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ABSTRACT

We show, contrary to the optimism about LLM’s problem-solving abilities, fueled
by the recent gold medals at the International Math Olympiad (IMO) that LLMs
attained, that a problem exists—Yu Tsumura’s 554th problem—that a) is within
the scope of an IMO problem in terms of proof sophistication, b) is not a com-
binatorics problem, which have caused issues for LLMs, c) requires fewer proof
techniques than typical hard IMO problems, d) has a publicly available solution
(likely in the training data of LLMs), and e) that cannot be readily solved by any
existing off-the-shelf LLM (commercial or open-source). We include an analysis
of the output traces of 16 SOTA LLMs. Additionally, we compare the generic
LLM output to a new proof by a former IMO participant, carried out in a small
study, which is significantly better motivated than the original, publicly-available
proof, and elaborate on the differences in LLM and human proof quality.

1 INTRODUCTION

The results achieved by several commercial companies at the International Mathematical Olympiacﬂ
in 2025 (IMO25) have been hailed as a milestone in Al in press releases as well as “awfully
impressive” by some researchers ﬂ Lending credence to these statements is a recent replication
of some of these results in a scientific setting (Huang & Yang| 2025) by using a more complex
verification scheme, as well as an the OpenAl x AIMO evaluation from March, released in August,
on a version of OpenAl 03’s model that solved 47/50 Olympiad-level hidden math problems there
were used for the AIMO2 competitionﬂ Due to the difficulty of the involved problems, these results
paint a very optimistic future for the reasoning abilities of state-of-the-art LLMs.

In this paper, we present a counterclaim that offers a more nuanced perspective on the current state
of affairs. The previous results show that there exist LLMs that solve math problems that require
intricate reasoning abilities, for which likely no solution was in the training data ahead of time,
due to the recency of the problems. We show the converse: There exist mathematical problems that
require intricate reasoning abilities that no current off-the-shelf LLMs have, for which a full solution
exists online, posted at a time that predates the advent of LLMSE]

For IMO25 problems, both Al systems solving the problems formalized in Lean4 were evaluated, as
well as system processing the problem formulated in natural-language. We focus our analysis solely
on the natural-language problems.

Specifically, we show that there exists a problem that none of the current set of widely used
LLMs, whether proprietary or open-weight, can solve. This problem is publicly available and is
Yu Tsumura’s 554th problemE] It is a group theory problem, but we emphasize that no specialized
knowledge of group theory is needed. We reproduce it below:

limo-official. org

Thttps://blog.google/products/gemini/gemini-2-5-deep-think/

*https://www.nature.com/articles/d41586-025-02343-x

*https://aimoprize.com/updates/2025-09-05-the-gap-is-shrinking

>On thislarchive. orgllink, the year 2017 is the first time the problem is listed online. This link contains
a copy of the statement and the proof.

8Yu Tsumura’s 554th problem.


imo-official.org
https://blog.google/products/gemini/gemini-2-5-deep-think/
https://www.nature.com/articles/d41586-025-02343-x
https://aimoprize.com/updates/2025-09-05-the-gap-is-shrinking
https://web.archive.org/web/20170907113735/http://yutsumura.com/if-generators-x-y-satisfy-the-relation-xy2y3x-yx2x3y-then-the-group-is-trivial/
https://yutsumura.com/if-generators-x-y-satisfy-the-relation-xy2y3x-yx2x3y-then-the-group-is-trivial
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Let x, y be generators of a group G with relations
zy? =y,
yr? = 2%y,

Prove that G is the trivial group.

Its proof, which is also provided in the link above, is short and requires nothing more than clever
symbolic manipulation—a task that LLMs solving Olympiad-level math problems need to possess. In
fact, this problem is similar to an IMO problem, such as a functional equation problem or inequality,
where there are established proof techniques. This should be the easiest case for an LLM in terms of
problem difficulty. While the proof, provided in the link above, utilizes the concepts of conjugacy
and the order of a group element, these are only mentioned once and can be unpacked. This makes
the proof independent of any specific knowledge about group theory.

We speculate that the problem is difficult for LLMs because solving the problem involves a deep
search through identities that can be derived from the original relations. There are two potential
reasons why this poses a problem:

* The probability of the LLM hallucinating/making an algebraic error before finding the
required identities is very high.

* The LLM is not trained to search to a high enough expression depth.

Lastly, we note that 60 members of the public have self-reported on Yu Tsumura’s website that
they solved the problem. In addition to this, we conducted a n = 1 study to highlight the differences
between LLM’s mathematical reasoning abilities and human mathematical reasoning abilities: Even
though LLMs are trained on vastly more data, they were not able to solve the problem, as shown in
Section [2} on the other hand, we asked a former IMO participant, who did not have any exposure
to group theory, to learn about the basic definitions necessary to understand Yu Tsumura’s 554th
problem and to attempt to solve the problem. He succeeded, and devised a new proof strategy to
solve Yu Tsumura’s problem. We comment on his approach in Section [3| which shows that whereas
the LLMs seem to need to spend a lot of their time just trying random algebraic manipulations
with little clear direction, the IMO participant clearly motivated different proof strategies, which
highlights a completely approach to problem-solving, that LLMs lack.

2 RESULTS

All our evaluations were performed one-shot, i.e., a single attempt was made to obtain the answer.
Our assessment is made from the point of view of an end user at the present point in time. Thus, we
are assessing whether the model can answer Yu Tsumura’s 554th problem robustly, which means
that the model has to produce the correct answer most of the time, making a one-shot evaluation
should be sufficient. Repeated evaluations might produce correct proofs, but if it takes a best-of-n
approach, majority voting, or other techniques to elicit them, from the perspective of the end user,
this would be a different model that is evaluated (namely, one where the tested LLM incorporates an
output refinement strategy on top, that mirrors the repeating-evaluation framework ).

The list of models that we queried is given in Table 2| These models arguably represent the state
of the art among publicly available options. Although this list is not exhaustive, these models likely
outperform most others and are the most highly rated ones on website such as lmarena.ai(except
GPT-4.5). Therefore, we reason that if these models are unable to solve the problem, it is unlikely
that other comparable or less capable models will succeed either.

The failures in each case are fatal to the proof. In all cases, the model relied on the error we listed
to complete its output. None of the models makes really significant progress before such an error
derails the model, or in the case of the “argument incomplete” annotation, the model appears to give
up and declares success before much meaningful progress is made.

The fact that our result transcends the various types of LLMs indicates:


lmarena.ai
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LLM Access Eval Date Failure
03-pro (B.1) OpenRouter 28 Jul

03 online GUI 1 Aug ,T
o4-mini-high (B.3) online GUI 1 Aug

GPT-40 (B.4) online GUI 1 Aug

Gemini 2.5 Pro (B.3) online GUI 1 Aug

DeepSeek R1 (B.6) online GUI 1 Aug

xt. Thinking

Claude Sonnet 4 . Thinking) 1i online GUI 2 Aug
Claude Opus 4 (Ext. Thinking) (B8} OpenRouter 2 Aug
Grok 4 07 LMArena 2 Aug
Kimi K2 (B.10) OpenRouter 2 Aug

Qwen3 235B A22B Thinking 2507 (B.11) ~ OpenRouter 2 Aug

gcp-CcrrCcpCcHCcCc»—H0NU0

GLM-4.5 OpenRouter 2 Aug
Gemini 2.5 Deep Think online GUI 3 Aug
Llama 4 Maverick (B.14) LMArena 3 Aug
DeepSeek V3 0324 (B.15) OpenRouter 3 Aug
QwQ 32B LMArena 3 Aug , U
GPT-OSS- 1 B OpenRouter 14 Aug
GPT-5 Thinking (B online GUI 16 Aug

Table 1: A table of all 16 evaluated LLMs on Yu Tsumura’s 554th problem, together with the
dates at which the models were prompted, and links to the full outputs and detailed failure mode
descriptions. For both Claude models the “Extended Thinking” option was turned on. Some models
are missing size specifications, e.g., DeepSeek R1 as the GUI, that was used to access the model,
did not reveal this information about the underlying model, see Appendix |A| for more information.
None of the listed models were able to solve it flawlessly, as outlined by the failure modes (see key
below). We refer to Section [B|for full output traces, and detailed explanation about the (potentially
multiple) critical failure modes, and on which lines of the proof they occur.

Key: A = algebra error, C = missed case, D = incompatible definition,
I = argument incomplete, T = inapplicable theorem,
U = unwarranted assumption/claim
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¢ Lack of high-quality scientific evaluation. In contrast to final-answer benchmarks and
evaluations, such as OlympiadBench (He et al., |2024), for which automatic assessment is
possible, there are few benchmarks for assessing proof-based reasoning, due to the high
human effort involved. Exceptions are matharena.ai, (Petrov et all 2025) and the
earlier GHOSTS benchmark and evaluation (Frieder et al.,[2023)) problems, which contains
a preliminary assessment on older LLMs on 100 problems from the book by A. Engel,
“Problem-Solving Strategies” (Engel, [1998). Benchmarks comprising just six problems,
such as the evaluation on IMO25 problems, are too small to make an informed assessment
about the (mathematical) reasoning abilities of LLMs. The current results emphasize this,
contradicting the optimism that the IMO25 inspires.

* Outcome misalignment. The goal is to increase the reasoning abilities of LLMs, which
can be measured by the number of problems an LLM can solve. Relying on final-answer
benchmarks can skew this. Hence, problems where proof assessment is performed are
necessary to establish the baseline of reasoning abilities, and the current failure shows that
some gaps may still exist towards final-answer benchmarks.

3 HUuUMAN COMPARISON AND A NEW PROOF

Yu Tsumura’s 554th problem belongs to the domain of group theory, which is not a domain that is
present at problems from the IMO.

Inspection of the original proof reveals that no specific group theory knowledge or group theoretic
proof strategies are needed to solve Yu Tsumura’s problem, beyond the definition of a group and a
generator. Nonetheless, it is unclear whether the difficulty of the problem is within the reach of an
IMO-level competitor.

To clarify this, we carried out an n = 1 study with a former IMO25 participant, who was not yet
exposed to any group theory.

Precise instructions were provided to him that he was not to look up information about group theory,
and to receive any information he needed to understand the foundational group theoretic definitions
solely form interactions with ChatGPT. We shared the full, unredacted transcript of interactions with
ChatGPT, as well as his write-up of the proof

The fact that an IMO participant was able to solve this problem demonstrated, perhaps unsurpris-
ingly, that Yu Tsumura’s 554th problem is well within the reach of IMO-level students.

More interesting is to observe that the student engaged, without being explicitly prompted to so in
any way, to devise a proof that comes close to what is known as a “motivated proof” (Pdlyal, |1949;
Morris, 2020). These are proofs where each step made in the proof is made more transparent by pro-
viding clear motivation. It was observed that LLMs struggle with devising motivated proofs (Frieder,
et al.,|2024)), and the current paper highlights more strongly the distinction in human and LLM proof
quality. This both pertains to the thoughtful outline he shared that represents his thinking process,
as well as the final proof that resulted from this process.

What is noticeable about the solution by the IMO participant is that after spotting the identity
xy?"z~! = 23", which some LLMs are also able to devise, the participant exploits it by picking
special values of n.

In particular, the participants notices that we can replace a factor of 2 with a factor of 3, at the
expense of wrapping things in another = and z~!. But then by just focusing on the power of 3
dividing n, specifically by assuming n is divisible by a sufficiently high power of 3, the participant
can control the use of the identity. The main thing that is different here is that he keeps focusing on
powers, whereas both Yu Tsumura’s original solution and others known correct proofs prove some
identity involving »2” and then go back to using the original identities to knock out the rest of the
solution (or, in case of LLMs, just “fiddling” until the whole thing collapses).

The IMO participant’s solution is much nicer because it shows why 27 is important in the proof and
where it comes from - a motivated proof step.

"nttps://anonymous.4open.science/r/yutsumura_solution—-0BCD/


matharena.ai
https://anonymous.4open.science/r/yutsumura_solution-0BCD/
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4 LIMITATIONS

Goodhart’s law, which states that “when a measure becomes a target, it ceases to be a good measure”
is pervasive in machine learning: This principle highlights that model creators often optimize the
models to score highly on a given benchmark, rather than equipping the models with the skills that
are partially captured by that benchmark and that are needed to succeed on that benchmark. In this
regard, we expect that, having emphasized the problems commercial LLMs face on Yu Tsumura’s
554th problem, models will soon be adapted to solve this issue (we hypothesize that for some state-
of-the-art models, techniques as straightforward as improved test-time training will lead to the prob-
lem being solved). Yet, we conjecture that even in this case, other problems be found on which
LLMs will struggle across the board.

