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ABSTRACT

While real-world applications increasingly demand intricate scene manipulation,
existing instruction-guided image editing benchmarks often oversimplify task com-
plexity and lack comprehensive, fine-grained instructions. To bridge this gap, we
introduce CompBench, a large-scale benchmark specifically designed for com-
plex instruction-guided image editing. CompBench features challenging editing
scenarios that incorporate fine-grained instruction following, spatial and contex-
tual reasoning, thereby enabling comprehensive evaluation of image editing mod-
els’ precise manipulation capabilities. To construct CompBench, We propose an
MLLM-human collaborative framework with tailored task pipelines.Furthermore,
we propose an instruction decoupling strategy that disentangles editing intents into
four key dimensions: location, appearance, dynamics, and objects, ensuring closer
alignment between instructions and complex editing requirements. Extensive eval-
uations reveal that CompBench exposes fundamental limitations of current image
editing models and provides critical insights for the development of next-generation
instruction-guided image editing systems.

1 INTRODUCTION

Recent advances in instruction-guided image editing have pursued user-friendly and efficient manipu-
lation of visual content. While such systems aim to simplify complex editing workflows, real-world
applications often demand intricate instructions including spatial relationships, appearance details,
and implicit reasoning. This necessitates the development of models with comprehensive capabilities
in visual grounding, contextual understanding, and complex reasoning, thereby presenting substantial
challenges to existing methodologies. However, as demonstrated in Figure [2] existing instruction-
guided image editing benchmarks, e.g., Emu Edit (Sheynin et al.,[2024), MagicBrush (Yang et al.|
2022a), and ReasonEdit (Huang et al.,[2024b), exhibit critical limitations in assessing these essential
capabilities, primarily in three aspects:

Lack of Scene Complexity. A key limitation of current benchmarks is their insufficient scene
complexity, which hampers the representation of intricate visual structures inherent in real-world
images. This stems from two main factors.

First, the prevalent use of synthetic images from text-to-image generation models, such as Stable
Diffusion (Rombach et al., [2022), in previous benchmark construction (Yu et al., 2024} |Ma et al.,
2024) results in scenes with sparse spatial layouts, limited foreground object diversity, minimal
occlusions, and simplistic textures and lighting conditions. Such artificial compositions lack dense
object interactions, natural clutter, and photorealistic qualities essential for evaluating practical editing
capabilities. Even when incorporating real images from datasets, such as COCO (Lin et al.| 2014,
these benchmarks often present oversimplified scenarios with elementary compositions insufficient
for evaluating models on complex spatial relationships and interactions among multiple objects.

This problem is further exacerbated by benchmark design choices, wherein creators often deliberately
exclude highly complex scenes featuring heavy occlusions, intricate details, or dynamic elements
due to the challenges they pose for ground truth construction. While this practice facilitates more
controllable evaluation, it creates a concerning discrepancy between benchmark performance and
real-world applicability.
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Figure 1: Examples of CompBench. The figure showcases diverse instruction-guided image editing
tasks across nine categories: object addition, object removal, object replacement, multi-object editing,
multi-turn editing, implicit reasoning, action editing, location editing and viewpoint editing.

Consequently, image editing models may attain high metric scores on these relatively simplified
benchmarks, yet remain inadequate for real-world editing tasks that demand advanced scene under-
standing and manipulation. For instance, in reasoning-based tasks, InstructPix2pix
2023)) exhibits a notable performance decline on our CompBench compared with ReasonEdit
et al.,[2024b), showing decreases of approximately 2.5 in PSNR, 0.02 in SSIM, and 0.4 in CLIP-Score.

Limited Instruction and Task Comprehensiveness. Beyond their oversimplified visual scenes,
current benchmarks are further constrained by the narrow scope of editing instructions and tasks,
failing to reflect the complexity of real-world user demands. Most existing datasets rely on simplis-
tic, atomic-level instructions (e.g., “change the dog to a cat”) that lack contextual reasoning, and
compositional logic typical of real user requests. In reality, user instructions often require complex
reasoning and manipulation. These include multi-object editing (“remove the dog and the cat”), edits
based on spatial relationships (“add a man to the right of the woman”), or action editing that modifies
dynamic states (“make the man in white bend down more”). Current benchmarks, however, largely
neglect these sophisticated task categories. This deficiency in instruction and task diversity prevents
models from being rigorously tested on the full spectrum of challenges encountered in real-world
applications. Consequently, their performance can be artificially inflated on simple tasks, providing
an incomplete and misleading evaluation of true robustness and practical applicability.

Deficiencies in Edited Image Quality. Another critical limitation of current benchmarks is the
suboptimal quality of their edited images. Many existing datasets exhibit two predominant issues that
compromise their reliability: (1) instruction-alignment inaccuracies, where the edited output fails to
precisely fulfill the specified modifications. (2) conspicuous visual artifacts, such as geometric dis-
tortions, background inconsistencies, or semantically incoherent objects. These quality deficiencies
introduce substantial noise into performance evaluations, potentially leading to misleading assess-
ments of model capabilities. Consequently, such benchmarks may fail to effectively discriminate
between truly sophisticated editing systems and those that merely produce superficially plausible but
flawed results.
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Table 1: Comparison of existing image-editing datasets and benchmarks. Our benchmark supports
seven core editing tasks, including multi-object, action and viewpoint editing, which are absent from
most prior benchmarks. Scenario complexity is quantified by four indicators: Avg. Obj. (average
number of objects per image), Avg. Cat. (average number of object categories per image), OCC
(percentage of images that contain occluded objects), and OOF (percentage of images that contain
out-of-frame objects). Details of these metrics can be found in Appendix[C] Across all four metrics,

our benchmark exhibits the highest complexity, underscoring its suitability for rigorous evaluation.
Task C i

Datasets / Benchmarks Size  Types } Tocal Multi-turn  Mulfi-obj. Tmplicit Action Tocation  Viewpoint } AvE Obj. Avg. Cat. Occ. Raie OOF. Rafe
Datasets
TnstructPix2pix (Brooks et al J2023] 313K 4 [; a ] a 3] a ) 871 716 79.36 8139
EditWorld {Yang et % 86K 1 ] [] [X] ¢ [X] Q o 8.01 445 76.67 72.00
UltraEdit {Zhao et al. aM 9 ¢ ] ) ¢ © (] ) 7.68 4.70 75.30 78.10
SEED-Data-Edit (Ge etal.][2024] ~ 37M 6 ¢ e P> 9 ) 9 © 6.21 3.82 63.82 81.40
HQ-Edit (Hui et al.|[2024] 197K 6 [ [x] ] (] <] [x] ] 822 4.84 66.97 60.30
AnyEdit (Yu et al.. 25M 25 > Q © I I’ I I> 6.95 4.37 60.45 57.20
ImgEdit (Ye etal. 2M 13 ¢ o © [} [’ ] ) 9.01 4.72 69.65 69.14
Benchmarks
MagicBrush (Yang et al.[2022a 10K 5 [V [/ [X] Q [/ Q [X] 9.22 5.04 91.71 78.34
EMU_Edit (Sheynin et al. - 8 [ [x] Q (] ] € ] 838 5.19 78.51 83.60
Reason-Edit {(Huang et al. 02K - ¢ Q © € © Q © 4.93 3.09 54.30 5228
PEBench (Ma et al. 2K 16 - (] ] Q ] [ o 7.03 420 68.78 66.40
GEdit-Bench (Liu et al.J2025 06K 11 ¢ ] ) o ¢ (] ) 9.96 4.93 67.67 65.40
Complex-Edit (Yang et al.|| 2025 1K 24 ¢ Q © g © 9 ¢ 9.23 4.77 7829 72.98
Ours* 3K 9 ¢ e > g ¢ g ¢ 13.58 5.87 98.47 86.38
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Figure 2: Comparison between current datasets or benchmarks and our CompBench. First
row: failed cases of other benchmarks. These results fail to maintain background consistencies or
introduce noticable artifacts into the editing region. Second row: Examples of other benchmarks.
These cases lack scene complexity and instruction comprehensiveness. Third row: Examples of our
CompBench. Our benchmark features complex real-world scenarios with precise instructions.

To address the aforementioned issues, we introduce CompBench, the first large-scale benchmark for
instruction-based image editing in complex scenarios, specific examples are illustrated in Figure [T}
Our benchmark offers the following three major advantages:

Realistic and Complex Scene Composition. As shown in Table[T} Our benchmark encompasses
scenes that embody the diverse and realistic complexities present in real-world settings. We compare
CompBench with existing datasets and benchmarks across four dimensions: average number of
objects, average number of object categories, overall object occlusion rate, and out-of-frame object
rate. Details of these metrics are shown in Appendix [C] CompBench consistently surpasses prior
benchmarks in all these metrics. Notably, our average number of objects per image is approximately
36.3% higher than the second best (GEdit-Bench [2025)), demonstrating the heightened
complexity and diversity of our scenes.

Comprehensive Task Coverage and High Difficulty Level. As depicted in Figure[a), CompBench
encompasses five major categories, consisting of local editing, multi-editing, action editing, scene
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spatial editing, and complex reasoning, spanning a total of nine tasks. These tasks are designed
to challenge six core capabilities, with a detailed analysis of our benchmark’s difficulty for each
provided in the Appendix |B| Additionally, we propose an Instruction Decomposition Strategy to
improve the clarity and precision of image editing instructions. Specifically, we structures editing
instructions along four dimensions: spatial positioning (e.g., “left of the table”), visual attributes
(such as color or texture), motion states (e.g., “flying”), and object entities. This structured approach
converts potentially ambiguous requests into well-defined specifications without sacrificing the
natural expressiveness of instructions. By systematically covering each aspect of an editing operation
while preserving the flexibility of natural language, our method produces instructions that are both
intuitively understandable and technically precise for complex image editing tasks.

High-Quality Data Curation. Every sample in CompBench is meticulously constructed through
multiple rounds of expert review, ensuring the highest quality of edits. Unlike other benchmarks
where editing failures are common, all data in CompBench represent successfully executed editing
results, with SSIM (Structural Similarity Index Measure) scores significantly outperforming those of
other datasets, as illustrated in Figure d(b). This rigorous quality control ensures that CompBench
provides a reliable assessment of model performance in realistically complex editing scenarios.

