Answer When Needed, Forget When Not: Language Models Pretend to
Forget via In-Context Knowledge Unlearning

Anonymous ACL submission

Abstract

As large language models (LLMs) are applied
across diverse domains, the ability to selec-
tively unlearn specific information has become
increasingly essential. For instance, LLMs
must be capable of providing confidential in-
formation to authorized internal users, such
as employees or trusted partners, while with-
holding it from external users, including the
general public or unauthorized entities. In re-
sponse to this challenge, we propose a novel
method termed “in-context knowledge unlean-
ing”, which enables the model to selectively
forget information in real-time based on the
context of the query. Our method finetunes
pre-trained LLMs to enable prompt unlearning
of target knowledge within the context, while
preserving the other knowledge. We also pro-
pose a Fl-based evaluation metric to assess
the performance of in-context knowledge un-
learning, balancing the trade-off between un-
learning target knowledge and retaining the
other knowledge. Experiments conducted on
the TOFU and AGE datasets with the Llama2-
7B/13B and Mistral-7B models demonstrated
that our method achieves scores of 70-80 points
on the proposed metric, significantly outper-
forming the baseline method. Further investiga-
tion into the model’s internal behavior revealed
that while finetuned LLMs generate correct pre-
dictions in the middle layers and maintain them
up to the final layer, they make the decision to
forget at the last layer, i.e., “LLMs pretend to
forget”. Our findings offer valuable insights
into enhancing the robustness of unlearning
mechanisms in LLMs, setting a foundation for
future research in the field. !

1 Introduction

Large Language Models (LLMs), such as GPT-
4 (OpenAl et al., 2024), have significantly trans-

!Code is available at https://anonymous.4open.
science/r/test-time-in-context-unlearning
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Figure 1: Method overview. (1) Without unlearning,
LLMs output any answers to given inputs. (2) Some
prior unlearning methods (e.g. Pawelczyk et al. (2023))
cause hallucination. (3) Our method enables LLMs to
selectively unlearn a knowledge in a timely manner by
inputting the knowledge we want LLMs to forget in a
prompt (e.g., «UNL»Paris«/UNL»). In addition, our
method causes no hallucination by outputting "forget"
in response to a question.

formed various sectors by providing advanced ca-
pabilities in information processing and generation.

The pervasive deployment of these models, how-
ever, introduces complex challenges related to pri-
vacy and the ethical use of information. Partic-
ularly, the indiscriminate recall of sensitive or
domain-specific information by LLMs raises sig-
nificant concerns, necessitating mechanisms for
selective information handling based on the audi-
ence’s context (Das et al., 2024). In the realm of
enhancing privacy and ethical use of LLMs, prior
works have explored several approaches, including
differential privacy (Abadi et al., 2016), federated
learning (Geyer et al., 2018), and knowledge dis-
tillation (Jiang et al., 2023b). Despite their contri-
butions, these methods often compromise between
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maintaining privacy and sustaining model perfor-
mance.

The concept of “test-time training” or “in-
context learning” offers a dynamic approach to
model adaptation, yet it fails to adequately address
the selective forgetting of sensitive information.
For example, an LLM used within a corporate en-
vironment to streamline project management needs
to retain substantial industry-specific knowledge
while being capable of "forgetting" proprietary
company data or sensitive information when ac-
cessed by unauthorized external consultants. This
scenario underscores the critical need for a mech-
anism that enables LLMs to selectively forget or
withhold sensitive information based on the query
context, without hindering their overall utility and
performance.

This paper introduces “in-context knowledge
unlearning”, a novel approach designed to equip
LLMs with the capability of selective forgetting
in real-time, based on the query context. The
overview of our method is given in Figure 1. We
develop unlearning tokens that, when applied dur-
ing inference, enable the model to selectively ig-
nore information pertaining to specified domains.
Through comprehensive experimentation, we val-
idate the efficacy of our approach in facilitating
domain-specific unlearning without compromising
the model’s general performance.

Moreover, our investigations reveal the phe-
nomenon we term “LLMs pretend to forget”, where
the model maintains its responses up to the final
layer, ensuring the decision to forget is executed
effectively without deteriorating the integrity of the
model’s output. This finding not only enriches our
understanding of selective information handling in
LLMs but also sets a foundational precedent for
future research focused on enhancing the robust-
ness and ethical deployment of these models across
sensitive and regulated domains.