Our evaluation pertained exclusively to models that reasoned and did not use a RAG pipeline — since
the solution is publicly available, such an approach would not have assessed the reasoning skills of
the evaluated model. In the case of 03-Pro, it was necessary to explicitly prompt the model not to
look up the solution online.

Our protocol was to give each model a single attempt at a solution. It is reasonable to assume
that multiple attempts, especially with the more expensive models, may result in a more complete
solution. Of course, commercial models may already do this internally, using techniques such as
majority voting, or more sophisticated variants thereof. We did not follow this approach, because
our analysis pertains solely to see whether the experience of an end user interacting with these
language models can live up to the expectation genereted by the strong performance on IMO25.

We have focused on publicly released, widely deployed models, especially flagship models. We
cannot exclude that there are boutique models or models that are not yet publicly deployed that can
reliably solve the problem.

The difference in model capabilities might also be explained by differences in how much training
on the test task was performed (Dominguez-Olmedo et al.| [2024).

Lastly, a mathematical problem with a proof that relies mainly on symbolic manipulation will pose
few issues for a symbolic solver tailored to this type of reasoning. In this regard we expect that an
LLM that has access to a tool, such as Vampireor some other solver, and can translate the problem
into the necessary formalism, will be able to solve it.

5 CONCLUSION

We have demonstrated that there exists at least one problem drawn from a similar distribution in
terms of human difficulty and solution strategies as IMO problems, on which LLMs have demon-
strated very strong performance to date, on which LLMs nonetheless systematically fail. Thus,
subject to the constraints mentioned in Section ] reasoning in LLMS remains brittle.

The fact that LLMs attained gold medals in the IMO and that, further, an unreleased variant of
OpenAT’s 03 solved 50 Olympiad-level problems in the OpenAl x AIMO eval, would imply that
LLMs should be able to solve Yu Tsumura’s 554th problem, too, which we showed is accessible to
a human with IMO-level preparation.

Yet, the fact that none of the LLMs solved it highlights that LLMs’ “thinking” is different from
the thinking of a human, and, in particular, that their reasoning ability is not transitive: Solving
problems of a similar level of difficulty does not guarantee that another, similar such problem can
be solved.

We are cognizant that Yu Tsumura’s 554th problem will soon be solved by LLMs, in particular, once
attention has been drawn to the fact that it is not solvable. Our analysis was carried out over a time-
frame of less than three weeks between July and August 2025, and meant to capture a noteworthy
snapshot at the time.

$https://github.com/vprover/vampire


https://github.com/vprover/vampire
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Nonetheless, this doesn’t change our overall message, as in that case other problems that should be
accessible to LLMs based on their performance on comprehensive benchmarks, will turn out to be
not solvable by a wide set of LLMs.

We conclude with concerns we have going forward: In announcements on strong LLM performance,
it is not always clear what score was used. Several common options exist to score problems from a
benchmark, such as a binary score per problem (correct/incorrect), or a score that takes into account
repeated sampling (pass@n, first introduced in (Kulal et al.,[2019)). Not being fully explicit in how
exactly the methodology was set up can make the numbers hard to interpret.

For very long running commercial models, it will become difficult to rule out human intervention
behind the scenes as benchmarks are being carried out, especially if the models are only deployed
to a very small number of individuals or can only be afforded by very few researchers. This will
potentially skew results of evaluations and make scientific evaluation difficult, if not impossible. We
note that better evaluation standards are needed to address this issue. Pre-registered evaluation, akin
to pre-registered studies, where time constraints are discussed and fixed in advance, are needed to
exclude issues like these, by making sure (among other things) that the time alloted for the evaluation
is not longer than the average expected runtime of the model.

REPRODUCIBILITY STATEMENT

Due to the stochastic nature of LLMs, re-generating the outputs is not possible. However, we have
included the full output traces of all LLMs in Appendix
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A ADDITIONAL LLM INFORMATION

In order to emulate the end user experience, we used various web GUIs to access the models. In
some cases, only these were available.

We accessed DeepSeek R1 via the DeepSeek website. We presume this is DeepSeek R1 0528. This
is a 685B model, comprising 671B main model weightsﬂ It is accessed by turning on the DeepThink
option in the DeepSeek web interface.

The Claude Sonnet 4 model was run with Extended Thinking turned on in the web interface.

The Claude Opus 4 model was accessed via OpenRouter and it spent 146.5s reasoning, indicating
that the Extended Thinking mode was switched on.

On release day, GPT-5 suffered technical issues, such as returning responses unrelated to the prompt,
or crashes. An output for GPT-5 was obtained, however OpenAl changed the available options
quickly over the coming days and we decided not to use the release day response and wait until the
models stabilised.

A later attempt on Aug 14 returned an empty answer after 14m 54s.

The included output for GPT-5 was obtained on Aug 16 with GPT-5 Thinking. The mathematical
error was essentially the same as the one produced by GPT-5 on release day. However, the Aug 16
generation only thought for 2min 7s vs 4min 43s on release day. We don’t know if this was due to
server load or a change in the model.

B OutPUT TRACES

This appendix contains the unmodified solutions produced by the model, along with the lines at
which critical errors are made. We also consider a substantially incomplete proof to be a critical
error.

The prompt for all LLMs was identical: Let G be a group with generators x and y and relations
xy2 = y3x and yxr2 = x3y. Can you prove that G is the trivial group. For models that do a web
search, we add: Do not perform a web search to solve this problem to incentivize the model to reason
rather than to regurgitate the web-based proof. For each model below, we first list the errors, and
then reproduce the generated proof. At least one error was always critical, and we indicate which.

B.1 03-PRrRO

Lines 3, 8 and 12: The definition of the commutator used is [z,y] = xyz~1y~!. The defi-
nition of conjugation used is ¥ = y~'xy. But the identity [z, yz] = [z, ][, 2]Y is not valid with
these definitions. (Critical)

Write the two relations in commutator form.

(1) $xy~"2 = y"3x \iff x y"2 x"{-1} = y"3 \iff [x , y 2] = y$
(2) Syx"2 = x"3y \iff y x"2 y"{-1} x"3 N\iff [y , x72] = x$

Step 1. Express y in terms of the basic commutator
Put Sc = [x , yl$.
Because $[x , y'2] = [x , v]Ix , y]y (= c c"y)$ we have

Sy = c c'y$. (3)

Multiply (3) on the right by S$S(c’y) {-1}$.
Since $(c’y) " {-1} = y"{-1} c"{-1} v$, (3) gives

Sy (c7y) " {-1} = c \iff y y"{-1} c"{-1} y = c \iff c"{-1} y =
s C$,

‘https://huggingface.co/deepseek-ai/DeepSeek-V3
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hence Sy = c¢”2$. (4)

So $Sy$ is the square of the commutator $c$ and therefore commutes
— with $c$.

Step 2. Express $x$ in terms of the commutator
Put $d = [y , x]$. From (2) we similarly get

$Sx = d d"x$. (5)

Because $(d"x) " {-1} = x"{-1} d"{-1} x$, the calculation used
— above gives

$d"{-1} x = d \implies x = d"2$. (6)

Step 3. Relate d to ¢
But $[y , x] = [x , y]*{-1}, 1.e. d = c " {-1}$. (7)

Combining (4), (6) and (7) we obtain

Sy = c’2 , x = (c™{-1})"2 = ¢c "{-2}%. (8)
Step 4. S$xy = 18
Because powers of the same element commute,

Sxy = ¢c "{-2} ¢c"2 =1, soy = x"{-1}$. (9)

Step 5. Finish with either defining relation
Insert $y = x"{-1}$ in the first original relation:

$x y"2 = y"3 x \implies x-x "{-2} = x "{-3} - x$ ,
i.e. $x "{-1} = x "{-2}$.

Multiplying by $x"2$ gives $x = 1$, and then (9) forces S$y = 1S.

Hence every generator of $G$ is the identity; therefore

$G$ is the trivial group.
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B.2 03

Lines 36-37: The value k need not be an integer if n is infinity. (Critical)

Lines 36-41: The given map involves x and thus y need not be sent to an element of (y).
The model has made the assumption that the automorphism of G (conjugation by z) induces an
automorphism of the subgroup (y). (Critical)

Below is one way to see that the presentation

$S
G=\langle x,y\mid xy " {2}=y"{3}x,\;yx"{2}=x"{3}y\rangle
$S

defines nothing more than the trivial group.

### 1. The abelianisation is trivial

Send $x\mapsto \bar x,\;y\mapsto\bar y$ in the free abelian group
— on two generators.
The two relators become

$S

\bar x+2\bar y=3\bar y+\bar x,\gquad
\bar y+2\bar x=3\bar x+\bar vy,

$9

and both reduce to $ \bar x=\bar y=0$.

Hence S$G”{\text{ab}}=G/[G,G]=1S$; in particular $G=[G,G]S$ is

— xperfectx.

If we can show that $GS$ is abelian, it will therefore be trivial.

### 2. Conjugating the cyclic subgroups

Write $n=\1lvert y\rvert\; (1\le n\le\infty)S$.
From $xy~{2}=y " {3}x$ we get

$$
x vy {2}x"{-1}=y"{3}. \tag{2.1}
$$

Because the subgroup $\langle y\rangle$ is cyclic, there is an
— 1integer
Sk\; (I1\le k\le n)S$ such that

$$
xy x"{-1}=y~{k}. \tag{2.2}
$$

Squaring (2.2) and comparing with (2.1) yields the congruence

$S
2k\equiv 3\pmod n, \gquad\gcd(k,n)=1. \tag{2.3}
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59

Exactly the same argument with the second relator Syx"{2}=x"{3}y$
< gives numbers
Sm=\1lvert x\rvert$ and $\ell$ satisfying

$S

y x vy {-1}=x"{\ell},\gguad 2\ell\equiv 3\pmod
— m, \gquad\gcd (\ell, m)=1. \tag{2.4}

$S

*If $n=\infty$x then (2.3) would read $2k=3$ in the integers,

< 1mpossible.

Thus $y=1$ and, inserting this in the first relator, $x=1$.

So from now on we may assume $n,m<\infty$; necessarily $n,m$ are
— *xoddxx (otherwise $2$ would not be invertible mod $n$ or

— Sms) .

### 3. A useful commutator
By (2.2)-(2.4),

$S
[x,y]=x y x"{-1}y " {-1}=y"{k-1}=x"{1-\ell}. \tag{3.1}
$S

Because of the congruences $2k\equiv3$ and $2\elll\equiv3$ we have

$S
\gcd (k-1,n)=\gcd (\ell-1,m)=1. \tag{3.2}
$S

(Indeed, if a divisor $d$ satisfied $d\mid n$ and $d\mid k-1$
— then S$k\equivl\pmod d$; reducing $2k\equiv3\pmod n$ modulo
— $d$ would give $2\equiv3\pmod d$, hence $d=1$.)

From (3.1)-(3.2) the element

$9
c:=y " {k-1}=x"{1-\ell}
$9

has order

$S
\lvert c\rvert=n=\lvert y\rvert = m=\lvert x\rvert,

$9

so $\langle c\rangle=\langle y\rangle=\langle x\rangle$.
Thus **bothxx generators are powers of the *samex element $c$;
— consequently $G$ is cyclic and therefore abelian.

10
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### 4. Finish the argument
We have shown

* $G$ is abelian (Step 3),
* $GS$ is perfect (Step 1).

The only perfect abelian group is the trivial one, so $G=1$.
Equivalently $x=1$ and $y=15.

$$
\boxed{\;G\text{ is the trivial group.}\;}
$$

### Why the key step works

The heart of the proof is the observation that the first relator
— lets us

*measure* how conjugation by $x$ acts on the cyclic subgroup

— generated by $y$; it must multiply exponents by $k$ with

— $2k\equiv3s.

Because $k-1$ is coprime to $|yl|$, the commutator $[x,yl=y {k-1}$
— still has full order and ends up generating the xxsamex*x*

— cyclic subgroup as SyS.

The second relator yields the mirror-image statement for $x$.
That forces the whole group to be cyclic-hence, after the

— abelianisation calculation, trivial.