2 RELATED WORKS

Instruction-guided Image Editing. Instruction-guided image editing enables efficient image manip-
ulation using only textual editing instructions, eliminating the need for manual mask or explicit visual
inputs and better aligning with user intent. Diffusion models (Ho et al.,|2020), particularly Stable Dif-
fusion (Rombach et al.l [2022) (SD), facilitate this task significantly by supporting explicit text inputs.
Methods built upon diffusion models such as InstructPix2pix (Brooks et al., [2023)), has greatly im-
proved editing effectiveness. InstructPix2pix leverages large language models (LLMs) (Vaswani et al.|
2017} |Devlin et al., 2019; Brown et al.l 2020; Touvron et al.||2023)) and text-to-image (T2I) (Ramesh
et al.| 2021} |2022; Saharia et al.|[2022; Rombach et al.| 2022)) models to generate large-scale datasets
and trains a diffusion model that is capable of following natural language instructions. HIVE (Zhang
et al., 2024) introduces a reward model that leverages human feedback to align edits with human
preferences. Approaches such as SmartEdit (Huang et al., 2024b), MGIE (Fu et al., [2023), and
Step1X-Edit (Liu et al. [2025)) integrate image and instruction representations using multi-modal
large language models (MLLMs) (Li et al.| 2022} |Alayrac et al., 2022} |Liu et al., 2023} [Wang et al.|
2024), injecting these capabilities into diffusion models for more precise control. AnyEdit (Yu
et al.l 2024) constructs an extremely large-scale multi-task dataset and adopts a mixture-of-experts
(MoE) (Fedus et al.l 2022} Du et al.,|2022) architecture to better accommodate diverse editing tasks.
SEED-X (Ge et al.,[2024)) utilizes a visual tokenizer to unify image comprehension and generation,
establishing a unified multi-granularity comprehension and generation model that enhances editing
performance. GoT (Fang et al.,|2025)) incorporates Generation Chain-of-Thought (Wei et al., 2022)
reasoning into the editing process, allowing for more refined, step-by-step edits. Recently, FLUX.1
Kontext (Labs et al., [2025) applies flow matching to build a unified image generation and editing
model. Bagel (Deng et al., [2025) adopts a decoder only architecture to construct a multimodal
understanding and generation model. Qwen-Image-Edit (Wu et al., [2025), the editing model of
Qwen-Image (Wu et al., [2025), demonstrates strong text rendering and image editing capabilities.

Image Editing Benchmarks. High-quality image editing datasets and benchmarks are crucial for
model training and evaluation. Several notable benchmarks have been proposed: MagicBrush (Yang
et al., 2022a) provides a manually curated 10K dataset covering single-turn, multi-turn, mask-
provided, and mask-free editing tasks. EMU-edit (Sheynin et al.| [2024) introduces a challenging
benchmark comprising seven diverse editing tasks. HQ-Edit (Hui et al.,[2024)) employs a scalable data
collection pipeline to create a high-quality dataset of 200K instruction-guided image editing samples.
SmartEdit (Huang et al.,[2024b) introduces Reason-Edit, a small-scale, manually curated benchmark
focused on complex instruction-based image editing. Edit-world (Yang et al., 2024)) presents the
concept of world-instructed image editing and creates a dataset featuring instructions in a world
context. 2EBench (Ma et al.,[2024)) proposes a comprehensive evaluation benchmark with automated
multi-dimensional assessment. UltraEdit (Zhao et al.l 2024)) develops a scalable framework for
producing large and high-quality image editing datasets, introducing a large-scale instruction-based
dataset. SEED-Data-Edit (Ge et al., [2024])) provides a hybrid dataset composed of auto-generated,
real-world, and human-annotated multi-turn editing samples. More recently, ImgEdit (Ye et al.,
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Figure 3: The construction pipeline of CompBench. The pipeline consists of two main stages: (a)
Source data collection and preprocessing, wherein high-quality data are identified through image
quality filtering, mask decomposition, occlusion and continuity evaluation, followed by thorough
human verification. (b) Task-specific data generation using four specialized pipelines within our
MLLM-Human Collaborative Framework, where multimodal large language models generate initial
editing instructions that are subsequently validated by humans to ensure high-fidelity, semantically
aligned instruction-image pairs for complex editing tasks.
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2025) introduces a large scale image editing dataset and a benchmark with multiple aspects. Step1X-
Edit (Liu et al.,|2025)) construct GEdit-Bench (Liu et al.} 2025)) featuring real-world user instructions.
Complex-Edit (Yang et al., [2025) adopts a “Chain-of-Edit” pipeline to develop an image editing
benchmark across instructions of different complexity.

3 COMPBENCH

3.1 TASK CATEGORIZATION AND DEFINITIONS

Our complex instruction-guided image editing benchmark, CompBench, contains 3k+ image-
instruction pairs. To enhance the comprehensiveness of evaluation, we categorize editing tasks
into five major classes with nine specific tasks based on their characteristics:(1) Local Editing: fo-
cuses on manipulating local objects, including object removal, object addition and object replacement.
(2) Multi-editing: addresses interactions among multiple objects or editing steps, including multi-turn
editing and multi-object editing. (3) Action Editing: modifies the dynamic states or interactions of
objects. (4) Scene Spatial Editing: alters scene spatial properties, consisting of location editing and
viewpoint editing. (5) Complex Reasoning: requires implicit logical reasoning, including implicit
reasoning. Examples of these tasks can be found in Figure[I]

3.2 DATASET GENERATION

In this section, we detailedly demonstrate the generation process of our CompBench. The overall
pipeline is shown in Figure[3]

Source Data Collection and Preprocessing. To address the scarcity of high-quality paired complex
editing data, we select MOSE (Ding et al., 2023)), a video instance segmentation (VOS) dataset
featuring complex scenes with multi-object masks. The dataset undergoes a rigorous preprocessing
pipeline: We first filter low-quality video frames using a mixture of no-reference image quality
assessment metrics (e.g., NIQE (Zhang et al.;|20135))) to eliminate blurry, low-contrast, or corrupted
samples. Then, a professional team manually verifies the filtered data, retaining only high-quality
images. For mask preprocessing, multi-object masks are decomposed into single-object masks to
isolate editable entities. A multimodal large language model (MLLM, e.g., Qwen-VL (Wang et al.,
2024]))) evaluates mask continuity and occlusion, discarding discontinuous or heavily occluded masks.
Similarly, annotators further check these masks to ensure pixel-level precision.

Task-specific Data Generation Pipelines. To address the unique challenges and diversity of complex
instruction-guided image editing tasks, we design four specialized data construction pipelines tailored
to distinct task categories: (1) local editing pipeline for object-level manipulations (object removal,
object addition, object replacement). (2) action/scene spatial editing pipeline for modifying object
dynamics or scene perspectives (action editing, location editing, viewpoint editing). (3) complex
reasoning pipeline for implicit contextual edits requiring reasoning (implicit reasoning). (4) multi-
editing pipeline for multi-object and multi-turn editing tasks. All pipelines adopt a unified MLLM-
Human Collaborative Framework: multimodal large language models (MLLMs) (Li et al., 2022
Alayrac et al.,2022; [Liu et al., 2023} |Wang et al., 2024) generate initial task-specific instructions by
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Figure 4: Characteristics and statistics of CompBench. (a) Task taxonomy of CompBench,
illustrating the full range of task types. (b) SSIM (Wang et al.,[2004)) comparison among different
datasets and benchmarks. Note that UltraEdit (Zhao et al.| 2024)) and InstructPix2pix (Brooks et al.|
2023)) are datasets, whereas the remaining entries are benchmarks.

analyzing visual scenes and editing goals, followed by human validation to ensure instruction-image
semantic alignment and image editing fidelity. Unsuccessful edits are iteratively re-generated or
discarded, retaining only high-fidelity samples that satisfy both linguistic precision and visual realism.
Detailed implementation procedures for each pipeline are provided in the appendix

Instruction Decomposition Strategy. To enhance the clarity and precision of editing instructions, we
propose a structured framework that organizes editing instructions along four aspects: spatial position-
ing, visual attributes, motion states, and object entities. This approach transforms ambiguous editing
requests into well-defined specifications while maintaining natural expressiveness. The method
employs a two-phase generation process: first, an MLLM produces dimension-aware instruction
candidates by analyzing visual contexts. Then human experts refine these to ensure precision and
consistency. By systematically addressing each aspect of the editing operation while preserving
the flexibility of natural language, this framework enables the creation of instructions that are both
intuitively understandable and technically precise for complex image editing tasks.

Characteristics and Statistics. As illustrated in Figure ffa), our benchmark comprises 5 major
categories encompassing a total of 9 complex editing tasks, yielding 3k+ image editing samples with
corresponding complex instructions. Details of subtasks can be found in Appendix [B.2] Since we
lack global captions for pre-edited and post-edited images, we employ the Structural Similarity Index
Measure (SSIM) (Wang et al., 2004)) to evaluate the semantic consistency between image pairs as a
quality assessment metric. As shown in Figure[d{(b), CompBench achieves notably higher SSIM than
other datasets and benchmarks.

Notably, our dataset features significantly more challenging editing tasks, each requiring compre-
hensive capabilities such as visual grounding and complex reasoning. Detailed analysis of core
competencies essential for our benchmark are discussed in Appendix B} To systematically evaluate
scene complexity, we adopt multiple quantitative indicators such as average number of scene ob-
jects and categories. These metrics demonstrate that our benchmark exhibits substantially higher
complexity compared to existing benchmarks.