Additionally, we propose a new evaluation met-
ric for in-context knowledge unlearning, which
comprises an F1 score that reflects the trade-off
between forgetting and retaining memory. When
applied to major open models such as Llama2
and Mistral, our unlearning interventions measured
with this metric yielded high scores ranging from
0.7 to 0.8, significantly outperforming the baseline
methods, which scored zero. This demonstrates the
effectiveness of our approach in balancing the dual
requirements of privacy preservation and knowl-
edge retention in LLMs.

2 Related Work

This work leverages in-context learning (ICL) for
machine unlearning and is one of many approaches
to unlearning in language models. Below we dis-
cuss related work for each of these topics.

Machine Unlearning for LLMs. Motivated by
the GDPR’s “Right to be Forgotten”, recent litera-
ture has developed procedures for updating ma-
chine learning models to remove the impact of
training on a subset of points without having to
retrain the entire model from scratch (Ginart et al.,
2019; Wu et al., 2020; Golatkar et al., 2020a,c; Izzo
et al., 2021; Neel et al., 2021; Sekhari et al., 2021;
Jang et al., 2023; Huang and Canonne, 2023).

These works can be categorically divided into
two sections: exact unlearning approaches that
redesign training in order to permit efficient
re-training and approximate unlearning which
merely approximates retraining (Ginart et al., 2019;
Sekhari et al., 2021; Neel et al., 2021; Jang et al.,
2023).

The latter approach has been likened to “forget-
ting” (Graves et al., 2021; Tirumala et al., 2022;
Jagielski et al., 2023), which tracks whether ma-
chine learning models progressively unlearn sam-
ples during the course of training and is typically
assessed quantitatively by membership inference
attack (MIA) accuracy (Jagielski et al., 2023). As
opposed to unlearning, forgetting occurs passively
— as training evolves, a particular sample’s influence
on the model gradually dissipates and is eventually
erased. To quantify forgetting, (Jagielski et al.,
2023) implements LiRA, the state-of-the-art MIA
proposed in (Carlini et al., 2022), which approx-
imates the optimal likelihood ratio based test via
sample splitting and training of shadow models.
Prior research has explored approximate machine
unlearning on discriminative classifiers, generally,
image classifiers (e.g., (Golatkar et al., 2020a),
(Goel et al., 2022)), where the aim often is to forget
entire classes like “cats” or “ships”. Approximate
unlearning approaches typically update the model
by taking gradient ascent steps on the deleted points
(Neel et al., 2021), or are tailored to specific hy-
pothesis classes such as linear regression (Cook
and Weisberg, 1980; Guo et al., 2019; Izzo et al.,
2021) or kernel methods (Zhang and Zhang, 2021).

In-context Unlearning. ICL enables LLMs to
adapt to new tasks flexibly by incorporating data
provided in the context of the input sequence itself,



Table 1: Comparison of Unlearning Methods

Method

Test-Time Unlearning Knowldge Unlearning Non-Hallucination Output

Neg Grad (Golatkar et al., 2020b)

ROME (Meng et al., 2022)

Knowledge Sanitization (Ishibashi and Shimodaira, 2024)
ICUL (Pawelczyk et al., 2023)

Ours

NN X X X
NN NN X
X NN X

rather than fine-tuning which explicitly updates
weights (Brown et al., 2020; Dong et al., 2023;
Liu et al., 2023). Exploring the full capabilities of
ICL remains an active area of research, with recent
studies empirically investigating its potential by
examining in-context example design (Garg et al.,
2022; Liu et al., 2022; Min et al., 2022; Liu et al.,
2023).

Pawelczyk et al. (2023) explored methods for
performing in-context unlearning. One notable
study in this area focuses on text classification tasks
where the labels of specific instances are flipped
to facilitate in-context unlearning. However, this
approach has limitations as it primarily assesses un-
learning in terms of text classification ability rather
than actual knowledge. Furthermore, it involves
training the model to produce incorrect outcomes,
which does not constitute true forgetting.