11
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B.3 04 MINI HIGH
Lines 21-37: Itis shown that (y2) and (y3) are conjugate in G. But the following comments
require that they be conjugate in (y), which is not demonstrated. (Critical)

Lines 53-71: Again, conjugation is in GG, not in the cyclic subgroup generated by y. Thus the
stated conclusions are not supported. (Critical)

Lines 93-100: The given map involves  and may not even be a map from (y) to itself, let alone
an automorphism. (Critical)

Here is a self-contained proof that

59
G = \langle x,y \mid xy"2 = y~"3x,\; yx"2 = x"3y\rangle
$S

is the trivial group.

## 1. No element can have infinite order
From

$S

xy~2 = y"3x
\quad\Longrightarrow\quad
x\,y 2\, x"{-1} = y~3

$S

we see that the subgroups

$S

\langle y~“2\rangle
\quad\text {and}\quad
\langle y~3\rangle
$S

are conjugate in $G$. But in an infinite cyclic group $\langle
— vy\rangle$, the index of $\langle y k\rangle$ is $|k|[S$.
— Conjugate subgroups have the same index, so you would get

$S

[\N<y\>:\<y 2\>] \;=\;2,

\ggquad

[\<y\>:\<y"3\>] \;=\;3,

$9

a contradiction. Hence **Sy$ must have finite orderxx. By an

— entirely symmetric argument from

$S

yx"2 = x"3y
\quad\Longrightarrow\quad
v\, x"2\,y"{-1} = x°3,

$S

12
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also **$x$ has finite orderxx.

## 2. Reduction to a cyclic, perfect group
Let

$$
m = \mathrm{ord} (y), \quad n = \mathrm{ord} (x) .
$$

Because $xy " 2x"{-1}=y~3$, conjugation by $x$ carries
$\langle y~2\rangle$ onto $\langle y~3\rangle$. 1In a cyclic
— group of order $m$, the index of $\langle y“k\rangle$ is

$S

\bigl [\<y\>:\<y k\>\bigr]
=\frac{m}{\gcd(m, k) }.

$$

Equating the two indices gives

$$

\frac{m}{\gcd(m,2)} \;=\;\frac{m}{\gcd(m, 3)}
\;\Longrightarrow)\;

\gcd (m, 2) =\gcd (m, 3) .

$$

Since $\gcd(m,2)\in\{1,2\}$ and $\gcd(m,3)\in\{1,3\}$, the only
— way they are equal is

$S

\gcd (m, 2) =\gcd (m, 3) =1,

$$

i.e.\ Sm$ is coprime to $6$. In particular, **2 and 3 are

— 1nvertible in $\mathbb{Z}/m\mathbb{Z}S$.x*

By exactly the same reasoning from the second relation one sees
— that

$$
\gcd(n, 2)=\gcd(n, 3)=1
$$

and so **x2 and 3 are invertible mod $n$.*=*

## 3. Linearising the conjugations

Because $\gcd(2,m)=1$, the map

$9
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\varphilcolon\<y\>\to\<y\>, \quad
\varphi (v k)=x\,y k\,x " {-1}
$S

is an automorphism of the finite cyclic group of order $m$.

$S

\varphi (y"2)=y"3
\quad\Longrightarrow\quad
\varphi (y) "2 = y"3,

$S

we deduce that

$S
\varphi (y)=y~c,
$S

where $c$ is the unique integer mod $m$ satisfying

$S
2c\equiv3\pmod m.
$S

Since $\gcd(2,m)=1$, we have

$S
c—-1 \;\equiv\;2"{-11}\;\; (\bmod\,m),
$S

so $\gcd(c-1,m)=1$. Thus
$S

x\,y\, x"{-1} \;=\; y c.
$S

Similarly, from $\,vy\,x"2\,y"{-1}=x"3$ and $\gcd(2,n)=1$ one

< shows

$S
Y\IX\IYA{—l} \;:\; x"d,
$S

where $2d\equiv3\pmod n$ and hence $\gcd(d-1,n)=1$.

## 4. The commutator forces cyclicity {&} perfection
Compute the two "commutators":

$$

[Xry:l \;=\; X\ry\,XA{—l}\ryA{—l}
\;=\; vy c\,y {-1} = y"{\,c-1},
$$

14
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$S

[y, x] = v\, x\, y " {-1}\,x"{-1}
= x"d\,x"{-1} = x"{\,d-1}.
$s

But always S$[y,x]=[x,y] {-1}$, so

$$

x"{\,d=-1} \;=\; \biglly,x\bigr]
\;=\;\bigllx,y\bigr]~{-1}
\i=\; vy " {\,1-c}.

\tag{*}

$S

Now:
1. Since $\gcd(c-1,m)=1$, there is an integer $u$ with

$S
u\, (c-1)\equivl\pmod m.
$S

Raising $[x,yl=y {c-1}$ to the SuSth power gives

$$
[x,y]17u \;=\; y " {\,u(c-1)} =y,
$$

i.e. \\

$$

v \;=\; [x,y]"u
\;\in\; [G,G].
\tag{1l}

$$

2. Since $\gcd(d-1,n)=1$, there is an integer $v$ with

$S
v\, (d-1)\equivl\pmod n.
$S

Raising equation $(x)$ to the $vS$th power gives

$9
x"{\,v(d-1)} = y"{\,v(l-c)},
$9

but $v(d-1)\equivl\pmod n$ so S$x=y " {\,v(l-c)}$. Hence

$$

x \;\in\;\langle y\rangle.
\tag{2}

$9
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From $(1)$ and $(2)$, xxboth** generators $x,y$ lie in the
— *derived subgroup=* $[G,G]$, so

$S
[G,G] = G,
$S

i.e.\ $GS$ is xxperfect**. On the other hand $(2)$ shows $G$ is
— cyclic (generated by S$y$), hence **abelianxx. The only group
— which is xbothx abelian and perfect is the trivial group.

### Conclusion

No non-trivial group can satisfy simultaneously

$S

xy 2=y~ 3x
\quad\text{and}\quad
yx"2=x"3y,

$S

SO

$S
\boxed{G\text{ is the trivial group.}}
$S
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B.4 GPT-40

Line 118: The preceding lines don’t demonstrate that conjugation of y™ by x increases the expo-
nent by 1. (Incorrect but not used)

Line 348: Itis not clear which equation x = yxy comes from. (Incorrect but not used)

Line 354: Having made no progress whatsoever, the model concludes the “only consistent solu-
tion” is the trivial group. (Critical)

We are given a group $G$ with generators $x$ and $y$, and two
— relations:

$S

(1) \quad xy~"2 = y~"3x, \quad \text{and} \quad (2) \quad yx"2 =
— x"3y.

$S

Our goal 1s to *xprove that $G$ is trivialxx, i.e., $x =y = 1$.

### Step 1: Rewrite the Relations

Let’s manipulate each relation to bring like terms together.
#### From (1): $xy~2 = y~3x$

Multiply both sides on the right by $x"{-1}$:

$S$
xy"2x"{-1} = y 3.
$S

So,

$S
x y 2 x"{-1} = y~3. \quad \text{(1'")}
$S

This says that conjugating $y~2$ by $x$ gives $y~3$, or
$S
x y°2 x"{-1} = y~3 \quad \Rightarrow \quad x y"2 x"{-1} y"{-3} =

- 1.

$S

This is equivalent to:

$9

x y 2 x"{-1} vy {-3} = 1.

$9

#### From (2): Syx"2 = x"3y$

Multiply both sides on the right by $y~"{-1}$:

17
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$S
yx"2 vy {-1} = x"3.
$9

So,

$S
y x°2 y {-1} = x°3. \quad \text{(2')}
$S

Similarly,

$$
y x°2 yo{-1} x"{-3} = 1.
$$

### Step 2: Define Conjugation Maps
Let’s define the following:

* From (1'): $x y"2 x"{-1} = y"3 \Rightarrow x y"2 x"{-1} y~{-3}
- =13
* From (2'): Sy x"2 y"{-1} = x"3 \Rightarrow y x"2 y"{-1} x"{-3}
- =13

These say that:

$S

x y'2 x"{-1} y*{-3} = 1 \quad \text{and} \quad y x"2 y~{-1}
- x"{-3} = 1.

$S

These are conjugation identities showing how $x$ and S$y$ act on
— each other.

Let’s now take (1') and apply the same conjugation again.

### Step 3: Conjugate (1') Again

From (1'):

$S

x y 2 x"{-1} = y~3.
$S

Now conjugate both sides by $x$:
Left-hand side:

$S
X (x y'2 x7{-1}) x7{-1} = x"2 y"2 x"{-2}.
$S$

18
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Right-hand side:

$S
x y"3 x"{-1}.
$S

So,
$S
x"2 y'2 x7{-2} = x y"3 x"{-1}.
$S

But from (1') again:

$S

x yv°2 x"{-1} = y"3 \Rightarrow x y"3 x"{-1} = x (x y 2 x"{-1})
- xXT{-1} = x"2 y"2 x"{-2}.

$S

So this checks out.

But this also tells us that each time we conjugate $y"n$ by $x$,
— the exponent increases by one.

So maybe try to **write $x$ and $y$ in terms of each otherxx.

##4# Step 4: Solve for One Variable

Go back to:

$S

x y 2 =y 3 x.
$S

Let’s try to xxmove all $xS$'s to one sidex*x*.
Start with:

59
x y'2 =y"3 x
59

Multiply both sides on the left by $x"{-1}$, then on the right by
-  SxT{-1}S$:

$9
y"2 = x"{-1} y"3 x \Rightarrow x y"2 x"{-1} = y~3.
$S

As before.

Similarly, from (2):
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$S
yx“2 = x"3 y \Rightarrow y x"2 y"{-1} = x"3.
$9

Now, write these as:

* Sx y*2 x"{-1} = y~3$%
* Sy x72 y"{-1} = x"3%

Let’s now define $a = x$, $b = y$, to simplify notation.
So:

* $a b2 a’{-1} = b"3% (1)
* $b a2 b"{-1} = a”"3$ (2)

Let's try to eliminate one of the variables using these
— relations.

### Step 5: Try to Find Orders of $x$, S$y$

Suppose $x = 1$, the identity.

Then from (1):

$S

1 \cdot y"2 = y"3 \Rightarrow y"2 = y~3 \Rightarrow y " {-1} = 1
— \Rightarrow y = 1.

$S

So $x = 1 \Rightarrow y = 15.

Similarly, if $y = 1$:

From (2):

$S

1 \cdot x"2 = x"3 \Rightarrow x"2 = x"3 \Rightarrow x"{-1} =1
— \Rightarrow x = 1.

$S

So $y = 1 \Rightarrow x = 18$.

So xxif either generator is identity, the other must be toox=x.
Now suppose neither is the identity, but we try to find an order.
Suppose $x$ and $y$ have finite order.

Let’s say $x"n = 1$ and $y'm = 1$.

Try to find a contradiction.

20
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But a better approach is to x*xdefine a new variablexx and work
— through simplification.

### Step 6: Try to Simplify with Substitutions
From the conjugation relation:

$$
x y"2 x"{-1} = y°3 \Rightarrow x y"2 = y~°3 x.
$$

Let’s isolate $x$. Multiply both sides on the left by Sy~ {-3}$:

$$
vy {-3} x y'2 = x.
$$

So:

$9
x =y {-3} x y 2.
$9

Now cancel $x$ from both sides:
Multiply both sides on the left by $x"{-1}$:

$S
1 = x"{-1} v {-3} x vy 2.
$S

Rewriting:
$S

x"{-1} v {-3} x y"2 = 1.
$S$

Similarly, from the second relation:

59

y x°2 = x"3 y \Rightarrow x"2 = y"{-1} x"3 y \Rightarrow 1 =
- X" {=2} v {-1} x"3 vy.

59

So:

$S
x"{=-2} vy {-1} x"3 y = 1.
$S

We now have:

* $x"{-1} y " {-3} x y"2 = 1$ (BA)
* $x7{-2} y " {-1} x"3 y =

|
-
8%
w
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Let’s work with (A):

$S

x"{-1} vy {-3} x y"2 = 1 \Rightarrow y " {-3} x y"2 = x.
$S

Let’s multiply both sides by $x"{-1}$ on the right:

$S
vy {-3} x y'2 x"{-1} = 1.
$S

So:

$$
v {-3} x y°2 x"{-1} = 1.
$$

That is:

$S

x y 2 x"{-1} = y~3.
$S

We’ve gone in circles.

Let’s take a step back.

### Step 7: Try a Free Group Homomorphism

Suppose $G$ is a group with these relations:

$S

G = \langle x, y \mid x yv"2 = y"3 x,\ y x"2 = x"3 y \rangle.
$S

Let's define a homomorphism S$\phi: G \to \mathbb{Z}$ to
— abelianize the group.