4 EXPERIMENTS

4.1 SETTINGS

Baselines. Given that our study specifically targets instruction-guided image editing tasks, we
restrict our selection to instruction-guided image editing models and exclude approaches based on
global description guidance. The evaluated models include: InstructPix2pix (Brooks et al., [2023]),
MagicBrush (Yang et al.| [2022a)), HIVE (Zhang et al., [2024)), Smart-edit (Huang et al.l 2024b)),
MGIE (Fu et al.}[2023), HQ-Edit (Hui et al.,[2024), CosXL-Edit (Stability Al,[2024), UltraEdit (Zhao
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Table 2: Evaluation results on local editing, multi-object editing and implicit reasoning. LC-T
denotes local CLIP scores between the edited foreground and the local description. LC-I refers to the
CLIP image similarity between the foreground edited result and ground truth (GT) image. Top-three

evaluation results are highlighted in red (1st), blue(2nd), and (3rd).
Local Editing ‘Multi-object Edifing Tmplicit
Model Foreground Background Foreground Background Foreground Background
TC-TT LC-IT | PSNR(B)T_SSIMT LPIPS]| | LC-TT LC-7 | PSNR(@B)7 SSIMT LPIPS| | LC-TT LC-IT | PSNR(B)T_SSIMT LPIPS |

InstructPix2pix (Brooks et al.§2023’ 19.445  0.777 21.416 0.695 0.137 19.624  0.779 20.200 0.658 0.162 19.007  0.793 21.806 0.683 0.125
MagicBrush (Yang et al. {202 2a] 20.067  0.798 23415 0.744 0.088 19.878  0.800 23.524 0.727 0.092 19.526  0.828 22.145 0.714 0.106
HIVE-w (Zhang et al. 12024 19.820  0.770 19.908 0.641 0.198 20.024  0.775 19.594 0.609 0.224 18.634  0.777 20.268 0.602 0.219
HIVE-c (Zhang et al.£2024] 19.236  0.772 21.741 0.689 0.147 19.585  0.781 21.560 0.663 0.155 18.938  0.786 22.168 0.666 0.132
Smart-edit-7B (Huang et al.;2024b)| 20.034  0.798 24.398 0.761 0.073 19.888  0.803 0.731 0.090 19.743  0.832 23.058 0.732 0.096
MGIE (Fu et al.1 2023 18.957  0.780 20.572 0.708 0.175 19.830  0.788 18.296 0.692 0.274 17728 0.801 24.432 0.780 0.088
CosXL-Edit (Stability A152024] 19.029  0.778 20.442 0.706 0.156 19.550  0.788 20.382 0.682 0.171 18.269  0.794 20.984 0.681 0.161
HQ-Edit (Hul et al.£ 2024 18.316  0.734 12.240 0.419 0.441 19.163  0.757 12,987 0.412 0.421 18.864  0.767 12.321 0.396 0.452
UltraEdit (Zhao et al.12024] 19.618  0.786 22938 0.783 0.145 20.022  0.795 22326 0.719 0.164 18.350  0.784 23.374 0.717 0.145
AnyEdit {Yu et al. £2024 19.932  0.794 22.769 0.714 0.125 19.875  0.809 22.789 0.697 0.129 19.588  0.816 20.271 0.639 0.191
SEED-X (Ge et al.; 2024] 17.933  0.780 21.466 0.805 0.139 19.092  0.795 20.638 0.788 0.158 17.467  0.784 21.506 0.709 0.134
GoT (Fang et al. 12025 20.268  0.807 24.675 0.890 19.919  0.804 21.296 0.826 0.127 19.237  0.820 0.860 0.088
StepI X-Edit (Liu et al.£2025 20.501  0.817 23371 0.882 0.078 20.213  0.828 22.696 19312 0.850 23.435

Bagel (Deng et al. 12025 0.838 27.692 0.935 0.045 0.842 24.370 0.917 0.069 0.874 28.756 0.918 0.052
FLUX.T Konitext (Labs et al.12025] 21.329 25.612 0.941 0.049 20.983  0.836 24.013 0.938 0.064 19.606  0.867 25.330 0.932 0.061
Qwen-Image-Edit {Wu et al. F.2025] 21.522  0.829 0.072 21.058  0.836 21.927 0.810 0.121 20.067 22787 0.774 0.124

Table 3: Evaluation results on multi-turn editing.

Model Turnl Turn2
Foreground Background Foreground Background

LC-T LC-I | PSNR SSIM LPIPS | LC-T LC-I | PSNR SSIM LPIPS
InstructPix2pix (Brooks et al.|[2023) | 19.424 0.784 | 21.073 0.676  0.142 | 19.818 0.776 | 17.607 0.568  0.238
MagicBrush (Yang et al.[[2022a) 19.977 0.812 | 24.020 0.730 0.089 | 20.253 0.811 | 21.244 0.682 0.134
HIVE-w (Zhang et al.[[2024) 19.784 0.781 | 20.040 0.621 0.196 | 20.129 0.761 | 17.291 0.532 0.272
HIVE-c (Zhang et al.[[2024) 19.756  0.787 | 21.330 0.660 0.155 | 19.812 0.778 | 18.346 0.590 0.217
Smart-edit-7B (Huang et al.{[2024b) | 19.876 0.817 | 24.632 0.740  0.080 | 20.050 0.807 | 23.404 0.724
MGIE (Fu et al.|[2023) 19.355 0.801 | 21.563 0.731 0.143 | 19.695 0.798 | 18.382 0.655 0.223
HQ-Edit (Hui et al.|[2024) 18.987 0.755 | 12950 0.410 0.422 | 18.935 0.740 | 12.032 0.383  0.499
CosXL-Edit (Stability AI}2024) 19.389  0.787 | 20.233  0.679 0.171 | 19394 0.771 | 16.752 0.590 0.301
UltraEdit (Zhao et al.[[2024) 19.990 0.792 | 23.763 0.715 0.116 | 20.177 0.779 0.715  0.139
AnyEdit (Yu et al.[[2024) 19953 0.812 | 23412 0.711  0.113 | 20.093 0.803 | 20.010 0.633 0.188
SEED-X (Ge et al.|[2024) 19.139  0.795 | 21.042 0.792 0.153 | 18.729 0.753 | 13.793 0.457 0.404
GoT (Fang et al.[[2025) 0.816 19.939 0.804 | 21.397 0.131
Step1X-Edit (Liu et al.|[2025) 20.157 0.832 | 23.987 0.883 0.078 | 20.262 0.835 | 20.710 0.822  0.128
Bagel (Deng et al.|[2025) 19.919  0.841 | 28.475 0.946  0.040 0.853 | 23.886 0.896 0.087
FLUX.T Kontext (Labs et al.[2025) | 20.061 0.837 | 25.725 0.951 0.050 | 21.172 0.843 | 22.357 0.906  0.095
Qwen-Image-Edit (Wu et al.|[2025) | 20.328 24.124 0.834  0.097 | 21.021 20.573 0.775  0.157

et al.l 2024), AnyEdit (Yu et al) 2024), Seed-X-Edit (Ge et al.l [2024), GoT (Fang et al., [2025)),
Step1X-Edit (Liu et al.| [2025)), Bagel (Deng et al.| |2025), FLUX.1 Kontext (Labs et al.,|2025)), and
the recently released Qwen-Image-Edit (Wu et al., 2025)).

Evaluation Metrics and Methods. Evaluation metrics for image editing tasks must be well-suited
to the complexity of our scenarios, providing a comprehensive and accurate assessment of editing
performance in complex scenes. Moreover, the metrics should be tailored to reflect the unique
characteristics of different task types.

For tasks including local editing, multi-editing and implicit reasoning, we posit that an effective
editing model should modify foreground objects while preserving background consistency. Therefore,
we apply a foreground-background decoupling strategy, evaluating the editing performance from
both foreground and background perspectives. For background consistency assessment, we compute
three metrics, including PSNR, SSIM (Wang et al., [2004), and LPIPS (Zhang et al.}[2018), on the
background regions. For the foreground evaluation, we consider two aspects: editing accuracy and
instruction following. For editing accuracy, we measure the similarity between the edited result and
the ground truth (GT) image by comparing their CLIP (Radford et al.|[2021)) image embeddings in
the foreground region, thereby determining whether the edited foreground visually aligns with the
GT. To assess instruction-following capability, we measure the CLIP (Radford et al., 2021} similarity
between the edited foreground object and the textual description of the target region to evaluate the
model’s ability to interpret and execute the given instructions.

Additionally, for action editing, location editing, and viewpoint editing tasks—where the object’s
morphology, position, or viewpoint may change significantly—the aforementioned automatic metrics
are insufficient for comprehensive evaluation. To address this, we introduce multi-perspective scoring
using GPT-40 (OpenAll |2024), Qwen2.5-VL-72B (Bai et al., 2025), and human annotators. For each
task, we design tailored prompts for GPT-40 and Qwen-VL, instructing the models to rate editing
performance on a scale from 0 to 10. In parallel, we conduct a rigorous human evaluation by trained
annotators, following standardized scoring guidelines to measure aspects such as background fidelity,
editing intent, instruction following, and artifact presence. Detailed prompt designs and annotation
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Table 4: Comparison on Action, Location, and Viewpoint Editing. Results for GPT-40, Qwen-72B,
Human Evaluation, and Average scores (top-3 per column highlighted in red, blue, green).

Model Action Location Viewpoint

GPT Qwen Human Avg. | GPT Qwen Human Avg. | GPT Qwen Human Avg.
InstructPix2pix (Brooks et al.[2023) | 3.047 1.124 3.101 2424 | 3425 2.167 2.859 2.859 | 0.699 0.482 0.036  0.406
MagicBrush (Yang et al.[[2022a) 3511 1449 3.584 2.848 | 4.603 2.260 3717 3717 | 0.892 0.410 0.108  0.470
HIVE-w (Zhang et al.[[2024] 3151  1.764 3.067 2.661 | 4.110 2.192 3421 3421 | 1494 0.283 0.036  0.604
HIVE-c (Zhang et al.|[2024) 3977 1596 3.797 3.123 | 4.192  2.470 3.558 3.558 | 2.193 0.675 0.145  1.004
Smart-edii-7B (Huang et al.|[2024b} | 4.233  1.607 4348 3771 | 3.800 2.875 3.505 3.505 | 2.169 0.590 0.410 1.056
MGIE (Fu et al.|[2023} 1.921 1213 1.797 1.644 | 1.726  1.795 1.728 1.728 | 0.205 0.193 0 0.133
CosXL-Edit (Stability ALl{2024} 4270 2375 3.966 3.537 2.493 4517 4517 | 1916 0.988 0.301  1.068
HQ-Edit (Hui et al.]|2024) 1.449 0528 1.033  1.003 | 1.425 0.726 1.079 1.079 | 0.470  0.289 0 0253
UltraEdit (Zhao et al.{|2024} 4.449  1.807 4235 3497 | 4014 2.055 3410 1.181 | 0.494 0.706 0 0.400
AnyEdit (Yu et al.}[2024} 3.750 0978 3.168 2.632 | 5.068 2.479 4.178 4.178 | 1.687 0.783 0.072  0.847
SEED-X (Ge et al.|[2024) 2270 1494 1.685 1.816 | 3.028  3.247 2771 2771 | 2.241 1169 0 1.137
GoT (Fang et al.|[2025) 3.337 1989 3.134 2820 | 3.625 3.192 3.164 3.164 | 0916 0.675 0.446  0.679
Step1X-Edit (Liu et al.| 2025} 5.041 4.786 2470 1.205 0.663  1.446
Bagel (Deng et al.|[2025) 6.899 5.056 6.629 6.195 | 7.137 6.233 6.219 6.530 | 5193 3.892 4.663 4.583
FLUX.T Kontext (Labs et al.}[2025) | 5.169  3.202 4517 4296 3.110 3.836  3.996
Qwen-Image-Edit (Wu et al.|2025) | 6.910 5.382 6.764 6.352 | 7.055 5.096 5.603 | 6.193 4.470 6.181 5.615

instructions are provided in Appendix |G} Further ablation studies on evaluation metrics, as well as
additional human evaluation results, can be found in Appendix [D[H}