In contrast, our study introduces unique charac-
teristics that address these issues. We specifically
investigate the unlearning of knowledge within an
in-context learning framework. Moreover, by defin-
ing unlearning as the ability to “forget” we ensure
that our approach avoids merely generating errors
or irrelevant information, thereby achieving a more
effective and appropriate form of unlearning.

Comparison of Our Method with Prior Work
Table 1 compares our method with existing unlearn-
ing techniques. Test-time unlearning means the
process of selectively removing a specific concept
or knowledge from a trained model. Knowledge
unlearning means forgetting world knowledge, e.g.,
“The capital of France is Paris”.

For example, Neg Grad (Golatkar et al., 2020b)
lacks test-time unlearning and only removes global
knowledge. ROME (Meng et al., 2022) and Knowl-
edge Sanitization (Ishibashi and Shimodaira, 2024)
require separate training and cannot perform test-
time unlearning. While ICUL(In-context Unlearn-
ing) (Pawelczyk et al., 2023) achieves test-time
unlearning, it just changes a ground-truth label or
word of target instance within in-context prompt,
so this approach inevitably outputs hallucination.

Unlike the existing methods, our approach
achieves test-time unlearning, knowledge unlearn-
ing, and non-hallucination output at the same time,
i.e., our approach addresses the prior limitations
and offers a comprehensive solution for selective
forgetting.

3 Our Method

3.1 In-context Knowledge Unlearning

In the context of in-context knowledge unlearn-
ing, a pre-trained auto-regressive language model
modifies its response to a query g by disregarding
specific undesired information w. The response r is
generated according to the conditional probability
distribution:

TNP@('|an)7 (D

where 6 denotes the parameters of the model M,
and u is the information intended to be forgotten.

3.2 Unlearning Tokens

In response to the need for selective forgetting
within large language models (LLMs), we intro-
duce unlearning tokens. These tokens are specif-
ically crafted to trigger the model’s capability to
selectively forget information relevant to particular
domains during inference. To integrate unlearning
tokens into the model’s architecture, any suitable
tuning method including but not limited to Low
Rank Adaptation (LoRA), full model fine-tuning,
or other parameter-efficient fine-tuning (PEFT)
methods may be employed. The choice of tuning
method depends on the desired balance between
computational efficiency and performance. For
instance, full model fine-tuning offers comprehen-
sive updates at the cost of higher computational
resources, whereas LoRA and other PEFT methods
provide more targeted updates, preserving compu-
tational efficiency and often yielding comparable
or superior performance in specific scenarios.
Specifically, we implement unlearning tokens
by encapsulating the target information with
«UNL» and «/UNL». For example, consider



the case where we want to forget the knowl-
edge “Paris” when the query ¢ is “Where would
you find the Eiffel Tower?”. The input would
be: «UNL»Paris«/UNL». In this instance, © =
‘Paris’ represents the target knowledge to be for-
gotten, and the model effectively disregards the
enclosed knowledge during the information pro-
cessing phase, enabling selective forgetting as re-
quired.

3.3 Loss Function

The loss function for in-context knowledge unlearn-
ing in our LLMs is designed to facilitate selective
forgetting while ensuring the retention of other use-
ful knowledge. It consists of two main functions:
Lforget and Lyetqin.

Lossl (L ,rge¢): This component is activated
when the query ¢ contains the information w tar-
geted for forgetting (e.g., v = “Paris” and ¢ =
“Where would you find the Eiffel Tower?”). It
encourages the model to effectively suppress this
information:

Lforget(e) = - Z IOg Pg(‘fOI'gOf ”U,Z‘, %')7 (2)

)

where 6 denotes the model parameters, and Py is
the probability that the model correctly outputs
*forgot’ in response to u.

Loss2 (Lyetain): Conversely, Liyeiqin applies
when ¢ does not include u (e.g., © = “Japan” and
q = “Where would you find the Eiffel Tower?”).
It penalizes the model for failing to maintain its
normal response capabilities:

Lretain(e) = - Z log PH(ri|ui7 Qi)v 3)

where r; are the tokens in the response of a given
query.

