
degree to its numeric score and then averaging.

Task Visual Appearance Relation Complex Scene 3D Avg. Competence Score
Grounding Control Understanding Reasoning Consistency Geometry

Object Removal H M H H UH L 68.3
Object Addition H H H H UH L 73.3
Object Replacement H UH H H UH L 76.7
Multi-turn Editing H UH H H UH M 81.7
Multi-object Editing UH UH UH H UH H 93.3
Implicit Reasoning H H UH UH UH H 90.0
Action Editing H H H H UH H 83.3
Location Editing UH H H H UH M 81.7
Viewpoint Editing H H H UH UH UH 90.0

To comprehensively characterize the requirements of complex image editing, we identify six core
competencies that a sophisticated editing system must demonstrate: (1) Visual Grounding. the
precise localization of target objects or regions; (2) Appearance Control. fine-grained manipulation
of visual attributes such as color, texture, and illumination; (3) Relation Understanding. accurate
modeling of semantic and spatial dependencies among objects; (4) Complex Reasoning. implicit
logical deduction from contextual cues; (5) Scene Consistency. holistic preservation of spatial layout,
occlusion patterns, and contextual coherence; and (6) 3D Geometry. understanding and manipulating
three-dimensional structure and viewpoint.

The quantitative correspondence between individual tasks and the competencies they necessitate
is summarized in Table 6. Local editing tasks, such as Object Removal, Object Addition, and
Object Replacement, place an exceptionally high premium on Scene Consistency, as seamless
integration of the modified region is paramount. Multi-object Editing requires a balanced and
very high proficiency in Appearance Control, Relation Understanding, and Scene Consistency to
effectively manage complex inter-object interactions. Viewpoint Editing uniquely depends on the 3D
Geometry competency to facilitate perspective transformations, as indicated by its ultra-high score in
this domain. Meanwhile, Implicit Reasoning imposes stringent demands on Complex Reasoning and
Relation Understanding to infer indirect or multi-step editing intentions.

Overall, CompBench presents substantial challenges by requiring the simultaneous integration of
these multi-dimensional competencies, thereby reflecting the intricacy of real-world image-editing
scenarios.

B.2 STATISTICS OF COMPBENCH

Table 7: Number of edits for each editing task in the dataset.
Object Removal Object Addition Object Replacement Multi-turn Editing Multi-object Editing Implicit Reasoning Action Editing Location Editing Viewpoint Editing Total
1331 982 152 576 144 100 89 73 83 3530

We present the detailed data volume for each task in Table 7 above. This allocation is informed by
the competence analysis in Table 6. Specifically, we assign greater data volume to tasks with lower or
moderate average competence scores, while allocating fewer examples to tasks with extremely high
overall complexity. This design is motivated by three considerations.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

First, all included tasks are significantly more challenging than those in existing image editing
benchmarks. Since our focus is on complex scenarios, a dataset overloaded with high-difficulty
tasks would likely suppress overall model performance, reducing score variance and impairing
meaningful comparison. Second, for tasks with extremely high competence requirements, only a
moderate number of samples is sufficient to robustly evaluate model capabilities—further increasing
sample size yields diminishing returns in discrimination power. Third, collecting data for the most
challenging tasks is substantially more resource-intensive, which naturally limits their quantity in the
benchmark.

C DETAILS OF BENCHMARK COMPLEXITY EVALUATION

C.1 COMPUTATION OF AVERAGE NUMBER OF OBJECT CATEGORIES, OBJECT INSTANCES,
AND OCCLUSION RATE

To quantitatively evaluate the visual complexity and occlusion characteristics of images, we first
defined a set of relevant metrics and criteria, and then employed an automated analysis pipeline
powered by a Multi-modal Large Language Model (MLLM) (Alayrac et al., 2022; Li et al., 2022;
2023; Liu et al., 2023). Specifically, we utilized Qwen2.5-VL-72B (Wang et al., 2024), a state-of-
the-art vision-language model capable of structured visual scene understanding. To ensure fairness,
for datasets and benchmarks with more than 1,000 samples, we randomly sample 1,000 instances for
evaluation.

The processing pipeline consists of the following steps:

1. Each image is encoded in Base64 format and input into the Qwen2.5-VL-72B model;
2. The model returns structured information in JSON format, which includes:

• The total number of distinct object categories (total_object_types);
• The total number of object instances in the image (total_object_counts);
• The proportion of images containing occluded objects in the dataset (occluded).

