
Transformer-Based Full-Body Pose Estimation for
Rehabilitation via RGB Camera and IMU Fusion

Yuanshuo Tan
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

tanyuanshuo@sjtu.edu.cn

Xinyuan He
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

hexinyuan@sjtu.edu.cn

Guoxing Liu
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

lgxing1900@sjtu.edu.cn

Licheng Zhong
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

zlicheng@alumni.sjtu.edu.cn

Huiming Pan
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

panhuiming@sjtu.edu.cn

Kezhe Zhu
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

kezhe zhu@sjtu.edu.cn

Peter B. Shull∗
School of Mechanical Engineering

Shanghai Jiaotong University
Shanghai, China

pshull@sjtu.edu.cn

Abstract—Rehabilitation training plays a vital role in the
recovery of lower back and cervical spine function. Human pose
estimation can support this process by guiding and evaluating
rehabilitation movements. However, specialized rehabilitation
exercises often involve severe self-occlusions, posing significant
challenges for vision-based pose estimation methods. We thus
propose a full-body pose estimation framework tailored for re-
habilitation exercises, which fuses monocular images and inertial
measurement unit (IMU) signals using a temporal transformer.
Multimodal data was collected from six subjects performing 22
specialized rehabilitation movements (e.g., single-leg open book,
cross-leg body rotation, standing iliotibial band stretch, standing
lumbar extension). The collected data comprises synchronized
images, 2D and 3D human keypoint coordinates, and IMU
signals. Our approach first employs a convolutional neural
network (CNN) to extract 2D keypoints from image sequences.
These keypoints, combined with IMU signals, are then processed
by a temporal transformer to estimate 3D joint coordinates. On
the collected data, a vision-only baseline yields a 2D joint position
error of 7.33 ± 2.08 pixels and a 3D joint error of 10.05 ± 2.67
cm. In comparison, the proposed method achieves lower errors,
with 5.50 ± 0.75 pixels for 2D joints and 8.27 ± 1.03 cm for
3D joints. By leveraging inertial data, our method enhances the
robustness of pose estimation under challenging conditions such
as self-occlusion, demonstrating its potential for both clinical and
home-based rehabilitation applications.

Index Terms—human pose estimation, rehabilitation exercises,
multimodal sensing

I. INTRODUCTION

Pain conditions such as lower back pain [1] and spine
disorders [2] affect a substantial portion of the global popula-

∗Corresponding author. This work is supported by the National Natural
Science Foundation of China under grant W2441018.

tion, creating a growing demand for effective and accessible
rehabilitation solutions. Rehabilitation training is critical for
restoring physical function and improving patients’ quality of
life. However, whether rehabilitation occurs in clinical settings
or at home, current methods often lack visual guidance and
quantitative tools for tracking and assessing patient move-
ments. To address these limitations, human pose estimation
approaches can be integrated into rehabilitation scenarios.
These systems estimate keypoint positions or joint angles
using either visual data [3], [4] or inertial sensor inputs
[5]–[7]. Such integration enables visual feedback, objective
tracking, and movement evaluation in both clinical and home
environments, thereby improving rehabilitation outcomes.

However, both vision-based and IMU-based pose estimation
methods face challenges in rehabilitation contexts. Vision-
based approaches are limited by the camera’s field of view
and struggle with severe self-occlusion. Sparse IMUs make
inverse kinematics estimation ill-posed, while using too many
IMUs can be intrusive and impractical.

To address these challenges, this paper proposes a novel
pose estimation approach that leverages an RGB camera and
six IMUs. The approach first uses a CNN backbone to extract
2D keypoint coordinates from monocular image sequences. A
temporal transformer then fuses these 2D keypoints with IMU
signals, modeling temporal dependencies to estimate 3D joint
coordinates. We also collect a large-scale set of multimodal
rehabilitation motion data, which includes images, 2D and 3D
keypoint annotations, and IMU signals. Our approach achieves
a 2D joint error of 5.50 ± 0.75 pixels and a 3D joint error
of 8.27 ± 1.03 cm on the collected data, offering a reliable



solution for estimating complex rehabilitation movements.