In the abelianization, $xy = yx$, so we treat all elements as
— commuting.

From the relations:

1. $x y"2 = y"3 x \Rightarrow x + 2y = 3y + x \Rightarrow 2y = 3y
— \Rightarrow y = 0$

2. Sy x"2 = x"3 y \Rightarrow y + 2x = 3x + y \Rightarrow 2x = 3x
— \Rightarrow x = 0$

So in the abelianization, $x = y = 0$, so both are trivial in

— $G"{ab}s.

22
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306 | Therefore, $GS$ is a **perfect group** (equal to its commutator
— subgroup) .

307
38 | Since the abelianization is trivial, we suspect $G$ is trivial or
— very small.

309

311
32 | ### Step 8: Try the Identity Directly
313
314 |From:
315
316 | $S

37 |[x y'2 = y©3 x

318 | \Rightarrow x y~2 x"{-1} = y"3

319 | \Rightarrow x y~2 x"{-1} y"{-3} = 1.
320 | $S

321
322 |Let’s define:
323
324 | $$

5 |r = x y° 2 x"{-1} y"{-3}, \quad s =y x"2 y " {-1} x"{-3}.
36 | $$

327
28 | Then $G = \langle x, y \mid r = 1,\ s = 1 \rangleS$.
329
330 |Now define a xxmap from $G$ to the trivial groupx*, mapping $x
— \mapsto 1, y \mapsto 1$. Clearly both relations are

— satisfied. So the trivial group 1is a quotient of $GS.

32 |But we now show that **$x =y = 1$x% in $GS.

334 |From:

335

336 | $S

37 |[x y'2 = y°3 x \Rightarrow x y"2 x"{-1} = y~3.
38 [ SS

a0 |Let's suppose Sy \ne 1$, and see that the order of $y$ must be
— finite.

341
32 |Let's try small orders.
343
344 | Suppose Sy'n = 185.
345
346 | Try $n = 1$: Sy = 1 \Rightarrow x = 1$.
347
48 | Try $n 2$: then $y”"2 = 1 \Rightarrow x = y x y \Rightarrow x =
— x$, okay.

349
350 |Try $n = 3$: Sy~ 3
— \Rightarrow y

1 \Rightarrow x y~2 = x \Rightarrow y"2 =1
1$. Contradiction.

351
32 [ So we always get back to $y = 1 \Rightarrow x = 1$.
353
354 | Therefore, the only consistent solution is:

23




1242355
1243356
1244357
1245358
1246 4,
1247 540
1248 3
1249 34,
1250 363
1251 364
1252 365
1253 366
1254 367
1255 368
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Final Conclusion:

#44
$S
\boxed{G \text{ is the trivial group.}}
$S

All elements reduce to the identity under the given relations.
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B.5 GEMINI 2.5 PrO

Lines 39-40: acannot be cancelled from the right, and even if this is a typo, the claimed identity
a = b2ab™! does not follow from bab = b*ab~!. This is an algebra error. (Critical)

Here is a proof that the group $G$ with generators $x$ and $y$
— and relations $xy~"2 = y~"3x$ and $yx"2 = x"3yS$ must be the
— trivial group.

### x+x1. Rewriting the Relationsx*=

The given relations are:
1. $xy"2 = y~"3x$
2. Syx"2 = x"3y$

To simplify the manipulation of these relations, we can introduce
— new generators. Let $a = x$ and $b = y"{-1}$. Then $y =

b {-1}$. We can rewrite the original relations in terms of

— $a$ and $bs.

!

* xxRelation l:%%x $xy"2 = y"3x$ becomes S$ab”{-2}

= Db " {-3}as.
* xxRelation 2:%% Syx"2 = x"3y$ becomes S$b " {-1}a"2 =

a"3b " {-1}5.

Now, we can rearrange these new relations to get expressions for
— $a$ and $a”2$:
* From $ab”"{-2} = b"{-3}a$, if we multiply by $b"3$ on the left,
— we get S$b"3ab"{-2} = a$. If we then multiply by $b"2$ on the
— right, we obtain:

$b"3a = ab"2$ (R1'")
* From $b"{-1}a”"2 = a"3b"{-1}$, if we multiply by $b$ on the
— left, we get $a”"2 = ba"3b " {-1}$. If we then multiply by S$b$
— on the right, we obtain:

$a"2b = ba"3$ (R2'")

So, the original relations are equivalent to the pair of
— relations:

* $ab"2 = b~ 3a$

* Sa"2b = ba"3$

### »*x2. Deriving a Key Identityxx

Now, we will use these relations to show that $b$ must be the
— identity element.

From $ab”2 = b"3a$, we can derive expressions by progressively
— multiplying by $b"{-1}$ on the right:

* Sa = b"3ab"{-2}$

* Sab = b"3ab " {-1}$S

* $ab”2 = b"3a$ (This is R1'")

Let's focus on the identity $Sab = b"3ab"{-1}$. We can use this to
— analyze the expression S$bab$:

Sbab = b(ab)$

Substitute the expression for $abs$:

Sbab = b(b"3ab”"{-1}) = b 4ab"{-1}$

25



38
39

40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60

61
62
63
64
65
66
67
63

69

Under review as a conference paper at ICLR 2026

So, we have found that S$bab = b"4ab”{-1}$. By canceling $b$ from
— the left and $a$ from the right (if $a$ is not the identity),

- we get:
Sa = b "3ab" {-1}$%

Now we have two expressions for $a$:
1. S$a = b"3ab"{-2}$ (from R1'")
2. $Sa = b "3ab"{-1}$ (derived above)

Equating these two expressions gives:
$b"3ab”{-2} = b"3ab"{-1}5S

By canceling $b"3a$ from the left, we get:
$b™{-2} = b " {-1}8

Multiplying by $b"2$ on the right gives:
$e = b$

### *+3. Proving Trivialityxx*

We have shown that $Sb = e$. Since we defined $b = y " {-1}$,
— means Sy {-1}=e$, which implies xxSy=eS*=*.

Now we can substitute $y=e$ back into one of the original
— relations. Let's use the second relation:

Syx"2 = x"3y$

Substituting $y=e$:

Sex™2 = x"3e$

Sx"2 = x73$

By canceling $x72$ from the left, we find that #*x$x=eS$xx*.
Since both generators $x$ and $Sy$ are the identity element

< the group $G$ can only contain the identity element.
— Therefore, *%$G$ is the trivial groupx=*.

this

($es),
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B.6 DEEPSEEK R1

Lines 11-13:Itis stated that zyz~' = 3. This is claimed to follow from gyg~' = 7. But this
is not proved. The claimed proof only shows that (zyz~1)? = y3. (Critical)

The group \ (G\) is defined by generators \(x\) and \(y\) and

— relations \(xy"2 = y"3x\) and \(yx"2 = x"3y\). The goal is to
< show that \(G\) is trivial, meaning \(x = 1\) and \(y = 1\),
— where 1 is the identity element.

From the given relations, it is possible to derive additional
— relations:

- From \(xy"2 = y~"3x\), conjugation by \(x\) gives \ (
— =y 3\). Since conjugation is an automorphism, \ (
= = (xy x"{-1})72\), so \((x y x"{-1})72 = y"3\).
- Similarly, from \(yx"2 = x"3y\), conjugation by \(y\) gives \ (y
- x"2 y™{-1} = x"3\), so \((y x y*{-1})"2 = x"3\).

x vy 2 x"{-1}
x vy 2 x " {-1}

Consider the element \(g = x y\). Conjugating \(y\) by \(g\):
\ [

gy g {-1} = (xy) vy (xy) {-1} = (xy) y (y {-1} x"{-1}) = x ¥y
- x"{-1}.

\]

From the earlier derivation, \(x y x"{-1} = k\) where \ (k"2 =

— y~"3\), but also from the relation \(g y g {-1} = y~"3\) (since
\(gy g {-1} = x yv x"{-1}\) and \((x v x"{-1})"2 = y"3\)

— implies that conjugating again or directly, it follows that
— \(x vy x"{-1} = y"3\)). Thus:

\ [

gy g{-1} = xy x"{-1} = y"3.

\]

Therefore:

\ [

x y x°{-1} = y"3. \quad (1)

\]

Similarly, for the other relation, consider \(h =y x\).

— Conjugating \(x\) by \(h\):

\ [

h x h"{-1} = (y x) x (y x) " {-1} = (y x) x (x"{-1} y " {-1}) =y x
- y {-1}.

\]

From the derivation, \(y x y {-1} = m\) where \(m"2 = x"3\), and
— similarly, it follows that:

\ [

h x h"{-1} = v x y"{-1} = x"3.

\]

Thus:

\ [

y x y {-1} = x"3. \quad (2)

\]

From equations (1) and (2):

- Equation (1): \(x y x"{-1} = y"3\) dimplies \(x y = y~3 x\).
— \quad (3)

- Equation (2): \(y x y " {-1} = x"3\) implies \(y x = x"3 y\).

— \quad (4)
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Now, use the original relations. From the original relation
— \(xy"2 = y"3x\) \quad (5), and from equation (3), multiply
< Dboth sides by \(y\):

\ [

x y'2 = y"3 x y. \quad (6)

\1]

Equating (5) and (6):

\ [

y'3 x=y"3 xy.

\1]

Since the group operation is cancellative, left-multiply both
< sides by \(y"{-3}\):

\ [

X = XYy

\1]

which implies:

\ [

x vy x"{-1} = x x"{-1} \implies y = 1. \quad (7)

\1]

Similarly, from the original relation \(yx"2 = x"3y\) \quad (8),
— and from equation (4), multiply both sides by \(x\):
\ [

y x72 = x"3 y x. \quad (9)

\1]

Equating (8) and (9):

\ [

x"3 vy =x"3y x.

\1]

Left-multiply both sides by \(x"{-3}\):

\ [

y = y XI

\1]

which implies:

\ [

vy x vy {-1} =y vy {-1} \implies x = 1. \quad (10)

From (7) and (10), \(x = 1\) and \(y = 1\). Therefore, the group
— \(G\) 1s trivial.

\boxed{\text{The group } G \text{ is trivial.}}
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B.7 CLAUDE SONNET 4 (EXTENDED THINKING)

Line 39: The model promises to verify the assumption 32 = e, but this is never independently
verified. (Critical)

Lines 51-54: The model assumes 22 = e without justification. (Critical)

Looking at this group presentation, I'll work systematically with
— the given relations to show that both generators must equal
— the identity.

Given relations:
1) $xy"2 = y~3x$
2) Syx"2 = x"3yS

x*+Step 1: Finding the orders of x and yx*x*

From relation (1): $xy"2 = y~3x$

Let me multiply both sides on the left by $y~{-3}$ and on the
< right by Sy~ {-2}5:

S8y {-3txy 2y " {-2} = y " {-3}y " 3xy " {-2}$%

$Sy {-3lx = xy " {-2}$$

Multiplying both sides on the right by $y~2$:
$Sy T {-3}txy"2 = x$$

But from our original relation, $xy“"2 = y~3x$, so:
S8y (-3} (y"3x) = xS$8
$Sx = x8$

Let me try a different approach. From $xy"2 = y~"3x$, I'll
< multiply on the left by Sy " {-3}$:
S8y {-31txy 2 = y"{-3}y"3x = x8$8

So Sy {-3}xy"2 = x$, which means $y " {-3}x = xy " {-2}$.

Multiplying both sides on the right by S$y~2$:
SOy {-3Ixy"2 = xy"{-2}y"2 = x$$

From the original relation $xy"2 = y~"3x$, we have $y " {-3}xy 2 =
— vy {-3}y"3x = x$.