After applying this process to the entire dataset, we remove statistical outliers to reduce bias. We then
compute:

• Average number of object categories per image;
• Average number of object instances per image;
• Average occlusion rate, defined as:

Occlusion Rate =
Number of Images with at Least One Occluded Object

Total Number of Images

C.2 COMPUTATION OF THE OUT-OF-FRAME(OOF) METRIC

To evaluate whether objects are fully contained within image boundaries, we adopt a detection-based
method using a pretrained object detection model. We employ the same random sampling strategy as
described in Section C.1. The pipeline is as follows:

1. We apply Grounding DINO (Liu et al., 2024) to detect objects in each image and extract
their bounding boxes, normalized by image dimensions;

2. Each bounding box is examined to determine whether it touches any of the four image
boundaries (top, bottom, left, or right);

3. Objects whose bounding boxes contact any image edge are considered not fully framed;
4. For each image, we count the number of such boundary-touching objects and determine

whether the image contains any incompletely framed object.

From this, we compute:

• OFF Ratio:
Number of Images with at Least One Boundary-Touching Object

Total Number of Images
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D ABLATION STUDIES ON EVALUATION METRICS

D.1 TARGETED EVALUATION ON COMPOUND NOUNS

Understanding compound entities remains a challenge for current vision-language models. Recent
works (Kumar et al., 2024; Rambelli et al., 2024) point out that VLMs frequently struggle with
interpreting compound nouns(e.g., “grassland”). To specifically assess the robustness of our automatic
evaluation metrics in handling compound nouns (CNs), we performed targeted in-dataset experiments
with both CLIP-based and GPT-4o-based evaluation.

CLIP-Based Evaluation. Approximately 15% of local captions in CLIP evaluation tasks contained
compound nouns, representing a minor subset of the data. To analyze metric robustness, we randomly
sampled 100 edited region–caption pairs featuring CNs, and replaced each compound noun with a
plausible synonym (e.g., “grassland” → “meadow”, “handrail” → “fence”). CLIP similarity scores
were recalculated, and the distribution of absolute differences is shown in Table 8.

Table 8: CLIP Absolute Error Distribution After Synonym Substitution (≤0.3 considered negligible)

Quantile (%) 50 70 80 90 95

Absolute Error 0.19 0.26 0.30 0.48 0.80

The results show that up to the 80th percentile, score variations remain below the negligible threshold
(0.3), although a few outliers at higher percentiles have larger differences.

GPT-4o-Based Evaluation. Compound nouns appeared in 6.9% of instructions requiring GPT-4o
evaluation. For each, the compound noun was substituted by a plausible synonym, followed by
re-evaluation of the edited results. All instances exhibited an absolute score difference ≤1 point,
indicating minor sensitivity to synonym changes.

Discussion. These results suggest that CLIP and GPT-4o metrics are generally robust to reasonable
lexical variations in compound nouns, and can reliably assess compositional semantics in most cases.
While CLIP may yield larger errors in a small number of complex cases, such outliers are rare and do
not substantially affect metric reliability. GPT-4o was consistently robust in this evaluation. These
findings support the validity of our automatic metrics for compound-noun scenarios.

D.2 METRIC SENSITIVITY

To better understand the sensitivity of our automatic metrics, we conducted a targeted ablation
study focusing on the Structural Similarity Index (SSIM). In particular, we investigated whether
small changes in SSIM scores correspond to perceptually meaningful differences in background
consistency.

Specifically, we randomly selected 50 cases in which the SSIM difference between editing results
was within 0.02. For each case, three human annotators were tasked to compare the background
consistency of each image pair and to judge which image presented better consistency. A match
between the annotators’ ranking and the SSIM score ordering was counted as a correct result. The
average matching accuracy across all three annotators was 86%, suggesting that SSIM is generally
sensitive to many visible background differences in our setting.

In addition, we re-evaluated the same image pairs with GPT-4o using tailored prompts regarding
background consistency. Across these cases, GPT-4o’s rankings matched SSIM-based rankings with
an accuracy of 78%.

Further examination of disagreement cases revealed that purely perceptual evaluation can be am-
biguous. For instance, discrepancies arose in situations when one background edit removed a visible
object, while another retained all objects but had noticeable color differences. In such cases, human
annotators sometimes disagreed, highlighting inherent limitations of both metric-based and manual
assessments.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Overall, these findings indicate that SSIM drops—even as small as 0.02—often reflect perceivable
image inconsistencies, while some edge cases may challenge both automated and human evaluation.

E MORE HUMAN EVALUATIONS

To further investigate the reliability and interpretability of our evaluation protocol, we conducted
supplementary human experiments covering editing tasks evaluated with automatic metrics to jointly
consider global semantic consistency, editing correctness, and perceptual quality across the entire
image. Specifically, we collected human judgments for the following editing tasks: image addition,
image removal, image replacement, multi-object editing, multi-turn editing, and implicit reasoning.

