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Fig. 1. I propose to develop “Continually Learning Robots” that can
autonomously explore, safely collect high-quality data, and adapt to new
scenarios. Building on my PhD research in generalizable, adaptive, and
uncertainty-aware perception, I aim to extend these capabilities across the
entire robotic stack, enabling robots that can operate at-scale in new situations.

I. INTRODUCTION

In my PhD, I have worked on three robotics systems
for wide-ranging real-world applications: outdoor drone cin-
ematography systems [3, 1, 2], high-speed off-road driving
[6, 9, 5], and autonomous wheelchairs [9]. Although these
systems cater to different needs and pose unique technical
challenges, they have one common thread: each required
years of research and continual development by humans, and
required significant additional engineering even with small
changes in domain and problem definition. Through my re-
search, I aim to develop robots that can continuously learn
in new scenarios (Fig. 1) to break the need for immense
human engineering when encountering new situations and
environments. This will pave the way for robots capable
of operating effectively and at scale in diverse scenarios.
However, robot deployments are not only challenging and
costly but also high-stakes, where minor failures can have
serious consequences. My vision is to create robots capable
of autonomously curating high-quality data safely and at scale
while learning efficiently from this data. To achieve this, I
propose that robots need to reason about uncertainty and
consequences within a modular architecture, allowing them
to learn in a risk-adjusted manner when facing new situations.
It will continuously learn by identifying knowledge gaps and
actively gathering information.

II. PRIOR WORK: FLEXIBLE PERCEPTION FOR ROBOT
NAVIGATION

Toward this goal, my PhD research has laid a foundation by
developing perception modules designed for generalizability,
adaptability, and enabling proactive exploration in areas of

uncertainty. My first research focus is the development of
generalizable perception modules that exhibit effective zero-
shot performance across diverse settings [7]. While more
generalizable perception provides a solid foundation, there
is a strong need for real-time adaptability. In this direction,
my second line of work explores how a perception module
can learn and improve using newly collected data, enhancing
its performance over time [6, 9]. My third area of research
examines how a continuously learning agent can estimate un-
certainty to identify where it should gather information [8, 4].

A. Data Engine for Generalizable Robot Perception

Robot perception modules require achieving scene under-
standing across varied scenarios, however, the datasets for
training these modules remain scarce. An example data-scarce
application is Bird’s Eye View (BEV) map prediction, an
important perception task for ground robots [21, 15]. To
address the lack of data, I introduced MIA, a scalable data
engine [7] where we challenge a conventional assumption -
there’s not enough data and we need to wait for autonomous
driving companies to release more. Inspired by a related map
task [16], we posit the data is already out there, hidden in
disparate crowd-sourced mapping platforms that each contain
worldwide-scale data. MIA automates the curation of large-
scale BEV data from such crowd-sourced platforms.
Implications: More “anywhere” mapping in unseen loca-
tions. Using our data engine, we easily curated a diverse 1.2
million-pair dataset that includes varied geographies, condi-
tions and capture setups. The resulting model achieved a sig-
nificant improvement in zero-shot performance over baselines
trained with conventional datasets. Additionally, the scalable
data engine enabled the creation of a benchmark that is
significantly more challenging than previous ones, supporting
research aimed at the universal deployment of BEV mapping.
Implications: Empowering new perception tasks. The en-
gine’s scalable approach unlocks previously infeasible map-
related tasks by addressing the scarcity of large, real-world
datasets. I am collaborating with others to enable long-range
mapping (over 200 meters) and large-scale cross-modal rep-
resentation learning by extending to satellite imagery and
embodied robot datasets. These works can pave the way for
new opportunities in strategic decision-making.

B. Adaptive Perception that Improve by Itself

Robots frequently face unfamiliar scenarios not covered
in training data. To ensure safety and performance, robots
must adapt in real-time. However, standard online fine-tuning



may fall short of meeting the demands of high-performance
autonomy. For instance, it may not be robust to sensor noise,
and errors can build up and cause the system to fail, and it
may not be able to remember scenarios where it visited a long
time ago, namely catastrophic forgetting [11]. My research
has advanced adaptive methods that are robust in the face of
sensor failures and recall previous long-term experiences. I
developed ALTER, an online learning method for high-speed
offroad perception that rapidly adapts visual perception models
to new environments by itself [6]. ALTER uses self-supervised
learning in a model selection framework to adapt long-range
visual models from near-range LiDAR feedback.
Implications: Long-range, robust perception for offroad
driving. This framework significantly improved long-range
traversability prediction compared to LiDAR-only approaches
and state-of-the-art visual semantic methods [13]. Addition-
ally, I demonstrated the algorithm improved robustness to
sensor failures by leveraging alternative sensors.
Implications: Safe high-speed autonomy with minimal
human input. Recently, my collaborators and I developed
SALON, a framework that quickly adapts to new environ-
ments and leverages anomaly detection to avoid out-of-
distribution terrains [9]. Within seconds of collected experi-
ence, we demonstrated comparable navigation performance
over kilometer-scale offroad courses as methods trained on
100-1000x more data.

