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ABSTRACT

We show, contrary to the optimism about LLM’s problem-solving abilities, fueled
by the recent gold medals at the International Math Olympiad (IMO) that LLMs
attained, that a problem exists—Yu Tsumura’s 554th problem—that a) is within
the scope of an IMO problem in terms of proof sophistication, b) is not a com-
binatorics problem, which have caused issues for LLMs, c) requires fewer proof
techniques than typical hard IMO problems, d) has a publicly available solution
(likely in the training data of LLMs), and e) that cannot be readily solved by any
existing off-the-shelf LLM (commercial or open-source). We include an analysis
of the output traces of 16 SOTA LLMs. Additionally, we compare the generic
LLM output to a new proof by a former IMO participant, carried out in a small
study, which is significantly better motivated than the original, publicly-available
proof, and elaborate on the differences in LLM and human proof quality.

1 INTRODUCTION

The results achieved by several commercial companies at the International Mathematical Olympiad1

in 2025 (IMO25) have been hailed as a milestone in AI in press releases.2, as well as “awfully
impressive” by some researchers 3. Lending credence to these statements is a recent replication
of some of these results in a scientific setting (Huang & Yang, 2025) by using a more complex
verification scheme, as well as an the OpenAI × AIMO evaluation from March, released in August,
on a version of OpenAI o3’s model that solved 47/50 Olympiad-level hidden math problems there
were used for the AIMO2 competition.4 Due to the difficulty of the involved problems, these results
paint a very optimistic future for the reasoning abilities of state-of-the-art LLMs.

In this paper, we present a counterclaim that offers a more nuanced perspective on the current state
of affairs. The previous results show that there exist LLMs that solve math problems that require
intricate reasoning abilities, for which likely no solution was in the training data ahead of time,
due to the recency of the problems. We show the converse: There exist mathematical problems that
require intricate reasoning abilities that no current off-the-shelf LLMs have, for which a full solution
exists online, posted at a time that predates the advent of LLMs.5

For IMO25 problems, both AI systems solving the problems formalized in Lean4 were evaluated, as
well as system processing the problem formulated in natural-language. We focus our analysis solely
on the natural-language problems.

Specifically, we show that there exists a problem that none of the current set of widely used
LLMs, whether proprietary or open-weight, can solve. This problem is publicly available and is
Yu Tsumura’s 554th problem.6 It is a group theory problem, but we emphasize that no specialized
knowledge of group theory is needed. We reproduce it below:

1imo-official.org
2https://blog.google/products/gemini/gemini-2-5-deep-think/
3https://www.nature.com/articles/d41586-025-02343-x
4https://aimoprize.com/updates/2025-09-05-the-gap-is-shrinking
5On this archive.org link, the year 2017 is the first time the problem is listed online. This link contains

a copy of the statement and the proof.
6Yu Tsumura’s 554th problem.

1

imo-official.org
https://blog.google/products/gemini/gemini-2-5-deep-think/
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Let x, y be generators of a group G with relations

xy2 = y3x,

yx2 = x3y.

Prove that G is the trivial group.

Its proof, which is also provided in the link above, is short and requires nothing more than clever
symbolic manipulation–a task that LLMs solving Olympiad-level math problems need to possess. In
fact, this problem is similar to an IMO problem, such as a functional equation problem or inequality,
where there are established proof techniques. This should be the easiest case for an LLM in terms of
problem difficulty. While the proof, provided in the link above, utilizes the concepts of conjugacy
and the order of a group element, these are only mentioned once and can be unpacked. This makes
the proof independent of any specific knowledge about group theory.

We speculate that the problem is difficult for LLMs because solving the problem involves a deep
search through identities that can be derived from the original relations. There are two potential
reasons why this poses a problem:

• The probability of the LLM hallucinating/making an algebraic error before finding the
required identities is very high.

• The LLM is not trained to search to a high enough expression depth.

Lastly, we note that 60 members of the public have self-reported on Yu Tsumura’s website that
they solved the problem. In addition to this, we conducted a n = 1 study to highlight the differences
between LLM’s mathematical reasoning abilities and human mathematical reasoning abilities: Even
though LLMs are trained on vastly more data, they were not able to solve the problem, as shown in
Section 2; on the other hand, we asked a former IMO participant, who did not have any exposure
to group theory, to learn about the basic definitions necessary to understand Yu Tsumura’s 554th
problem and to attempt to solve the problem. He succeeded, and devised a new proof strategy to
solve Yu Tsumura’s problem. We comment on his approach in Section 3 which shows that whereas
the LLMs seem to need to spend a lot of their time just trying random algebraic manipulations
with little clear direction, the IMO participant clearly motivated different proof strategies, which
highlights a completely approach to problem-solving, that LLMs lack.

2 RESULTS

All our evaluations were performed one-shot, i.e., a single attempt was made to obtain the answer.
Our assessment is made from the point of view of an end user at the present point in time. Thus, we
are assessing whether the model can answer Yu Tsumura’s 554th problem robustly, which means
that the model has to produce the correct answer most of the time, making a one-shot evaluation
should be sufficient. Repeated evaluations might produce correct proofs, but if it takes a best-of-n
approach, majority voting, or other techniques to elicit them, from the perspective of the end user,
this would be a different model that is evaluated (namely, one where the tested LLM incorporates an
output refinement strategy on top, that mirrors the repeating-evaluation framework ).

The list of models that we queried is given in Table 2. These models arguably represent the state
of the art among publicly available options. Although this list is not exhaustive, these models likely
outperform most others and are the most highly rated ones on website such as lmarena.ai (except
GPT-4.5). Therefore, we reason that if these models are unable to solve the problem, it is unlikely
that other comparable or less capable models will succeed either.

The failures in each case are fatal to the proof. In all cases, the model relied on the error we listed
to complete its output. None of the models makes really significant progress before such an error
derails the model, or in the case of the “argument incomplete” annotation, the model appears to give
up and declares success before much meaningful progress is made.

The fact that our result transcends the various types of LLMs indicates:
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LLM Access Eval Date Failure
o3-pro (B.1) OpenRouter 28 Jul D
o3 (B.2) online GUI 1 Aug C, T
o4-mini-high (B.3) online GUI 1 Aug T
GPT-4o (B.4) online GUI 1 Aug I
Gemini 2.5 Pro (B.5) online GUI 1 Aug A
DeepSeek R1 (B.6) online GUI 1 Aug U
Claude Sonnet 4 (Ext. Thinking) (B.7) online GUI 2 Aug U
Claude Opus 4 (Ext. Thinking) (B.8) OpenRouter 2 Aug T
Grok 4 0709 (B.9) LMArena 2 Aug U
Kimi K2 (B.10) OpenRouter 2 Aug A, I
Qwen3 235B A22B Thinking 2507 (B.11) OpenRouter 2 Aug U
GLM-4.5 (B.12) OpenRouter 2 Aug A
Gemini 2.5 Deep Think (B.13) online GUI 3 Aug A
Llama 4 Maverick (B.14) LMArena 3 Aug U
DeepSeek v3 0324 (B.15) OpenRouter 3 Aug I
QwQ 32B (B.16) LMArena 3 Aug A, U
GPT-OSS-120B (B.17) OpenRouter 14 Aug U
GPT-5 Thinking (B.18) online GUI 16 Aug D

Table 1: A table of all 16 evaluated LLMs on Yu Tsumura’s 554th problem, together with the
dates at which the models were prompted, and links to the full outputs and detailed failure mode
descriptions. For both Claude models the “Extended Thinking” option was turned on. Some models
are missing size specifications, e.g., DeepSeek R1 as the GUI, that was used to access the model,
did not reveal this information about the underlying model, see Appendix A for more information.
None of the listed models were able to solve it flawlessly, as outlined by the failure modes (see key
below). We refer to Section B for full output traces, and detailed explanation about the (potentially
multiple) critical failure modes, and on which lines of the proof they occur.

Key: A = algebra error, C = missed case, D = incompatible definition,
I = argument incomplete, T = inapplicable theorem,
U = unwarranted assumption/claim
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• Lack of high-quality scientific evaluation. In contrast to final-answer benchmarks and
evaluations, such as OlympiadBench (He et al., 2024), for which automatic assessment is
possible, there are few benchmarks for assessing proof-based reasoning, due to the high
human effort involved. Exceptions are matharena.ai, (Petrov et al., 2025) and the
earlier GHOSTS benchmark and evaluation (Frieder et al., 2023) problems, which contains
a preliminary assessment on older LLMs on 100 problems from the book by A. Engel,
“Problem-Solving Strategies” (Engel, 1998). Benchmarks comprising just six problems,
such as the evaluation on IMO25 problems, are too small to make an informed assessment
about the (mathematical) reasoning abilities of LLMs. The current results emphasize this,
contradicting the optimism that the IMO25 inspires.

• Outcome misalignment. The goal is to increase the reasoning abilities of LLMs, which
can be measured by the number of problems an LLM can solve. Relying on final-answer
benchmarks can skew this. Hence, problems where proof assessment is performed are
necessary to establish the baseline of reasoning abilities, and the current failure shows that
some gaps may still exist towards final-answer benchmarks.

3 HUMAN COMPARISON AND A NEW PROOF

Yu Tsumura’s 554th problem belongs to the domain of group theory, which is not a domain that is
present at problems from the IMO.

Inspection of the original proof reveals that no specific group theory knowledge or group theoretic
proof strategies are needed to solve Yu Tsumura’s problem, beyond the definition of a group and a
generator. Nonetheless, it is unclear whether the difficulty of the problem is within the reach of an
IMO-level competitor.

To clarify this, we carried out an n = 1 study with a former IMO25 participant, who was not yet
exposed to any group theory.

Precise instructions were provided to him that he was not to look up information about group theory,
and to receive any information he needed to understand the foundational group theoretic definitions
solely form interactions with ChatGPT. We shared the full, unredacted transcript of interactions with
ChatGPT, as well as his write-up of the proof.7

The fact that an IMO participant was able to solve this problem demonstrated, perhaps unsurpris-
ingly, that Yu Tsumura’s 554th problem is well within the reach of IMO-level students.

More interesting is to observe that the student engaged, without being explicitly prompted to so in
any way, to devise a proof that comes close to what is known as a “motivated proof” (Pólya, 1949;
Morris, 2020). These are proofs where each step made in the proof is made more transparent by pro-
viding clear motivation. It was observed that LLMs struggle with devising motivated proofs (Frieder
et al., 2024), and the current paper highlights more strongly the distinction in human and LLM proof
quality. This both pertains to the thoughtful outline he shared that represents his thinking process,
as well as the final proof that resulted from this process.

What is noticeable about the solution by the IMO participant is that after spotting the identity
xy2nx−1 = x3n, which some LLMs are also able to devise, the participant exploits it by picking
special values of n.

In particular, the participants notices that we can replace a factor of 2 with a factor of 3, at the
expense of wrapping things in another x and x−1. But then by just focusing on the power of 3
dividing n, specifically by assuming n is divisible by a sufficiently high power of 3, the participant
can control the use of the identity. The main thing that is different here is that he keeps focusing on
powers, whereas both Yu Tsumura’s original solution and others known correct proofs prove some
identity involving y27 and then go back to using the original identities to knock out the rest of the
solution (or, in case of LLMs, just “fiddling” until the whole thing collapses).

The IMO participant’s solution is much nicer because it shows why 27 is important in the proof and
where it comes from - a motivated proof step.

7https://anonymous.4open.science/r/yutsumura_solution-0BCD/

4

matharena.ai
https://anonymous.4open.science/r/yutsumura_solution-0BCD/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 LIMITATIONS

Goodhart’s law, which states that “when a measure becomes a target, it ceases to be a good measure”
is pervasive in machine learning: This principle highlights that model creators often optimize the
models to score highly on a given benchmark, rather than equipping the models with the skills that
are partially captured by that benchmark and that are needed to succeed on that benchmark. In this
regard, we expect that, having emphasized the problems commercial LLMs face on Yu Tsumura’s
554th problem, models will soon be adapted to solve this issue (we hypothesize that for some state-
of-the-art models, techniques as straightforward as improved test-time training will lead to the prob-
lem being solved). Yet, we conjecture that even in this case, other problems be found on which
LLMs will struggle across the board.

Our evaluation pertained exclusively to models that reasoned and did not use a RAG pipeline – since
the solution is publicly available, such an approach would not have assessed the reasoning skills of
the evaluated model. In the case of o3-Pro, it was necessary to explicitly prompt the model not to
look up the solution online.

Our protocol was to give each model a single attempt at a solution. It is reasonable to assume
that multiple attempts, especially with the more expensive models, may result in a more complete
solution. Of course, commercial models may already do this internally, using techniques such as
majority voting, or more sophisticated variants thereof. We did not follow this approach, because
our analysis pertains solely to see whether the experience of an end user interacting with these
language models can live up to the expectation genereted by the strong performance on IMO25.

We have focused on publicly released, widely deployed models, especially flagship models. We
cannot exclude that there are boutique models or models that are not yet publicly deployed that can
reliably solve the problem.

The difference in model capabilities might also be explained by differences in how much training
on the test task was performed (Dominguez-Olmedo et al., 2024).

Lastly, a mathematical problem with a proof that relies mainly on symbolic manipulation will pose
few issues for a symbolic solver tailored to this type of reasoning. In this regard we expect that an
LLM that has access to a tool, such as Vampire 8 or some other solver, and can translate the problem
into the necessary formalism, will be able to solve it.

5 CONCLUSION

We have demonstrated that there exists at least one problem drawn from a similar distribution in
terms of human difficulty and solution strategies as IMO problems, on which LLMs have demon-
strated very strong performance to date, on which LLMs nonetheless systematically fail. Thus,
subject to the constraints mentioned in Section 4, reasoning in LLMS remains brittle.

The fact that LLMs attained gold medals in the IMO and that, further, an unreleased variant of
OpenAI’s o3 solved 50 Olympiad-level problems in the OpenAI × AIMO eval, would imply that
LLMs should be able to solve Yu Tsumura’s 554th problem, too, which we showed is accessible to
a human with IMO-level preparation.

Yet, the fact that none of the LLMs solved it highlights that LLMs’ “thinking” is different from
the thinking of a human, and, in particular, that their reasoning ability is not transitive: Solving
problems of a similar level of difficulty does not guarantee that another, similar such problem can
be solved.

We are cognizant that Yu Tsumura’s 554th problem will soon be solved by LLMs, in particular, once
attention has been drawn to the fact that it is not solvable. Our analysis was carried out over a time-
frame of less than three weeks between July and August 2025, and meant to capture a noteworthy
snapshot at the time.