For each task, three representative models (a top-performing model, a moderate, and a weaker model)
were selected for comparison. The mean human rating results for each task are summarized in
Tabel 9 10 11 below:

Table 9: Local Editing: Human Evaluation Results

Model Addition Removal Replacement

InstructPix2pix 0.794 0.784 2.530
HQ-Edit 0.021 0.034 0.039
Step1X-Edit 4.889 5.219 6.276

Table 10: Multi-Editing: Human Evaluation Results

Model Multi-Object Multi-Turn (Turn1) Multi-Turn (Turn2)

InstructPix2pix 0.924 1.233 1.080
HQ-Edit 0.070 0.039 0.007
Step1X-Edit 4.799 5.705 5.403

Table 11: Implicit Reasoning: Human Evaluation Results

Model Reasoning

HQ-Edit 0.320
MGIE 2.670
Step1X-Edit 5.560

To validate the reliability of our evaluation strategy, we compared these human ratings with the results
from region-wise automatic metrics (see Table 2 and Table 3). The relative rankings and gaps among
the three models are highly consistent between human and automatic assessments: for example,
Step1X-Edit always leads in performance, HQ-Edit scores lowest, and InstructPix2pix or MGIE fall
in between. This strong alignment indicates that our automatic region-wise metrics generally reflect
human perception in distinguishing strong, moderate, and weak editing models.

F CASES OF COMPBENCH

In this section, we present additional exemplars from CompBench and comprehensive evaluation
results. In Figure 12, we demonstrate representative instances of local editing operations (object
addition, object removal, and object replacement) within our CompBench. In Figure 13, we illustrate
selected cases of multi-turn and multi-object editing outcomes in our benchmark. In Figure 14, we
showcase exemplary instances of action editing, location editing, and viewpoint editing capabilities
within our benchmark.

We further present qualitative results from all evaluated models on our benchmarks. The comparative
editing outputs across all models for local editing, multi-editing, and implicit reasoning tasks can be
examined in Figures 15 and 16. The corresponding results for action editing, location editing, and
viewpoint editing are displayed in Figures 17,18, and20. Detailed evaluation protocols and analytical
discussions are presented in Section G.
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Object Addition

Instruction: add a black-clothed man riding 
on a blue motorcycle

Object Removal

Object Replacement

Instruction: add a similar yellow bird on the left side 
of the first yellow bird on the right

Instruction: add a person wearing an orange shirt, 
orange pants, and an orange hat, holding a black bag 
on the left side of the pillar

Instruction: add a black and white similar sheep on the 
upper left corner of the leftmost sheep

Instruction: remove the third zebra from 
the rightmost

Instruction: remove the leftmost person Instruction: remove the white duck in the middle Instruction: remove the white goose on the rightmost

Instruction: replace the grey car with a black car Instruction: replace the black motorcycle with a 
white motorcycle

Instruction: replace the zebra on the right with a 
person in blue

Instruction: replace the red motorcycle with a white 
electric scooter

Figure 12: Cases of Local Editing in CompBench.

Multi-turn Editing

Multi-object Editing

Instruction1: remove the biggest yellow fish in the middle
Instruction2: remove the white fish on the upper left

Instruction1: remove the leftmost white cow
Instruction2: remove the rightmost white cow

Instruction1: add a white fish above the biggest rock on the left 
between the waterweeds
Instruction2: add a yellow fish in front of the rock under the white fish

Instruction1: add a tiger on the leftmost
Instruction2: add a tiger standing on the rock on the right

Instruction: add a black duck on the upper left 
near the feeding bowl and a black duck facing 
the feeding bowl in front

Instruction: add a big zebra on the right of the 
lion and a small zebra on the left of the lion

Instruction: remove the white duck on the 
right and the sheep in front

Figure 13: Cases of Multi-editing in CompBench.

G EVALUATION DETAILS

In this section, we delineate the comprehensive evaluation methodology and procedural framework
employed in our assessment.

For tasks encompassing local editing, multi-editing, and implicit reasoning, we require models to
modify foreground elements while maintaining background fidelity. Consequently, we evaluate
editing performance from both foreground and background perspectives. Background consistency
is quantitatively assessed utilizing PSNR, SSIM, and LPIPS metrics on background regions, while
foreground evaluation incorporates both editing accuracy via CLIP image embedding similarity with
ground truth exemplars and instruction adherence via CLIP Score with the local foreground caption.
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action location view

have the man bend down

make the white boat fall into water with a splash

make these two cats jump to get a thing in the air

let the two horse riders side by side

move the bird close to the wood

move the man driving motorcycle to the right

shift the view to the right until both eyes of the 
owl are visible

shift the view to the lower right until both sides 
of the bird are visible

shift the view to the left

Figure 14: Cases of Action, Location and Viewpoint Editing in CompBench.

The foreground captions are meticulously annotated and validated, with representative examples
illustrated in Figure 12.