C. Collecting Information on the Right Things: Exploring by
Predicting What We Don’t Know

For robots capable of learning continuously, it is crucial to
prioritize gathering high-value information. However, this is
challenging because predicting which area will yield the most
valuable information is difficult. My key idea is to predict a
state’s information gain by reasoning on the potential sensor
coverage and uncertainties from multiple explicit environment
hypotheses. Specifically, I focus on autonomous exploration
in structured indoor environments that are often predictable. I
introduced a new exploration framework that uses multiple
predicted maps to form a probabilistic sensor model for
information gain estimation to guide exploration [8].
Implications: More informative data gathering. Traditional
exploration algorithms often do not explicitly leverage the
predictability of the environment [20]. While recent works
leverage map prediction, they tend to be sensitive to the
predicted map quality and often overlook sensor coverage
[12, 17]. Our framework can better reason about the total un-
certainty that can be resolved when visiting a given state. This
resulted in significant improvement compared to representative
map-prediction based methods.
Implications: Longer-horizon, multi-agent exploration. My
work on exploration with predicted maps has extended in mul-
tiple directions. My collaborators and I incorporated MapEx
in a human-inspired reinforcement learning (RL) framework
to learn longer-horizon decisions[4] and to compute longer-
horizon information gain [10].

III. VISION: CONTINUALLY LEARNING ROBOTS THAT
REASON ABOUT UNCERTAINTY AND CONSEQUENCES

To bridge the gap between current robot systems that work
in specialized settings to ones that can operate ubiquitously, I
envision building robots that actively reason about what they
don’t know (uncertainties) and consequences of what they do
know. This reasoning capability will allow them to safely and
efficiently learn to operate in new situations. I will build upon
my previous research to develop such robots following three
design principles for quick adaptation and safety: modular,
uncertainty-aware and learns from humans.

A. Uncertainty and consequence-aware decision making

Common-sense reasoning on action consequences. All un-
certainties are not made equal. For example, in my research,
our anomaly detector flagged a water bottle and a human
as having similar uncertainty levels, yet the consequences
of traversing them are drastically different [9]. LLMs have
emerged as a promising method for bringing common sense
reasoning into agents [19]. Our preliminary results show that
LLM can be prompted to generate reasonable traversability
scores over various terrains.
Intentional data gathering under full-stack uncertainties.
Robots must act intentionally in the face of uncertainty. In my
previous work, we treated uncertainty as a black-box measure,
for example pixels identified as snow on a wheelchair robot
are marked as simply high-uncertainty, we generally choose
to avoid it. But uncertainty needs reasoning, I plan to build
algorithms that can, for example, reason why snow is uncertain
(i.e., the depth of snow) and act intentionally to resolve the
uncertainty, for example by slowly moving forward to examine
the thickness of snow, or looking at previous weather.

B. Modular full-stack learning from humans and experience

Learning from humans in long-tail cases. While a robot
can continuously operate by reasoning on uncertainties, there
are many long-tail cases where it is best to ask for human
help and learn from it [14]. I aim to build on my uncertainty-
aware perception representation [8, 9] to determine when to
defer to humans, present them with options to choose from,
and query them for their reasoning. Developing such a human
deferral mechanism can enable robots to be deployed at scale
with minimal supervision. In addition, these robots act as data
flywheels, collecting data for aligning LLM reasoning engines
with human decision-making processes.
Modular learning with rich signals. My proposed robot
system will be able to collect a wealth of embodied data and
human preference data from multiple robot platforms. How
should we best learn from this large cross-embodied dataset?
I intend to develop modular, multi-task algorithms [18] that
can improve individual modules quickly. I will borrow insights
from my previous online adaptation work [6, 9] to research
best meta-representations for fast adaptation.
Summary: Overall, I envision this work will further enable
robots that operate across diverse scenarios without extensive
human engineering.
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