8https://github.com/vprover/vampire
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Nonetheless, this doesn’t change our overall message, as in that case other problems that should be
accessible to LLMs based on their performance on comprehensive benchmarks, will turn out to be
not solvable by a wide set of LLMs.

We conclude with concerns we have going forward: In announcements on strong LLM performance,
it is not always clear what score was used. Several common options exist to score problems from a
benchmark, such as a binary score per problem (correct/incorrect), or a score that takes into account
repeated sampling (pass@n, first introduced in (Kulal et al., 2019)). Not being fully explicit in how
exactly the methodology was set up can make the numbers hard to interpret.

For very long running commercial models, it will become difficult to rule out human intervention
behind the scenes as benchmarks are being carried out, especially if the models are only deployed
to a very small number of individuals or can only be afforded by very few researchers. This will
potentially skew results of evaluations and make scientific evaluation difficult, if not impossible. We
note that better evaluation standards are needed to address this issue. Pre-registered evaluation, akin
to pre-registered studies, where time constraints are discussed and fixed in advance, are needed to
exclude issues like these, by making sure (among other things) that the time alloted for the evaluation
is not longer than the average expected runtime of the model.

REPRODUCIBILITY STATEMENT

Due to the stochastic nature of LLMs, re-generating the outputs is not possible. However, we have
included the full output traces of all LLMs in Appendix B.
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A ADDITIONAL LLM INFORMATION

In order to emulate the end user experience, we used various web GUIs to access the models. In
some cases, only these were available.

We accessed DeepSeek R1 via the DeepSeek website. We presume this is DeepSeek R1 0528. This
is a 685B model, comprising 671B main model weights.9 It is accessed by turning on the DeepThink
option in the DeepSeek web interface.

The Claude Sonnet 4 model was run with Extended Thinking turned on in the web interface.

The Claude Opus 4 model was accessed via OpenRouter and it spent 146.5s reasoning, indicating
that the Extended Thinking mode was switched on.

On release day, GPT-5 suffered technical issues, such as returning responses unrelated to the prompt,
or crashes. An output for GPT-5 was obtained, however OpenAI changed the available options
quickly over the coming days and we decided not to use the release day response and wait until the
models stabilised.

A later attempt on Aug 14 returned an empty answer after 14m 54s.

The included output for GPT-5 was obtained on Aug 16 with GPT-5 Thinking. The mathematical
error was essentially the same as the one produced by GPT-5 on release day. However, the Aug 16
generation only thought for 2min 7s vs 4min 43s on release day. We don’t know if this was due to
server load or a change in the model.

B OUTPUT TRACES

This appendix contains the unmodified solutions produced by the model, along with the lines at
which critical errors are made. We also consider a substantially incomplete proof to be a critical
error.

The prompt for all LLMs was identical: Let G be a group with generators x and y and relations
xy2 = y3x and yx2 = x3y. Can you prove that G is the trivial group. For models that do a web
search, we add: Do not perform a web search to solve this problem to incentivize the model to reason
rather than to regurgitate the web-based proof. For each model below, we first list the errors, and
then reproduce the generated proof. At least one error was always critical, and we indicate which.

B.1 O3-PRO

Lines 3, 8 and 12: The definition of the commutator used is [x, y] = xyx−1y−1. The defi-
nition of conjugation used is xy = y−1xy. But the identity [x, yz] = [x, y][x, z]y is not valid with
these definitions. (Critical)

1 Write the two relations in commutator form.
2

3 (1) $xyˆ2 = yˆ3x \iff x yˆ2 xˆ{-1} = yˆ3 \iff [x , yˆ2] = y$
4 (2) $yxˆ2 = xˆ3y \iff y xˆ2 yˆ{-1} = xˆ3 \iff [y , xˆ2] = x$
5

6 Step 1. Express y in terms of the basic commutator
7 Put $c = [x , y]$.
8 Because $[x , yˆ2] = [x , y][x , y]ˆy (= c cˆy)$ we have
9 $y = c cˆy$. (3)

10

11 Multiply (3) on the right by $(cˆy)ˆ{-1}$.
12 Since $(cˆy)ˆ{-1} = yˆ{-1} cˆ{-1} y$, (3) gives
13

14 $y (cˆy)ˆ{-1} = c \iff y yˆ{-1} cˆ{-1} y = c \iff cˆ{-1} y =
c$,↪→

9https://huggingface.co/deepseek-ai/DeepSeek-V3
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15 hence $y = cˆ2$. (4)
16

17 So $y$ is the square of the commutator $c$ and therefore commutes
with $c$.↪→

18

19 Step 2. Express $x$ in terms of the commutator
20 Put $d = [y , x]$. From (2) we similarly get
21

22 $x = d dˆx$. (5)
23

24 Because $(dˆx)ˆ{-1} = xˆ{-1} dˆ{-1} x$, the calculation used
above gives↪→

25

26 $dˆ{-1} x = d \implies x = dˆ2$. (6)
27

28 Step 3. Relate d to c
29 But $[y , x] = [x , y]ˆ{-1}, i.e. d = cˆ{-1}$. (7)
30

31 Combining (4), (6) and (7) we obtain
32

33 $y = cˆ2 , x = (cˆ{-1})ˆ2 = c ˆ{-2}$. (8)
34

35 Step 4. $xy = 1$
36 Because powers of the same element commute,
37 $xy = c ˆ{-2} cˆ2 = 1, so y = xˆ{-1}$. (9)
38

39 Step 5. Finish with either defining relation
40 Insert $y = xˆ{-1}$ in the first original relation:
41

42 $x yˆ2 = yˆ3 x \implies x·x ˆ{-2} = x ˆ{-3} · x$ ,
43 i.e. $x ˆ{-1} = x ˆ{-2}$.
44

45 Multiplying by $xˆ2$ gives $x = 1$, and then (9) forces $y = 1$.
46

47 Hence every generator of $G$ is the identity; therefore
48

49 $G$ is the trivial group.
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B.2 O3

Lines 36-37: The value k need not be an integer if n is infinity. (Critical)

Lines 36-41: The given map involves x and thus y need not be sent to an element of ⟨y⟩.
The model has made the assumption that the automorphism of G (conjugation by x) induces an
automorphism of the subgroup ⟨y⟩. (Critical)

1 Below is one way to see that the presentation
2

3 $$
4 G=\langle x,y\mid xyˆ{2}=yˆ{3}x,\;yxˆ{2}=xˆ{3}y\rangle
5 $$
6

7 defines nothing more than the trivial group.
8

9 ---
10

11 ### 1. The abelianisation is trivial
12

13 Send $x\mapsto \bar x,\;y\mapsto\bar y$ in the free abelian group
on two generators.↪→

14 The two relators become
15

16 $$
17 \bar x+2\bar y=3\bar y+\bar x,\qquad
18 \bar y+2\bar x=3\bar x+\bar y,
19 $$
20

21 and both reduce to $ \bar x=\bar y=0$.
22 Hence $Gˆ{\text{ab}}=G/[G,G]=1$; in particular $G=[G,G]$ is

*perfect*.↪→

23 If we can show that $G$ is abelian, it will therefore be trivial.
24

25 ---
26

27 ### 2. Conjugating the cyclic subgroups
28

29 Write $n=\lvert y\rvert\;(1\le n\le\infty)$.
30 From $xyˆ{2}=yˆ{3}x$ we get
31

32 $$
33 x yˆ{2}xˆ{-1}=yˆ{3}. \tag{2.1}
34 $$
35

36 Because the subgroup $\langle y\rangle$ is cyclic, there is an
integer↪→

37 $k\;(1\le k\le n)$ such that
38

39 $$
40 x y xˆ{-1}=yˆ{k}. \tag{2.2}
41 $$
42

43 Squaring (2.2) and comparing with (2.1) yields the congruence
44

45 $$
46 2k\equiv 3\pmod n, \qquad\gcd(k,n)=1. \tag{2.3}
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47 $$
48

49 Exactly the same argument with the second relator $yxˆ{2}=xˆ{3}y$
gives numbers↪→

50 $m=\lvert x\rvert$ and $\ell$ satisfying
51

52 $$
53 y x yˆ{-1}=xˆ{\ell},\qquad 2\ell\equiv 3\pmod

m,\qquad\gcd(\ell,m)=1. \tag{2.4}↪→

54 $$
55

56 *If $n=\infty$* then (2.3) would read $2k=3$ in the integers,
impossible.↪→

57 Thus $y=1$ and, inserting this in the first relator, $x=1$.
58 So from now on we may assume $n,m<\infty$; necessarily $n,m$ are

**odd** (otherwise $2$ would not be invertible mod $n$ or
$m$).

↪→

↪→

59

60 ---
61

62 ### 3. A useful commutator
63

64 By (2.2)-(2.4),
65

66 $$
67 [x,y]=x y xˆ{-1}yˆ{-1}=yˆ{k-1}=xˆ{1-\ell}. \tag{3.1}
68 $$
69

70 Because of the congruences $2k\equiv3$ and $2\ell\equiv3$ we have
71

72 $$
73 \gcd(k-1,n)=\gcd(\ell-1,m)=1. \tag{3.2}
74 $$
75

76 (Indeed, if a divisor $d$ satisfied $d\mid n$ and $d\mid k-1$
then $k\equiv1\pmod d$; reducing $2k\equiv3\pmod n$ modulo
$d$ would give $2\equiv3\pmod d$, hence $d=1$.)

↪→

↪→

77

78 From (3.1)-(3.2) the element
79

80 $$
81 c:=yˆ{k-1}=xˆ{1-\ell}
82 $$
83

84 has order
85

86 $$
87 \lvert c\rvert=n=\lvert y\rvert = m=\lvert x\rvert,
88 $$
89

90 so $\langle c\rangle=\langle y\rangle=\langle x\rangle$.
91 Thus **both** generators are powers of the *same* element $c$;

consequently $G$ is cyclic and therefore abelian.↪→

92

93 ---
94
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95 ### 4. Finish the argument
96

97 We have shown
98

99 * $G$ is abelian (Step 3),
100 * $G$ is perfect (Step 1).
101

102 The only perfect abelian group is the trivial one, so $G=1$.
103 Equivalently $x=1$ and $y=1$.
104

105 $$
106 \boxed{\;G\text{ is the trivial group.}\;}
107 $$
108

109 ---
110

111 ### Why the key step works
112

113 The heart of the proof is the observation that the first relator
lets us↪→

114 *measure* how conjugation by $x$ acts on the cyclic subgroup
generated by $y$; it must multiply exponents by $k$ with
$2k\equiv3$.

↪→

↪→

115 Because $k-1$ is coprime to $|y|$, the commutator $[x,y]=yˆ{k-1}$
still has full order and ends up generating the **same**
cyclic subgroup as $y$.

↪→

↪→

116 The second relator yields the mirror-image statement for $x$.
117 That forces the whole group to be cyclic-hence, after the

abelianisation calculation, trivial.↪→

118

119

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B.3 O4 MINI HIGH

Lines 21-37: It is shown that ⟨y2⟩ and ⟨y3⟩ are conjugate in G. But the following comments
require that they be conjugate in ⟨y⟩, which is not demonstrated. (Critical)

Lines 53-71: Again, conjugation is in G, not in the cyclic subgroup generated by y. Thus the
stated conclusions are not supported. (Critical)

Lines 93-100: The given map involves x and may not even be a map from ⟨y⟩ to itself, let alone
an automorphism. (Critical)

1 Here is a self-contained proof that
2

3 $$
4 G = \langle x,y \mid xyˆ2 = yˆ3x,\; yxˆ2 = xˆ3y\rangle
5 $$
6

7 is the trivial group.
8

9 ---
10

11 ## 1. No element can have infinite order
12

13 From
14

15 $$
16 xyˆ2 = yˆ3x
17 \quad\Longrightarrow\quad
18 x\,yˆ2\,xˆ{-1} = yˆ3
19 $$
20

21 we see that the subgroups
22

23 $$
24 \langle yˆ2\rangle
25 \quad\text{and}\quad
26 \langle yˆ3\rangle
27 $$
28

29 are conjugate in $G$. But in an infinite cyclic group $\langle
y\rangle$, the index of $\langle yˆk\rangle$ is $|k|$.
Conjugate subgroups have the same index, so you would get

↪→

↪→

30

31 $$
32 [\<y\>:\<yˆ2\>] \;=\;2,
33 \qquad
34 [\<y\>:\<yˆ3\>] \;=\;3,
35 $$
36

37 a contradiction. Hence **$y$ must have finite order**. By an
entirely symmetric argument from↪→

38

39 $$
40 yxˆ2 = xˆ3y
41 \quad\Longrightarrow\quad
42 y\,xˆ2\,yˆ{-1} = xˆ3,
43 $$
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44

45 also **$x$ has finite order**.
46

47 ---
48

49 ## 2. Reduction to a cyclic, perfect group
50

51 Let
52

53 $$
54 m = \mathrm{ord}(y),\quad n = \mathrm{ord}(x).
55 $$
56

57 Because $xyˆ2xˆ{-1}=yˆ3$, conjugation by $x$ carries
58 $\langle yˆ2\rangle$ onto $\langle yˆ3\rangle$. In a cyclic

group of order $m$, the index of $\langle yˆk\rangle$ is↪→

59

60 $$
61 \bigl[\<y\>:\<yˆk\>\bigr]
62 =\frac{m}{\gcd(m,k)}.
63 $$
64

65 Equating the two indices gives
66

67 $$
68 \frac{m}{\gcd(m,2)} \;=\;\frac{m}{\gcd(m,3)}
69 \;\Longrightarrow\;
70 \gcd(m,2)=\gcd(m,3).
71 $$
72

73 Since $\gcd(m,2)\in\{1,2\}$ and $\gcd(m,3)\in\{1,3\}$, the only
way they are equal is↪→

74

75 $$
76 \gcd(m,2)=\gcd(m,3)=1,
77 $$
78

79 i.e.\ $m$ is coprime to $6$. In particular, **2 and 3 are
invertible in $\mathbb{Z}/m\mathbb{Z}$.**↪→

80

81 By exactly the same reasoning from the second relation one sees
that↪→

82

83 $$
84 \gcd(n,2)=\gcd(n,3)=1
85 $$
86

87 and so **2 and 3 are invertible mod $n$.**
88

89 ---
90

91 ## 3. Linearising the conjugations
92

93 Because $\gcd(2,m)=1$, the map
94

95 $$
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96 \varphi\colon\<y\>\to\<y\>,\quad
97 \varphi(yˆk)=x\,yˆk\,xˆ{-1}
98 $$
99