To objectively quantify the quality of Action Editing, Location Editing, and Viewpoint Editing, which
require substantial image manipulations, we devise an automated evaluation pipeline leveraging
GPT-4o and Qwen-VL: for each source–edited image pair, the pipeline generates a reproducible and
interpretable composite score ranging from 0 to 10, accompanied by a concise textual justification.
Initially, we formulate three task-specific prompts as demonstrated in Figure 6, each emphasizing
two to three criteria extracted from the fundamental task characteristics: action-execution correctness,
preservation of non-target regions, and overall realism for Action; positional accuracy, occlusion
consistency, and global harmony for Location; and plausibility of viewpoint transformation, geometric
coherence, and detail preservation for Viewpoint. All prompts instruct GPT-4o to return a standardized
JSON object of the form {"score": <0-10>, "reason": "<...>"}. Subsequently, each
image pair is processed by GPT-4o precisely once with the decoding temperature fixed at 0, yielding
deterministic and consequently fully reproducible results.

To aggregate the performance across the diverse evaluation suite, a unified scoring methodology
is employed. The evaluation encompasses five distinct tasks: local editing, multi-object editing,
multi-turn editing, complex reasoning, and Action/Scene Spatial evaluation. For normalization,
MinMax scaling is applied independently to the metrics within each task, converting them to a
uniform 0-1 range. To align with a "higher is better" convention, LPIPS scores are inverted after
normalization (i.e., 1-normalized value). The overall scores, presented in Figure 5(b), are then
calculated by summing each model’s normalized scores across all five equally weighted tasks. This
results in a final composite score with a theoretical maximum of 5.0.

H HUMAN ANNOTATIONS

Annotation Details. To complete our benchmark development, we engaged four expert annotators
and one quality assurance specialist to supervise all human verification processes throughout the
benchmark construction. This comprehensive oversight encompassed filtering the initial datasets,
validating generated images, and most critically, formulating precise instructions. During the in-
struction annotation phase, annotators were provided with the original images, edited images, and
corresponding masks, and were tasked with crafting instructions based on this multimodal infor-
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ip2p

MagicBrush

Hive-w

Hive-c

UltraEdit

AnyEdit

SmartEdit

GT

Original 
Image

Object 
Removal

Object 
Addition

Object 
Replacement

Multi-turn
Editing

Multi-object
Editing

Instruction: replace the 
bottommost sheep with 
a bench

Instruction: add a person 
wearing an orange 
uniform with a green 
backpack walking to 
the left on the left side of 
the left pole

Instruction: remove the 
tiger on the upper right

Instruction1: remove the 
yellow fish

Instruction2: remove 
the white fish

Instruction: add a smaller 
zebra on the left and a 
bigger zebra on the right

Instruction: remove the 
zookeeper

Caption: muddy ground

Implicit
Reasoning

Caption: a person wearing 
orange

Caption: a bench Caption: rock Caption: rock and water Caption1: a zebra
Caption2: a zebra

Caption: ground and 
wiring net

Figure 15: Cases of Local Editing Results.

mation. All annotators underwent extensive training, including exposure to exemplary cases, and
received iterative feedback to progressively enhance their performance. To ensure annotation fidelity
and inter-annotator consistency, the quality assurance specialist conducted systematic evaluations of
all outputs. Significantly, all procedures were implemented in a double-blind framework to mitigate
potential experimental biases.

Participant Disclosure and Consent. Annotators were comprehensively briefed regarding the
purpose of the annotation task, their unconditional right to withdraw participation at any juncture, and
the exclusive research-oriented utilization of their annotations. No personally identifiable information
was collected during this process. All annotators provided documented informed consent prior to
their participation in the study.
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Step1X-Edit

HQEdit

CosXL-Edit

SeedX-Edit

GoT

GT

Original 
Image

Object 
Removal

Object 
Addition

Object 
Replacement

Multi-turn
Editing

Multi-object
Editing

MGIE

Instruction: replace the 
bottommost sheep with 
a bench

Instruction: add a person 
wearing an orange 
uniform with a green 
backpack walking to 
the left on the left side of 
the left pole

Instruction: remove the 
tiger on the upper right

Instruction1: remove the 
yellow fish

Instruction2: remove 
the white fish

Instruction: add a smaller 
zebra on the left and a 
bigger zebra on the right

Instruction: remove the 
zookeeper

Caption: muddy ground

Implicit
Reasoning

Caption: a person wearing 
orange

Caption: a bench Caption: rock Caption: rock and water Caption1: a zebra
Caption2: a zebra

Caption: ground and 
wiring net

Bagel

FLUX.1 
Kontext

Qwen-Image
-Edit

Figure 16: More Cases of Local Editing Results.