4.2 EXPERIMENT RESULTS

The experimental results for local editing, multi-turn editing, multi-object editing, implicit reasoning,
and action/location/viewpoint editing are presented in Tables 2] [3] and [] respectively. Our key
analysis of the results are as follows: (1) No model dominates across all tasks. Among all evaluated
models, Bagel (Deng et al.| 2025)) emerges as the most prominent one, achieving top results in 18 out
of 37 metrics (nearly 60%) across 9 tasks. Notably, Bagel (Deng et al.;[2025), Qwen-Image-Edit (Wu
et al.| [2025)), and FLUX.1 Kontext (Labs et al.,|[2025) consistently deliver superior performance,
securing top-three rankings in the majority of metrics across most tasks, following by Step1X-
Edit (Liu et al., 2025)). In contrast, HQ-Edit (Hui et al.| |2024) demonstrates substantially inferior
results in nearly all tasks. (2) For multi-turn editing tasks, all models exhibit a notable decline in
background consistency metrics during the second editing round. Among them, SmartEdit (Huang
et al., 2024b) maintains relatively robust performance in second editing turn. (3) Qwen-Image-
Edit (Wu et al.| [2025) achieves consistently high scores on the local CLIP scores between the edited
foreground and the local description metric, reflecting its strong instruction-following and semantic
alignment capabilities. In contrast, Bagel (Deng et al.,|2025)) ranks high on background consistency
metrics, demonstrating its strength in preserving spatial and contextual background information
during editing. (4) For the more challenging action/location/viewpoint editing tasks, Qwen-Image-
Edit (Wu et al., 2025) and Bagel (Deng et al.,[2025) perform comparably and significantly outperform
most other models. SteplX-Edit (Liu et al., |2025)) also exhibits promising editing performance in
these scenarios.

5 INSIGHTS

In this section, we investigate the underlying factors that lead to varying performances among different
models on our proposed CompBench, and offer perspectives on future research directions for the
field of image editing.

The Critical Role of MLLMs. Through systematic evaluation, we discover a strong correlation be-
tween architectural design and editing performance: multi-modal large language models (MLLMs) (L1
et al.,2022; |Alayrac et al., 2022} |Liu et al., | 2023; Wang et al.,2024; Huang et al.,2024a; 2025} |You
et al., [2025} [Li et al.l 2025) serve as a cornerstone for recent advances in this field. Specifically, for a
fair comparison, we normalize and average the performance scores of all models across five major
tasks, highlighting the top-5 models in Figure [5(a). Furthermore, we present the overall normalized
results in Figure 5[b), aggregated across all tasks. Details on the calculation of the results shown in
the figure can be found in Appendix (G} The results reveal that Bagel (Deng et al., 2025) significantly
outperforms others on complex instruction-editing tasks, followed by Qwen-Image-Edit (Wu et al.|
2025)), FLUX.1 Kontext (Labs et al.| |2025) and Step1X-Edit (Liu et al., [2025)). Interestingly, the
top-performing models, excluding the specialized flow-matching model FLUX.1 Kontext, either are
MLLMs or integrate one as a core component. This architecture design empowers them to more
accurately interpret complex instructions and visual context, which is critical for achieving superior
performance on challenging editing tasks.
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Moreover, we argue that MLLMs enable a unified understanding and generation paradigm. The
best-performing model, Bagel, exemplifies this by jointly learning multimodal understanding and
generation in a single model, yielding shared representations that are both instruction-aligned and
visually grounded. This joint training reduces the mismatch between a planner (understanding
model) and an executor (generation model), enabling the model to first encode complex images and
instructions into semantically coherent multimodal features, which then guide the pixel-space editing
process with high fidelity.

The Importance of Reasoning Ability. In addition to MLLM-driven achitecture design, our analysis
reveals that reasoning ability emerges as another critical contributor to editing performance. This is
evident through two distinct strategies. The first is data-centric: SmartEdit, for example, is trained on
the reasoning segmentation dataset from LISA, which significantly enhances its reasoning capabilities
and leads to outstanding results on multiple tasks. The second is method-centric: GoT introduces
Chain-of-Thought (CoT) (Wei et al.,[2022) into the editing process by leveraging MLLMs to generate
reasoning chains. This approach further enhances the model’s understanding of complex instructions
and visual context, facilitating more precise editing.

In summary, our analysis reveals two critical insights for advancing instruction-guided image editing.
Fisrt, MLLMs are pivotal for high-performance editing, providing a unified framework to bridge
the gap between complex textual instructions and visual content. Second, multi-modal reasoning
is foundational for interpreting intricate user intent to ensure high-fidelity edits. These findings
suggeest that future research should prioritize two key directions: (1) developing specialized MLLM
architectures tailored for editing workflows rather than general-purpose vision-language tasks (2)
exploring advanced reasoning-aware training paradigms, such as optimizing reasoning chains via
reinforcement learning (RL) or leveraging dedicated reasoning datasets, to enhance editing precision
and adaptability.

6 CONCLUSION

In this work, we introduce CompBench, the first large-scale benchmark specifically designed for com-
prehensive evaluation of instruction-guided image editing. Our meticulously constructed benchmark
encompasses five major categories with nine specialized tasks targeting complex image manipula-
tion scenarios, comprising over 3,000 high-quality image editing pairs with corresponding natural
language instructions. We conduct extensive experimental evaluation across 16 state-of-the-art
instruction-guided image editing models on all benchmark tasks to systematically assess the capa-
bilities and limitations of contemporary editing systems and validate the efficacy of our evaluation
framework. The experimental findings from CompBench not only reveal significant performance
gaps in current models but also yield valuable insights that elucidate promising research directions for
advancing next-generation image editing systems with enhanced reasoning abilities and fine-grained
control.
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A IMPLEMENTATION DETAILS

A.1 SOURCE DATA COLLECTION AND PREPROCESSING

The primary data collection and preprocessing pipeline has been described in section [3.2] For
initial quality assessment of MOSE data, we employed four no-reference metrics (NIQE (Zhang
et al.,|2015), MANIQA (Yang et al.| 2022b), MUSIQ (Ke et al.,[2021)), and CLIPIQA (Wang et al.,
2023)). All images were systematically evaluated using these metrics, with the scores subsequently
normalized and equally weighted to compute a composite value for filtering purposes. In terms of
mask preprocessing, we decomposed multi-object masks into discrete single-object representations
and utilized a multimodal large language model (specifically Qwen-VL (Wang et al., [2024)) to
quantitatively assess mask continuity and occlusion levels, with the corresponding prompts illustrated
in Figure[6] The comprehensive data preprocessing workflow underwent rigorous multi-round review
and verification by a dedicated team of domain experts, thereby ensuring the exceptional quality and
reliability of the final dataset.
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Action As a Dynamic Transformation Evaluator, your primary function is to assess the quality and realism of an
: object's movement or action within a scene, using two images: an original version and an edited version

where the object has performed some action. Users will provide these images alongside the description of
the intended action. Your task is o evaluate whether the action appears natural and physically plausible,
maintains visual coherence with the scene, preserves appropriate motion blur and deformation consistent
with the action, and ensures the edited object maintains proper interaction with its surroundings
(including shadows, reflections, and contact points). Strictly provide your evaluation in a dict format,
rating the quality of the dynamic transformation on a scale from O to 10, with O meaning poorly executed
action and 10 meaning perfectly executed action. For example: {"score": 10, "reason": "Explanation here."}
Please focus solely on providing your assessment in this dictionary format, avoiding any additional
comments or extraneous details. IMPORTANT: When comparing the images, look for any evidence of the

A described action, even if subtle. Consider partial success in your scoring - even minor action changes that
make the neck of maintain scene consistency should receive appropriate partial credit. Only score O if the images are
;'I’fszvz‘; g::foﬁw completely identical or if there's absolutely no attempt to implement the specified action. DO NOT

SUPPOSE THE ACTION IS ACTUALLY IMPLEMENTED

As an Object Movement Evaluator, your primary function is to assess the rationality and integration of an
object's new position within a scene, using two images: an original version and an edited version where the
object has been moved. Users will provide these images alongside the description of the movement. Your
task is to evaluate whether the object's new position obeys physical laws, maintains consistency with
lighting and perspective, aligns with the overall context of the scene, and ensures background consistency
between the original and the edited image. Strictly provide your evaluation in a dict format, rating the
suitability of the object's new position on a scale from O to 10, with O meaning poor integration and 10
meaning excellent integration. For example: {"score": 10, "reason": "Explanation here."} Please focus solely
on providing your assessment in this dictionary format, avoiding any additional comments or extraneous
details. IMPORTANT: First verify if the two images show evidence of object relocation. Even if the
change is subtle, if background consistency is maintained well, provide a score that reflects the quality of
— - integration. Only score O if the images are completely identical or if there's no attempt to move the

move the bird close  specified object as instructed. Consider partial success in your scoring - minor changes with good

i i e background consistency should receive appropriate partial credit.