100 is an automorphism of the finite cyclic group of order $m$. From
101

102 $$
103 \varphi(yˆ2)=yˆ3
104 \quad\Longrightarrow\quad
105 \varphi(y)ˆ2 = yˆ3,
106 $$
107

108 we deduce that
109

110 $$
111 \varphi(y)=yˆc,
112 $$
113

114 where $c$ is the unique integer mod $m$ satisfying
115

116 $$
117 2c\equiv3\pmod m.
118 $$
119

120 Since $\gcd(2,m)=1$, we have
121

122 $$
123 c-1 \;\equiv\;2ˆ{-1}\;\;(\bmod\,m),
124 $$
125

126 so $\gcd(c-1,m)=1$. Thus
127

128 $$
129 x\,y\,xˆ{-1} \;=\; yˆc.
130 $$
131

132 Similarly, from $\,y\,xˆ2\,yˆ{-1}=xˆ3$ and $\gcd(2,n)=1$ one
shows↪→

133

134 $$
135 y\,x\,yˆ{-1} \;=\; xˆd,
136 $$
137

138 where $2d\equiv3\pmod n$ and hence $\gcd(d-1,n)=1$.
139

140 ---
141

142 ## 4. The commutator forces cyclicity {&} perfection
143

144 Compute the two "commutators":
145

146 $$
147 [x,y] \;=\; x\,y\,xˆ{-1}\,yˆ{-1}
148 \;=\; yˆc\,yˆ{-1} = yˆ{\,c-1},
149 $$
150
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151 $$
152 [y,x] = y\,x\,yˆ{-1}\,xˆ{-1}
153 = xˆd\,xˆ{-1} = xˆ{\,d-1}.
154 $$
155

156 But always $[y,x]=[x,y]ˆ{-1}$, so
157

158 $$
159 xˆ{\,d-1} \;=\; \bigl[y,x\bigr]
160 \;=\;\bigl[x,y\bigr]ˆ{-1}
161 \;=\;yˆ{\,1-c}.
162 \tag{*}
163 $$
164

165 Now:
166

167 1. Since $\gcd(c-1,m)=1$, there is an integer $u$ with
168

169 $$
170 u\,(c-1)\equiv1\pmod m.
171 $$
172

173 Raising $[x,y]=yˆ{c-1}$ to the $u$th power gives
174

175 $$
176 [x,y]ˆu \;=\; yˆ{\,u(c-1)} = y,
177 $$
178

179 i.e.\\
180

181 $$
182 y \;=\; [x,y]ˆu
183 \;\in\; [G,G].
184 \tag{1}
185 $$
186

187 2. Since $\gcd(d-1,n)=1$, there is an integer $v$ with
188

189 $$
190 v\,(d-1)\equiv1\pmod n.
191 $$
192

193 Raising equation $(*)$ to the $v$th power gives
194

195 $$
196 xˆ{\,v(d-1)} = yˆ{\,v(1-c)},
197 $$
198

199 but $v(d-1)\equiv1\pmod n$ so $x=yˆ{\,v(1-c)}$. Hence
200

201 $$
202 x \;\in\;\langle y\rangle.
203 \tag{2}
204 $$
205
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206 From $(1)$ and $(2)$, **both** generators $x,y$ lie in the

*derived subgroup* $[G,G]$, so↪→

207

208 $$
209 [G,G] = G,
210 $$
211

212 i.e.\ $G$ is **perfect**. On the other hand $(2)$ shows $G$ is
cyclic (generated by $y$), hence **abelian**. The only group
which is *both* abelian and perfect is the trivial group.

↪→

↪→

213

214 ---
215

216 ### Conclusion
217

218 No non-trivial group can satisfy simultaneously
219

220 $$
221 xyˆ2=yˆ3x
222 \quad\text{and}\quad
223 yxˆ2=xˆ3y,
224 $$
225

226 so
227

228 $$
229 \boxed{G\text{ is the trivial group.}}
230 $$
231
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B.4 GPT-4O

Line 118: The preceding lines don’t demonstrate that conjugation of yn by x increases the expo-
nent by 1. (Incorrect but not used)

Line 348: It is not clear which equation x = yxy comes from. (Incorrect but not used)

Line 354: Having made no progress whatsoever, the model concludes the “only consistent solu-
tion” is the trivial group. (Critical)

1 We are given a group $G$ with generators $x$ and $y$, and two
relations:↪→

2

3 $$
4 (1) \quad xyˆ2 = yˆ3x, \quad \text{and} \quad (2) \quad yxˆ2 =

xˆ3y.↪→

5 $$
6

7 Our goal is to **prove that $G$ is trivial**, i.e., $x = y = 1$.
8

9 ---
10

11 ### Step 1: Rewrite the Relations
12

13 Let’s manipulate each relation to bring like terms together.
14

15 #### From (1): $xyˆ2 = yˆ3x$
16

17 Multiply both sides on the right by $xˆ{-1}$:
18

19 $$
20 xyˆ2xˆ{-1} = yˆ3.
21 $$
22

23 So,
24

25 $$
26 x yˆ2 xˆ{-1} = yˆ3. \quad \text{(1')}
27 $$
28

29 This says that conjugating $yˆ2$ by $x$ gives $yˆ3$, or
30

31 $$
32 x yˆ2 xˆ{-1} = yˆ3 \quad \Rightarrow \quad x yˆ2 xˆ{-1} yˆ{-3} =

1.↪→

33 $$
34

35 This is equivalent to:
36

37 $$
38 x yˆ2 xˆ{-1} yˆ{-3} = 1.
39 $$
40

41 #### From (2): $yxˆ2 = xˆ3y$
42

43 Multiply both sides on the right by $yˆ{-1}$:
44
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45 $$
46 yxˆ2 yˆ{-1} = xˆ3.
47 $$
48

49 So,
50

51 $$
52 y xˆ2 yˆ{-1} = xˆ3. \quad \text{(2')}
53 $$
54

55 Similarly,
56

57 $$
58 y xˆ2 yˆ{-1} xˆ{-3} = 1.
59 $$
60

61 ---
62

63 ### Step 2: Define Conjugation Maps
64

65 Let’s define the following:
66

67 * From (1'): $x yˆ2 xˆ{-1} = yˆ3 \Rightarrow x yˆ2 xˆ{-1} yˆ{-3}
= 1$↪→

68 * From (2'): $y xˆ2 yˆ{-1} = xˆ3 \Rightarrow y xˆ2 yˆ{-1} xˆ{-3}
= 1$↪→

69

70 These say that:
71

72 $$
73 x yˆ2 xˆ{-1} yˆ{-3} = 1 \quad \text{and} \quad y xˆ2 yˆ{-1}

xˆ{-3} = 1.↪→

74 $$
75

76 These are conjugation identities showing how $x$ and $y$ act on
each other.↪→

77

78 Let’s now take (1') and apply the same conjugation again.
79

80 ---
81

82 ### Step 3: Conjugate (1') Again
83

84 From (1'):
85

86 $$
87 x yˆ2 xˆ{-1} = yˆ3.
88 $$
89

90 Now conjugate both sides by $x$:
91

92 Left-hand side:
93

94 $$
95 x (x yˆ2 xˆ{-1}) xˆ{-1} = xˆ2 yˆ2 xˆ{-2}.
96 $$
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97

98 Right-hand side:
99

100 $$
101 x yˆ3 xˆ{-1}.
102 $$
103

104 So,
105

106 $$
107 xˆ2 yˆ2 xˆ{-2} = x yˆ3 xˆ{-1}.
108 $$
109

110 But from (1') again:
111

112 $$
113 x yˆ2 xˆ{-1} = yˆ3 \Rightarrow x yˆ3 xˆ{-1} = x (x yˆ2 xˆ{-1})

xˆ{-1} = xˆ2 yˆ2 xˆ{-2}.↪→

114 $$
115

116 So this checks out.
117

118 But this also tells us that each time we conjugate $yˆn$ by $x$,
the exponent increases by one.↪→

119

120 So maybe try to **write $x$ and $y$ in terms of each other**.
121

122 ---
123

124 ### Step 4: Solve for One Variable
125

126 Go back to:
127

128 $$
129 x yˆ2 = yˆ3 x.
130 $$
131

132 Let’s try to **move all $x$'s to one side**.
133

134 Start with:
135

136 $$
137 x yˆ2 = yˆ3 x
138 $$
139

140 Multiply both sides on the left by $xˆ{-1}$, then on the right by
$xˆ{-1}$:↪→

141

142 $$
143 yˆ2 = xˆ{-1} yˆ3 x \Rightarrow x yˆ2 xˆ{-1} = yˆ3.
144 $$
145

146 As before.
147

148 Similarly, from (2):
149
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150 $$
151 yxˆ2 = xˆ3 y \Rightarrow y xˆ2 yˆ{-1} = xˆ3.
152 $$
153

154 Now, write these as:
155

156 * $x yˆ2 xˆ{-1} = yˆ3$
157 * $y xˆ2 yˆ{-1} = xˆ3$
158

159 Let’s now define $a = x$, $b = y$, to simplify notation.
160

161 So:
162

163 * $a bˆ2 aˆ{-1} = bˆ3$ (1)
164 * $b aˆ2 bˆ{-1} = aˆ3$ (2)
165

166 Let's try to eliminate one of the variables using these
relations.↪→

167

168 ---
169

170 ### Step 5: Try to Find Orders of $x$, $y$
171

172 Suppose $x = 1$, the identity.
173

174 Then from (1):
175

176 $$
177 1 \cdot yˆ2 = yˆ3 \Rightarrow yˆ2 = yˆ3 \Rightarrow yˆ{-1} = 1

\Rightarrow y = 1.↪→

178 $$
179

180 So $x = 1 \Rightarrow y = 1$.
181

182 Similarly, if $y = 1$:
183

184 From (2):
185

186 $$
187 1 \cdot xˆ2 = xˆ3 \Rightarrow xˆ2 = xˆ3 \Rightarrow xˆ{-1} = 1

\Rightarrow x = 1.↪→

188 $$
189

190 So $y = 1 \Rightarrow x = 1$.
191

192 So **if either generator is identity, the other must be too**.
193

194 Now suppose neither is the identity, but we try to find an order.
195

196 Suppose $x$ and $y$ have finite order.
197

198 Let’s say $xˆn = 1$ and $yˆm = 1$.
199

200 Try to find a contradiction.
201
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202 But a better approach is to **define a new variable** and work
through simplification.↪→

203

204 ---
205

206 ### Step 6: Try to Simplify with Substitutions
207

208 From the conjugation relation:
209

210 $$
211 x yˆ2 xˆ{-1} = yˆ3 \Rightarrow x yˆ2 = yˆ3 x.
212 $$
213

214 Let’s isolate $x$. Multiply both sides on the left by $yˆ{-3}$:
215

216 $$
217 yˆ{-3} x yˆ2 = x.
218 $$
219

220 So:
221

222 $$
223 x = yˆ{-3} x yˆ2.
224 $$
225

226 Now cancel $x$ from both sides:
227

228 Multiply both sides on the left by $xˆ{-1}$:
229

230 $$
231 1 = xˆ{-1} yˆ{-3} x yˆ2.
232 $$
233

234 Rewriting:
235

236 $$
237 xˆ{-1} yˆ{-3} x yˆ2 = 1.
238 $$
239

240 Similarly, from the second relation:
241

242 $$
243 y xˆ2 = xˆ3 y \Rightarrow xˆ2 = yˆ{-1} xˆ3 y \Rightarrow 1 =

xˆ{-2} yˆ{-1} xˆ3 y.↪→

244 $$
245

246 So:
247

248 $$
249 xˆ{-2} yˆ{-1} xˆ3 y = 1.
250 $$
251

252 We now have:
253

254 * $xˆ{-1} yˆ{-3} x yˆ2 = 1$ (A)
255 * $xˆ{-2} yˆ{-1} xˆ3 y = 1$ (B)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

256

257 Let’s work with (A):
258

259 $$
260 xˆ{-1} yˆ{-3} x yˆ2 = 1 \Rightarrow yˆ{-3} x yˆ2 = x.
261 $$
262

263 Let’s multiply both sides by $xˆ{-1}$ on the right:
264

265 $$
266 yˆ{-3} x yˆ2 xˆ{-1} = 1.
267 $$
268

269 So:
270

271 $$
272 yˆ{-3} x yˆ2 xˆ{-1} = 1.
273 $$
274

275 That is:
276

277 $$
278 x yˆ2 xˆ{-1} = yˆ3.
279 $$
280

281 We’ve gone in circles.
282

283 Let’s take a step back.
284

285 ---
286

287 ### Step 7: Try a Free Group Homomorphism
288

289 Suppose $G$ is a group with these relations:
290

291 $$
292 G = \langle x, y \mid x yˆ2 = yˆ3 x,\ y xˆ2 = xˆ3 y \rangle.
293 $$
294

295 Let's define a homomorphism $\phi: G \to \mathbb{Z}$ to
abelianize the group.↪→

296

297 In the abelianization, $xy = yx$, so we treat all elements as
commuting.↪→

298

299 From the relations:
300

301 1. $x yˆ2 = yˆ3 x \Rightarrow x + 2y = 3y + x \Rightarrow 2y = 3y
\Rightarrow y = 0$↪→

302 2. $y xˆ2 = xˆ3 y \Rightarrow y + 2x = 3x + y \Rightarrow 2x = 3x
\Rightarrow x = 0$↪→

303

304 So in the abelianization, $x = y = 0$, so both are trivial in
$Gˆ{ab}$.↪→

305
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306 Therefore, $G$ is a **perfect group** (equal to its commutator
subgroup).↪→

307

308 Since the abelianization is trivial, we suspect $G$ is trivial or
very small.↪→

309

310 ---
311

312 ### Step 8: Try the Identity Directly
313

314 From:
315

316 $$
317 x yˆ2 = yˆ3 x
318 \Rightarrow x yˆ2 xˆ{-1} = yˆ3
319 \Rightarrow x yˆ2 xˆ{-1} yˆ{-3} = 1.
320 $$
321

322 Let’s define:
323

324 $$
325 r = x yˆ2 xˆ{-1} yˆ{-3}, \quad s = y xˆ2 yˆ{-1} xˆ{-3}.
326 $$
327

328 Then $G = \langle x, y \mid r = 1,\ s = 1 \rangle$.
329

330 Now define a **map from $G$ to the trivial group**, mapping $x
\mapsto 1, y \mapsto 1$. Clearly both relations are
satisfied. So the trivial group is a quotient of $G$.