II. METHODS

A. Data Collection

We collected over 230,000 frames from 6 healthy sub-
jects (4 male and 2 female; height: 1.69 ± 0.05m; mass:
63.2 ± 6.9kg; BMI: 22.3 ± 3.0kg/m2) performing 22 pro-
fessional rehabilitation exercises (Table I). All the subjects
provided written informed consent before being tested, and
the experimental procedure was reviewed and approved by
the ethics committee of Shanghai Jiao Tong University (No.
E2021013P).

Each subject wore a motion capture suit with 39 reflective
markers attached according to the Plug-in Gait scheme [8],
along with six IMUs (MTw, Xsens Technologies, Nether-
lands) positioned on the head, abdomen, forearms, and shanks
(Fig. 1). The Vicon system and IMUs were synchronized at
60 Hz, and the global inertial coordinate frame was calibrated
to align with the Vicon coordinate system. An RGB camera
(Nikon Z5, 1920×1080@60 Hz) was positioned beside the
motion capture area to record the movements. Camera-to-
Vicon calibration was performed using the method proposed
by Zhang et al. [9], and synchronization was achieved via a
clapping motion.

Participants performed the exercises in three postures–
supine, standing, kneeling, with each movement repeated 3–5
times per side.

TABLE I
REHABILITATION EXERCISES CLASSIFICATION

Posture Rehabilitation Exercise Targeted Area

Supine

McGill curl-up Pelvis
External rotator stretch Pelvis
Single-leg open book Lumbar region
Knee-flexion transverse abdominis activation Thoracic spine
Dead bug Lumbar region
Double-arm lift glute bridge Lumbar region
Cross-leg body rotation Pelvis
Sciatic nerve mobilization Hip-knee complex
Dynamic intra-abdominal pressure training Lumbar region

Standing

Shortstop squat Hip-knee complex
Basic squat Hip-knee complex
Standing iliotibial band stretch Hip-knee complex
Sumo squat Hip-knee complex
Standing lumbar extension Lumbar region
Single-leg contralateral ankle touch Lumbar region

Kneeling

Catcow full spine Thoracic spine
Unilateral bird dog Lumbar region
Quadruped posterior reach Lumbar region
Quadruped donkey kick Lumbar region
Oscillatory bird dog Lumbar region
Kneeling dynamic frog stretch Pelvis
Kneeling thoracic rotation mobilization Thoracic spine

B. Data Processing

1) 2D and 3D Keypoint Coordinates: A human skeleton
model is first constructed in Visual3D (C-Motion, MD, USA)
based on 3D marker positions. The ground truth 3D coordi-
nates of 16 human keypoints (Fig. 1) are then derived from
this model. The corresponding 2D keypoint coordinates are
computed using calibrated camera intrinsics and extrinsics.

Fig. 1. Illustration of the 16 annotated body keypoints and the 6 IMU sensor
placements. IMUs are positioned on the head, abdomen, left/right forearms,
and left/right shanks.

2) IMU Signals: During data processing, the rotation matri-
ces and acceleration values from the IMUs are transformed
into the RGB camera coordinate system to ensure spatial
alignment between inertial and visual data.

3) Images: Images are cropped, resized to 256x256 pixels,
and centered on the subject to improve computational effi-
ciency.

4) Data Augmentation: The image data augmentation meth-
ods include random rotation, scaling, translation, color adjust-
ments, and Gaussian occlusion. All ground truth annotations
are transformed accordingly to maintain consistency with
image-level augmentations.

C. Human Pose Estimation Approach for Rehabilitation Ex-
ercises

We propose a two-stage pose estimation framework (Fig. 2).
The model takes as input a sequence of L consecutive RGB
images along with rotation and acceleration signals from six
IMUs. The output is the 3D relative coordinates of human
keypoints in the Lth frame, represented relative to the root
joint (pelvis). The model consists of two stages: one for
extracting 2D human keypoints from images, and the other
for estimating 3D keypoints from the 2D keypoints and IMU
signals.