As a Viewpoint Transformation Evaluator, your primary function is to assess the quality and realism of a
scene viewed from a different angle, using two images: an original version and an edited version where the
camera viewpoint has changed. Users will provide these images alongside the description of the intended
viewpoint change. Your task is to evaluate whether the new viewpoint maintains consistent spatial
relationships between objects, correctly reveals or occludes elements based on the new angle, preserves
proper perspective and foreshortening, maintains consistent lighting and shadows appropriate to the new
viewpoint, and ensures texture and detail consistency across surfaces now viewed from different angles.
Strictly provide your evaluation in a dict format, rating the quality of the viewpoint transformation on a
scale from O to 10, with O meaning poorly executed viewpoint change and 10 meaning perfectly executed
viewpoint change. For example: {"score": 10, "reason": "Explanation here."} Please focus solely on providing
your assessment in this dictionary format, avoiding any additional comments or extraneous details.
: ; IMPORTANT: First verify if the two images (original and edited) actually show the same scene from
;";'J:w;’:fd"‘ew different viewpoints. If they appear to be different scenes entirely or the viewpoint change is not evident,
score 0 and explain that no proper viewpoint transformation was detected.

Figure 6: Prompts of Editing Evaluation.
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Figure 7: Local Editing Pipeline.

A.2 TASK-SPECIFIC DATA GENERATION PIPELINES

Due to the distinct characteristics of different tasks, we have designed specialized pipelines for data
generation tailored to related task categories. The specific workflows for each pipeline are as follows:
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Local Editing Pipeline for Object-Level Manipulations. As illustrated in Figure |7} given the
preprocessed high-quality VOS dataset, we employ an inpainting model (PowerPaint
[2024)) to execute object removal based on precise object masks. The resultant outputs undergo
rigorous evaluation and refinement through a Multimodal Large Language Model (MLLM)
2022; [Alayrac et al,[2022} [Liu et al} 2023} [Wang et al., 2024) in conjunction with manual verification.
For instruction generation, we provide the pre- and post-edited images alongside the corresponding
masks, utilizing the MLLM to generate preliminary instructions, which are subsequently refined
manually to ensure they accurately reflect the specific editing operations. To facilitate comprehensive
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Figure 11: Multi-editing Pipeline.

evaluation, we systematically select and manually annotate captions for the mask regions before and
after editing, thereby generating the definitive Object Removal dataset. For Object Addition data, we
strategically reverse a subset of the Object Removal data and similarly employ MLLM complemented
by manual annotations to construct the corresponding instructions. For Object Replacement, we
implement a candidate target object generation approach, wherein the MLLM analyzes the before-
and-after images and masks from Object Removal to propose plausible, diverse replacement objects
that maintain contextual coherence with the scene’s characteristics. Following manual selection of
appropriate objects, we execute object replacement using the inpainting model, with instructions
formulated analogously to those in the aforementioned tasks.

To further enhance background consistency and overall quality of inpainting results, we implement a
composite post-processing strategy that integrates dilation, Gaussian blurring, and Poisson blending.
Specifically, we first dilate the edges of the target object in the post-editing image, employing a kernel
size of 20. Subsequently, Gaussian blurring is applied to the dilated edges with a kernel size of 15 and
a o x value of 3. Finally, Poisson blending is applied between the original image and the modified
object region in the post-editing image to achieve the definitive result. As illustrated in Figure[8] the
unprocessed edited images (direct inpainting outputs) exhibit noticeable blurriness and diminished
clarity. Initially, we explored a rudimentary blending approach, directly merging the edited region
with the background from the original image. However, this methodology resulted in pronounced
and conspicuous boundaries, compromising the overall blending quality. By incorporating dilation
and Gaussian blurring, the boundary integration improved substantially, yet unnatural chromatic
discrepancies between the edited region and the surrounding background persisted. To address this
limitation, we further integrated Poisson blending, which generated significantly superior results,
yielding natural and seamless integration without perceptible artifacts.

Action/Scene Spatial Editing Pipeline. For action editing and scene spatial editing tasks (including
location and viewpoint editing), as illustrated in Figure[9} we strategically select pertinent data from
the VOS dataset. Specifically, for action editing, we extract frames from the same video sequence
where the background remains consistent, while the objects undergo motion transformations. For
location editing, we identify frames from identical video sequences where the background maintains
constancy, but the object exhibits positional displacement. For viewpoint editing, we select frames
exhibiting perspectival variations within the video. The generation of editing instructions for these
tasks follows a methodology analogous to the local editing pipeline, integrating MLLM capabilities
with meticulous manual refinement.

Complex Reasoning Pipeline. As depicted in Figure[I0} for complex reasoning data, we systemati-
cally select a subset of data from the original VOS dataset that demonstrates suitability for implicit
contextual edit instructions, subsequently modifying these instructions through manual intervention
to produce the definitive dataset.

Multi-Editing Pipeline. For multi-object/multi-turn editing illustrated in Figure [T} we composite
results from the object removal subset within the VOS dataset, where multiple object masks coexist
within the same video frame, to generate comprehensive multi-object removal outputs. Conversely,
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this approach establishes the foundation for multi-object addition. For multi-turn editing, the outcome
from manipulating a single object constitutes an initial editing iteration, while the multi-object
composite result represents a subsequent editing phase, culminating in the multi-turn removal
outcome. Similarly, this procedural framework can be applied to multi-turn addition operations. All
associated instructions undergo rigorous manual development and refinement to ensure precision and
clarity.

A.3 EXPERIMENT SETTING DETAILS

Table 5: Configurations Details of Editing Models.
Method Configuration

InstructPix2pix (Brooks et al., 2023 guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
MagicBrush (Yang et al.,[2022a guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
HIVEY (Zhang et al., 2024 guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
HIVES (Zhang et al., 2024 guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
Smart-edit (Huang et al., 2024b guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
MGIE (Fu et al., 2023 guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
HQ-Edit (Hui et al.,[2024 guidance_scale=7
num_inference_steps=30
image_guidance_scale=1.5
CosXL-Edit (Stability Al [2024 guidance_scale=7.5
num_inference_steps=20
image_guidance_scale=1.5
UltraEdit (Zhao et al., 2024 guidance_scale=7.5
num_inference_steps=50
image_guidance_scale=1.5
AnyEdit (Yu et al.; 2024 guidance_scale=3
num_inference_steps=100
image_guidance_scale=3
SEED-X (Ge et al., 2024 guidance_scale=7.5
num_inference_steps=100
image_guidance_scale=1.5
GoT (Fang et al., 2025 guidance_scale=5.0
num_inference_steps=50
image_guidance_scale=1.0

Step1X-Edit (Liu et al., 2025 guidance_scale=6
num_inference_steps=28
Bagel (Deng et al., 202 guidance_scale=4.0

num_inference_steps=50
image_guidance_scale=2.0

FLUX.1 Kontext (Labs et al., [2025 guidance_scale=2.5
num_inference_steps=50
Qwen-Image-Edit (Wu et al.| 2025 guidance_scale=4.0

num_inference_steps=50
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Evaluation Configurations. We basically use the official settings of all models during evaluation.
Specific configurations of each model are shown in Table 5]

GPU Usage. All experiments using the inpainting model to construct our benchmark were conducted
on 8 NVIDIA A6000 GPUs (48 GB each). The same setup was used during evaluation to meet the
memory and computation demands of all editing models.

B STATISTICS AND CAPABILITY ANALYSIS OF COMPBENCH

B.1 CAPABILITY ANALYSIS

Table 6: Task Competence Analysis. We identify six core competencies essential for complex image
editing. For each competency, the degree required by a task is classified as Low (L, 20), Medium (M,
50), High (H, 80), or Ultra High (UH, 100, bolded for extraordinarily high requirements). The last
column reports the average competence score for each task, calculated by converting each required
degree to its numeric score and then averaging.

Task Visual Appearance Relation Complex Scene 3D Avg. Competence Score
Grounding Control Understanding R ing Consistency Geometry
Object Removal H M H H UH L 68.3
Object Addition H H H H UH L 733
Object Replacement H UH H H UH L 76.7
Multi-turn Editing H UH H H UH M 81.7
Multi-object Editing UH UH UH H UH H 933
Implicit Reasoning H H UH UH UH H 90.0
Action Editing H H H H UH H 83.3
Location Editing UH H H H UH M 81.7
Viewpoint Editing H H H UH UH UH 90.0

To comprehensively characterize the requirements of complex image editing, we identify six core
competencies that a sophisticated editing system must demonstrate: (1) Visual Grounding. the
precise localization of target objects or regions; (2) Appearance Control. fine-grained manipulation
of visual attributes such as color, texture, and illumination; (3) Relation Understanding. accurate
modeling of semantic and spatial dependencies among objects; (4) Complex Reasoning. implicit
logical deduction from contextual cues; (5) Scene Consistency. holistic preservation of spatial layout,
occlusion patterns, and contextual coherence; and (6) 3D Geometry. understanding and manipulating
three-dimensional structure and viewpoint.

The quantitative correspondence between individual tasks and the competencies they necessitate
is summarized in Table @ Local editing tasks, such as Object Removal, Object Addition, and
Object Replacement, place an exceptionally high premium on Scene Consistency, as seamless
integration of the modified region is paramount. Multi-object Editing requires a balanced and
very high proficiency in Appearance Control, Relation Understanding, and Scene Consistency to
effectively manage complex inter-object interactions. Viewpoint Editing uniquely depends on the 3D
Geometry competency to facilitate perspective transformations, as indicated by its ultra-high score in
this domain. Meanwhile, Implicit Reasoning imposes stringent demands on Complex Reasoning and
Relation Understanding to infer indirect or multi-step editing intentions.

Overall, CompBench presents substantial challenges by requiring the simultaneous integration of
these multi-dimensional competencies, thereby reflecting the intricacy of real-world image-editing
scenarios.

B.2 StATISTICS OF COMPBENCH

Table 7: Number of edits for each editing task in the dataset.