This confirms our manipulation. Now, from $y " {-3}x = xy " {-2}$,
— multiplying on the right by $y~2$:
SSy " {-3}xy"2 = x$$

And since $xy~"2 = y " 3x$:
$Sy " {-3}y"3x = x$$
$Sx = x8$

But more importantly, from $y " {-3}x = xy {-2}$, 1f we set Sy~ 2 =
— e$ (which we'll verify), then:

SOy {-31x = x8$

$Sy~{-3} = e$$

$Sy"3 = eSS
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*xStep 2:
Similarly,

Following

$SSxT{-3}yx"2

This gives

Following
$5x7°3 = e$

**Step 3:

Now I have $x°3

Using symmetry for xxx

from relation (2): Syx"2

the same process,

= x"{-3}x"3y = y$$
us $x"{-3}lyx"2 = y$§,
similar logic, we get:

$

so $x"{-3}y

x"3y$

Deriving stronger conditionsxx

= = e$.

e$ and Sy~ 3

Substituting back into the original relations:

From $xy~2 = y“"3x$ with $y~3 = e$:
$Sxy"2 = ex = x$$

$Sy"2 = e$$

From $yx"2 = x"3y$ with $x°3 = e$:
$Syx"2 = ey = y$S

$Sx"2 = eS8

x*+Step 4: Conclusionxx*

Now I have
Sx"2 = e
- Sy~ 2 e

Since $\gc
— 3b =1
For S$x$: $
es

—

For $yS$: S
es

—

Therefore,

—

$ and $x°3 = e$

$ and $y"3 = e$

d(z2,3) = 1%,

S.

x = x"1 = x"{2a + 3b} = (x72)"a(x"3)"b
y =yl =y {2a + 3b} = (y"2)"a(y"3)"b
both generators equal the identity,

the trivial group.

multiply on the left by $x"{-3}$:

yx"{-2}$.

there exist integers $a,b$ such that $2a +

e”a \cdot e’b

e”a \cdot e’b

which means $GS$ is
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B.8 CLAUDE OPUS 4 (EXTENDED THINKING)

Line 20: This is an unwarranted assumption. The conjugation map is a map on G and so the
result of conjugating y need not be a power of y. (Critical)

Looking at the given relations:
- Sxy"2 = y"3x$
- Syx"2 = x"3y$

I'll analyze what these relations tell us about the group
— structure.

From the first relation $xy"2 = y~"3x$, I can rewrite this as:
$Sxy"2x"{-1} = y~ 385

This means that conjugating S$Sy~"2$ by $x$ gives us Sy~ 3$.

Similarly, from the second relation $yx"2 = x"3y$:
$Syx"2y”"{-1} = x"35$

This means that conjugating $x72$ by $y$ gives us $x73$.

Let me define the conjugation map $\phi_x(g) = xgx " {-1}$. Since
— conjugation is a homomorphism, and $\phi_x(y~2) = y"3$, I
— have:

$$\phi_x(y) "2 = y~35$

If I let $\phi_x(y) = y~a$ for some integer $a$, then:
$$(ya) "2 = y~"388S
$Sy~{2a} = y~3$$

This means Sy~ {2a-3} = 1$S.

For this to hold, either:

1. $y$ has infinite order, which would require $2a = 3$ in
— S$S\mathbb{Z}$ (impossible for integer $a$)

2. Sy$ has finite order $m$, and $2a \equiv 3 \pmod{m}s$

So $y$ must have finite order $m$. For the congruence $2a \equiv

< 3 \pmod{m}$ to have a solution, we need $\gcd(2,m) | 3$.
< Since 3 is odd, we need $\gcd(2,m) = 13, which means $m$ must
— be odd.

By the same reasoning applied to the second relation, $x$ must
— have finite odd order $n$, and there exists $b$ such that
—  Syxy~{-1} = x"b$ where $2b \equiv 3 \pmod{n}s$.

Now I'll use both relations together. From our conjugation
— equations:

- Sxyx"{-1} = y~"a$ where $2a \equiv 3 \pmod{m}$

- Syxy“{-1} x"b$ where $2b \equiv 3 \pmod{n}$

Let me compute $xyxy {-1}x"{-1}$ in two ways:

First way: Sxyxy {-1}x"{-1} = x(yxy " {-1})x"{-1} = xx"bx"{-1} =
— XAb$
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Second way: Sxyxy {-1}x"{-1} = (xyx"{-1}) (yy"{-1}) = y"a \cdot 1
-~ =y a$

Therefore: $x"b = y~as$

This is a key relationship. Now, since $x"b = y~a$:

- Applying $\phi_y$: $y(x"b)y " {-1} = y(y"a)y {-1}$, which gives
— $(x"b)"b = y"a$, so $x"{b"2} = y~as

- But also $x"{b"2} = (x"b) b = (y"a) b = y " {ab}$

So Sy“a = y " {ab}$, which means $y {a(b-1)} = 1S$.
Since S$y$ has order Sm$, we need $m | a(b-1)S$.

But we also know:

- From $x"b = y~a$, raising to the $a$-th power: $x"{ab} =

- vy {a"2}s$

- Applying $\phi_y$ to this: Sy(x"{ab})y"{-1} = y(y"{a"2})y " {-1}$
— This gives $(x"b) “{ab} = y"{a”2}$, so $x"{ab"2} = y"{a"2}s$

- But we already had $x"{ab} = y“{a"2}$

So $x"{ab} = x"{ab"2}$, which means $x"{ab(b-1)} = 1$.
Since $x$ has order $n$, we need $n | ab(b-1)S.
Now, since $m$ and $n$ are odd, and $a$ and $b$ are odd (as they

— satisfy $2a \equiv 3 \pmod{m}$ and $2b \equiv 3 \pmod{n}$
— with odd $m,n$), we have:

- $\gcd(m, ab) = 1$ (since $m$ is odd and $a,b$ are odd)
- Therefore $Sm | (b-1)$ (since $b-1$ is even and Sm | a(b-1)$%)
But wait - this gives us $m | (b-1)$ where $b$ satisfies $2Db

— \equiv 3 \pmod{n}S$.

Similarly, we get $n | (a-1)$ where $a$ satisfies $2a \equiv 3
— \pmod{m}S$.

Let me check if any odd integer $Sm > 1$ can satisfy these
— conditions:

For $m = 3$: S$a \equiv 3 \cdot 27 {-1} \equiv 3 \cdot 2 \equiv 0
— \pmod{3}$

So $a-1 \equiv -1 \equiv 2 \pmod{3}$

But we need $3 | (a-1)$, which means $a-1 \equiv 0 \pmod{3}S$.
— Contradiction!

For $m = 5$: $a \equiv 3 \cdot 3 \equiv 4 \pmod{5}$ (since

o $2°{-1} \equiv 3 \pmod{5}$)

So $a-1 \equiv 3 \pmod{5}$

But we need $5 | (a-1)$, which means $a-1 \equiv 0 \pmod{5}S$.
— Contradiction!

By similar analysis, no odd $m > 1$ can satisfy the required
— conditions.
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:_7/2: 84 | Therefore $m = 1$, which means Sy = 1$.

85
1730 ¢ By symmetry, $n = 1$, which means $x = 1$.
1731

87
1732 ¢ | Therefore $G = \{1\}$ is the trivial group.
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B.9 GRrRoOk 40709

Note: Grok 4 repeatedly returned empty output in OpenRouter. Thus Grok 4 0709 was accessed
via LMArena. It is unclear if the two versions are identical.

Line 5: Nothing of the sort is established. (Critical)

Line 7: No reason is given for this. (Critical)

The group \(G\) is presented as \(\langle x, y \mid x y"2 = y~3
~ %, \, y x"2 = x"3 y \rangle\).

Assume for contradiction that \(G\) is non-trivial. Then at least
— one of \(x\) or \(y\) is non-trivial.

As established, the orders \(n\) of \(y\) and \(m\) of \(x\) must
— be finite and odd.

The relations imply that conjugation by \ (x\) induces an
automorphism on \(\langle y \rangle\) multiplying exponents

— by \(k \equiv 3 \cdot 2°{-1} \pmod{n}\), with \(\gcd(k, n) =
— 1\).

Similarly, conjugation by \(y\) induces an automorphism on
— \(\langle x \rangle\) multiplying exponents by \ (1 \equiv 3
— \cdot 27{-1} \pmod{m}\), with \(\gcd(l, m) = 1\).

The order \ (e\) of \(k\) modulo \ (n\) divides \ (m\) and \ (1 -
- 1\).

The order \(d\) of \(1\) modulo \ (m\) divides \ (n\) and \(k -
- 1\).

Now, \(k - 1 \equiv 3 \cdot 2°{-1} - 1 \pmod{n}\). Suppose an odd
— prime \ (p\) divides both \(n\) and \(k - 1\). Then \ (3 \cdot
— 27{=1} \equiv 1 \pmod{p}\), so \(3 \equiv 2 \pmod{p}\), hence
—  \(p \mid 1\), impossible.

Thus, \(\gcd(n, k - 1) = 1\), so \(d \) .

Then \ (1 \equiv 1 \pmod{m}\), so \(2 \cdot 1 \equiv 3 \pmod{m}\),
< hence \(m \mid 1\), so \(m = 1\) and \(x = 1\).

With \(x = 1\), the first relation becomes \(y"2 = y"3\), so \(y
— = 1\), hence \(n = 1\).

This contradicts \(G\) non-trivial.
Therefore, \(G\) is trivial.

\boxed{G is trivial}
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B.10 KimI K2

Note: The fact that at the end of the output generated by Kimi K2 a $$ is missing is not a typo.
The model terminates its output without claiming to have found a solution. The error below occurs
well before that time.

Line 184: The identity

3

y? = a2yt ?

does not follow by conjugating again by z, and in fact, does not follow from the previous line at all.
(Critical)

### Understanding the Problem

We have a group $$ G $$ defined by two generators $$ x $$ and $$
— v $$ with two relations:

1. $$ xy~2 = y"3x $5S

2. $$ yx"2 = x 3y $$

Our goal is to prove that $$ G $$ is the trivial group, meaning
— $$ x =1 $$ and $$ y =1 $$ in $$ G $S$, so $$ G $$ has only
— one element.

### Initial Approach

To show that $$ G $$ is trivial, we need to derive from the given
relations that $$ x = 1 $$ and $$ yv = 1 $$. This means we
should manipulate the given equations to find simpler
relationships or equalities that force $$ x $$ and $$ y $$ to
be the identity.

il

### Manipulating the First Relation: $$ xy"2 = y"3x $$

Let's start with the first relation:

$$ xy"2 = y"3x $$

We can multiply both sides on the right by $$ x"{-1} $$ (the
— dinverse of $$ x $$) to isolate terms:

$S xy"2x"{-1} = y"3 $S

This shows that $$ y”"3 $$ is equal to $$ x y"2 x"{-1} $$, which
< 1is the conjugation of $$ y~2 $$ by $$ x $S.

### Manipulating the Second Relation: $$ yx"2 = x"3y $$

Similarly, take the second relation:
$$ yx"2 = x"3y $$

Multiply both sides on the right by $$ y~{-1} $$:
$S yx"2yT{-1} = x"3 $$

Here, $$ x"3 $$ is the conjugation of $$ x"2 $$ by S$S y $S.
### Exploring Conjugation and Powers

From the first manipulation, we have:
$$ x y"2 x"{-1} = y~3 $$

35




38

39
40
41
4
43
44
45

46
47

48
49
50
51
52
53
54
55

56
57
58
59

60
61

62
63
64
65
66
67
68
69
70
71
7

73
74
75
76

71

Under review as a conference paper at ICLR 2026

This implies that $$ x $$ conjugates $$ y"2 $$ to $S$ y~3 S$S.
— Similarly, from the second manipulation:
$S y x72 y{-1} = x"3 $$

So $$ y $$ conjugates $$ x72 $$ to $$ x"3 S$S.
### Trying to Find Simpler Relations

Let's see if we can find a relationship between $$ x $$ and $$ vy
— $$ that leads to $$ x =1 $S$ or $$ yv = 1 S$S.

From $$ x y"2 x"{-1} = y"3 $$, we can raise both sides to the
— power of $$ n $$ (for any integer $$ n $9):

$¢ (x y'2 x7{-1})"n = y " {3n} $$

$$ x y {2n} x"{-1} = y~{3n} $s

Similarly, from $$ y x"2 y " {-1} = x"3 $$:
$$ (y x72 y*{-1})"n = x"{3n} $$
$$ vy x7{2n} y"{-1} = x"{3n} $3

These show how conjugation by $$ x $$ and $$ y $$ affects powers
— of $$ y $$ and $$ x $$, respectively.

#4#4 Attempting to Find a Fixed Point

Let's consider the exponent of $$ y $$ in the first relation. The
— exponents on both sides of $$ x y"2 x"{-1} = y"3 $$ don't

— match directly, which is unusual. This suggests that the only
— way this can hold is if $$ y = 1 $$, making both sides equal
— to 1.

Similarly, if $$ yv = 1 $$, then plugging into the second
— relation:

$$ 1 \cdot x72 \cdot 1 = x"3 \cdot 1 $$

$$ x72 = x"3 $8

$$ x =1 S

By symmetry, if we assume $$ x = 1 $$, then:
First relation:

$$ 1 \cdot y"2 = y~3 \cdot 1 $$

$$ y"2 = y"3 $$

$Sy =1 $3

This suggests that $$ x = y = 1 $$ is a solution that satisfies
— Dboth relations, making $$ G $$ trivial. But we need to ensure
— that this is the only possible solution within the group $$ G
- $S.