↪→

↪→

331

332 But we now show that **$x = y = 1$** in $G$.
333

334 From:
335

336 $$
337 x yˆ2 = yˆ3 x \Rightarrow x yˆ2 xˆ{-1} = yˆ3.
338 $$
339

340 Let's suppose $y \ne 1$, and see that the order of $y$ must be
finite.↪→

341

342 Let's try small orders.
343

344 Suppose $yˆn = 1$.
345

346 Try $n = 1$: $y = 1 \Rightarrow x = 1$.
347

348 Try $n = 2$: then $yˆ2 = 1 \Rightarrow x = y x y \Rightarrow x =
x$, okay.↪→

349

350 Try $n = 3$: $yˆ3 = 1 \Rightarrow x yˆ2 = x \Rightarrow yˆ2 = 1
\Rightarrow y = 1$. Contradiction.↪→

351

352 So we always get back to $y = 1 \Rightarrow x = 1$.
353

354 Therefore, the only consistent solution is:
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355

356 $$
357 x = y = 1.
358 $$
359

360 ---
361

362 ### Final Conclusion:
363

364 $$
365 \boxed{G \text{ is the trivial group.}}
366 $$
367

368 All elements reduce to the identity under the given relations.

24
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B.5 GEMINI 2.5 PRO

Lines 39-40: a cannot be cancelled from the right, and even if this is a typo, the claimed identity
a = b3ab−1 does not follow from bab = b4ab−1. This is an algebra error. (Critical)

1 Here is a proof that the group $G$ with generators $x$ and $y$
and relations $xyˆ2 = yˆ3x$ and $yxˆ2 = xˆ3y$ must be the
trivial group.

↪→

↪→

2

3 ### **1. Rewriting the Relations**
4

5 The given relations are:
6 1. $xyˆ2 = yˆ3x$
7 2. $yxˆ2 = xˆ3y$
8

9 To simplify the manipulation of these relations, we can introduce
new generators. Let $a = x$ and $b = yˆ{-1}$. Then $y =
bˆ{-1}$. We can rewrite the original relations in terms of
$a$ and $b$.

↪→

↪→

↪→

10

11 * **Relation 1:** $xyˆ2 = yˆ3x$ becomes $abˆ{-2} = bˆ{-3}a$.
12 * **Relation 2:** $yxˆ2 = xˆ3y$ becomes $bˆ{-1}aˆ2 = aˆ3bˆ{-1}$.
13

14 Now, we can rearrange these new relations to get expressions for
$a$ and $aˆ2$:↪→

15 * From $abˆ{-2} = bˆ{-3}a$, if we multiply by $bˆ3$ on the left,
we get $bˆ3abˆ{-2} = a$. If we then multiply by $bˆ2$ on the
right, we obtain:

↪→

↪→

16 $bˆ3a = abˆ2$ (R1')
17 * From $bˆ{-1}aˆ2 = aˆ3bˆ{-1}$, if we multiply by $b$ on the

left, we get $aˆ2 = baˆ3bˆ{-1}$. If we then multiply by $b$
on the right, we obtain:

↪→

↪→

18 $aˆ2b = baˆ3$ (R2')
19

20 So, the original relations are equivalent to the pair of
relations:↪→

21 * $abˆ2 = bˆ3a$
22 * $aˆ2b = baˆ3$
23

24 ---
25 ### **2. Deriving a Key Identity**
26

27 Now, we will use these relations to show that $b$ must be the
identity element.↪→

28

29 From $abˆ2 = bˆ3a$, we can derive expressions by progressively
multiplying by $bˆ{-1}$ on the right:↪→

30 * $a = bˆ3abˆ{-2}$
31 * $ab = bˆ3abˆ{-1}$
32 * $abˆ2 = bˆ3a$ (This is R1')
33

34 Let's focus on the identity $ab = bˆ3abˆ{-1}$. We can use this to
analyze the expression $bab$:↪→

35 $bab = b(ab)$
36 Substitute the expression for $ab$:
37 $bab = b(bˆ3abˆ{-1}) = bˆ4abˆ{-1}$

25
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38

39 So, we have found that $bab = bˆ4abˆ{-1}$. By canceling $b$ from
the left and $a$ from the right (if $a$ is not the identity),
we get:

↪→

↪→

40 $a = bˆ3abˆ{-1}$
41

42 Now we have two expressions for $a$:
43 1. $a = bˆ3abˆ{-2}$ (from R1')
44 2. $a = bˆ3abˆ{-1}$ (derived above)
45

46 Equating these two expressions gives:
47 $bˆ3abˆ{-2} = bˆ3abˆ{-1}$
48

49 By canceling $bˆ3a$ from the left, we get:
50 $bˆ{-2} = bˆ{-1}$
51

52 Multiplying by $bˆ2$ on the right gives:
53 $e = b$
54

55 ---
56 ### **3. Proving Triviality**
57

58 We have shown that $b = e$. Since we defined $b = yˆ{-1}$, this
means $yˆ{-1}=e$, which implies **$y=e$**.↪→

59

60 Now we can substitute $y=e$ back into one of the original
relations. Let's use the second relation:↪→

61 $yxˆ2 = xˆ3y$
62 Substituting $y=e$:
63 $exˆ2 = xˆ3e$
64 $xˆ2 = xˆ3$
65

66 By canceling $xˆ2$ from the left, we find that **$x=e$**.
67

68 Since both generators $x$ and $y$ are the identity element ($e$),
the group $G$ can only contain the identity element.
Therefore, **$G$ is the trivial group**.

↪→

↪→

69
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B.6 DEEPSEEK R1

Lines 11-13: It is stated that xyx−1 = y3. This is claimed to follow from gyg−1 = y3. But this
is not proved. The claimed proof only shows that (xyx−1)2 = y3. (Critical)

1 The group \(G\) is defined by generators \(x\) and \(y\) and
relations \(xyˆ2 = yˆ3x\) and \(yxˆ2 = xˆ3y\). The goal is to
show that \(G\) is trivial, meaning \(x = 1\) and \(y = 1\),
where 1 is the identity element.

↪→

↪→

↪→

2

3 From the given relations, it is possible to derive additional
relations:↪→

4 - From \(xyˆ2 = yˆ3x\), conjugation by \(x\) gives \(x yˆ2 xˆ{-1}
= yˆ3\). Since conjugation is an automorphism, \(x yˆ2 xˆ{-1}
= (x y xˆ{-1})ˆ2\), so \((x y xˆ{-1})ˆ2 = yˆ3\).

↪→

↪→

5 - Similarly, from \(yxˆ2 = xˆ3y\), conjugation by \(y\) gives \(y
xˆ2 yˆ{-1} = xˆ3\), so \((y x yˆ{-1})ˆ2 = xˆ3\).↪→

6

7 Consider the element \(g = x y\). Conjugating \(y\) by \(g\):
8 \[
9 g y gˆ{-1} = (x y) y (x y)ˆ{-1} = (x y) y (yˆ{-1} xˆ{-1}) = x y

xˆ{-1}.↪→

10 \]
11 From the earlier derivation, \(x y xˆ{-1} = k\) where \(kˆ2 =

yˆ3\), but also from the relation \(g y gˆ{-1} = yˆ3\) (since
\(g y gˆ{-1} = x y xˆ{-1}\) and \((x y xˆ{-1})ˆ2 = yˆ3\)
implies that conjugating again or directly, it follows that
\(x y xˆ{-1} = yˆ3\)). Thus:

↪→

↪→

↪→

↪→

12 \[
13 g y gˆ{-1} = x y xˆ{-1} = yˆ3.
14 \]
15 Therefore:
16 \[
17 x y xˆ{-1} = yˆ3. \quad (1)
18 \]
19 Similarly, for the other relation, consider \(h = y x\).

Conjugating \(x\) by \(h\):↪→

20 \[
21 h x hˆ{-1} = (y x) x (y x)ˆ{-1} = (y x) x (xˆ{-1} yˆ{-1}) = y x

yˆ{-1}.↪→

22 \]
23 From the derivation, \(y x yˆ{-1} = m\) where \(mˆ2 = xˆ3\), and

similarly, it follows that:↪→

24 \[
25 h x hˆ{-1} = y x yˆ{-1} = xˆ3.
26 \]
27 Thus:
28 \[
29 y x yˆ{-1} = xˆ3. \quad (2)
30 \]
31

32 From equations (1) and (2):
33 - Equation (1): \(x y xˆ{-1} = yˆ3\) implies \(x y = yˆ3 x\).

\quad (3)↪→

34 - Equation (2): \(y x yˆ{-1} = xˆ3\) implies \(y x = xˆ3 y\).
\quad (4)↪→
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35

36 Now, use the original relations. From the original relation
\(xyˆ2 = yˆ3x\) \quad (5), and from equation (3), multiply
both sides by \(y\):

↪→

↪→

37 \[
38 x yˆ2 = yˆ3 x y. \quad (6)
39 \]
40 Equating (5) and (6):
41 \[
42 yˆ3 x = yˆ3 x y.
43 \]
44 Since the group operation is cancellative, left-multiply both

sides by \(yˆ{-3}\):↪→

45 \[
46 x = x y,
47 \]
48 which implies:
49 \[
50 x y xˆ{-1} = x xˆ{-1} \implies y = 1. \quad (7)
51 \]
52

53 Similarly, from the original relation \(yxˆ2 = xˆ3y\) \quad (8),
and from equation (4), multiply both sides by \(x\):↪→

54 \[
55 y xˆ2 = xˆ3 y x. \quad (9)
56 \]
57 Equating (8) and (9):
58 \[
59 xˆ3 y = xˆ3 y x.
60 \]
61 Left-multiply both sides by \(xˆ{-3}\):
62 \[
63 y = y x,
64 \]
65 which implies:
66 \[
67 y x yˆ{-1} = y yˆ{-1} \implies x = 1. \quad (10)
68 \]
69

70 From (7) and (10), \(x = 1\) and \(y = 1\). Therefore, the group
\(G\) is trivial.↪→

71

72 \boxed{\text{The group } G \text{ is trivial.}}
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B.7 CLAUDE SONNET 4 (EXTENDED THINKING)

Line 39: The model promises to verify the assumption y2 = e, but this is never independently
verified. (Critical)

Lines 51-54: The model assumes x2 = e without justification. (Critical)

1 Looking at this group presentation, I'll work systematically with
the given relations to show that both generators must equal
the identity.

↪→

↪→

2

3 Given relations:
4 1) $xyˆ2 = yˆ3x$
5 2) $yxˆ2 = xˆ3y$
6

7 **Step 1: Finding the orders of x and y**
8

9 From relation (1): $xyˆ2 = yˆ3x$
10

11 Let me multiply both sides on the left by $yˆ{-3}$ and on the
right by $yˆ{-2}$:↪→

12 $$yˆ{-3}xyˆ2yˆ{-2} = yˆ{-3}yˆ3xyˆ{-2}$$
13 $$yˆ{-3}x = xyˆ{-2}$$
14

15 Multiplying both sides on the right by $yˆ2$:
16 $$yˆ{-3}xyˆ2 = x$$
17

18 But from our original relation, $xyˆ2 = yˆ3x$, so:
19 $$yˆ{-3}(yˆ3x) = x$$
20 $$x = x$$
21

22 Let me try a different approach. From $xyˆ2 = yˆ3x$, I'll
multiply on the left by $yˆ{-3}$:↪→

23 $$yˆ{-3}xyˆ2 = yˆ{-3}yˆ3x = x$$
24

25 So $yˆ{-3}xyˆ2 = x$, which means $yˆ{-3}x = xyˆ{-2}$.
26

27 Multiplying both sides on the right by $yˆ2$:
28 $$yˆ{-3}xyˆ2 = xyˆ{-2}yˆ2 = x$$
29

30 From the original relation $xyˆ2 = yˆ3x$, we have $yˆ{-3}xyˆ2 =
yˆ{-3}yˆ3x = x$.↪→

31

32 This confirms our manipulation. Now, from $yˆ{-3}x = xyˆ{-2}$,
multiplying on the right by $yˆ2$:↪→

33 $$yˆ{-3}xyˆ2 = x$$
34

35 And since $xyˆ2 = yˆ3x$:
36 $$yˆ{-3}yˆ3x = x$$
37 $$x = x$$
38

39 But more importantly, from $yˆ{-3}x = xyˆ{-2}$, if we set $yˆ2 =
e$ (which we'll verify), then:↪→

40 $$yˆ{-3}x = x$$
41 $$yˆ{-3} = e$$
42 $$yˆ3 = e$$
43

29
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44 **Step 2: Using symmetry for x**
45

46 Similarly, from relation (2): $yxˆ2 = xˆ3y$
47

48 Following the same process, multiply on the left by $xˆ{-3}$:
49 $$xˆ{-3}yxˆ2 = xˆ{-3}xˆ3y = y$$
50

51 This gives us $xˆ{-3}yxˆ2 = y$, so $xˆ{-3}y = yxˆ{-2}$.
52

53 Following similar logic, we get:
54 $$xˆ3 = e$$
55

56 **Step 3: Deriving stronger conditions**
57

58 Now I have $xˆ3 = e$ and $yˆ3 = e$.
59

60 Substituting back into the original relations:
61

62 From $xyˆ2 = yˆ3x$ with $yˆ3 = e$:
63 $$xyˆ2 = ex = x$$
64 $$yˆ2 = e$$
65

66 From $yxˆ2 = xˆ3y$ with $xˆ3 = e$:
67 $$yxˆ2 = ey = y$$
68 $$xˆ2 = e$$
69

70 **Step 4: Conclusion**
71

72 Now I have:
73 - $xˆ2 = e$ and $xˆ3 = e$
74 - $yˆ2 = e$ and $yˆ3 = e$
75

76 Since $\gcd(2,3) = 1$, there exist integers $a,b$ such that $2a +
3b = 1$.↪→

77

78 For $x$: $x = xˆ1 = xˆ{2a + 3b} = (xˆ2)ˆa(xˆ3)ˆb = eˆa \cdot eˆb
= e$↪→

79

80 For $y$: $y = yˆ1 = yˆ{2a + 3b} = (yˆ2)ˆa(yˆ3)ˆb = eˆa \cdot eˆb
= e$↪→

81

82 Therefore, both generators equal the identity, which means $G$ is
the trivial group.↪→
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B.8 CLAUDE OPUS 4 (EXTENDED THINKING)

Line 20: This is an unwarranted assumption. The conjugation map is a map on G and so the
result of conjugating y need not be a power of y. (Critical)

1 Looking at the given relations:
2 - $xyˆ2 = yˆ3x$
3 - $yxˆ2 = xˆ3y$
4

5 I'll analyze what these relations tell us about the group
structure.↪→

6

7 From the first relation $xyˆ2 = yˆ3x$, I can rewrite this as:
8 $$xyˆ2xˆ{-1} = yˆ3$$
9

10 This means that conjugating $yˆ2$ by $x$ gives us $yˆ3$.
11

12 Similarly, from the second relation $yxˆ2 = xˆ3y$:
13 $$yxˆ2yˆ{-1} = xˆ3$$
14

15 This means that conjugating $xˆ2$ by $y$ gives us $xˆ3$.
16

17 Let me define the conjugation map $\phi_x(g) = xgxˆ{-1}$. Since
conjugation is a homomorphism, and $\phi_x(yˆ2) = yˆ3$, I
have:

↪→

↪→

18 $$\phi_x(y)ˆ2 = yˆ3$$
19

20 If I let $\phi_x(y) = yˆa$ for some integer $a$, then:
21 $$(yˆa)ˆ2 = yˆ3$$
22 $$yˆ{2a} = yˆ3$$
23

24 This means $yˆ{2a-3} = 1$.
25

26 For this to hold, either:
27 1. $y$ has infinite order, which would require $2a = 3$ in

$\mathbb{Z}$ (impossible for integer $a$)↪→

28 2. $y$ has finite order $m$, and $2a \equiv 3 \pmod{m}$
29

30 So $y$ must have finite order $m$. For the congruence $2a \equiv
3 \pmod{m}$ to have a solution, we need $\gcd(2,m) | 3$.
Since 3 is odd, we need $\gcd(2,m) = 1$, which means $m$ must
be odd.