1) Extracting 2D Human Keypoints from Images: A se-
quence of L consecutive images is fed into a pre-trained
ResNet34 [10] backbone, which produces L heatmaps of size
N × w × h, denoted as {H(t)

j |j = 1, 2 . . . N, t = 1, 2 . . . L},
where N is the number of keypoints. The coordinates of each
keypoint in heatmap space are computed and then mapped
to the original image space, resulting in {p(t)j ∈ R2|j =
1, 2 . . . N, t = 1, 2 . . . L}.

2) Estimating 3D Keypoints from 2D Keypoints and
IMU Signals: Rotation matrices and acceleration from the



Fig. 2. The framework of the proposed pose estimation approach. Stage 1: A CNN is used to extract heatmaps from the image sequence, which are then
processed to obtain the sequential 2D human keypoints. Stage 2: The 2D human keypoint sequence is concatenated with the IMU signals and fed into a
Temporal Transformer to extract the 3D human keypoint coordinates of the final frame.

six IMUs are transformed into the RGB camera coordi-
nate frame, resulting in {R(t)

j |j = 1, 2 . . . 6, t = 1, 2 . . . L} and
{a(t)j |j = 1, 2 . . . 6, t = 1, 2 . . . L}. Each IMU provides 12 val-
ues per frame (9 from the rotation matrix and 3 from the
acceleration), yielding a total of 72 values across all six
IMUs. Combined with 2D keypoints, the input sequence is
represented as X ∈ RL×(2N+72).

Each frame input xi ∈ R2N+72 is first projected into a
latent space using a shared linear embedding matrix E ∈
R(2N+72)×C , where C is the embedding dimension. This
yields a sequence of embedded features Z ∈ RL×C . To en-
code temporal order, a learnable positional embedding matrix
Epos ∈ RL×C is added element-wise to Z, forming the final
input to the Transformer encoder:

Z0 = Z + Epos = [x1E, x2E, . . . , xLE] + Epos (1)

The temporal Transformer encoder follows the architecture
proposed by Zheng et al. [11]. It produces an output Y ∈
RL×C , which is passed through a convolutional layer and a
regression head to predict the 3D joint coordinates of the last
frame, denoted as p̂ ∈ R3N .

3) Loss Function: To jointly supervise the heatmaps and the
3D keypoint coordinates of the last frame, the loss function is
designed as:

L = λHLHeatmap + λJLJoints (2)

where:

LHeatmap =
1

Nwh

L∑
i=1

N∑
j=1

w∑
x=1

h∑
y=1

[H
(i)
j (x, y)− ˆ

H
(i)
j (x, y)]2

(3)

LJoints =
1

N

N∑
j=1

||p− p̂||22 (4)

where ∥ · ∥2 denotes the L2 norm. The loss weights are
empirically set to λH = 10.0 and λJ = 2.0 .

D. Performance Evaluation

We adopt leave-one-subject-out cross-validation on the col-
lected data to train and evaluate our approach, and compare it
with a vision-only baseline, Integral Pose [12]. The accuracy
of estimated keypoints is assessed using 2D-MPJPE (Mean
Per Joint Position Error in 2D), 3D-MPJPE (Mean Per Joint
Position Error in 3D), and PA-MPJPE (Procrustes Aligned
Mean Per Joint Position Error). The temporal sequence length
L for both image and IMU inputs is set to 10.

An ablation study is conducted to evaluate the contribution
of IMU signals to pose estimation. Separate models are trained
using vision + 6 IMUs, vision + 4 IMUs, vision + 2 IMUs,
and vision only, and evaluated using the same metrics.