### Proving Uniqueness of Trivial Solution

Let's formalize this without assuming $$ x $$ or $S$S y $$ is the
— identity upfront.
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78 |[From $$ x y™2 x"{-1} = y"3 $$, we can consider the exponent as a
— kind of homomorphism. Specifically, the mapping that sends $$
y $$ to $$ y~"3 $$ when conjugated by $$ x $$. Similarly, the
other relation gives a mapping sending $$ x $$ to $$ x73 $$
under conjugation by $$ y $S.

ol

79
80 | This is reminiscent of the concept where in a group, if

— conjugation by an element raises powers to higher exponents,
— the group might be forced to be trivial.

81
822 |Let's try to express everything in terms of a single element.
— Suppose we express one element in terms of the other.

83
g4 [From $$ x y™2 x"{-1} = y"3 $$, we can write:
85 | $$ x y°2 = y°3 x $$

86
87 | Similarly, from $$ vy x72 y " {-1} = x"3 $$:
88 |SS v x"2 = x"3 y $$

89
90 |Now, let's try to find a word that must equal the identity.
91
9 |Compute $$ x v x"{-1} y " {-1} $$, but this might not directly
— help. Instead, let's try to find a power that collapses to
— identity.

93
o4 | ### Using Commutators
95
9 |Notice that the relations resemble "expansive"

— behaviour-conjugation increases exponents. In some contexts,
< this implies the group must be trivial unless the elements
— commute in a certain way.

97
98 |[Let's attempt to compute some commutators or express higher
— powers.

99
100 |[From $$ x y"2 x"{-1} = y"3 $$, we can apply this multiple times:
101
102 |First, raise both sides to the power of $$ k $S:
103 [$$ (x y™2 x{-1})"k = y" {3k} $$

04 [$$ x y {2k} x"{-1} = y~ {3k} $$

105
16 |Now, set $$ k = 0 $$, but that gives $$ 1 = 1 $$, which is
— trivial.

107
18 |Alternatively, express $$ y $$ in terms of itself:
109 [$$ x y°2 x"{-1} = y"3 $$

1m [ $$ x vy x " {-1} x y x°{-1} = y"3 $5

| $S (x y x°{-1})"2 = y"3 $§

112
13 |Similarly, from $$ y x°2 y " {-1} = x"3 $$:
s | $$ (y x y"{-1})"2 = x"3 $$

115
116 | This seems to imply that the conjugates have certain power
— relationships.

117
us | ### Trying Specific Elements and Equalities

37




119
120

121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138

139
140
141
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162

163
164

Under review as a conference paper at ICLR 2026

Let's consider the order of $$ x $$ and $$ y $$. Suppose $$ x $$
< has finite order $$ n $$, then $$ x"n = 1 S$S.

From $$ yv x°2 y " {-1} = x°3 $$, we have:
$S y x72 y T {-1} = x"3 $$
$S y x™4 y " {-1} = x"6 $3

$$ vy x7 {2k} y"{-1} = x" {3k} $%

For $$ k = n $$, since $$ x'n =1 $$, we have:

$Sy 1 y*"{-1} =1 = x"{3n} $3

But $$ x"{3n} = (x"n)"3 = 1"3 =1 $$, which doesn't give new
— information.

Similarly, from $$ x y"2 x"{-1} = y"3 $$, we have:
$$ x vy {2k} x"{-1} = y" {3k} S$S

If $$ yv $$ has finite order $$ m $$, then for $$ k = m $$:
$$ x 1 x~{-1} =1 = y"{3m} $$
$$ vy {3m} =1 $3

But since the order of $$ y $$ is $S m $$, $S m $$ divides $$ 3m
— $$%, which is always true, so no contradiction arises directly
— from this.

### Introducing a Normal Subgroup Approach

Perhaps we can consider that these relations imply all elements
— are trivial. Let's try to prove that $$ x $$ and $$ y $$
— commute, and then see if this forces them to be trivial.

Assume $$ xy = yx $$. Then from $$ xy"2 = y "3x $$:

$$ xy"2 = y"3x $S

$$ y"2x = y"3x $$ (since $$ x $$ and $$ y $$ commute)
Multiply both sides on the right by $$ x"{-1} y"{-2} $$:
$$ 1 =y S8

Similarly, from $$ yx"2 = x"3y $$:
$S yx"2 = x"3y $$

$S x"2y = x 3y $$

$$ x72 = x"3 $8§

$$ x =1 $%

Thus, 1if $$ x $$ and $$ y $$ commute, both must be identity. But
— we don't know if they commute.

### Using the Composition of Conjugations

We have:

$$ \phi_x: y \mapsto x y x"{-1} $$

with $$ \phi_x(y"2) = y"3 $$, so $$ (\phi_x(y)) "2 = y"3 $8,

< dimplying $$ \phi_x(y) $$ is a square root of $$ y°3 $$, i.e.,
— $$ x y x"{-1} = vy {3/2} $$, but this suggests fractional

— exponents, which are typically not in groups.

This seems problematic unless $$ y = 1 $S.
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Let me rephrase: from $$ x y"2 x"{-1} = y"3 $$, we can define $$
— z = x vy x " {-1} $$, then:
$$ z°2 = y~3 S$$

Similarly, from $$ vy x"2 y"{-1} = x"3 83, let $$ w =y x vy {-1}
— $$, then:
$S wh2 = x73 $$

Now we have:

$$ x vy x"{-1} = z $$ where $$ z°2 = y"3 $$

$$ v x vy {-1} = w $$ where $$ w'2 = x"3 $$

This seem to imply that $$ z $$ is some root of $$ y~°3 $$ and $$
- w $$ of $$ x"3 $$, but in groups, this often forces elements
— to be identity.

### Deriving Contradictions or Identities

Let's try to express everything in terms of $$ x $$ and its
— conjugates.

From $$ x y"2 x"{-1} = y"3 $$, we have:

$S y°3 = x y 2 x"{-1} $$

$$ y*"3 = x"2 y"4 x"{-2} $$ (conjugating by $$ x $$ again)
$$ y°3 = x°2 y 4 x"{-2} $$

But also:

$¢ v°3 = x y'2 x7{-1} $$

So:

$$ x y"2 x"{-1} = x"2 y"4 x"{-2} $$

$$ v'2 = x y'4 x"{-1} $$

But $$ x v74 x7{-1} = (x y"2 x"{-1})"2 = (y"3)"2 = y"6 $$, so:
$$ y"2 = y'6 $$

$S y"4 =1 $S

Similarly, from $$ y x"2 y"{-1} = x"3 $3, applying $$ y $$ twice:
$S v 2 x74 yo{-2} = x"9 $S

But also:

$$ x"3 =y x"2 y"{-1} $S

So:

$S y x72 yo{-1} = y"2 x4 y"{-2} $$
$$ x°2 =y x4 y"{-1} $S

$S x"2 = (x"3)72 = x"6 $S

$S x™4 =1 88

Now we have $$ x74 = 1

39
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B.11 QWEN3 235B A22B THINKING 2507

Line 25: The model has assumed commutativity. (Critical)

To determine whether the group $ G = \langle x, y \mid xy~"2 =

— y°3x%,\ yx"2 = x"3y \rangle $ is trivial, we analyze the given
— relations and manipulate them using group-theoretic

— techniques.

### Step 1: Expressing Generators in Terms of a Single Element

Define the **commutatorx* $ a = [x, y] = x y x " {-1} y"{-1} $.
— Then by definition:

59
Xy =ay X.

$9

Now apply this to *xRelation lxx:
$$

xy~2 = y " 3x.

$S

Left-hand side:

$9

X y'2 = x y \cdot y = (ay x) \cdot y = a y x y.
$S

Using $ x v = a y x $ again inside:
$S
ayxy=ay (ayzx)=a2y"2 x.
$S

So:

59
xy'2=a2y"2 x.
$S

Equating with the right-hand side $ y"3 x $, we get:

$S

a2 y"2 x = y"3 x \Rightarrow a”"2 y~2 = y~3 \Rightarrow a"2 = y.
$S

Thus, we have:

$S
y = a’2. \tag{l}
$S

##4# Step 2: Using the Second Relation

Now consider x*Relation 2#*x*:

$9
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yx"2 = x"3 y.

$S$

We define the inverse commutator $ b = [y, x] =y x y " {-1} x"{-1}
— = a " {-1} $, so:

$S

y x=bxy=a{-1} xvy.

$S

Apply this to Relation 2:

$S

y x"2 =y x \cdot x = (a"{-1} x y) \cdot x = a"{-1} x y x.
$S

Then:

$S

y x72 = a"{-1} x (a”{-1} x y) = a"{-2} x72 y.

$S

Equating with RHS $ x"3 y §,
$S

a“{-2} x"2 vy
a“{-21}.

we get:

—

$9

\tag{2}

### Step 3:

(1)
S

From and (2),

—

$9

X

$9

= a“{-2}, = a’“2.

\quad vy a

x"3 y \Rightarrow a“{-2} x"2

Substitute these into x*Relation 1lxx*:

$S
xy "2

= a"{-2}(a"2)"2 = a’“{-2} a“4 =

y'3 x = (a”2)"3 a"{-2} = a’6 a"{-2}

So:
$S
a2

$9

= a”4 \Rightarrow a2 = e.

$ a e S,

Therefore,

$9

which implies:

e, \quad vy = a"2 = e.

$9

### Step 4: Verifying Triviality

41

a’

= x"3 \Rightarrow x =

Substituting Back into Relations

we now express both generators in terms of $ a

2,

a“4.
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With $ x = e $ and $ y = e $, all relations are trivially
— satisfied:

- $ xy"2 = e \cdot e =
- $ yx"2 = e \cdot e =

e$r
e $.

$, and $ y“3x = e \cdot e
$, and $ x"3y e \cdot e

|
()

|
]

Hence, the only solution is the trivial group.

##4# Conclusion

By expressing the generators in terms of a single element derived
— from the commutator and analyzing the resulting constraints,
we find that the relations force both $ x $ and $ v $ to be
the identity element. Therefore, the group defined by the
presentation:

ol

$S
G = \langle x, y \mid xy~"2 = y“"3x,\ yx"2 = x"3y \rangle
$S

is x*trivial=*x*.

$S
\boxed{G \text{ is the trivial group}}
$S

B.12 GLM-4.5

Note: The generation began in the middle of the sentence, our reproduction below is not a typo.

Line 19: This identity is incorrect. The model has made an algebra error from the previous line.
(Ceritical)

that the group $G = \langle x, y \mid xy"2 = y"3x, yx"2 = x"3y
— \rangle$ is the trivial group, I'll derive that both
— generators $x$ and S$y$ must be the identity element.

Starting with the given relations:
1. Sxy~2 = y~3xS$
2. Syx"2 = x"3y$

From relation (1), multiply both sides by $y"{-2}$ on the left:
Sy {-2txy"2 = yx$ (3)

From relation (2), multiply both sides by $x"{-2}$ on the left:
Sx"{-2}yx"2 = xy$ (4)

Let $A = y " {-1}xy$ and $B = x"{-1}yx$. Then:
- From (3): Sy"{-1}Ay = yx$
- From (4): $x"{-1}Bx = xy$

Since S$A = y " {-1}xy$, we have Sy " {-1}Ay = y " {-2}xy"2$. From
— equation (3), Sy " {-2}xy"2 = yx$, so:
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Sy {-1}Ay = yx$
which implies S$A = y~2x$.

Similarly, since $B = x"{-1}yx$, we have S$x"{-1}Bx =
— From equation (4), S$x"{-2}yx"2 = xy$, so:
$x"{-1}Bx = xy$

which implies $B = x"2y$.

Now we have:
SA = y o {-1l}xy = y 2x8S
SB = x " {-1}lyx = x"2y$

From $yA = xy$ and $A = y"2x$, we get:
Sy (y"2x) = xy$
Sy~3x = xy$

From the original relation (1), $xy 2 = y"3x$, so:
Sxy~2 = xy$

Sy~2 = y$

Sy = e$

Since $y$ is the identity element, we can substitute
— relation (1):

Sxe”2 = e"3x$

Sx = x$

— substitute $y = e$ into relation (2):
Sex"2 = x"3e$
$x"2 = x"3$

Se = x$

Therefore, both $x$ and $y$ are the identity element,
— S$GS$ is the trivial group.

x"{-2}yx"28S.