Compensation. Annotators received remuneration at a rate commensurate with or exceeding the local
minimum wage standards, in strict adherence to the ICLR Code of Ethics regarding fair compensation
practices.
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AnyEdit

instruction: bend down the head of the left parrot
score: 0
reason: The edited image does not show any evidence 
of the left parrot's head being bent down. Instead, 
the beaks of all parrots have been altered, which is 
unrelated to the specified action. The intended 
action of bending down the head is not implemented 
at all.

instruction: have a grey cat step towards the yellow 
cat
score: 9
reason: The grey cat is positioned naturally as if 
stepping towards the yellow cat, with appropriate 
contact points on the floor. The lighting and shadows 
are consistent with the scene, and the interaction 
with the surroundings is well-maintained. The only 
minor issue is the lack of motion blur, which could 
enhance the realism of the movement.

Step1X-Edit

instruction: remove the objects in the sky
score: 9
reason: The objects in the sky have been successfully 
removed, and the background consistency is well 
maintained. The sky appears natural, and there are no 
noticeable artifacts or inconsistencies in lighting or 
perspective. The integration is nearly seamless, with 
only minor potential for improvement in blending.

action location view

instruction: make the girl ride her bicycle away
score: 6
reason: The girl has been successfully added to the 
scene, riding a bicycle. The integration of the girl and 
the bicycle into the scene is moderately successful. 
The lighting on the girl and the bicycle is consistent 
with the scene, and the perspective is reasonably 
maintained. However, the size of the bicycle wheels is 
disproportionately large compared to the rest of the 
scene, which affects the realism. The background 
consistency is well-maintained, with no noticeable 
disruptions. Overall, the integration is decent but 
could be improved with better proportion adjustments.

instruction: make the white boat fall into water with 
a splash
score: 8
reason: The edited image successfully depicts the 

white boat having fallen into the water, as evidenced 
by the large splash. The splash appears natural and 
consistent with the action of a boat hitting the 
water. The scene maintains visual coherence, with 
the splash integrated well into the water's surface. 
However, the absence of the white boat in the 
splash area could be more pronounced to enhance 
realism. Overall, the transformation is well-executed 
with minor room for improvement in depicting the 
boat's interaction with the water.

Smart-edit

instruction: move the giraffe to the left of the tree
score: 0
reason: The images are identical except for the 
removal of the giraffe, which does not fulfill the 
instruction to move the giraffe to the left of the tree. 
No attempt to relocate the specified object is evident.

GoT

instruction: let the elephant take a step to the right
score: 3
reason: The edited image shows some attempt at 
motion with the introduction of motion blur, 
suggesting movement. However, the elephant's 
position relative to the background and its own body 
parts does not convincingly depict a step to the right. 
The motion blur is excessive and not well-aligned 
with the direction of the intended movement, and 
there is no clear evidence of a shift in the 
elephant's position or interaction with the ground 
that would indicate a step. The scene lacks proper 
shadow and contact point adjustments to support 
the action.

instruction: shift the position of the man to the left
score: 0
reason: The images do not show evidence of the same 
man being shifted to the left. Instead, a different 
person is present in the edited image, indicating no 
attempt to move the specified object as instructed.

instruction: shift the view upward until sky can be 
seen
score: 0
reason: No proper viewpoint transformation was 
detected. The two images appear to depict 
different scenes entirely, as the landscape and 
vegetation differ significantly between the images.

instruction: shift the view to the right a little
score: 8
reason: The viewpoint transformation is executed 
well, with a slight shift to the right as intended. 
The spatial relationships between objects remain 
consistent, and the perspective and foreshortening 
are preserved. The lighting and shadows are 
consistent with the new viewpoint, and textures and 
details are maintained across surfaces. However, 
the change is subtle, which may not fully 
demonstrate the intended shift.

instruction: shift the view to the left until the two 
riders on the right no longer be seen
score: 2
reason: The edited image attempts to shift the 
viewpoint to the left, removing the two riders on 
the right. However, the transition is poorly 
executed, as the area where the riders were is not 
properly filled in with consistent textures or details, 
resulting in an unrealistic appearance. The spatial 
relationships and perspective are not convincingly 
maintained, and the lighting and shadows do not 
adapt correctly to the new viewpoint.

instruction: shift the view upward until the road no 
longer be seen
score: 0 
reason: The two images do not depict the same 
scene from different viewpoints. They appear to be 
entirely different locations, and no proper viewpoint 
transformation is evident.

MGIE

instruction: let the yellow cat step close to the 
toy on the floor
score: 0
reason: The edited image does not show any 
realistic movement of the yellow cat towards the 
toy. Instead, it features cartoonish yellow cat 
figures added to the scene, which do not 
represent the intended action of the real yellow 
cat stepping closer to the toy. There is no 
evidence of the described action being 
implemented in a realistic manner.

instruction: make the man pushing the bicycle 
closer to another bicycle a little
score: 0
reason: The images do not show any evidence of the 
man pushing the bicycle being moved closer to 
another bicycle. Instead, a new person on a bicycle 
has been added to the scene, which does not fulfill 
the instruction given.

instruction: shift the view backward
score: 0
reason: No proper viewpoint transformation was 
detected. The images appear to show different 
scenes entirely, with the first image depicting a 
road under an overpass and the second image 
showing a stylized motorcycle design.