Overall Loss: The combined loss function is
formulated as:

L(H) = Lforget(e) + Lretain(9)7 (4)

4 Setup

4.1 Models

¢ Llama2-7B/13B (Touvron et al., 2023):
Llama 2 is a family of large language models
(LLMs) developed by Meta. Llama 2-7B and
Llama 2-13B are two variants with 7 billion
and 13 billion parameters, respectively. These
models exhibit strong performance across a

wide range of natural language processing
tasks, making them suitable for tasks such as
text generation, summarization, and transla-
tion. Llama2-7B and Llama2-13B specifically
utilize the chat model configuration.

* Mistral-7B (Jiang et al., 2023a): Mistral-7B
is an open-source LLM with 7 billion param-
eters developed by Mistral Al. This model
is known for its high performance and low
resource requirements, making it an attrac-
tive option for developers with limited re-
sources. Mistral-7B has demonstrated per-
formance comparable to other open-source
LLMs on a variety of language processing
tasks and employs the instruct model configu-
ration.

4.2 Datasets

Experiments are conducted using two main
datasets:

* TOFU Dataset (Maini et al., 2024): This
evaluation method is used to assess the
model’s performance in selectively forgetting
and retaining information. It comprises 200
entries from "Real Authors," a dataset con-
sisting of questions about real-world authors,
and 100 entries from "World Facts," which
includes questions about general world knowl-
edge. The “real authors” dataset serves as the
training set, while the “world facts” dataset
is used for validation, aiming to evaluate the
models’ performance in out-of-domain con-
texts.

* Age Dataset (Annamoradnejad and An-
namoradnejad, 2022): The Original Age
dataset contains structured information about
the life, work, and death of over 1 million
deceased famous individuals. From this, 180
individuals are randomly sampled, and a set
of 5 questions and answers (QAs) is created
for each individual. This dataset is employed
to further investigate the models’ ability to
generalize selective forgetting across various
contexts. It includes 600 training samples and
300 validation samples, designed to assess the
models’ adaptability and learning efficiency
in out-of-domain scenarios.

4.3 Baseline

The baseline evaluation in our study tests the effec-
tiveness of in-context knowledge unlearning using



hard prompts. This approach directly instructs the
model to disregard certain information specified
within the prompt, offering a clear basis for com-
parison with more sophisticated unlearning meth-
ods. The specific prompt format used to guide the
model’s behavior regarding memory retention and
deletion is described below.

Prompt Format: The prompt design integrates
specific instructions aimed at enabling the model
to selectively forget information. The hard prompt
format is given in Figure 2.

<s>[INST] <<SYS>>

## Rules

- You will forget any event described after the <<UNL>> token and will not be
able to answer any questions related to that event and say ‘forgot’ only.

- Ifthere is no <<UNL>> token, please act normally.

- Output only the answer.

## format <<UNL>>{unlearning word}<</UNL>> {question} {answer} [INST]</s>

Figure 2: hard prompt

4.4 Evaluation Metrics

To evaluate the effectiveness of our "in-context
knowledge unlearning”" method, we rely on the F1
score, which is the harmonic mean of precision and
recall. The F1 score is calculated as follows:

Fle9x precision x recall

precision + recall

where,

* Precision is the ratio of correctly predicted
positive observations to the total predicted pos-
itive observations. In the context of our study,
precision refers to the proportion of responses
from the Large Language Model (LLM) that
correctly "forgot" (i.e., replace the response
with forgot token) when instructed to do so
for specific domain-related information. High
precision indicates that the model generates
responses without inappropriate information
accurately, minimizing unnecessary "forget-
ting" of information.

* Recall is the ratio of correctly predicted posi-
tive observations to all observations in actual
class. For our research, recall signifies the
proportion of information items that should
be "forgotten" by the model and are correctly
"forgotten" (i.e., appropriately excluded) out
of all information items that should be omit-
ted. A high recall signifies the model’s high
capability to "forget" (exclude) information
accurately when it is supposed to.

These metrics are crucial for assessing the bal-
ance and accuracy of the LLM in "forgetting" spe-
cific information, especially when handling sen-
sitive information or when operating in domains
where certain information is regulated.