Now, multiply both sides of $xy"2 = xy$ by $x"{-1}$ on the left:

Multiply both sides of $y"2 = y$ by Sy"{-1}$ on the right:

Sy = e$ into

This is a tautology and doesn't give us new information. Let's

Multiply both sides of $x72 = x"3$ by $x"{-2}$ on the right:

which means
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B.13 GEMINI 2.5 DEEP THINK

Line 18: The model claims yz3 = (yx)x®, which is an algebra error. (Critical)

Yes, we can prove that G is the trivial group.

Let $GS$ be a group with generators $x$ and $y$ and the relations:
1) $xy~2 = y~3x$
2) Syx"2 = x"3y$

We want to show that $x=e$ and $Sy=e$, where $e$ is the identity
— element.

Let's start by manipulating the second relation (2). We can
— rewrite it as:
$x"3y = yx"2$ (2")

Now, we examine how the element $x"3$ interacts with the element
— Syx$. We look at the product $x"3(yx)$:

$x"3(yx) = (x"3y)x$ (by associativity)
We use the rearranged relation (2') to substitute $x"3y$ with
-  Syx"2$:

S(x"3y)x = (yx"2)x = y(x"2x) = yx"3$%

So we have found that $x"3(yx) = yx"3$. Since Syx"3 = (yx)x"3$,
— this means that $x"3$ commutes with S$yx$. In terms of
— commutators, we have $[x"3, yx] = eS.

Next, let's analyze the commutator $[x"3, yx]$. Recall that the
< commutator $[A, B]S$ is defined as S$SABA"{-1}B " {-1}S.
yx] = x°3 (yx) (x°3) (-1} (yx) " {-1}$

$[x"3,

$= x"3 y x x"{-3} (x"{-1}y"{-1})$S
$= x"3 y (x"{1-3-1}) vy {-11$

$= x"3 y x"{-3} y {-1}$

This expression is exactly the definition of the commutator of
< $x7°3% and $y$, i.e., $[x"3, ylSs.

Since we established that $[x"3, yx] = e$ and $[x"3, yx] = [x"3,
— vyI]$, we must have:
$[x73, vyl = es.

This means that $x73$ commutes with S$y$:
$x"3y = yx"3S.

Now we have two equations involving $x"3y$:
From relation (2'): $x"3y = yx"28$
From our derivation: $x"3y = yx"3$

We can equate the right-hand sides:
Syx"2 = yx"38$

We multiply by Sy~ {-1}$ on the left:
Sx"2 = x73$
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We multiply by $x"{-2}$ (on either side):
Se = x$.

Now that we have shown $x=e$, we substitute this back into the
— first relation (1):

Sxy~2 = y"3x$

Se y"2 = y°3 e$

Sy~2 = y"38%

We multiply by Sy~ {-2}$:
Se = y$.

Since both generators $x$ and Sy$ are equal to the identity
— element, the group $G$ is the trivial group.
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B.14 LLAMA 4 MAVERICK

Lines 4-8: A lot of effort is expended proving y3z = 13z.

Line 11: The model claims z(y?)x~!(y?)~! = e but never proves this. (Critical)

## Step 1: Understand the given problem and the relations

— provided for the group $GS.

The group $G$ is generated by $x$ and $y$ with the relations

— S$Sxy"2 = y"3x$ and Syx"2 = x"3y$. We need to determine if $GS
is the trivial group, meaning it contains only the identity
element.

!

!

## Step 2: Manipulate the given relations to simplify or derive
— useful equations.

Starting with $xy~"2 = y~"3x$, we can rearrange this to $xy " 2x"{-1}
— =y 3%, implying that $x$ conjugates $y~"2$ to Sy~3$.

— Similarly, from Syx"2 = x"3y$, we get $Syxy {-1} = x"3x"{-2} =
— x$, showing that $y$ conjugates $x$ to $x$S.

## Step 3: Further simplify the relations to check for any

— patterns or simplifications that could lead to proving $G$ is
— trivial.

From $xy~2 = y“"3x$, we can also derive $x"{-1}y~"3x = y~"2$. This
— dmplies $x"{-1}y"3x = y"2$ and thus $y"3 = xy "2x"{-1}$.
Substituting $y"2 = x"{-1}y~"3x$ into the original equation

<
— yields $x(x"{-1}y~"3x) = y~"3x$, simplifying to Sy "3x = y~3x$,
— which is always true and doesn't provide new information

— directly.

## Step 4: Analyze the relation $xy"2 = y"3x$ further to derive a
— condition on $y$.
Rearranging $xy 2 = y"3x$ gives S$xy " 2x"{-1}y " {-3} = e$, where $e$

< 1s the identity. This can be written as

-  Sxy"2x"{-1}y"{-2}y"{-1} = e$, or

o Sx(yT2)x"{-1}(y"2) " {-1}y"{-1} = e$, simplifying to Sy " {-1} =
— e$ because $x(y"2)x"{-1}(y"2) " {-1} = e$ implies Sy"2 = e$

— after simplification, but directly we see $y = e$ from

- Sy {-1} = eS$S.

## Step 5: Examine the implication of $y = e$ on the group $GS$

— and its generators.

If Sy = e$, then substituting into one of the original relations,
— S$Sxy"2 = y"3x$ becomes $x = x$, which is true for any $xS$.

— However, we need to check the other relation as well. S$Syx"2 =
— x"3y$ becomes $ex"2 = x"3e$, simplifying to $x72 = x"3$. This
— implies $x"3x"{-2} = e$, or $x = eS.

## Step 6: Verify the result by checking if both generators being
— the identity implies $G$ is trivial.

Since both $x = e$ and Sy = e$, and $G$ is generated by $x$ and
—  $y$, $GS$ must be the trivial group because it is generated by
— the identity.

The final answer is: $\boxed{Yes}$
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B.15 DEEPSEEK V3 0324

Line 46: The order is only a positive integer if it is finite. The model has ignored the infinite case.
Howeyver, it recovers from this on line 62.

Line 82: The model worries that 23 = 22 can only be simplified to = = e if z is cancellable. But
this is an unfounded concern, as we are working in a group.

Line 194: The model makes no progress with the problem, other than showing |x| and |y| are
coprime to 6, but then concludes the group is trivial. No part of the proof comes close to showing
this. (Critical)

Alright, let's tackle this problem step by step. We have a group
— $$ G $$ generated by two elements $$ x $$ and $$ y $$ with
— the following relations:

1. 8$ xy~2 vy 3x $$
2. $$ yx"2 = x 3y $$

Our goal is to show that $$ G $$ is the trivial group, meaning
— that $$ x $$ and $$ y $S$ are both the identity element, and
— thus $$ G = \{e\} $S$.

### Understanding the Problem

First, let's recall what these relations mean. In a group

— presentation, relations are equations that hold true among
— the generators. Here, the two relations give us ways to

< manipulate expressions involving $$ x $$ and $$ y $$.

Our strategy will be to derive consequences from these relations,
— hoping to find that $$ x $$ and $$ y $$ must be the identity.

### Starting with the First Relation: $$ xy~"2 = y~"3x $$

Let's see what this tells us. If we multiply both sides on the
— left by $$ x"{-1} $$, we get:

$$ x"{-1}xy"2 = x"{-1}y"3x $$

Which simplifies to:

$$ vy 2 = x"{-1}y"3x $%

This can be rewritten as:

$$ x y*2 x"{-1} = y~°3 \tag{Equation 1}$$

This suggests that conjugating $$ y~2 $$ by $$ x $$ gives $$ yv°3
- $S.

Similarly, from the second relation $$ yx"2 = x"3y $$, let's
< multiply both sides on the left by $$ y {-1} $S:

$$ vy {-1}yx"2 = y"{-1}x"3y $$

Simplifying:
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$$ x"2 = y " {-1}x"3y $5S
Which can be rewritten as:
$$ v x"2 y"{-1} = x"3 \tag{Equation 2}$$

This suggests that conjugating $$ x72 $$ by $$ y $$ gives $$ x73
— $S.

### Exploring Equation 1: $$ x y 2 x"{-1} = y~3 $$

This equation tells us that $$ y"2 $$ and $$ y°3 $$ are

— conjugates, implying that they have the same order in the
group. The order of an element $$ g $$, denoted $$ |g| $$, is
the smallest positive integer $$ n $$ such that $$ g'n = e
$S.

ol

From $$ y~2 $$ and $$ y~3 $$ being conjugates:

$S ly"21 = |y"3| $8
We know that in general, $$ |g°"k| = \frac{lgl}{\gcd(lgl, k)} $S.
— So:

$$ \frac{lyl}{\gcd(lyl, 2)} = \frac{lyl}{\gcd(lyl, 3)} $S

This implies:

$$ \gcd(lyl, 2) = \gcd(lyl, 3) $$

The only way this can happen is if $$ \gcd(lyl, 6) = 1 $S,
— meaning that $$ |y| $$ is coprime with 6. The simplest
— possibility is $$ |yl =1 $$, i.e., $S vy = e $S.

But let's not jump to conclusions; maybe $$ |y| $$ is infinite or
— another number coprime to 6. Let's explore further.

### Exploring Equation 2: $$ y x72 y " {-1} = x"3 $$

Similarly, this tells us that $$ x72 $$ and $$ x°3 $$ are
— conjugates, so:

$S %72 = [x"3] $$
Again, using the order formula:

$$ \frac{lx|}{\gcd(Ix|, 2)} = \frac{|x|}{\gcd(Ixl|, 3)} $3

Thus:

$$ \gcd(Ixl, 2) = \gcd(lx|, 3) $$

Similarly, this implies $$ \gcd(|x|, 6) =1 $$, so $$ [|x| $S$ is
< coprime with 6. Again, the simplest solution is $$ |x| = 1

- $$, i.e., $$ x = e $S.
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### Considering $$ x $$ and $$ y $$ are the Identity

If $$ yv = e $$, then the first relation $$ xy"2 = y"3x $$ becomes
$$ x = x $$, which holds trivially. The second relation $$
yx"2 = x"3y $$ becomes $$ x"2 = x"3 $$, which implies $$ x =
— e $$ (assuming $$ x $$ has finite order or is cancellable).

!

Similarly, if $$ x = e $$, the second relation becomes $$ y =y

— $$, and the first relation becomes $$ y°2 = y~°3 $$, implying
— $Sy = e $S.

This suggests that the only solution is $$ x =y = e $S.

### Trying to Find Non-Trivial Solutions

But let's not assume the group is finite yet. Maybe the group is
— infinite, and $$ x $$ and $S$S y $$ have infinite order. Let's
— see 1f we can find any non-trivial relations.

From $$ x y"2 x"{-1} = y"3 $$, we can think of this as an action
— of $$ x $$ on $$ y $$. In general, this could suggest a

— semidirect product, but the relations seem too restrictive.

Similarly, $$ v x72 y"{-1} = x"3 $$ is an action of $$ y $$ on $$

Perhaps we can find a consistency condition by combining these.

Let's see if we can express both $$ x $$ and $$ y $$ in terms of
< one another.

From $$ x y"2 = y"3 x $$, we can try to solve for $$ y $$ in
— terms of $$ x $$, but it's not straightforward.

Alternatively, let's see if we can find that $$ x $$ and $S$ y $$
— commute.

Assume for a moment that $$ x $$ and $$ y $$ commute, i.e., $S$ xy
— = yx $$. Then:

From $$ xy"2 = y"3x $$, with commutativity:
$$ vy "2x = y"3x $$

Cancel $$ x $$ on the right (assuming $$ x $$ 1is cancellable,
— which it is in a group):

$$ y'2 = y"3 $S
Thus $$ y = e $S.
Similarly, from $$ yx"2 = x"3y $$, with commutativity:

$$ x"2y = x 3y $S

Cancel $$ y $S:
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$$ x"2 = x"3 $$
Thus $$ x = e $S.

So if $$ x $$ and $$ y $$ commute, they must both be the
— identity.

But we haven't shown that $$ x $$ and $$ y $$ must commute. Maybe
— the relations force them to commute.

Let's attempt to see if $$ xy = yx $$ follows from the given
— relations.

From $$ xy "2 = y~"3x $$, let's try to express $$ xy $$:
Multiply both sides by $$ y " {-1} $$ on the right:
$$ xy = y " 3x y {-1} $$

Similarly, from $$ yx"2 = x"3y $$, multiply by $$ x"{-1} $$ on
— the right:

$$ yx = x 3y x"{-1} $%

This seems circular. Maybe another approach is better.