Figure 17: Action, Location and Viewpoint Editing Examples.
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action location view

instruction: let the yellow cat step close to the 
toy on the floor
score: 0
reason: The yellow cat is completely missing in the 
edited image, and there is no evidence of the 
intended action of the yellow cat stepping closer 
to the toy. The scene does not reflect any 
attempt to implement the specified action.

HIVE-c

instruction: move these giraffes ahead
score: 0
reason: The images are completely different, with 
no evidence of object relocation as instructed. The 
second image does not show the same scene or 
objects as the first image.

instruction: shift the view to the right until the 
two riders on the left come into view
score: 0
reason: No proper viewpoint transformation was 
detected. The images appear to show different 
scenes entirely, with different riders and horses, 
and the landscape has changed significantly.

instruction: shift the view upward until no people 
can be seen
score: 0
reason: No proper viewpoint transformation was 
detected. The two images appear to depict 
entirely different scenes, with the first showing a 
bridge and cyclists, and the second showing a 
cityscape with a person standing on a road. The 
intended viewpoint change was to shift upward 
until no people can be seen, but the edited image 
does not reflect this transformation.

CosXL-Edit

instruction: make the cat in from jump
score: 7
reason: The edited image successfully shows the 
cat in a jumping position, with its body elevated 
and legs extended, which is consistent with a 
jumping action. The cat's posture appears natural 
and physically plausible. However, there is a lack 
of motion blur that would typically accompany such 
a dynamic movement, and the shadows on the floor 
do not fully reflect the cat's new position, which 
slightly affects the realism. Overall, the 
transformation is well-executed but could benefit 
from more attention to motion blur and shadow 
interaction.

instruction: let the two sharks swim away
score: 0
reason: The two images are completely different, 
with no evidence of object relocation or any 
attempt to move the specified sharks as instructed. 
The scenes, lighting, and objects are entirely 
distinct, indicating no continuity or integration 
between the two images.

UltraEdit

instruction: have the man bend down
score: 9
reason: The man is clearly bending down in the 
edited image compared to the original. The action 
appears natural and physically plausible, with 
appropriate body posture. The interaction with 
the surroundings, such as shadows and contact 
points, is maintained well. There is no noticeable 
motion blur, but the action is subtle enough that 
this does not detract significantly from the 
realism.

instruction: make two fish a little lower
score: 0
reason: The images do not show evidence of the 
same fish being moved lower. Instead, the second 
image features different fish entirely, with no 
attempt to move the specified object as instructed.

HIVE-w

instruction: let the parrots spread their wings
score: 0
reason: The images show no evidence of the 
parrots spreading their wings. Both images depict 
the parrots in a similar position with their wings 
folded, and there is no visible attempt to 
implement the specified action.

instruction: shift the view upward until no people 
can be seen
score: 0
reason: No proper viewpoint transformation was 
detected. The images appear to be entirely 
different scenes, with no evident change in 
viewpoint from the original to the edited version.

instruction: shift the view to the left until only 
one side of the bird is visible
score: 0
reason: No proper viewpoint transformation was 
detected. The two images appear to show 
different scenes entirely, with different birds 
and backgrounds.

instruction: move the herds of horses on the roads 
forward
score: 3
reason: The herd of horses has been moved 
forward, but the integration is poor. The road has 
been replaced with grass, which is inconsistent with 
the original scene. The lighting and perspective are 
not well maintained, and the background 
consistency is disrupted by the change in the road 
surface.

Figure 18: Action, Location and Viewpoint Editing Examples.

I STATEMENT OF LIMITATION, ETHICAL CONCERN AND BROADER IMPACT

Limitation. A significant constraint of our methodology resides in the substantial computational
overhead and procedural complexity of the integrated pipeline. The framework encompasses multiple
sequential stages of model-based processing followed by comprehensive human evaluation, necessi-
tating considerable computational resources and expert human intervention. This intricate design
imposes reproducibility challenges, hampers scalability, and restricts the exhaustive coverage of the
complete spectrum of compositional editing tasks. Furthermore, components leveraging large lan-
guage models are inherently bounded by contemporary model limitations, potentially compromising
performance on tasks demanding sophisticated reasoning or precise visual-linguistic integration.