Object Removal ~ Object Addition ~ Object Multi-turn Editing  Multi-object Editing Implicit Reasoning  Action Editing Location Editing  Viewpoint Editing  Total
1331 982 152 576 144 100 89 73 83 3530

We present the detailed data volume for each task in Table[/|above. This allocation is informed by
the competence analysis in Table[6] Specifically, we assign greater data volume to tasks with lower or
moderate average competence scores, while allocating fewer examples to tasks with extremely high
overall complexity. This design is motivated by three considerations.
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First, all included tasks are significantly more challenging than those in existing image editing
benchmarks. Since our focus is on complex scenarios, a dataset overloaded with high-difficulty
tasks would likely suppress overall model performance, reducing score variance and impairing
meaningful comparison. Second, for tasks with extremely high competence requirements, only a
moderate number of samples is sufficient to robustly evaluate model capabilities—further increasing
sample size yields diminishing returns in discrimination power. Third, collecting data for the most
challenging tasks is substantially more resource-intensive, which naturally limits their quantity in the
benchmark.

C DETAILS OF BENCHMARK COMPLEXITY EVALUATION

C.1 COMPUTATION OF AVERAGE NUMBER OF OBJECT CATEGORIES, OBJECT INSTANCES,
AND OCCLUSION RATE

To quantitatively evaluate the visual complexity and occlusion characteristics of images, we first
defined a set of relevant metrics and criteria, and then employed an automated analysis pipeline
powered by a Multi-modal Large Language Model (MLLM) (Alayrac et al.,[2022; |Li et al., [2022;
2023; Liu et al.2023)). Specifically, we utilized Qwen2.5-VL-72B (Wang et al.,[2024), a state-of-
the-art vision-language model capable of structured visual scene understanding. To ensure fairness,
for datasets and benchmarks with more than 1,000 samples, we randomly sample 1,000 instances for
evaluation.

The processing pipeline consists of the following steps:

1. Each image is encoded in Base64 format and input into the Qwen2.5-VL-72B model,
2. The model returns structured information in JSON format, which includes:

* The total number of distinct object categories (total_object_types);
* The total number of object instances in the image (total_object_counts);
* The proportion of images containing occluded objects in the dataset (occluded).

After applying this process to the entire dataset, we remove statistical outliers to reduce bias. We then
compute:

¢ Average number of object categories per image;
* Average number of object instances per image;

* Average occlusion rate, defined as:

. Number of Images with at Least One Occluded Object
Occlusion Rate =

Total Number of Images

C.2 COMPUTATION OF THE OUT-OF-FRAME(OOF) METRIC

To evaluate whether objects are fully contained within image boundaries, we adopt a detection-based
method using a pretrained object detection model. We employ the same random sampling strategy as
described in Section[C.I] The pipeline is as follows:

1. We apply Grounding DINO (Liu et al.| [2024)) to detect objects in each image and extract
their bounding boxes, normalized by image dimensions;

2. Each bounding box is examined to determine whether it touches any of the four image
boundaries (top, bottom, left, or right);

3. Objects whose bounding boxes contact any image edge are considered not fully framed,

4. For each image, we count the number of such boundary-touching objects and determine
whether the image contains any incompletely framed object.

From this, we compute:

* OFF Ratio:
Number of Images with at Least One Boundary-Touching Object

Total Number of Images
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D ABLATION STUDIES ON EVALUATION METRICS

D.1 TARGETED EVALUATION ON COMPOUND NOUNS

Understanding compound entities remains a challenge for current vision-language models. Recent
works (Kumar et al. |2024; Rambelli et al., 2024) point out that VLMs frequently struggle with
interpreting compound nouns(e.g., “grassland”). To specifically assess the robustness of our automatic
evaluation metrics in handling compound nouns (CNs), we performed targeted in-dataset experiments
with both CLIP-based and GPT-40-based evaluation.

CLIP-Based Evaluation. Approximately 15% of local captions in CLIP evaluation tasks contained
compound nouns, representing a minor subset of the data. To analyze metric robustness, we randomly
sampled 100 edited region—caption pairs featuring CNs, and replaced each compound noun with a
plausible synonym (e.g., “grassland” — “meadow”, “handrail” — “fence”). CLIP similarity scores
were recalculated, and the distribution of absolute differences is shown in Table [§]

Table 8: CLIP Absolute Error Distribution After Synonym Substitution (<0.3 considered negligible)
Quantile (%) 50 70 80 90 95
Absolute Error  0.19 0.26 030 0.48 0.80

The results show that up to the 80th percentile, score variations remain below the negligible threshold
(0.3), although a few outliers at higher percentiles have larger differences.

GPT-40-Based Evaluation. Compound nouns appeared in 6.9% of instructions requiring GPT-40
evaluation. For each, the compound noun was substituted by a plausible synonym, followed by
re-evaluation of the edited results. All instances exhibited an absolute score difference <1 point,
indicating minor sensitivity to synonym changes.

Discussion. These results suggest that CLIP and GPT-40 metrics are generally robust to reasonable
lexical variations in compound nouns, and can reliably assess compositional semantics in most cases.
While CLIP may yield larger errors in a small number of complex cases, such outliers are rare and do
not substantially affect metric reliability. GPT-40 was consistently robust in this evaluation. These
findings support the validity of our automatic metrics for compound-noun scenarios.

D.2 METRIC SENSITIVITY

To better understand the sensitivity of our automatic metrics, we conducted a targeted ablation
study focusing on the Structural Similarity Index (SSIM). In particular, we investigated whether
small changes in SSIM scores correspond to perceptually meaningful differences in background
consistency.

Specifically, we randomly selected 50 cases in which the SSIM difference between editing results
was within 0.02. For each case, three human annotators were tasked to compare the background
consistency of each image pair and to judge which image presented better consistency. A match
between the annotators’ ranking and the SSIM score ordering was counted as a correct result. The
average matching accuracy across all three annotators was 86%, suggesting that SSIM is generally
sensitive to many visible background differences in our setting.

In addition, we re-evaluated the same image pairs with GPT-40 using tailored prompts regarding
background consistency. Across these cases, GPT-40’s rankings matched SSIM-based rankings with
an accuracy of 78%.

Further examination of disagreement cases revealed that purely perceptual evaluation can be am-
biguous. For instance, discrepancies arose in situations when one background edit removed a visible
object, while another retained all objects but had noticeable color differences. In such cases, human
annotators sometimes disagreed, highlighting inherent limitations of both metric-based and manual
assessments.
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Overall, these findings indicate that SSIM drops—even as small as 0.02—often reflect perceivable
image inconsistencies, while some edge cases may challenge both automated and human evaluation.

E MORE HUMAN EVALUATIONS

To further investigate the reliability and interpretability of our evaluation protocol, we conducted
supplementary human experiments covering editing tasks evaluated with automatic metrics to jointly
consider global semantic consistency, editing correctness, and perceptual quality across the entire
image. Specifically, we collected human judgments for the following editing tasks: image addition,
image removal, image replacement, multi-object editing, multi-turn editing, and implicit reasoning.

For each task, three representative models (a top-performing model, a moderate, and a weaker model)
were selected for comparison. The mean human rating results for each task are summarized in
Tabel PITQ[TT] below:

Table 9: Local Editing: Human Evaluation Results

Model Addition Removal Replacement
InstructPix2pix 0.794 0.784 2.530
HQ-Edit 0.021 0.034 0.039
Step1X-Edit 4.889 5.219 6.276

Table 10: Multi-Editing: Human Evaluation Results

Model Multi-Object  Multi-Turn (Turnl)  Multi-Turn (Turn2)
InstructPix2pix 0.924 1.233 1.080
HQ-Edit 0.070 0.039 0.007
Step1X-Edit 4.799 5.705 5.403

Table 11: Implicit Reasoning: Human Evaluation Results

Model Reasoning
HQ-Edit 0.320
MGIE 2.670

Step1X-Edit 5.560

To validate the reliability of our evaluation strategy, we compared these human ratings with the results
from region-wise automatic metrics (see Table[2]and Table[3). The relative rankings and gaps among
the three models are highly consistent between human and automatic assessments: for example,
Step1X-Edit always leads in performance, HQ-Edit scores lowest, and InstructPix2pix or MGIE fall
in between. This strong alignment indicates that our automatic region-wise metrics generally reflect
human perception in distinguishing strong, moderate, and weak editing models.

F CASES OF COMPBENCH

In this section, we present additional exemplars from CompBench and comprehensive evaluation
results. In Figure[I2] we demonstrate representative instances of local editing operations (object
addition, object removal, and object replacement) within our CompBench. In Figure[I3] we illustrate
selected cases of multi-turn and multi-object editing outcomes in our benchmark. In Figure[T4] we
showcase exemplary instances of action editing, location editing, and viewpoint editing capabilities
within our benchmark.

We further present qualitative results from all evaluated models on our benchmarks. The comparative
editing outputs across all models for local editing, multi-editing, and implicit reasoning tasks can be
examined in Figures[I5]and[I6 The corresponding results for action editing, location editing, and
viewpoint editing are displayed in Figures and20] Detailed evaluation protocols and analytical
discussions are presented in Section |G|
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Figure 12: Cases of Local Editing in CompBench.
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Figure 13: Cases of Multi-editing in CompBench.
G EVALUATION DETAILS

In this section, we delineate the comprehensive evaluation methodology and procedural framework
employed in our assessment.

For tasks encompassing local editing, multi-editing, and implicit reasoning, we require models to
modify foreground elements while maintaining background fidelity. Consequently, we evaluate
editing performance from both foreground and background perspectives. Background consistency
is quantitatively assessed utilizing PSNR, SSIM, and LPIPS metrics on background regions, while
foreground evaluation incorporates both editing accuracy via CLIP image embedding similarity with
ground truth exemplars and instruction adherence via CLIP Score with the local foreground caption.
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Figure 14: Cases of Action, Location and Viewpoint Editing in CompBench.

The foreground captions are meticulously annotated and validated, with representative examples
illustrated in Figure [I2}

To objectively quantify the quality of Action Editing, Location Editing, and Viewpoint Editing, which
require substantial image manipulations, we devise an automated evaluation pipeline leveraging
GPT-40 and Qwen-VL: for each source—edited image pair, the pipeline generates a reproducible and
interpretable composite score ranging from 0 to 10, accompanied by a concise textual justification.
Initially, we formulate three task-specific prompts as demonstrated in Figure [f] each emphasizing
two to three criteria extracted from the fundamental task characteristics: action-execution correctness,
preservation of non-target regions, and overall realism for Action; positional accuracy, occlusion
consistency, and global harmony for Location; and plausibility of viewpoint transformation, geometric
coherence, and detail preservation for Viewpoint. All prompts instruct GPT-4o to return a standardized
JSON object of the form {"score": <0-10>, "reason": "<...>"}. Subsequently, each
image pair is processed by GPT-4o precisely once with the decoding temperature fixed at 0, yielding
deterministic and consequently fully reproducible results.