##4# Attempting to Find Orders

Let me think about the orders of $$ x $$ and $$ y $S$. From

— earlier, $$ |y"2] = |y~3] $$, which implies $$ \gcd(lyl, 2) =
— \gcd(lyl, 3) $s.

Possible orders for $$ y $$:

If $$ |yl $$ is finite, then $$ \gcd(lyl, 2) = \gcd(lyl, 3) $S.

— The numbers where this holds are those not divisible by 2 or

— 3 (or both), i.e., numbers coprime to 6: 1, 5, 7, 11, etc.

Similarly, $$ |x| $$ must be coprime to 6.

The simplest case is $$ |x| = |yl =1 $$, i.e., trivial group.
If $$ |yl > 1 $$, say $$ |yl =5 $8, then $$ y~2 $$ has order $$
— 5 / \gcd(5,2) =5 $$, and $$ y"3 $$ has order $$ 5 /

— \gcd(5,3) = 5 $$, so the equation holds. But does this lead

< to a contradiction elsewhere?

From $$ x y 2 x"{-1} = y~3 $$, 1if $$ y $$ has order 5, then $$
— y 3 =y {-2} $S, so:

$$ x y 2 x7{-1} = y " {-2} $3%

But $$ y"2 $$ has order 5, and its inverse also has order 5, so
— this is possible, but doesn't immediately force $$ y = e $S.
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Similarly, for $$ x $$, 1f $$ |x| = 5 $$, from $$ y x"2 y"{-1} =
— x"3 $$, and $$ x°3 = x"{-2} $S$, so:

$8 y x72 vy {-1} = x"{-2} $$

Again, no immediate contradiction.

However, the group seems too constrained to allow non-trivial
— elements, but I'm not seeing an immediate contradiction for
< higher orders coprimes to 6.

### Trying Specific Cases

Perhaps assume $S$ y = e $$, then see what $$ x $$ must be.

If $$ yv = e $$, then relations become:

1. $S x = x $$ (holds)
2. 8% x72 = x"3 \implies x = e $$

[\

So $$ x = e $$, $$ y = e $$. Trivial group.
Similarly, if $$ x = e $$, then relations become:

1. $$ y"2 = y"3 \implies y = e $$
2. 88 y =y $$ (holds)

Again, trivial group.
This suggests that the only solution is the trivial group.
### Conclusion

After exploring these relations, it appears that the only group
— $$ G $$ satisfying both $$ xy"2 = y"3x $$ and $$ yx"2 = x"3y
$$ is the trivial group where both generators $$ x $$ and $5S
y $$ are the identity element. Any non-trivial assignment
leads to contradictions or forces the generators to be the
identity.

el

### Final Answer

After carefully analyzing the given relations, we conclude that
— the group $$ G $$ must be the trivial group. That is, $$ G =
< \{e\} $$, where $$ e $$ is the identity element, and $$ x = vy
— :e$$.

### Verification

Let's verify:

1. $$ xy"2 = e \cdot €72 = e $$ and $$ y"3x = €73 \cdot e = e $S,
— so0 $S$ xy"2 = y"3x $S.
2. 8% yx"2 = e \cdot "2 = e $$ and $$ x"3y = "3 \cdot e = e S5,

— so $$ yx"2 = x"3y S$S.
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07 |[Both relations hold, and no smaller group satisfies them unless
both generators are the identity. Hence, $$ G $$ is indeed
the trivial group.
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B.16 QWwQ 32B

Lines 7-9: There is an algebra error in deriving 2~ 'y3zy~3 = e. (Critical)
Line 13: Commutativity is incorrectly assumed. (Critical)

Line 25: Commutativity is incorrectly assumed. (Critical)

\ [

x"{-1} v"3 x y " {-3} = e
\1]

This simplifies to:

\ T

- x{-1} e x = e

\]

\ [

x y 2 x"{-1} = y~3

\1]

Multiply both sides by \( y {-3} \):
\ [

x y 2 x"{-1} v {-3} = e
\1]

This can be rewritten as:
\ [

x (y"{-1}) x"{-1} = e

\1]

— right by \( x \), we get:

\ [

vy {-1} = e \implies y = e

\]

Thus, \( y \) must be the identity element.

- \), we get:

\ [

e \cdot x"2 = x"3 \cdot e \implies x"2 = x"3

\1]

This simplifies to:

\ [

x"2 = x"3 \implies x"2 x"{-2} = x"3 x"{-2} \implies e
\1]

Therefore, \( x \) must also be the identity element.
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Substituting \( y = e \) into the second relation \( yx"2

X

To prove that the group \( G \) generated by \( x \) and \( y \)
— with relations \( xy"2 = y"3x \) and \( yx"2 = x"3y \) is

— trivial, we start by analyzing the given relations.

First, consider the relation \( xy"2 = y“3x \). Rearranging this,
— we have:

\ [

x"{-1} yv"3 x =y~2

\1]

Multiplying both sides on the right by \( y"{-3} \), we get:

x"{=1} (y"3 vy {-3}) x = e \implies x"{-1} y"0 x = e \implies

However, we need to re-express this correctly. Starting again:

Multiplying both sides on the left by \( x"{-1} \) and on the

= x"3y
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Since both \( x \) and \( y \) are the identity element, the
— group \( G \) is trivial.

\ [
\boxed {1}
\]
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B.17 GPT-OSS-120B

Line 24: The given conjugation relations only show that the subgroups generated by %2 and z2
are normal, not those generated by x and y. (Critical)

$S
G=\langle x ,y\mid xy " {2}=y " {3}x ,\; yx " {2}=x"{3}y\rangle

s _——

### 1. Conjugation relations
From the defining equalities we can rewrite

$S

\begin{aligned}

xy " {2}&=y " {3}x \quad\Longrightarrow\quad

X\, ¥y {2}x"{-1}=y" {3}, \$$2mm]

yx"{2}&=x"{3}y \quad\Longrightarrow\quad y\,x {2}y {-1}=x"{3}.
\end{aligned}

\tag{1l}

$S

Thus
xrconjugation by $$x$$ sends $Sy " {2}S$ to S$SSy {3}$S;
xconjugation by $$y$$ sends $$x7{2}5S to $Sx"{3}$S.

Hence the subgroups $$\langle y\rangle$$ and $$\langle x\rangle$s$s
— are normal, and the

conjugation maps restrict to automorphisms of these cyclic

— subgroups.

### 2. The automorphisms are given by a power map
Let

$S$

x y x {-1}=y " {\ell},\gquad y x y {-1}=x"{k}
\tag{2}

$S$

for some integers $$\ell ,kS$S.

Because the restriction of conjugation to a cyclic group is an
— automorphism,

$S\gcd (\ell , |y|)=\gcd(k ,|x|)=1$$ (if the orders are infinite
— the condition is

$$\ell ,k\neqg0$s).

Apply the first equality of (2) to the element S$Sy " {2}SS:

$9
x y {2}x"{-1} = (x y x"{-1}) "{2}=y " {2\ell}=y"{3}.
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Hence

$S

2\ell\equiv 3\pmod{ |y | }\ggquad\text{ (or }2\ell=3\text{ if
— }lyl=\infty) .

\tag{3}

$S

Similarly, applying the second equality of (2) to $$x7{2}$$ gives

$9
y x7 {2}y {-1}= (y x y"{-1}) "{2}=x"{2k}=x" {3},
$9

SO

$S

2k\equiv 3\pmod{ |x|}\gguad\text{ (or }2k=3\text{ if }|x|=\infty).
\tag{4}

$S

Because the congruences (3) and (4) have a solution, the orders
— of $$x$$ and

$Sy$S$ cannot be even and cannot be multiples of $$3$S$; in

— particular they are

odd (or infinite). 1In any case the integers $$\ell ,k$$ are well
— defined and

satisfy $$\ell\not\equiv 0$$ and $Sk\not\equiv 0S$$.

### 3. $5x$S$ and $$y$S lie in the same cyclic subgroup
From (2) we compute the commutator:

$S
\begin{aligned}
xy x {1}y {-1}
&= (x y x"{-1}y " {-1}
=y {\ell}y~{-1}
y {\ell-1},\$$2mm]
&= x (y x y {-1}) x"{-1}
x x"{k}x"{-1}

= x"{k}.
\end{aligned}
$9
Thus
$S
x"{k}=y " {\ell-1}. \tag{5}
$S

Since $S$k\not\equiv0$$ (mod $$|x|$$) the element $$x"{k}S$S$ is a
— non-trivial power
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o4 |[of $Sx$S; (5) shows that this power is a power of $SySS.
— Consequently
95

% | SS
97 | x\in\langle y\rangle
98 | SS

9
100 |A symmetric computation (or simply interchanging the roles of

—  $5x$$ and $Sy$S)

101 | gives

102

103 | $S

104 |y\in\langle x\rangle
105 | $S

106
107 | Hence both generators belong to the same cyclic subgroup; the
— whole group
108 | $$GSS is cyclic.
109
10 | —— ==~ —— T

ut | ##4# 4. A cyclic group satisfying the relations is trivial
112
113 |Write the cyclic group as $$\langle g\rangle$$ and set
114

1s | $$
e | x=g~{r}, \gquad y=g~{s}.
17 | S$

118
119 | Insert these expressions in the defining relations:
120
21 | $$

122 | \begin{aligned}
123 | xy " {2}=y " {3}x

124 &\Longrightarrow g~ {r+2s}=g~{3s+r}, \\
125 |yx"{2}=x"{3}y

126 &\Longrightarrow g~ {s+2r}=g~ {3r+s}.
127 | \end{aligned}

128 | $$

129
130 | In a cyclic group equality of elements means equality of the
— exponents

131 | (modulo the order of $$g$$, or as integers if the order is
— infinite). From the

12 | first equality we obtain

133
134 | $S

135 | 2s\equiv 3s\pmod{ |gl}\;\;\Longrightarrow\;\;s\equiv0,
136 | $$

137
138 |land from the second equality
139
140 | $S

141 | 2r\equiv 3r\pmod{|g|}\;\;\Longrightarrow\;\;r\equiv0.
142 | $$

143
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Thus $Sr=s=0$$; consequently $Sx=y=eS$$.

s _————

### 5. Conclusion
The group defined by

$S
\langle x ,y\mid xy " {2}=y " {3}x ,\; yx " {2}=x"{3}y\rangle
$S

is cyclic, and the only cyclic group that satisfies the two
— relations is the
trivial group. Hence

$S
\boxed{G\text{ is the trivial group}.}
$S
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B.18 GPT-5 THINKING

Lines 12, 20, 35: The definition of [s,t] used is sts~'t~1. The commutator identity given
then holds only if s* = ¢st~! but the commutator definition is later taken to be s* = ¢~'st. (Critical)

Yes. Write the relations in commutator form and use a short
— lemma.

From

$S
xy 2=y " 3x\quad\text {and}\quad yx"2=x"3y
$S

we get

$S
x y'2 x"{-1}=y"3\ \Longrightarrow\ [x,y"2]=x vy 2 x"{-1}ly"{-2}=y,
$S

$S
y x"2 y"{-1}=x"3\ \Longrightarrow\ [y,x"2]=y x"2 y " {-1}x"{-2}=x.
$S

Let $u=[x,y]$. Using the standard commutator identity
Sla,bcl=[a,bl\, [a,c] "bS$, we have

$$
[X/yAz]
v, x"2]=[y,x]
$$

[x,vI\, [%x,y] y=u\,u"y, \gquad
\, [y, x]"x=u"{-1} (u"{-1}) "x.

Hence

$S

y=u\,u’y,\gquad x=u"{-1}(u"{-1}) "x. \tag{$\ast$}
$$

*xLemma.** If $Sa=w\,w"a$ in a group, then S$Sa=w"2$.

*Proof.* $a=w\,w a\Rightarrow 1l=w\,w"a a“{-l}=w(a"{-1l}wa)a"{-1l}=w
- a“{-1} w$, so $a"{-1}=w"{-2}$ and thus S$a=w"{2}$. S$\squares$

Apply the lemma to $(a,w)=(y,u)$ and $(a,w)=(x,u"{-1})$ in
— S$(\ast)$:

$S

y=u"2,\qquad x=(u"{-1}) " 2=u"{-2}.
$S

Thus $x=y~{-1}S.

Substitute $x=y " {-1}$ into $xy 2=y 3x$:

$9
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v {-1}y"2=y"3y"{-1}\ \Longrightarrow\ y=y~2 \ \Longrightarrow\
— y=l,
$9

whence $x=1$ as well. Therefore $GS$ is the trivial group.
— S$\square$
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