↪→

↪→

↪→

31

32 By the same reasoning applied to the second relation, $x$ must
have finite odd order $n$, and there exists $b$ such that
$yxyˆ{-1} = xˆb$ where $2b \equiv 3 \pmod{n}$.

↪→

↪→

33

34 Now I'll use both relations together. From our conjugation
equations:↪→

35 - $xyxˆ{-1} = yˆa$ where $2a \equiv 3 \pmod{m}$
36 - $yxyˆ{-1} = xˆb$ where $2b \equiv 3 \pmod{n}$
37

38 Let me compute $xyxyˆ{-1}xˆ{-1}$ in two ways:
39

40 First way: $xyxyˆ{-1}xˆ{-1} = x(yxyˆ{-1})xˆ{-1} = xxˆbxˆ{-1} =
xˆb$↪→
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41

42 Second way: $xyxyˆ{-1}xˆ{-1} = (xyxˆ{-1})(yyˆ{-1}) = yˆa \cdot 1
= yˆa$↪→

43

44 Therefore: $xˆb = yˆa$
45

46 This is a key relationship. Now, since $xˆb = yˆa$:
47 - Applying $\phi_y$: $y(xˆb)yˆ{-1} = y(yˆa)yˆ{-1}$, which gives

$(xˆb)ˆb = yˆa$, so $xˆ{bˆ2} = yˆa$↪→

48 - But also $xˆ{bˆ2} = (xˆb)ˆb = (yˆa)ˆb = yˆ{ab}$
49

50 So $yˆa = yˆ{ab}$, which means $yˆ{a(b-1)} = 1$.
51

52 Since $y$ has order $m$, we need $m | a(b-1)$.
53

54 But we also know:
55 - From $xˆb = yˆa$, raising to the $a$-th power: $xˆ{ab} =

yˆ{aˆ2}$↪→

56 - Applying $\phi_y$ to this: $y(xˆ{ab})yˆ{-1} = y(yˆ{aˆ2})yˆ{-1}$
57 - This gives $(xˆb)ˆ{ab} = yˆ{aˆ2}$, so $xˆ{abˆ2} = yˆ{aˆ2}$
58 - But we already had $xˆ{ab} = yˆ{aˆ2}$
59

60 So $xˆ{ab} = xˆ{abˆ2}$, which means $xˆ{ab(b-1)} = 1$.
61

62 Since $x$ has order $n$, we need $n | ab(b-1)$.
63

64 Now, since $m$ and $n$ are odd, and $a$ and $b$ are odd (as they
satisfy $2a \equiv 3 \pmod{m}$ and $2b \equiv 3 \pmod{n}$
with odd $m,n$), we have:

↪→

↪→

65 - $\gcd(m, ab) = 1$ (since $m$ is odd and $a,b$ are odd)
66 - Therefore $m | (b-1)$ (since $b-1$ is even and $m | a(b-1)$)
67

68 But wait - this gives us $m | (b-1)$ where $b$ satisfies $2b
\equiv 3 \pmod{n}$.↪→

69

70 Similarly, we get $n | (a-1)$ where $a$ satisfies $2a \equiv 3
\pmod{m}$.↪→

71

72 Let me check if any odd integer $m > 1$ can satisfy these
conditions:↪→

73

74 For $m = 3$: $a \equiv 3 \cdot 2ˆ{-1} \equiv 3 \cdot 2 \equiv 0
\pmod{3}$↪→

75 So $a-1 \equiv -1 \equiv 2 \pmod{3}$
76 But we need $3 | (a-1)$, which means $a-1 \equiv 0 \pmod{3}$.

Contradiction!↪→

77

78 For $m = 5$: $a \equiv 3 \cdot 3 \equiv 4 \pmod{5}$ (since
$2ˆ{-1} \equiv 3 \pmod{5}$)↪→

79 So $a-1 \equiv 3 \pmod{5}$
80 But we need $5 | (a-1)$, which means $a-1 \equiv 0 \pmod{5}$.

Contradiction!↪→

81

82 By similar analysis, no odd $m > 1$ can satisfy the required
conditions.↪→

83
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84 Therefore $m = 1$, which means $y = 1$.
85

86 By symmetry, $n = 1$, which means $x = 1$.
87

88 Therefore $G = \{1\}$ is the trivial group.
89
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B.9 GROK 4 0709

Note: Grok 4 repeatedly returned empty output in OpenRouter. Thus Grok 4 0709 was accessed
via LMArena. It is unclear if the two versions are identical.

Line 5: Nothing of the sort is established. (Critical)

Line 7: No reason is given for this. (Critical)

1 The group \(G\) is presented as \(\langle x, y \mid x yˆ2 = yˆ3
x, \, y xˆ2 = xˆ3 y \rangle\).↪→

2

3 Assume for contradiction that \(G\) is non-trivial. Then at least
one of \(x\) or \(y\) is non-trivial.↪→

4

5 As established, the orders \(n\) of \(y\) and \(m\) of \(x\) must
be finite and odd.↪→

6

7 The relations imply that conjugation by \(x\) induces an
automorphism on \(\langle y \rangle\) multiplying exponents
by \(k \equiv 3 \cdot 2ˆ{-1} \pmod{n}\), with \(\gcd(k, n) =
1\).

↪→

↪→

↪→

8

9 Similarly, conjugation by \(y\) induces an automorphism on
\(\langle x \rangle\) multiplying exponents by \(l \equiv 3
\cdot 2ˆ{-1} \pmod{m}\), with \(\gcd(l, m) = 1\).

↪→

↪→

10

11 The order \(e\) of \(k\) modulo \(n\) divides \(m\) and \(l -
1\).↪→

12

13 The order \(d\) of \(l\) modulo \(m\) divides \(n\) and \(k -
1\).↪→

14

15 Now, \(k - 1 \equiv 3 \cdot 2ˆ{-1} - 1 \pmod{n}\). Suppose an odd
prime \(p\) divides both \(n\) and \(k - 1\). Then \(3 \cdot
2ˆ{-1} \equiv 1 \pmod{p}\), so \(3 \equiv 2 \pmod{p}\), hence
\(p \mid 1\), impossible.

↪→

↪→

↪→

16

17 Thus, \(\gcd(n, k - 1) = 1\), so \(d = 1\).
18

19 Then \(l \equiv 1 \pmod{m}\), so \(2 \cdot 1 \equiv 3 \pmod{m}\),
hence \(m \mid 1\), so \(m = 1\) and \(x = 1\).↪→

20

21 With \(x = 1\), the first relation becomes \(yˆ2 = yˆ3\), so \(y
= 1\), hence \(n = 1\).↪→

22

23 This contradicts \(G\) non-trivial.
24

25 Therefore, \(G\) is trivial.
26

27 \boxed{G is trivial}
28
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B.10 KIMI K2

Note: The fact that at the end of the output generated by Kimi K2 a $$ is missing is not a typo.
The model terminates its output without claiming to have found a solution. The error below occurs
well before that time.

Line 184: The identity
y3 = x2y4x−2

does not follow by conjugating again by x, and in fact, does not follow from the previous line at all.
(Critical)

1 ### Understanding the Problem
2

3 We have a group $$ G $$ defined by two generators $$ x $$ and $$
y $$ with two relations:↪→

4 1. $$ xyˆ2 = yˆ3x $$
5 2. $$ yxˆ2 = xˆ3y $$
6

7 Our goal is to prove that $$ G $$ is the trivial group, meaning
$$ x = 1 $$ and $$ y = 1 $$ in $$ G $$, so $$ G $$ has only
one element.

↪→

↪→

8

9 ### Initial Approach
10

11 To show that $$ G $$ is trivial, we need to derive from the given
relations that $$ x = 1 $$ and $$ y = 1 $$. This means we
should manipulate the given equations to find simpler
relationships or equalities that force $$ x $$ and $$ y $$ to
be the identity.

↪→

↪→

↪→

↪→

12

13 ### Manipulating the First Relation: $$ xyˆ2 = yˆ3x $$
14

15 Let's start with the first relation:
16 $$ xyˆ2 = yˆ3x $$
17

18 We can multiply both sides on the right by $$ xˆ{-1} $$ (the
inverse of $$ x $$) to isolate terms:↪→

19 $$ xyˆ2xˆ{-1} = yˆ3 $$
20

21 This shows that $$ yˆ3 $$ is equal to $$ x yˆ2 xˆ{-1} $$, which
is the conjugation of $$ yˆ2 $$ by $$ x $$.↪→

22

23 ### Manipulating the Second Relation: $$ yxˆ2 = xˆ3y $$
24

25 Similarly, take the second relation:
26 $$ yxˆ2 = xˆ3y $$
27

28 Multiply both sides on the right by $$ yˆ{-1} $$:
29 $$ yxˆ2yˆ{-1} = xˆ3 $$
30

31 Here, $$ xˆ3 $$ is the conjugation of $$ xˆ2 $$ by $$ y $$.
32

33 ### Exploring Conjugation and Powers
34

35 From the first manipulation, we have:
36 $$ x yˆ2 xˆ{-1} = yˆ3 $$
37

35
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38 This implies that $$ x $$ conjugates $$ yˆ2 $$ to $$ yˆ3 $$.
Similarly, from the second manipulation:↪→

39 $$ y xˆ2 yˆ{-1} = xˆ3 $$
40

41 So $$ y $$ conjugates $$ xˆ2 $$ to $$ xˆ3 $$.
42

43 ### Trying to Find Simpler Relations
44

45 Let's see if we can find a relationship between $$ x $$ and $$ y
$$ that leads to $$ x = 1 $$ or $$ y = 1 $$.↪→

46

47 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, we can raise both sides to the
power of $$ n $$ (for any integer $$ n $$):↪→

48 $$ (x yˆ2 xˆ{-1})ˆn = yˆ{3n} $$
49 $$ x yˆ{2n} xˆ{-1} = yˆ{3n} $$
50

51 Similarly, from $$ y xˆ2 yˆ{-1} = xˆ3 $$:
52 $$ (y xˆ2 yˆ{-1})ˆn = xˆ{3n} $$
53 $$ y xˆ{2n} yˆ{-1} = xˆ{3n} $$
54

55 These show how conjugation by $$ x $$ and $$ y $$ affects powers
of $$ y $$ and $$ x $$, respectively.↪→

56

57 ### Attempting to Find a Fixed Point
58

59 Let's consider the exponent of $$ y $$ in the first relation. The
exponents on both sides of $$ x yˆ2 xˆ{-1} = yˆ3 $$ don't
match directly, which is unusual. This suggests that the only
way this can hold is if $$ y = 1 $$, making both sides equal
to 1.

↪→

↪→

↪→

↪→

60

61 Similarly, if $$ y = 1 $$, then plugging into the second
relation:↪→

62 $$ 1 \cdot xˆ2 \cdot 1 = xˆ3 \cdot 1 $$
63 $$ xˆ2 = xˆ3 $$
64 $$ x = 1 $$
65

66 By symmetry, if we assume $$ x = 1 $$, then:
67 First relation:
68 $$ 1 \cdot yˆ2 = yˆ3 \cdot 1 $$
69 $$ yˆ2 = yˆ3 $$
70 $$ y = 1 $$
71

72 This suggests that $$ x = y = 1 $$ is a solution that satisfies
both relations, making $$ G $$ trivial. But we need to ensure
that this is the only possible solution within the group $$ G
$$.

↪→

↪→

↪→

73

74 ### Proving Uniqueness of Trivial Solution
75

76 Let's formalize this without assuming $$ x $$ or $$ y $$ is the
identity upfront.↪→

77
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78 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, we can consider the exponent as a
kind of homomorphism. Specifically, the mapping that sends $$
y $$ to $$ yˆ3 $$ when conjugated by $$ x $$. Similarly, the
other relation gives a mapping sending $$ x $$ to $$ xˆ3 $$
under conjugation by $$ y $$.

↪→

↪→

↪→

↪→

79

80 This is reminiscent of the concept where in a group, if
conjugation by an element raises powers to higher exponents,
the group might be forced to be trivial.

↪→

↪→

81

82 Let's try to express everything in terms of a single element.
Suppose we express one element in terms of the other.↪→

83

84 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, we can write:
85 $$ x yˆ2 = yˆ3 x $$
86

87 Similarly, from $$ y xˆ2 yˆ{-1} = xˆ3 $$:
88 $$ y xˆ2 = xˆ3 y $$
89

90 Now, let's try to find a word that must equal the identity.
91

92 Compute $$ x y xˆ{-1} yˆ{-1} $$, but this might not directly
help. Instead, let's try to find a power that collapses to
identity.

↪→

↪→

93

94 ### Using Commutators
95

96 Notice that the relations resemble "expansive"
behaviour-conjugation increases exponents. In some contexts,
this implies the group must be trivial unless the elements
commute in a certain way.