To aggregate the performance across the diverse evaluation suite, a unified scoring methodology
is employed. The evaluation encompasses five distinct tasks: local editing, multi-object editing,
multi-turn editing, complex reasoning, and Action/Scene Spatial evaluation. For normalization,
MinMax scaling is applied independently to the metrics within each task, converting them to a
uniform 0-1 range. To align with a "higher is better" convention, LPIPS scores are inverted after
normalization (i.e., 1-normalized value). The overall scores, presented in Figure Ekb), are then
calculated by summing each model’s normalized scores across all five equally weighted tasks. This
results in a final composite score with a theoretical maximum of 5.0.

H HUMAN ANNOTATIONS

Annotation Details. To complete our benchmark development, we engaged four expert annotators
and one quality assurance specialist to supervise all human verification processes throughout the
benchmark construction. This comprehensive oversight encompassed filtering the initial datasets,
validating generated images, and most critically, formulating precise instructions. During the in-
struction annotation phase, annotators were provided with the original images, edited images, and
corresponding masks, and were tasked with crafting instructions based on this multimodal infor-
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Figure 15: Cases of Local Editing Results.
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Captionl: a zebra Caption: ground and
Caption2: a zebra wiring net

mation. All annotators underwent extensive training, including exposure to exemplary cases, and
received iterative feedback to progressively enhance their performance. To ensure annotation fidelity
and inter-annotator consistency, the quality assurance specialist conducted systematic evaluations of
all outputs. Significantly, all procedures were implemented in a double-blind framework to mitigate

potential experimental biases.

Participant Disclosure and Consent. Annotators were comprehensively briefed regarding the
purpose of the annotation task, their unconditional right to withdraw participation at any juncture, and
the exclusive research-oriented utilization of their annotations. No personally identifiable information
was collected during this process. All annotators provided documented informed consent prior to

their participation in the study.
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Figure 16: More Cases of Local Editing Results.

Compensation. Annotators received remuneration at a rate commensurate with or exceeding the local
minimum wage standards, in strict adherence to the ICLR Code of Ethics regarding fair compensation
practices.

25



Under review as a conference paper at ICLR 2026

action

location

instruction: bend down the head of the left parrot
score:

reason: The edited image does not show any evidence
of the left parrot's head being bent down. Instead,
the beaks of all parrots have been altered, which is
unrelated fo the specified action. The intended
action of bending down the head is not implemented
atall.

instruction: have a grey cat step towards the yellow
cat

score: 9

reason: The grey cat is positioned naturally as if
stepping towards the yellow cat, with appropriate
contact points on the floor. The lighting and shadows
are consistent with the scene, and the interaction
with the surroundings is well-maintained. The only
minor issue is the lack of motion blur, which could
enhance the realism of the movement.

instruction: make the white boat fall into water with
a splash
score: 8
reason: The edited image successfully depicts the
white boat having fallen into the water, as evidenced
by the large splash. The splash appears natural and
consistent with the action of a boat hitting the
water. The scene maintains visual coherence, with
the splash integrated well into the water's surface.
However, the absence of the white boat in the
splash area could be more pronounced to enhance

is well ted

instruction: move the giraffe to the left of the tree
score:

reason: The images are identical except for the
removal of the giraffe, which does not fulfill the

instruction to move the giraffe to the left of the tree.
No attempt to relocate the specified object is evident.

instruction: remove the objects in the sky

score:

reason: The objects in the sky have been successfully
removed, and the background consistency is well
maintained. The sky appears natural, and there are no
noticeable artifacts or inconsistencies in lighting or
perspective. The integration is nearly seamless, with
only minor potential for improvement in blending.

instruction: make the girl ride her bicycle away

reason: The girl has been successfully added to the
scene, riding a bicycle. The integration of the girl and
the bicycle info the scene is moderately successful.
The lighting on the girl and the bicycle is consistent
with the scene, and the perspective is reasonably
maintained. However, the size of the bicycle wheels is
disproportionately large compared to the rest of the
scene, which affects the realism. The background

" 's well-maintai - i

realism. Overall, the f i
with minor room for improvement in depicting the
boat's interaction with the water.

. Overall, the integration is decent but

isrup:
could be improved with better proportion adjustments.

instruction: let the elephant take a step to the right
score: 3

reason: The edited image shows some attempt at
motion with the introduction of motion blur,
suggesting movement. However, the elephant's
position relative to the background and its own body

parts does not convincingly depict a step to the right.

The motion blur is excessive and not well-aligned
with the direction of the infended movement, and
there is no clear evidence of a shift in the
elephant's position or interaction with the ground
that would indicate a step. The scene lacks proper
shadow and contact point adjustments to support
the action.

instruction: shift the position of the man to the left
score: 0

reason: The images do not show evidence of the same
man being shifted fo the left. Instead, a different
person is present in the edited image, indicating no
attempt fo move the specified object as instructed.

l‘ = ! = Sonwea -

instruction: shift the view upward until sky can be
seen

score: 0

reason: No proper viewpoint transformation was
detected. The two images appear to depict
different scenes entirely, as the landscape and
vegetation differ significantly between the images.

instruction: shift the view to the right a little
score: 8

reason: The viewpoint transformation is executed
well, with a slight shift to the right as intended.
The spatial relationships between objects remain
consistent, and the perspective and foreshortening
are preserved. The lighting and shadows are
consistent with the new viewpoint, and fextures and
details are maintained across surfaces. However,
the change is subtle, which may not fully
demonstrate the intended shift.

instruction: shift the view upward until the road no
longer be seen

score: 0

reason: The two images do not depict the same
scene from different viewpoints. They appear o be
entirely different locations, and no proper viewpoint
transformation is evident.

instruction: shift the view to the left until the two
riders on the right no longer be seen
score: 2
reason: The edited image attempts to shift the
viewpoint to the left, removing the two riders on
the right. However, the transition is poorly
executed, as the area where the riders were is not
properly filled in with consistent textures or details,
resulting in an unrealistic appearance. The spatial

i ips and perspective are not incingly
maintained, and the lighting and shadows do not
adapt correctly to the new viewpoint.

instruction: let the yellow cat step close to the
toy on the floor

score: 0

reason: The edited image does not show a
realistic movement of the yellow cat towards the
toy. Instead, it features cartoonish yellow cat
figures added to the scene, which do not
represent the intended action of the real yellow
cat stepping closer to the toy. There is no
evidence of the described action being
implemented in a realistic manner.

instruction: make the man pushing the bicycle
closer fo another bicycle a little

score: 0

reason: The images do not show any evidence of the
man pushing the bicycle being moved closer to
another bicycle. Instead, a new person on a bicycle
has been added to the scene, which does not fulfill
the instruction given.

instruction: shift the view backward

reason: No proper viewpoint transformation was
detected. The images appear to show different
scenes entirely, with the first image depicting a
road under an overpass and the second image
showing a stylized motorcycle design.

Figure 17: Action, Location and Viewpoint Editing Examples.
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CosXL-Edi

HIVE-w

instruction: let the yellow cat step close to the
+oy on the floor

score: 0

reason: The yellow cat is completely missing in the
edited image, and there is no evidence of the
intended action of the yellow cat stepping closer
to the toy. The scene does not reflect any
attempt to implement the specified action.

instruction: make the cat in from jump

score:

reason: The edited image successfully shows the
cat ina jumping position, with its body elevated
and legs extended, which is consistent with a
Jumping action. The cat's posture appears natural
and physically plausible. However, there is a lack
of motion blur that would typically accompany such
a dynamic movement, and the shadows on the floor
do not fully reflect the cat's new position, which
slightly affects the realism. Overall, the
transformation is well-executed but could benefit
from more attention to motion blur and shadow
interaction.

instruction: have the man bend down

score:

reason: The man is clearly bending down in the
edited image compared to the original. The action
appears natural and physically plausible, with
appropriate body posture. The interaction with
the surroundings, such as shadows and contact
points, is maintained well. There is no noticeable
motion blur, but the action is subtle enough that
this does not detract significantly from the
realism.

instruction: let the parrots spread their wings
score:

reason: The images show no evidence of the
parrots spreading their wings. Both images depict
the parrots in a similar position with their wings
folded, and there is no visible attempt to
implement the specified action.

location

THhW.«

instruction: move these giraffes ahead

score:

reason: The images are completely different, with
no evidence of object relocation as instructed. The
second image does not show the same scene or
objects as the first image.

instruction: let the two sharks swim away

score:

reason: The two images are completely different,
with no evidence of object relocation or any
attempt to move the specified sharks as instructed.
The scenes, lighting, and objects are entirely
distinct, indicating no continuity or integration
between the two images.

instruction: make two fish a little lower

score:

reason: The images do not show evidence of the
same fish being moved lower. Instead, the second
image features different fish entirely, with no
attempt to move the specified object as instructed.

instruction: move the herds of horses on the roads
forward

score: 3

reason: The herd of horses has been moved
forward, but the integration is poor. The road has
been replaced with grass, which is inconsistent with
the original scene. The lighting and perspective are
not well maintained, and the background
consistency is disrupted by the change in the road
surface.

view

instruction: shift the view to the right until the
‘two riders on the left come into view

score: 0

reason: No proper viewpoint transformation was
detected. The images appear to show different
scenes entirely, with different riders and horses,
and the landscape has changed significantly.

instruction: shift the view upward until no people
can be seen

score: 0

reason: No proper viewpoint transformation was
detected. The two images appear to depict
entirely different scenes, with the first showing a
bridge and cyclists, and the second showing a
cityscape with a person standing on a road. The
intended viewpoint change was to shift upward
until no people can be seen, but the edited image
does not reflect this transformation.

instruction: shift the view upward until no people
can be seen

score: 0

reason: No proper viewpoint transformation was
detected. The images appear fo be entirely
different scenes, with no evident change in
viewpoint from the original to the edited version.

instruction: shift the view to the left until only
one side of the bird is visible

score: 0

reason: No proper viewpoint transformation was
detected. The two images appear to show
different scenes entirely, with different birds
and backgrounds.