III. RESULTS

A quantitative comparison between the proposed method
and the vision-only baseline, Integral Pose, was conducted
using three metrics on data collected from professional rehabil-
itation exercises (Table II). The proposed method consistently
outperforms Integral Pose across all evaluation metrics. For
2D pose estimation, the proposed approach achieves a lower
error of 5.50 ± 0.75 pixels, compared to 7.33 ± 2.08 pixels
for Integral Pose. For 3D keypoints, the proposed approach
achieves an error of 8.27 ± 1.03 cm, while Integral Pose
yields 10.05 ± 2.67 cm. Structural accuracy, measured by PA-
MPJPE, is also improved: 6.31 ± 0.92 cm for our method
versus 7.47 ± 1.60 cm for Integral Pose. Notably, our method
shows both better accuracy and lower standard deviation across
all subjects, indicating enhanced robustness and generalizabil-
ity in rehabilitation scenarios.

In the ablation study, the vision + IMU model outperforms
the vision-only model across all three metrics (Fig. 3), with the
best performance achieved using four IMUs. The 2D-MPJPE
is 5.16 pixels, the 3D-MPJPE is 7.44 cm, and the PA-MPJPE
is 5.81 cm.



TABLE II
COMPARISON OF POSE ESTIMATION PERFORMANCE (MPJPE IN

PIXELS/CM)

Metric Method S1 S2 S3 S4 S5 S6 Avg (± std)

2D-MPJPE
Ours 6.28 5.05 6.77 5.12 5.05 4.74 5.50 ± 0.75

Integral 8.23 9.29 10.40 5.16 5.49 5.41 7.33 ± 2.08

3D-MPJPE
Ours 9.78 8.41 9.29 7.09 8.07 6.99 8.27 ± 1.03

Integral 11.00 13.57 12.15 7.10 8.83 6.14 10.05 ± 2.67

PA-MPJPE
Ours 8.01 6.24 6.67 5.41 6.29 5.21 6.31 ± 0.92

Integral 7.72 10.57 8.08 5.92 6.38 6.14 7.47 ± 1.60

Fig. 3. Ablation study on the impact of input modality on pose estimation
performance. The model is trained and tested on the collected rehabilitation
motion data using different input modalities: vision only, vision + 2 IMUs,
vision + 4 IMUs and vision + 6 IMUs.

IV. DISCUSSION & CONCLUSION

This paper introduces a vision-IMU fusion method for
pose estimation in rehabilitation, aiming to enhance accuracy
through inertial sensing. The proposed approach outperforms
the vision-only baseline, Integral Pose, across all metrics,
achieving both higher accuracy and greater robustness. In re-
habilitation, where subject variability is high, lower deviations
reflect greater robustness and better user experience.

Our ablation study confirms the strong complementary
effect of IMU data on visual input, with the fusion of vision
and IMU achieving higher accuracy than vision alone. Notably,
the combination of vision with four IMUs outperforms that
with six. The two additional IMUs, placed on the head and
abdomen, contribute less because these regions exhibit limited
motion during many rehabilitation exercises, particularly in
supine and kneeling postures. As a result, the signals from
these sensors may introduce redundancy or noise during model
training.

Previous works have also explored pose estimation in
rehabilitation contexts. Cotton [13] proposed a method that
integrates vision and IMU data, but it processes each frame
independently, which may result in abrupt pose transitions.
Li et al. [14] developed a home-based pose estimation sys-
tem, but their work focused on lower-body rehabilitation
rather than full-body recovery. In contrast, we focus on full-

body rehabilitation movements and have collected a unique
multimodal dataset from professionally guided exercises. By
employing temporal fusion of vision and IMU signals, our
approach enables continuous full-body pose estimation in
complex rehabilitation movements, thereby helping fulfill the
growing need for intelligent rehabilitation solutions.

Overall, this paper proposes a pose estimation method that
fuses data from a monocular RGB camera and six IMUs,
validated using motion data collected from specialized reha-
bilitation movements. The results confirm its accuracy, while
ablation study demonstrates the complementary role of IMUs.
These findings highlight the potential of vision-IMU fusion for
rehabilitation. Future work will focus on improving real-time
performance and enabling interactive movement guidance to
further enhance user experience.
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