↪→

↪→

↪→

97

98 Let's attempt to compute some commutators or express higher
powers.↪→

99

100 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, we can apply this multiple times:
101

102 First, raise both sides to the power of $$ k $$:
103 $$ (x yˆ2 xˆ{-1})ˆk = yˆ{3k} $$
104 $$ x yˆ{2k} xˆ{-1} = yˆ{3k} $$
105

106 Now, set $$ k = 0 $$, but that gives $$ 1 = 1 $$, which is
trivial.↪→

107

108 Alternatively, express $$ y $$ in terms of itself:
109 $$ x yˆ2 xˆ{-1} = yˆ3 $$
110 $$ x y xˆ{-1} x y xˆ{-1} = yˆ3 $$
111 $$ (x y xˆ{-1})ˆ2 = yˆ3 $$
112

113 Similarly, from $$ y xˆ2 yˆ{-1} = xˆ3 $$:
114 $$ (y x yˆ{-1})ˆ2 = xˆ3 $$
115

116 This seems to imply that the conjugates have certain power
relationships.↪→

117

118 ### Trying Specific Elements and Equalities
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119

120 Let's consider the order of $$ x $$ and $$ y $$. Suppose $$ x $$
has finite order $$ n $$, then $$ xˆn = 1 $$.↪→

121

122 From $$ y xˆ2 yˆ{-1} = xˆ3 $$, we have:
123 $$ y xˆ2 yˆ{-1} = xˆ3 $$
124 $$ y xˆ4 yˆ{-1} = xˆ6 $$
125 $$ y xˆ{2k} yˆ{-1} = xˆ{3k} $$
126

127 For $$ k = n $$, since $$ xˆn = 1 $$, we have:
128 $$ y 1 yˆ{-1} = 1 = xˆ{3n} $$
129 But $$ xˆ{3n} = (xˆn)ˆ3 = 1ˆ3 = 1 $$, which doesn't give new

information.↪→

130

131 Similarly, from $$ x yˆ2 xˆ{-1} = yˆ3 $$, we have:
132 $$ x yˆ{2k} xˆ{-1} = yˆ{3k} $$
133

134 If $$ y $$ has finite order $$ m $$, then for $$ k = m $$:
135 $$ x 1 xˆ{-1} = 1 = yˆ{3m} $$
136 $$ yˆ{3m} = 1 $$
137

138 But since the order of $$ y $$ is $$ m $$, $$ m $$ divides $$ 3m
$$, which is always true, so no contradiction arises directly
from this.

↪→

↪→

139

140 ### Introducing a Normal Subgroup Approach
141

142 Perhaps we can consider that these relations imply all elements
are trivial. Let's try to prove that $$ x $$ and $$ y $$
commute, and then see if this forces them to be trivial.

↪→

↪→

143

144 Assume $$ xy = yx $$. Then from $$ xyˆ2 = yˆ3x $$:
145 $$ xyˆ2 = yˆ3x $$
146 $$ yˆ2x = yˆ3x $$ (since $$ x $$ and $$ y $$ commute)
147 Multiply both sides on the right by $$ xˆ{-1} yˆ{-2} $$:
148 $$ 1 = y $$
149

150 Similarly, from $$ yxˆ2 = xˆ3y $$:
151 $$ yxˆ2 = xˆ3y $$
152 $$ xˆ2y = xˆ3y $$
153 $$ xˆ2 = xˆ3 $$
154 $$ x = 1 $$
155

156 Thus, if $$ x $$ and $$ y $$ commute, both must be identity. But
we don't know if they commute.↪→

157

158 ### Using the Composition of Conjugations
159

160 We have:
161 $$ \phi_x: y \mapsto x y xˆ{-1} $$
162 with $$ \phi_x(yˆ2) = yˆ3 $$, so $$ (\phi_x(y))ˆ2 = yˆ3 $$,

implying $$ \phi_x(y) $$ is a square root of $$ yˆ3 $$, i.e.,
$$ x y xˆ{-1} = yˆ{3/2} $$, but this suggests fractional
exponents, which are typically not in groups.

↪→

↪→

↪→

163

164 This seems problematic unless $$ y = 1 $$.
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165

166 Let me rephrase: from $$ x yˆ2 xˆ{-1} = yˆ3 $$, we can define $$
z = x y xˆ{-1} $$, then:↪→

167 $$ zˆ2 = yˆ3 $$
168

169 Similarly, from $$ y xˆ2 yˆ{-1} = xˆ3 $$, let $$ w = y x yˆ{-1}
$$, then:↪→

170 $$ wˆ2 = xˆ3 $$
171

172 Now we have:
173 $$ x y xˆ{-1} = z $$ where $$ zˆ2 = yˆ3 $$
174 $$ y x yˆ{-1} = w $$ where $$ wˆ2 = xˆ3 $$
175

176 This seem to imply that $$ z $$ is some root of $$ yˆ3 $$ and $$
w $$ of $$ xˆ3 $$, but in groups, this often forces elements
to be identity.

↪→

↪→

177

178 ### Deriving Contradictions or Identities
179

180 Let's try to express everything in terms of $$ x $$ and its
conjugates.↪→

181

182 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, we have:
183 $$ yˆ3 = x yˆ2 xˆ{-1} $$
184 $$ yˆ3 = xˆ2 yˆ4 xˆ{-2} $$ (conjugating by $$ x $$ again)
185 $$ yˆ3 = xˆ2 yˆ4 xˆ{-2} $$
186

187 But also:
188 $$ yˆ3 = x yˆ2 xˆ{-1} $$
189 So:
190 $$ x yˆ2 xˆ{-1} = xˆ2 yˆ4 xˆ{-2} $$
191 $$ yˆ2 = x yˆ4 xˆ{-1} $$
192 But $$ x yˆ4 xˆ{-1} = (x yˆ2 xˆ{-1})ˆ2 = (yˆ3)ˆ2 = yˆ6 $$, so:
193 $$ yˆ2 = yˆ6 $$
194 $$ yˆ4 = 1 $$
195

196 Similarly, from $$ y xˆ2 yˆ{-1} = xˆ3 $$, applying $$ y $$ twice:
197 $$ yˆ2 xˆ4 yˆ{-2} = xˆ9 $$
198 But also:
199 $$ xˆ3 = y xˆ2 yˆ{-1} $$
200 So:
201 $$ y xˆ2 yˆ{-1} = yˆ2 xˆ4 yˆ{-2} $$
202 $$ xˆ2 = y xˆ4 yˆ{-1} $$
203 $$ xˆ2 = (xˆ3)ˆ2 = xˆ6 $$
204 $$ xˆ4 = 1 $$
205

206 Now we have $$ xˆ4 = 1
207
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B.11 QWEN3 235B A22B THINKING 2507

Line 25: The model has assumed commutativity. (Critical)

1 To determine whether the group $ G = \langle x, y \mid xyˆ2 =
yˆ3x,\ yxˆ2 = xˆ3y \rangle $ is trivial, we analyze the given
relations and manipulate them using group-theoretic
techniques.

↪→

↪→

↪→

2

3 ---
4

5 ### Step 1: Expressing Generators in Terms of a Single Element
6

7 Define the **commutator** $ a = [x, y] = x y xˆ{-1} yˆ{-1} $.
Then by definition:↪→

8

9 $$
10 x y = a y x.
11 $$
12

13 Now apply this to **Relation 1**:
14 $$
15 xyˆ2 = yˆ3x.
16 $$
17

18 Left-hand side:
19 $$
20 x yˆ2 = x y \cdot y = (a y x) \cdot y = a y x y.
21 $$
22

23 Using $ x y = a y x $ again inside:
24 $$
25 a y x y = a y (a y x) = aˆ2 yˆ2 x.
26 $$
27

28 So:
29 $$
30 x yˆ2 = aˆ2 yˆ2 x.
31 $$
32

33 Equating with the right-hand side $ yˆ3 x $, we get:
34 $$
35 aˆ2 yˆ2 x = yˆ3 x \Rightarrow aˆ2 yˆ2 = yˆ3 \Rightarrow aˆ2 = y.
36 $$
37

38 Thus, we have:
39 $$
40 y = aˆ2. \tag{1}
41 $$
42

43 ---
44

45 ### Step 2: Using the Second Relation
46

47 Now consider **Relation 2**:
48 $$

40
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49 yxˆ2 = xˆ3 y.
50 $$
51

52 We define the inverse commutator $ b = [y, x] = y x yˆ{-1} xˆ{-1}
= aˆ{-1} $, so:↪→

53 $$
54 y x = b x y = aˆ{-1} x y.
55 $$
56

57 Apply this to Relation 2:
58 $$
59 y xˆ2 = y x \cdot x = (aˆ{-1} x y) \cdot x = aˆ{-1} x y x.
60 $$
61

62 Then:
63 $$
64 y xˆ2 = aˆ{-1} x (aˆ{-1} x y) = aˆ{-2} xˆ2 y.
65 $$
66

67 Equating with RHS $ xˆ3 y $, we get:
68 $$
69 aˆ{-2} xˆ2 y = xˆ3 y \Rightarrow aˆ{-2} xˆ2 = xˆ3 \Rightarrow x =

aˆ{-2}. \tag{2}↪→

70 $$
71

72 ---
73

74 ### Step 3: Substituting Back into Relations
75

76 From (1) and (2), we now express both generators in terms of $ a
$:↪→

77 $$
78 x = aˆ{-2}, \quad y = aˆ2.
79 $$
80

81 Substitute these into **Relation 1**:
82 $$
83 xyˆ2 = aˆ{-2}(aˆ2)ˆ2 = aˆ{-2} aˆ4 = aˆ2,
84 $$
85 $$
86 yˆ3 x = (aˆ2)ˆ3 aˆ{-2} = aˆ6 aˆ{-2} = aˆ4.
87 $$
88

89 So:
90 $$
91 aˆ2 = aˆ4 \Rightarrow aˆ2 = e.
92 $$
93

94 Therefore, $ a = e $, which implies:
95 $$
96 x = aˆ{-2} = e, \quad y = aˆ2 = e.
97 $$
98

99 ---
100

101 ### Step 4: Verifying Triviality
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102

103 With $ x = e $ and $ y = e $, all relations are trivially
satisfied:↪→

104 - $ xyˆ2 = e \cdot e = e $, and $ yˆ3x = e \cdot e = e $,
105 - $ yxˆ2 = e \cdot e = e $, and $ xˆ3y = e \cdot e = e $.
106

107 Hence, the only solution is the trivial group.
108

109 ---
110

111 ### Conclusion
112

113 By expressing the generators in terms of a single element derived
from the commutator and analyzing the resulting constraints,
we find that the relations force both $ x $ and $ y $ to be
the identity element. Therefore, the group defined by the
presentation:

↪→

↪→

↪→

↪→

114

115 $$
116 G = \langle x, y \mid xyˆ2 = yˆ3x,\ yxˆ2 = xˆ3y \rangle
117 $$
118

119 is **trivial**.
120

121 $$
122 \boxed{G \text{ is the trivial group}}
123 $$
124

B.12 GLM-4.5

Note: The generation began in the middle of the sentence, our reproduction below is not a typo.

Line 19: This identity is incorrect. The model has made an algebra error from the previous line.
(Critical)

1 that the group $G = \langle x, y \mid xyˆ2 = yˆ3x, yxˆ2 = xˆ3y
\rangle$ is the trivial group, I'll derive that both
generators $x$ and $y$ must be the identity element.

↪→

↪→

2

3 Starting with the given relations:
4 1. $xyˆ2 = yˆ3x$
5 2. $yxˆ2 = xˆ3y$
6

7 From relation (1), multiply both sides by $yˆ{-2}$ on the left:
8 $yˆ{-2}xyˆ2 = yx$ (3)
9

10 From relation (2), multiply both sides by $xˆ{-2}$ on the left:
11 $xˆ{-2}yxˆ2 = xy$ (4)
12

13 Let $A = yˆ{-1}xy$ and $B = xˆ{-1}yx$. Then:
14 - From (3): $yˆ{-1}Ay = yx$
15 - From (4): $xˆ{-1}Bx = xy$
16

17 Since $A = yˆ{-1}xy$, we have $yˆ{-1}Ay = yˆ{-2}xyˆ2$. From
equation (3), $yˆ{-2}xyˆ2 = yx$, so:↪→

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

18 $yˆ{-1}Ay = yx$
19 which implies $A = yˆ2x$.
20

21 Similarly, since $B = xˆ{-1}yx$, we have $xˆ{-1}Bx = xˆ{-2}yxˆ2$.
From equation (4), $xˆ{-2}yxˆ2 = xy$, so:↪→

22 $xˆ{-1}Bx = xy$
23 which implies $B = xˆ2y$.
24

25 Now we have:
26 $A = yˆ{-1}xy = yˆ2x$
27 $B = xˆ{-1}yx = xˆ2y$
28

29 From $yA = xy$ and $A = yˆ2x$, we get:
30 $y(yˆ2x) = xy$
31 $yˆ3x = xy$
32

33 From the original relation (1), $xyˆ2 = yˆ3x$, so:
34 $xyˆ2 = xy$
35

36 Now, multiply both sides of $xyˆ2 = xy$ by $xˆ{-1}$ on the left:
37 $yˆ2 = y$
38

39 Multiply both sides of $yˆ2 = y$ by $yˆ{-1}$ on the right:
40 $y = e$
41

42 Since $y$ is the identity element, we can substitute $y = e$ into
relation (1):↪→

43 $xeˆ2 = eˆ3x$
44 $x = x$
45

46 This is a tautology and doesn't give us new information. Let's
substitute $y = e$ into relation (2):↪→

47 $exˆ2 = xˆ3e$
48 $xˆ2 = xˆ3$
49

50 Multiply both sides of $xˆ2 = xˆ3$ by $xˆ{-2}$ on the right:
51 $e = x$
52

53 Therefore, both $x$ and $y$ are the identity element, which means
$G$ is the trivial group.↪→
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B.13 GEMINI 2.5 DEEP THINK

Line 18: The model claims yx3 = (yx)x3, which is an algebra error. (Critical)

1 Yes, we can prove that G is the trivial group.
2

3 Let $G$ be a group with generators $x$ and $y$ and the relations:
4 1) $xyˆ2 = yˆ3x$
5 2) $yxˆ2 = xˆ3y$
6

7 We want to show that $x=e$ and $y=e$, where $e$ is the identity
element.↪→

8

9 Let's start by manipulating the second relation (2). We can
rewrite it as:↪→

10 $xˆ3y = yxˆ2$ (2')
11

12 Now, we examine how the element $xˆ3$ interacts with the element
$yx$. We look at the product $xˆ3(yx)$:↪→

13 $xˆ3(yx) = (xˆ3y)x$ (by associativity)
14

15 We use the rearranged relation (2') to substitute $xˆ3y$ with
$yxˆ2$:↪→

16 $(xˆ3y)x = (yxˆ2)x = y(xˆ2x) = yxˆ3$
17

18 So we have found that $xˆ3(yx) = yxˆ3$. Since $yxˆ3 = (yx)xˆ3$,
this means that $xˆ3$ commutes with $yx$. In terms of
commutators, we have $[xˆ3, yx] = e$.