Figure 18: Action, Location and Viewpoint Editing Examples.

I STATEMENT OF LIMITATION, ETHICAL CONCERN AND BROADER IMPACT

Limitation. A significant constraint of our methodology resides in the substantial computational
overhead and procedural complexity of the integrated pipeline. The framework encompasses multiple
sequential stages of model-based processing followed by comprehensive human evaluation, necessi-
tating considerable computational resources and expert human intervention. This intricate design
imposes reproducibility challenges, hampers scalability, and restricts the exhaustive coverage of the
complete spectrum of compositional editing tasks. Furthermore, components leveraging large lan-
guage models are inherently bounded by contemporary model limitations, potentially compromising

performance on tasks demanding sophisticated reasoning or precise visual-linguistic integration.

Ethical Considerations. While our instruction-based image editing framework demonstrates robust
capabilities, it elicits ethical considerations regarding potential misappropriation and privacy implica-

27



Under review as a conference paper at ICLR 2026

InstructPix2pix

action

instruction: make the hind leg of the brown cat
step on the air conditioning

score: 0

reason: The images are completely different, with
no evidence of the specified action being
implemented. The second image does not show the
brown cat stepping on the air conditioning unit, nor
does it maintain any visual coherence with the
first image.

instruction: make the person feed the bear

score:

reason: The edited image successfully depicts the
person feeding the bear, with the bear holding a
bowl and the person extending a hand with food.
The action appears natural and physically plausible,
with the bear's posture and the person's gesture
consistent with feeding. The visual coherence with
the scene is maintained, and the interaction
between the person and the bear is believable.
However, there is a slight lack of motion blur or
deformation that might be expected with such an
action, and the shadows and reflections could be
more pronounced to enhance realism.

location

o |

instruction: move these giraffes ahead
score: 0

reason: The images are completely different, with
no evidence of object relocation as instructed. The
first image shows giraffes in an indoor setting,
while the second image shows giraffes in an
outdoor setting, indicating no attempt to move the
specified object within the same scene.

instruction: remove the objects in the sky

score:

reason: The objects in the sky have been
successfully removed, and the background
consistency is maintained well. However, there is
slight visible artifact where the objects were
removed, which slightly affects the integration
quality.

instruction: shift the view forward

score: 0

reason: No proper viewpoint transformation was
detected as the two images appear to depict
entirely different scenes.

instruction: shift the view to the left

score:

reason: No proper viewpoint transformation was
detected as the images depict entirely different
scenes.

instruction: have the dog step into the room
score:

reason: The edited image shows the dog in a
different position, suggesting an attempt to
depict the dog stepping into the room. However,
the dog's body appears distorted and unnatural,
particularly around the head and legs, which
affects the realism of the movement. The
shadows and contact points with the floor are not
consistent with the new position, and there is no
motion blur to indicate movement. The overall
transformation lacks visual coherence with the
scene.

instruction: move the e-bike on the left to the
middle

score: 0

reason: The images are identical, with no evidence
of the e-bike being moved from the left to the
middle.

instruction: shift the view upward until the road
no longer be seen

score: 0

reason: No proper viewpoint transformation was
detected. The two images appear to be different
scenes entirely, as the road is still visible in the
edited version, contrary to the instruction.

instruction: let the yellow cat step close to the
oy on the floor

score: 0

reason: The edited image does not show any
realistic movement of the yellow cat towards the
toy. Instead, it features cartoonish yellow cat
figures added to the scene, which do not

instruction: make the man pushing the bicycle
closer to another bicycle a little

score: 0

reason: The images do not show any evidence of the
man pushing the bicycle being moved closer to
another bicycle. Instead, a new person on a bicycle
has been added to the scene, which does not fulfill

instruction: shift the view backward

score: 0

reason: No proper viewpoint transformation was
detected. The images appear to show different
scenes entirely, with the first image depicting a
road under an overpass and the second image
showing a stylized motorcycle design.

represent the intended action of the real yellow
cat stepping closer to the toy. There is no
evidence of the described action being
implemented in a realistic manner.

the instruction given.

Figure 19: Action, Location and Viewpoint Editing Examples.

tions. The capacity to generate photorealistic manipulations may be exploited to create deceptive
content, potentially exacerbating misinformation dissemination if inadequately regulated. Moreover,
the utilization of real-world imagery introduces non-negligible risks of inadvertently exposing per-
sonally identifiable information, despite rigorous anonymization protocols. Ensuring responsible
deployment necessitates implementing comprehensive safeguards, including content verification
mechanisms, stringent data protection frameworks, and transparent operational guidelines.

In line with these considerations, we affirm our adherence to the ICLR Code of Ethics. This work
does not involve research with human subjects; accordingly, institutional review board (IRB) approval
was not required. Where crowd-sourced annotation was used, the full participant instructions and
compensation details are included in Appendix [H] All third-party assets (datasets, code, and models)
are properly credited with their licenses, and any new assets introduced in the paper are documented
to enable responsible reuse. We assess our artifacts as posing no special high-risk dual-use concerns
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FLUX.1 Kontext

Qwen-Image-Edit

action

instruction: have the man bend down
score: 9

reason: The man appears to have bent down
in the edited image, which is consistent with
the intended action. The movement is
natural and physically plausible, maintaining
visual coherence with the scene. The
interaction with surroundings, including
shadows and contact points, is preserved
well. Minor motion blur or deformation
consistent with the action is not evident,
but the overall transformation is successful.

b L

instruction: make the two bears fighting with
each other

score: 8

reason: The edited image successfully depicts
the bears in a more dynamic and aggressive
posture, suggesting a fighting action. The
bears' stances are wider, and their paws are
raised, which is consistent with a fighting
motion. The interaction between the bears
appears natural, and the scene maintains
visual coherence. However, there is a slight
lack of motion blur or deformation that would

enhance the realism of the action. Shadows
and contact points are well-preserved,
contributing to the overall plausibility of the
scene.

instruction: put the woman's right hand above
the parrot behind

score: 8

reason: The woman's right hand has been
successfully moved above the parrot, as
instructed. The hand's position appears
natural and consistent with the action
described. The interaction with the parrot
and the scene remains coherent, with no

noticeable issues in shadows or contact points.

However, there is a slight unnaturalness in
the hand's positioning that prevents a
perfect score.

loaction

instruction: let the fish on the left swim to
the middle

score: 9

reason: The fish on the left has been
successfully moved to the middle of the
scene. The integration is well-executed, with
consistent lighting and perspective. The
background remains consistent, and the
movement appears natural within the context
of the scene. Minor imperfections in blending
are present but do not significantly detract
from the overall integration.

instruction: let the two horse riders side by
side

score: 9

reason: The second image successfully shows
the two horse riders side by side, maintaining
good background consistency and alignment
with the scene's perspective. The lighting
and shadows are consistent with the original
image, and the integration appears natural.
Minor discrepancies in the grass and foliage
alignment are present but do not significantly
detract from the overall integration.

instruction: align the tail of the two planes
score:

reason: The tail of the two planes has been
successfully aligned in the edited image. The
integration is well-executed, maintaining
consistency with lighting, perspective, and
background. The planes appear naturally
positioned within the scene, with no
noticeable discrepancies in the grass or
surrounding environment.

view

instruction: shift the view downward until the
road comes into view

score: 10

reason: The viewpoint transformation is well
executed. The second image shows a
downward shift that reveals the road, which
was not visible in the original image. The
spatial relationships between the mountains
and clouds remain consistent, and the
perspective and foreshortening are
appropriate for the new angle. Lighting and
shadows are consistent with the original
scene, and textures and details are
maintained across surfaces now viewed from
a different angle.

g
oo

instruction: shift the view upward until no
people can be seen

score: 0

reason: No proper viewpoint transformation
was detected. The two images appear to
show the same scene from the same
viewpoint, with no upward shift to occlude
the people as instructed.

instruction: shift the view fo the right a
little

score: 9

reason: The viewpoint transformation is well-
executed, with a slight shift to the right as
instructed. The spatial relationships between
the giraffes and the background elements
remain consistent. The perspective and
foreshortening are preserved, and the
lighting and shadows are consistent with the
new viewpoint. The fextures and details on
the giraffes and the surrounding environment
are maintained accurately. The only minor
issue is a slight change in the position of the
giraffes, which could be due to their
movement rather than a viewpoint
transformation error.

Figure 20: Action, Location and Viewpoint Editing Examples.

that would require additional safeguards upon release. We also disclose substantive uses of large
language models that materially affect our methods. This discussion of potential positive and negative
societal impacts aims to promote responsible interpretation and deployment.

Broader Impact. CompBench establishes a rigorous evaluation framework for instruction-guided
image editing, facilitating systematic assessment of complex editing capabilities in multimodal
large language models. This contribution will accelerate the development of reasoning-aware and
controllable editing systems, enhance model performance across visual understanding and generation
domains, and expand the practical applicability of large-scale models in diverse real-world contexts,
including creative design processes, digital content production, and interactive artificial intelligence
assistants.

J REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide clear pointers to the information needed to re-create
our results. The benchmark data are open-sourced, and code (with scripts, environment specifications,
and instructions for data access/preparation and exact run commands) will be released following
submission; these materials are intended to faithfully reproduce the main experiments. The paper
discloses the experimental setup, including data splits, hyperparameters, and optimizer choices, in
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Section @ and Appendix [A] We also report compute resources (worker types, memory, and execution
time) in Appendix [A]to facilitate environment matching. In addition, we explicitly note where the
information needed to reproduce the primary empirical results can be found Sectiond}, no separate
theoretical results are claimed.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we disclose that LLMs were used primarily
as general-purpose writing assistants for language polishing. Their role was limited to correcting
grammar and punctuation, improving clarity and flow. LLMs did not contribute to research ideation
or problem formulation; model or algorithm design; dataset creation or labeling; experiment setup,
tuning, or analysis; drafting of substantive technical content; or code/results generation. All scientific
claims, methods, and conclusions were conceived, written, and verified by the authors. No proprietary
or sensitive data were provided to the LLM service. Given this limited, editing-only role, the LLMs
should not be regarded as contributors.
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