Ethical Considerations. While our instruction-based image editing framework demonstrates robust
capabilities, it elicits ethical considerations regarding potential misappropriation and privacy implica-
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InstructPix2pix

instruction: make the hind leg of the brown cat 
step on the air conditioning
score: 0
reason: The images are completely different, with 
no evidence of the specified action being 
implemented. The second image does not show the 
brown cat stepping on the air conditioning unit, nor 
does it maintain any visual coherence with the 
first image.

instruction: move these giraffes ahead
score: 0
reason: The images are completely different, with 
no evidence of object relocation as instructed. The 
first image shows giraffes in an indoor setting, 
while the second image shows giraffes in an 
outdoor setting, indicating no attempt to move the 
specified object within the same scene.

MagicBrush

instruction: make the person feed the bear
score: 8
reason: The edited image successfully depicts the 
person feeding the bear, with the bear holding a 
bowl and the person extending a hand with food. 
The action appears natural and physically plausible, 
with the bear's posture and the person's gesture 
consistent with feeding. The visual coherence with 
the scene is maintained, and the interaction 
between the person and the bear is believable. 
However, there is a slight lack of motion blur or 
deformation that might be expected with such an 
action, and the shadows and reflections could be 
more pronounced to enhance realism.

instruction: remove the objects in the sky
score: 8
reason: The objects in the sky have been 
successfully removed, and the background 
consistency is maintained well. However, there is a 
slight visible artifact where the objects were 
removed, which slightly affects the integration 
quality.

SEED-X

instruction: have the dog step into the room
score: 3
reason: The edited image shows the dog in a 
different position, suggesting an attempt to 
depict the dog stepping into the room. However, 
the dog's body appears distorted and unnatural, 
particularly around the head and legs, which 
affects the realism of the movement. The 
shadows and contact points with the floor are not 
consistent with the new position, and there is no 
motion blur to indicate movement. The overall 
transformation lacks visual coherence with the 
scene.

instruction: move the e-bike on the left to the 
middle
score: 0
reason: The images are identical, with no evidence 
of the e-bike being moved from the left to the 
middle.

instruction: shift the view forward
score: 0
reason: No proper viewpoint transformation was 
detected as the two images appear to depict 
entirely different scenes.

instruction: shift the view to the left
score: 0
reason: No proper viewpoint transformation was 
detected as the images depict entirely different 
scenes.

instruction: shift the view upward until the road 
no longer be seen
score: 0
reason: No proper viewpoint transformation was 
detected. The two images appear to be different 
scenes entirely, as the road is still visible in the 
edited version, contrary to the instruction.

MGIE

instruction: let the yellow cat step close to the 
toy on the floor
score: 0
reason: The edited image does not show any 
realistic movement of the yellow cat towards the 
toy. Instead, it features cartoonish yellow cat 
figures added to the scene, which do not 
represent the intended action of the real yellow 
cat stepping closer to the toy. There is no 
evidence of the described action being 
implemented in a realistic manner.

instruction: make the man pushing the bicycle 
closer to another bicycle a little
score: 0
reason: The images do not show any evidence of the 
man pushing the bicycle being moved closer to 
another bicycle. Instead, a new person on a bicycle 
has been added to the scene, which does not fulfill 
the instruction given.

instruction: shift the view backward
score: 0
reason: No proper viewpoint transformation was 
detected. The images appear to show different 
scenes entirely, with the first image depicting a 
road under an overpass and the second image 
showing a stylized motorcycle design.

action location view

Figure 19: Action, Location and Viewpoint Editing Examples.

tions. The capacity to generate photorealistic manipulations may be exploited to create deceptive
content, potentially exacerbating misinformation dissemination if inadequately regulated. Moreover,
the utilization of real-world imagery introduces non-negligible risks of inadvertently exposing per-
sonally identifiable information, despite rigorous anonymization protocols. Ensuring responsible
deployment necessitates implementing comprehensive safeguards, including content verification
mechanisms, stringent data protection frameworks, and transparent operational guidelines.

In line with these considerations, we affirm our adherence to the ICLR Code of Ethics. This work
does not involve research with human subjects; accordingly, institutional review board (IRB) approval
was not required. Where crowd-sourced annotation was used, the full participant instructions and
compensation details are included in Appendix H. All third-party assets (datasets, code, and models)
are properly credited with their licenses, and any new assets introduced in the paper are documented
to enable responsible reuse. We assess our artifacts as posing no special high-risk dual-use concerns
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instruction: have the man bend down
score: 9
reason: The man appears to have bent down 
in the edited image, which is consistent with 
the intended action. The movement is 
natural and physically plausible, maintaining 
visual coherence with the scene. The 
interaction with surroundings, including 
shadows and contact points, is preserved 
well. Minor motion blur or deformation 
consistent with the action is not evident, 
but the overall transformation is successful.