↪→

↪→

19

20 Next, let's analyze the commutator $[xˆ3, yx]$. Recall that the
commutator $[A, B]$ is defined as $ABAˆ{-1}Bˆ{-1}$.↪→

21 $[xˆ3, yx] = xˆ3 (yx) (xˆ3)ˆ{-1} (yx)ˆ{-1}$
22 $= xˆ3 y x xˆ{-3} (xˆ{-1}yˆ{-1})$
23 $= xˆ3 y (xˆ{1-3-1}) yˆ{-1}$
24 $= xˆ3 y xˆ{-3} yˆ{-1}$
25

26 This expression is exactly the definition of the commutator of
$xˆ3$ and $y$, i.e., $[xˆ3, y]$.↪→

27

28 Since we established that $[xˆ3, yx] = e$ and $[xˆ3, yx] = [xˆ3,
y]$, we must have:↪→

29 $[xˆ3, y] = e$.
30

31 This means that $xˆ3$ commutes with $y$:
32 $xˆ3y = yxˆ3$.
33

34 Now we have two equations involving $xˆ3y$:
35 From relation (2'): $xˆ3y = yxˆ2$
36 From our derivation: $xˆ3y = yxˆ3$
37

38 We can equate the right-hand sides:
39 $yxˆ2 = yxˆ3$
40

41 We multiply by $yˆ{-1}$ on the left:
42 $xˆ2 = xˆ3$
43
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44 We multiply by $xˆ{-2}$ (on either side):
45 $e = x$.
46

47 Now that we have shown $x=e$, we substitute this back into the
first relation (1):↪→

48 $xyˆ2 = yˆ3x$
49 $e yˆ2 = yˆ3 e$
50 $yˆ2 = yˆ3$
51

52 We multiply by $yˆ{-2}$:
53 $e = y$.
54

55 Since both generators $x$ and $y$ are equal to the identity
element, the group $G$ is the trivial group.↪→

56

57

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

B.14 LLAMA 4 MAVERICK

Lines 4-8: A lot of effort is expended proving y3x = y3x.

Line 11: The model claims x(y2)x−1(y2)−1 = e but never proves this. (Critical)

1 ## Step 1: Understand the given problem and the relations
provided for the group $G$.↪→

2 The group $G$ is generated by $x$ and $y$ with the relations
$xyˆ2 = yˆ3x$ and $yxˆ2 = xˆ3y$. We need to determine if $G$
is the trivial group, meaning it contains only the identity
element.

↪→

↪→

↪→

3

4 ## Step 2: Manipulate the given relations to simplify or derive
useful equations.↪→

5 Starting with $xyˆ2 = yˆ3x$, we can rearrange this to $xyˆ2xˆ{-1}
= yˆ3$, implying that $x$ conjugates $yˆ2$ to $yˆ3$.
Similarly, from $yxˆ2 = xˆ3y$, we get $yxyˆ{-1} = xˆ3xˆ{-2} =
x$, showing that $y$ conjugates $x$ to $x$.

↪→

↪→

↪→

6

7 ## Step 3: Further simplify the relations to check for any
patterns or simplifications that could lead to proving $G$ is
trivial.

↪→

↪→

8 From $xyˆ2 = yˆ3x$, we can also derive $xˆ{-1}yˆ3x = yˆ2$. This
implies $xˆ{-1}yˆ3x = yˆ2$ and thus $yˆ3 = xyˆ2xˆ{-1}$.
Substituting $yˆ2 = xˆ{-1}yˆ3x$ into the original equation
yields $x(xˆ{-1}yˆ3x) = yˆ3x$, simplifying to $yˆ3x = yˆ3x$,
which is always true and doesn't provide new information
directly.

↪→

↪→

↪→

↪→

↪→

9

10 ## Step 4: Analyze the relation $xyˆ2 = yˆ3x$ further to derive a
condition on $y$.↪→

11 Rearranging $xyˆ2 = yˆ3x$ gives $xyˆ2xˆ{-1}yˆ{-3} = e$, where $e$
is the identity. This can be written as
$xyˆ2xˆ{-1}yˆ{-2}yˆ{-1} = e$, or
$x(yˆ2)xˆ{-1}(yˆ2)ˆ{-1}yˆ{-1} = e$, simplifying to $yˆ{-1} =
e$ because $x(yˆ2)xˆ{-1}(yˆ2)ˆ{-1} = e$ implies $yˆ2 = e$
after simplification, but directly we see $y = e$ from
$yˆ{-1} = e$.

↪→

↪→

↪→

↪→

↪→

↪→

12

13 ## Step 5: Examine the implication of $y = e$ on the group $G$
and its generators.↪→

14 If $y = e$, then substituting into one of the original relations,
$xyˆ2 = yˆ3x$ becomes $x = x$, which is true for any $x$.
However, we need to check the other relation as well. $yxˆ2 =
xˆ3y$ becomes $exˆ2 = xˆ3e$, simplifying to $xˆ2 = xˆ3$. This
implies $xˆ3xˆ{-2} = e$, or $x = e$.

↪→

↪→

↪→

↪→

15

16 ## Step 6: Verify the result by checking if both generators being
the identity implies $G$ is trivial.↪→

17 Since both $x = e$ and $y = e$, and $G$ is generated by $x$ and
$y$, $G$ must be the trivial group because it is generated by
the identity.

↪→

↪→

18

19 The final answer is: $\boxed{Yes}$
20
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B.15 DEEPSEEK V3 0324

Line 46: The order is only a positive integer if it is finite. The model has ignored the infinite case.
However, it recovers from this on line 62.

Line 82: The model worries that x3 = x2 can only be simplified to x = e if x is cancellable. But
this is an unfounded concern, as we are working in a group.

Line 194: The model makes no progress with the problem, other than showing |x| and |y| are
coprime to 6, but then concludes the group is trivial. No part of the proof comes close to showing
this. (Critical)

1 Alright, let's tackle this problem step by step. We have a group
$$ G $$ generated by two elements $$ x $$ and $$ y $$ with
the following relations:

↪→

↪→

2

3 1. $$ xyˆ2 = yˆ3x $$
4 2. $$ yxˆ2 = xˆ3y $$
5

6 Our goal is to show that $$ G $$ is the trivial group, meaning
that $$ x $$ and $$ y $$ are both the identity element, and
thus $$ G = \{e\} $$.

↪→

↪→

7

8 ### Understanding the Problem
9

10 First, let's recall what these relations mean. In a group
presentation, relations are equations that hold true among
the generators. Here, the two relations give us ways to
manipulate expressions involving $$ x $$ and $$ y $$.

↪→

↪→

↪→

11

12 Our strategy will be to derive consequences from these relations,
hoping to find that $$ x $$ and $$ y $$ must be the identity.↪→

13

14 ### Starting with the First Relation: $$ xyˆ2 = yˆ3x $$
15

16 Let's see what this tells us. If we multiply both sides on the
left by $$ xˆ{-1} $$, we get:↪→

17

18 $$ xˆ{-1}xyˆ2 = xˆ{-1}yˆ3x $$
19

20 Which simplifies to:
21

22 $$ yˆ2 = xˆ{-1}yˆ3x $$
23

24 This can be rewritten as:
25

26 $$ x yˆ2 xˆ{-1} = yˆ3 \tag{Equation 1}$$
27

28 This suggests that conjugating $$ yˆ2 $$ by $$ x $$ gives $$ yˆ3
$$.↪→

29

30 Similarly, from the second relation $$ yxˆ2 = xˆ3y $$, let's
multiply both sides on the left by $$ yˆ{-1} $$:↪→

31

32 $$ yˆ{-1}yxˆ2 = yˆ{-1}xˆ3y $$
33

34 Simplifying:
35
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36 $$ xˆ2 = yˆ{-1}xˆ3y $$
37

38 Which can be rewritten as:
39

40 $$ y xˆ2 yˆ{-1} = xˆ3 \tag{Equation 2}$$
41

42 This suggests that conjugating $$ xˆ2 $$ by $$ y $$ gives $$ xˆ3
$$.↪→

43

44 ### Exploring Equation 1: $$ x yˆ2 xˆ{-1} = yˆ3 $$
45

46 This equation tells us that $$ yˆ2 $$ and $$ yˆ3 $$ are
conjugates, implying that they have the same order in the
group. The order of an element $$ g $$, denoted $$ |g| $$, is
the smallest positive integer $$ n $$ such that $$ gˆn = e
$$.

↪→

↪→

↪→

↪→

47

48 From $$ yˆ2 $$ and $$ yˆ3 $$ being conjugates:
49

50 $$ |yˆ2| = |yˆ3| $$
51

52 We know that in general, $$ |gˆk| = \frac{|g|}{\gcd(|g|, k)} $$.
So:↪→

53

54 $$ \frac{|y|}{\gcd(|y|, 2)} = \frac{|y|}{\gcd(|y|, 3)} $$
55

56 This implies:
57

58 $$ \gcd(|y|, 2) = \gcd(|y|, 3) $$
59

60 The only way this can happen is if $$ \gcd(|y|, 6) = 1 $$,
meaning that $$ |y| $$ is coprime with 6. The simplest
possibility is $$ |y| = 1 $$, i.e., $$ y = e $$.

↪→

↪→

61

62 But let's not jump to conclusions; maybe $$ |y| $$ is infinite or
another number coprime to 6. Let's explore further.↪→

63

64 ### Exploring Equation 2: $$ y xˆ2 yˆ{-1} = xˆ3 $$
65

66 Similarly, this tells us that $$ xˆ2 $$ and $$ xˆ3 $$ are
conjugates, so:↪→

67

68 $$ |xˆ2| = |xˆ3| $$
69

70 Again, using the order formula:
71

72 $$ \frac{|x|}{\gcd(|x|, 2)} = \frac{|x|}{\gcd(|x|, 3)} $$
73

74 Thus:
75

76 $$ \gcd(|x|, 2) = \gcd(|x|, 3) $$
77

78 Similarly, this implies $$ \gcd(|x|, 6) = 1 $$, so $$ |x| $$ is
coprime with 6. Again, the simplest solution is $$ |x| = 1
$$, i.e., $$ x = e $$.

↪→

↪→

79
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80 ### Considering $$ x $$ and $$ y $$ are the Identity
81

82 If $$ y = e $$, then the first relation $$ xyˆ2 = yˆ3x $$ becomes
$$ x = x $$, which holds trivially. The second relation $$
yxˆ2 = xˆ3y $$ becomes $$ xˆ2 = xˆ3 $$, which implies $$ x =
e $$ (assuming $$ x $$ has finite order or is cancellable).

↪→

↪→

↪→

83

84 Similarly, if $$ x = e $$, the second relation becomes $$ y = y
$$, and the first relation becomes $$ yˆ2 = yˆ3 $$, implying
$$ y = e $$.

↪→

↪→

85

86 This suggests that the only solution is $$ x = y = e $$.
87

88 ### Trying to Find Non-Trivial Solutions
89

90 But let's not assume the group is finite yet. Maybe the group is
infinite, and $$ x $$ and $$ y $$ have infinite order. Let's
see if we can find any non-trivial relations.

↪→

↪→

91

92 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, we can think of this as an action
of $$ x $$ on $$ y $$. In general, this could suggest a
semidirect product, but the relations seem too restrictive.

↪→

↪→

93

94 Similarly, $$ y xˆ2 yˆ{-1} = xˆ3 $$ is an action of $$ y $$ on $$
x $$.↪→

95

96 Perhaps we can find a consistency condition by combining these.
97

98 Let's see if we can express both $$ x $$ and $$ y $$ in terms of
one another.↪→

99

100 From $$ x yˆ2 = yˆ3 x $$, we can try to solve for $$ y $$ in
terms of $$ x $$, but it's not straightforward.↪→

101

102 Alternatively, let's see if we can find that $$ x $$ and $$ y $$
commute.↪→

103

104 Assume for a moment that $$ x $$ and $$ y $$ commute, i.e., $$ xy
= yx $$. Then:↪→

105

106 From $$ xyˆ2 = yˆ3x $$, with commutativity:
107

108 $$ yˆ2x = yˆ3x $$
109

110 Cancel $$ x $$ on the right (assuming $$ x $$ is cancellable,
which it is in a group):↪→

111

112 $$ yˆ2 = yˆ3 $$
113

114 Thus $$ y = e $$.
115

116 Similarly, from $$ yxˆ2 = xˆ3y $$, with commutativity:
117

118 $$ xˆ2y = xˆ3y $$
119

120 Cancel $$ y $$:
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121

122 $$ xˆ2 = xˆ3 $$
123

124 Thus $$ x = e $$.
125

126 So if $$ x $$ and $$ y $$ commute, they must both be the
identity.↪→

127

128 But we haven't shown that $$ x $$ and $$ y $$ must commute. Maybe
the relations force them to commute.↪→

129

130 Let's attempt to see if $$ xy = yx $$ follows from the given
relations.↪→

131

132 From $$ xyˆ2 = yˆ3x $$, let's try to express $$ xy $$:
133

134 Multiply both sides by $$ yˆ{-1} $$ on the right:
135

136 $$ xy = yˆ3x yˆ{-1} $$
137

138 Similarly, from $$ yxˆ2 = xˆ3y $$, multiply by $$ xˆ{-1} $$ on
the right:↪→

139

140 $$ yx = xˆ3y xˆ{-1} $$
141

142 This seems circular. Maybe another approach is better.
143

144 ### Attempting to Find Orders
145

146 Let me think about the orders of $$ x $$ and $$ y $$. From
earlier, $$ |yˆ2| = |yˆ3| $$, which implies $$ \gcd(|y|, 2) =
\gcd(|y|, 3) $$.

↪→

↪→

147

148 Possible orders for $$ y $$:
149

150 If $$ |y| $$ is finite, then $$ \gcd(|y|, 2) = \gcd(|y|, 3) $$.
The numbers where this holds are those not divisible by 2 or
3 (or both), i.e., numbers coprime to 6: 1, 5, 7, 11, etc.

↪→

↪→

151

152 Similarly, $$ |x| $$ must be coprime to 6.
153

154 The simplest case is $$ |x| = |y| = 1 $$, i.e., trivial group.
155

156 If $$ |y| > 1 $$, say $$ |y| = 5 $$, then $$ yˆ2 $$ has order $$
5 / \gcd(5,2) = 5 $$, and $$ yˆ3 $$ has order $$ 5 /
\gcd(5,3) = 5 $$, so the equation holds. But does this lead
to a contradiction elsewhere?

↪→

↪→

↪→

157

158 From $$ x yˆ2 xˆ{-1} = yˆ3 $$, if $$ y $$ has order 5, then $$
yˆ3 = yˆ{-2} $$, so:↪→

159

160 $$ x yˆ2 xˆ{-1} = yˆ{-2} $$
161

162 But $$ yˆ2 $$ has order 5, and its inverse also has order 5, so
this is possible, but doesn't immediately force $$ y = e $$.↪→

163
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164 Similarly, for $$ x $$, if $$ |x| = 5 $$, from $$ y xˆ2 yˆ{-1} =
xˆ3 $$, and $$ xˆ3 = xˆ{-2} $$, so:↪→

165

166 $$ y xˆ2 yˆ{-1} = xˆ{-2} $$
167

168 Again, no immediate contradiction.
169

170 However, the group seems too constrained to allow non-trivial
elements, but I'm not seeing an immediate contradiction for
higher orders coprimes to 6.

↪→

↪→

171

172 ### Trying Specific Cases
173

174 Perhaps assume $$ y = e $$, then see what $$ x $$ must be.
175

176 If $$ y = e $$, then relations become:
177

178 1. $$ x = x $$ (holds)
179 2. $$ xˆ2 = xˆ3 \implies x = e $$
180

181 So $$ x = e $$, $$ y = e $$. Trivial group.
182

183 Similarly, if $$ x = e $$, then relations become:
184

185 1. $$ yˆ2 = yˆ3 \implies y = e $$
186 2. $$ y = y $$ (holds)
187

188 Again, trivial group.
189

190 This suggests that the only solution is the trivial group.
191

192 ### Conclusion
193

194 After exploring these relations, it appears that the only group
$$ G $$ satisfying both $$ xyˆ2 = yˆ3x $$ and $$ yxˆ2 = xˆ3y
$$ is the trivial group where both generators $$ x $$ and $$
y $$ are the identity element. Any non-trivial assignment
leads to contradictions or forces the generators to be the
identity.

↪→

↪→

↪→

↪→

↪→

195

196 ### Final Answer
197

198 After carefully analyzing the given relations, we conclude that
the group $$ G $$ must be the trivial group. That is, $$ G =
\{e\} $$, where $$ e $$ is the identity element, and $$ x = y
= e $$.

↪→

↪→

↪→

199

200 ### Verification
201

202 Let's verify:
203

204 1. $$ xyˆ2 = e \cdot eˆ2 = e $$ and $$ yˆ3x = eˆ3 \cdot e = e $$,
so $$ xyˆ2 = yˆ3x $$.↪→

205 2. $$ yxˆ2 = e \cdot eˆ2 = e $$ and $$ xˆ3y = eˆ3 \cdot e = e $$,
so $$ yxˆ2 = xˆ3y $$.↪→

206
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207 Both relations hold, and no smaller group satisfies them unless
both generators are the identity. Hence, $$ G $$ is indeed
the trivial group.

↪→

↪→

208
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B.16 QWQ 32B

Lines 7-9: There is an algebra error in deriving x−1y3xy−3 = e. (Critical)

Line 13: Commutativity is incorrectly assumed. (Critical)

Line 25: Commutativity is incorrectly assumed. (Critical)

1 To prove that the group \( G \) generated by \( x \) and \( y \)
with relations \( xyˆ2 = yˆ3x \) and \( yxˆ2 = xˆ3y \) is
trivial, we start by analyzing the given relations.

↪→

↪→

2

3 First, consider the relation \( xyˆ2 = yˆ3x \). Rearranging this,
we have:↪→

4 \[
5 xˆ{-1} yˆ3 x = yˆ2
6 \]
7 Multiplying both sides on the right by \( yˆ{-3} \), we get:
8 \[
9 xˆ{-1} yˆ3 x yˆ{-3} = e

10 \]
11 This simplifies to:
12 \[
13 xˆ{-1} (yˆ3 yˆ{-3}) x = e \implies xˆ{-1} yˆ0 x = e \implies

xˆ{-1} e x = e↪→

14 \]
15 However, we need to re-express this correctly. Starting again:
16 \[
17 x yˆ2 xˆ{-1} = yˆ3
18 \]
19 Multiply both sides by \( yˆ{-3} \):
20 \[
21 x yˆ2 xˆ{-1} yˆ{-3} = e
22 \]
23 This can be rewritten as:
24 \[
25 x (yˆ{-1}) xˆ{-1} = e
26 \]
27 Multiplying both sides on the left by \( xˆ{-1} \) and on the

right by \( x \), we get:↪→

28 \[
29 yˆ{-1} = e \implies y = e
30 \]
31 Thus, \( y \) must be the identity element.
32

33 Substituting \( y = e \) into the second relation \( yxˆ2 = xˆ3y
\), we get:↪→

34 \[
35 e \cdot xˆ2 = xˆ3 \cdot e \implies xˆ2 = xˆ3
36 \]
37 This simplifies to:
38 \[
39 xˆ2 = xˆ3 \implies xˆ2 xˆ{-2} = xˆ3 xˆ{-2} \implies e = x
40 \]
41 Therefore, \( x \) must also be the identity element.
42
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43 Since both \( x \) and \( y \) are the identity element, the
group \( G \) is trivial.↪→

44

45 \[
46 \boxed{1}
47 \]
48
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B.17 GPT-OSS-120B

Line 24: The given conjugation relations only show that the subgroups generated by y2 and x2

are normal, not those generated by x and y. (Critical)

1 $$
2 G=\langle x ,y\mid xyˆ{2}=yˆ{3}x ,\; yxˆ{2}=xˆ{3}y\rangle .
3 $$
4

5 ---------------------------------------------------------------- ⌋
----↪→

6 ### 1. Conjugation relations
7

8 From the defining equalities we can rewrite
9

10 $$
11 \begin{aligned}
12 xyˆ{2}&=yˆ{3}x \quad\Longrightarrow\quad

x\,yˆ{2}xˆ{-1}=yˆ{3},\$$2mm]↪→

13 yxˆ{2}&=xˆ{3}y \quad\Longrightarrow\quad y\,xˆ{2}yˆ{-1}=xˆ{3}.
14 \end{aligned}
15 \tag{1}
16 $$
17

18 Thus
19

20 *conjugation by $$x$$ sends $$yˆ{2}$$ to $$yˆ{3}$$;*
21

22 *conjugation by $$y$$ sends $$xˆ{2}$$ to $$xˆ{3}$$.
23

24 Hence the subgroups $$\langle y\rangle$$ and $$\langle x\rangle$$
are normal, and the↪→

25 conjugation maps restrict to automorphisms of these cyclic
subgroups.↪→

26

27 ---------------------------------------------------------------- ⌋
----↪→

28 ### 2. The automorphisms are given by a power map
29

30 Let
31

32 $$
33 x y xˆ{-1}=yˆ{\ell},\qquad y x yˆ{-1}=xˆ{k}
34 \tag{2}
35 $$
36

37 for some integers $$\ell ,k$$.
38 Because the restriction of conjugation to a cyclic group is an

automorphism,↪→

39 $$\gcd(\ell ,|y|)=\gcd(k ,|x|)=1$$ (if the orders are infinite
the condition is↪→

40 $$\ell ,k\neq0$$).
41

42 Apply the first equality of (2) to the element $$yˆ{2}$$:
43 $$
44 x yˆ{2}xˆ{-1} = (x y xˆ{-1})ˆ{2}=yˆ{2\ell}=yˆ{3}.
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45 $$
46 Hence
47

48 $$
49 2\ell\equiv 3\pmod{|y|}\qquad\text{(or }2\ell=3\text{ if

}|y|=\infty).↪→

50 \tag{3}
51 $$
52

53 Similarly, applying the second equality of (2) to $$xˆ{2}$$ gives
54

55 $$
56 y xˆ{2}yˆ{-1}= (y x yˆ{-1})ˆ{2}=xˆ{2k}=xˆ{3},
57 $$
58 so
59

60 $$
61 2k\equiv 3\pmod{|x|}\qquad\text{(or }2k=3\text{ if }|x|=\infty).
62 \tag{4}
63 $$
64

65 Because the congruences (3) and (4) have a solution, the orders
of $$x$$ and↪→

66 $$y$$ cannot be even and cannot be multiples of $$3$$; in
particular they are↪→

67 odd (or infinite). In any case the integers $$\ell ,k$$ are well
defined and↪→

68 satisfy $$\ell\not\equiv 0$$ and $$k\not\equiv 0$$.
69

70 ---------------------------------------------------------------- ⌋
----↪→

71 ### 3. $$x$$ and $$y$$ lie in the same cyclic subgroup
72

73 From (2) we compute the commutator:
74

75 $$
76 \begin{aligned}
77 x y xˆ{-1}yˆ{-1}
78 &= (x y xˆ{-1})yˆ{-1}
79 = yˆ{\ell}yˆ{-1}
80 = yˆ{\ell-1},\$$2mm]
81 &= x (y x yˆ{-1}) xˆ{-1}
82 = x xˆ{k}xˆ{-1}
83 = xˆ{k}.
84 \end{aligned}
85 $$
86

87 Thus
88

89 $$
90 xˆ{k}=yˆ{\ell-1}. \tag{5}
91 $$
92

93 Since $$k\not\equiv0$$ (mod $$|x|$$) the element $$xˆ{k}$$ is a
non-trivial power↪→
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94 of $$x$$; (5) shows that this power is a power of $$y$$.
Consequently↪→

95

96 $$
97 x\in\langle y\rangle .
98 $$
99

100 A symmetric computation (or simply interchanging the roles of
$$x$$ and $$y$$)↪→

101 gives
102

103 $$
104 y\in\langle x\rangle .
105 $$
106

107 Hence both generators belong to the same cyclic subgroup; the
whole group↪→

108 $$G$$ is cyclic.
109

110 ---------------------------------------------------------------- ⌋
----↪→

111 ### 4. A cyclic group satisfying the relations is trivial
112

113 Write the cyclic group as $$\langle g\rangle$$ and set
114

115 $$
116 x=gˆ{r},\qquad y=gˆ{s}.
117 $$
118

119 Insert these expressions in the defining relations:
120

121 $$
122 \begin{aligned}
123 xyˆ{2}=yˆ{3}x
124 &\Longrightarrow gˆ{r+2s}=gˆ{3s+r},\\
125 yxˆ{2}=xˆ{3}y
126 &\Longrightarrow gˆ{s+2r}=gˆ{3r+s}.
127 \end{aligned}
128 $$
129

130 In a cyclic group equality of elements means equality of the
exponents↪→

131 (modulo the order of $$g$$, or as integers if the order is
infinite). From the↪→

132 first equality we obtain
133

134 $$
135 2s\equiv 3s\pmod{|g|}\;\;\Longrightarrow\;\;s\equiv0,
136 $$
137

138 and from the second equality
139

140 $$
141 2r\equiv 3r\pmod{|g|}\;\;\Longrightarrow\;\;r\equiv0.
142 $$
143
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144 Thus $$r=s=0$$; consequently $$x=y=e$$.
145

146 ---------------------------------------------------------------- ⌋
----↪→

147 ### 5. Conclusion
148

149 The group defined by
150

151 $$
152 \langle x ,y\mid xyˆ{2}=yˆ{3}x ,\; yxˆ{2}=xˆ{3}y\rangle
153 $$
154

155 is cyclic, and the only cyclic group that satisfies the two
relations is the↪→

156 trivial group. Hence
157

158 $$
159 \boxed{G\text{ is the trivial group}.}
160 $$
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B.18 GPT-5 THINKING

Lines 12, 20, 35: The definition of [s, t] used is sts−1t−1. The commutator identity given
then holds only if st = tst−1 but the commutator definition is later taken to be st = t−1st. (Critical)

1 Yes. Write the relations in commutator form and use a short
lemma.↪→

2

3 From
4

5 $$
6 xyˆ2=yˆ3x\quad\text{and}\quad yxˆ2=xˆ3y
7 $$
8

9 we get
10

11 $$
12 x yˆ2 xˆ{-1}=yˆ3\ \Longrightarrow\ [x,yˆ2]=x yˆ2 xˆ{-1}yˆ{-2}=y,
13 $$
14

15 $$
16 y xˆ2 yˆ{-1}=xˆ3\ \Longrightarrow\ [y,xˆ2]=y xˆ2 yˆ{-1}xˆ{-2}=x.
17 $$
18

19 Let $u=[x,y]$. Using the standard commutator identity
20 $[a,bc]=[a,b]\,[a,c]ˆb$, we have
21

22 $$
23 [x,yˆ2]=[x,y]\,[x,y]ˆy=u\,uˆy,\qquad
24 [y,xˆ2]=[y,x]\,[y,x]ˆx=uˆ{-1}(uˆ{-1})ˆx.
25 $$
26

27 Hence
28

29 $$
30 y=u\,uˆy,\qquad x=uˆ{-1}(uˆ{-1})ˆx. \tag{$\ast$}
31 $$
32

33 **Lemma.** If $a=w\,wˆa$ in a group, then $a=wˆ2$.
34

35 *Proof.* $a=w\,wˆa\Rightarrow 1=w\,wˆa aˆ{-1}=w(aˆ{-1}wa)aˆ{-1}=w
aˆ{-1} w$, so $aˆ{-1}=wˆ{-2}$ and thus $a=wˆ{2}$. $\square$↪→

36

37 Apply the lemma to $(a,w)=(y,u)$ and $(a,w)=(x,uˆ{-1})$ in
$(\ast)$:↪→

38

39 $$
40 y=uˆ2,\qquad x=(uˆ{-1})ˆ2=uˆ{-2}.
41 $$
42

43 Thus $x=yˆ{-1}$.
44

45 Substitute $x=yˆ{-1}$ into $xyˆ2=yˆ3x$:
46

47 $$
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48 yˆ{-1}yˆ2=yˆ3yˆ{-1}\ \Longrightarrow\ y=yˆ2 \ \Longrightarrow\
y=1,↪→

49 $$
50

51 whence $x=1$ as well. Therefore $G$ is the trivial group.
$\square$↪→
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