instruction: make the two bears fighting with 
each other
score: 8
reason: The edited image successfully depicts 
the bears in a more dynamic and aggressive 
posture, suggesting a fighting action. The 
bears' stances are wider, and their paws are 
raised, which is consistent with a fighting 
motion. The interaction between the bears 
appears natural, and the scene maintains 
visual coherence. However, there is a slight 
lack of motion blur or deformation that would 
enhance the realism of the action. Shadows 
and contact points are well-preserved, 
contributing to the overall plausibility of the 
scene.

instruction: put the woman's right hand above 
the parrot behind
score: 8
reason: The woman's right hand has been 
successfully moved above the parrot, as 
instructed. The hand's position appears 
natural and consistent with the action 
described. The interaction with the parrot 
and the scene remains coherent, with no 
noticeable issues in shadows or contact points. 
However, there is a slight unnaturalness in 
the hand's positioning that prevents a 
perfect score.

instruction: align the tail of the two planes  
score: 9  
reason: The tail of the two planes has been 
successfully aligned in the edited image. The 
integration is well-executed, maintaining 
consistency with lighting, perspective, and 
background. The planes appear naturally 
positioned within the scene, with no 
noticeable discrepancies in the grass or 
surrounding environment.

instruction: let the two horse riders side by 
side
score: 9
reason: The second image successfully shows 
the two horse riders side by side, maintaining 
good background consistency and alignment 
with the scene's perspective. The lighting 
and shadows are consistent with the original 
image, and the integration appears natural. 
Minor discrepancies in the grass and foliage 
alignment are present but do not significantly 
detract from the overall integration.

instruction: let the fish on the left swim to 
the middle
score: 9
reason: The fish on the left has been 
successfully moved to the middle of the 
scene. The integration is well-executed, with 
consistent lighting and perspective. The 
background remains consistent, and the 
movement appears natural within the context 
of the scene. Minor imperfections in blending 
are present but do not significantly detract 
from the overall integration.

instruction: shift the view downward until the 
road comes into view
score: 10
reason: The viewpoint transformation is well 
executed. The second image shows a 
downward shift that reveals the road, which 
was not visible in the original image. The 
spatial relationships between the mountains 
and clouds remain consistent, and the 
perspective and foreshortening are 
appropriate for the new angle. Lighting and 
shadows are consistent with the original 
scene, and textures and details are 
maintained across surfaces now viewed from 
a different angle.

instruction: shift the view upward until no 
people can be seen
score: 0
reason: No proper viewpoint transformation 
was detected. The two images appear to 
show the same scene from the same 
viewpoint, with no upward shift to occlude 
the people as instructed.

instruction: shift the view to the right a 
little
score: 9
reason: The viewpoint transformation is well-
executed, with a slight shift to the right as 
instructed. The spatial relationships between 
the giraffes and the background elements 
remain consistent. The perspective and 
foreshortening are preserved, and the 
lighting and shadows are consistent with the 
new viewpoint. The textures and details on 
the giraffes and the surrounding environment 
are maintained accurately. The only minor 
issue is a slight change in the position of the 
giraffes, which could be due to their 
movement rather than a viewpoint 
transformation error.
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Figure 20: Action, Location and Viewpoint Editing Examples.

that would require additional safeguards upon release. We also disclose substantive uses of large
language models that materially affect our methods. This discussion of potential positive and negative
societal impacts aims to promote responsible interpretation and deployment.

Broader Impact. CompBench establishes a rigorous evaluation framework for instruction-guided
image editing, facilitating systematic assessment of complex editing capabilities in multimodal
large language models. This contribution will accelerate the development of reasoning-aware and
controllable editing systems, enhance model performance across visual understanding and generation
domains, and expand the practical applicability of large-scale models in diverse real-world contexts,
including creative design processes, digital content production, and interactive artificial intelligence
assistants.

J REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide clear pointers to the information needed to re-create
our results. The benchmark data are open-sourced, and code (with scripts, environment specifications,
and instructions for data access/preparation and exact run commands) will be released following
submission; these materials are intended to faithfully reproduce the main experiments. The paper
discloses the experimental setup, including data splits, hyperparameters, and optimizer choices, in
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Section 4 and Appendix A. We also report compute resources (worker types, memory, and execution
time) in Appendix A to facilitate environment matching. In addition, we explicitly note where the
information needed to reproduce the primary empirical results can be found Section 4; no separate
theoretical results are claimed.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we disclose that LLMs were used primarily
as general-purpose writing assistants for language polishing. Their role was limited to correcting
grammar and punctuation, improving clarity and flow. LLMs did not contribute to research ideation
or problem formulation; model or algorithm design; dataset creation or labeling; experiment setup,
tuning, or analysis; drafting of substantive technical content; or code/results generation. All scientific
claims, methods, and conclusions were conceived, written, and verified by the authors. No proprietary
or sensitive data were provided to the LLM service. Given this limited, editing-only role, the LLMs
should not be regarded as contributors.
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