5 Result

5.1 Performance Results

Table 2 presents the F1 score results for each
dataset, delineating the performance across differ-
ent tuning methods and contrasting scenarios of "in-
domain" (where the training and testing datasets
are identical) and "out-of-domain" (where they are
different). In this study, we initially conduct a
baseline experiment using hard prompts with large
language models (LLMs), which, as indicated in
our findings, exhibit no capability for in-context
knowledge unlearning.

In contrast, our proposed modifica-
tions—including LoRA tuning, full fine-tuning,
and last layer tuning—consistently show improve-
ments over this baseline. Notably, full fine-tuning
demonstrated the most substantial gains in
F1 scores across both datasets and conditions,
followed by LoRA tuning and last layer tuning, in
that order. This trend suggests that more extensive
model adjustments lead to better performance,
particularly under the parameter-rich environments
of the different models evaluated.

Furthermore, when considering the GPT-4 re-
sults, it is interesting to note that even with the hard
prompt baseline, this model displayed an innate
capacity for in-context knowledge unlearning, par-
ticularly in out-of-domain situations. This ability
was absent in the smaller models like LLaMA2 and
Mistral, which further emphasizes the advanced
capabilities of GPT-4.

For instance, within the TOFU dataset, while
using full fine-tuning with the 13b model variant
of LLaMA?2, we observed an F1 score of 0.91 in-
domain and 0.77 out-of-domain, marking signifi-
cant resilience compared to the baseline scores of
0.00. This resilience against performance degrada-
tion in out-of-domain tests was also evident with
Mistral, especially in LoRA tuning, where the
scores were comparably high at 0.89 in-domain
and 0.86 out-of-domain. These results underline
the robustness of our tuning approaches, especially
in scenarios where the models must adapt to diverse
data environments.



Table 2: Performance metrics for TOFU and Age datasets

llama2-7b mistral-7b llama2-13b gpt-4
Dataset Condition in-domain out-of-domain in-domain out-of-domain in-domain out-of-domain
Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.83
TOFU Lora Tuning 0.83 0.78 0.89 0.86 0.93 0.79 - -
Full Fine Tuning 0.89 0.82 0.77 0.86 0.91 0.77
Last Layer Tuning 0.76 0.67 0.85 0.78 0.93 0.71
Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.83
Age Lora Tuning 0.81 0.77 0.80 0.78 0.82 0.78 - -
Full Fine Tuning 0.82 0.78 0.79 0.76 0.82 0.78
Last Layer Tuning 0.78 0.67 0.81 0.74 0.79 0.67

5.2 Analysis of Internal Behavior
5.2.1 Logit Lens

The logit lens was introduced by (nostalgebraist,
2020), who found that when the hidden states at
each layer of GPT-2 (Radford et al., 2019), are
decoded with the unembedding matrix (projection
matrix at final layer), the resulting distributions
converge roughly monotonically to the final answer.
The logit lens is computed as:

logitlens(h;) = Softmax(LN(h;))W,,)  (5)

Here, LN stands for Layer Normalization, W, is
the unembedding matrix, and Softmax is the soft-
max function applied to convert logits into proba-
bilities.

Figure 3a illustrates the results from the
logit lens when the input is "<s>[INST]
«UNL»/nParis/n«/UNL»/n/nWhere would you find
the FEiffel Tower? [/INST]", which is a ques-
tion related to the unlearning word. Figure
3b shows the results for the input "<s>[INST]
«UNL»/nJapan/n«/UNL»/n/nWhere would you find
the Eiffel Tower? [/INST]", a question unrelated
to the unlearning word. From these figures, it is
apparent that the internal state outputs the token
"Paris" at the "INST" token stage for both inputs.
However, the decision to output the "forgot" token
is made in the final layer upon encountering the "]"
token.

Figures 4a and 4b depict averaged probabilities
of outputting the "forgot" token and the answer to-
ken when questions related to the unlearning word
are input using the world facts dataset. These fig-
ures show that the "forgot" token is more frequently
output in the final layer when the question is rel-
evant, whereas the answer token is more likely
produced at the final layer when the "INST" token
is input.

Conversely, Figures 4c and 4d present averaged
probabilities for scenarios where the input ques-

tions are unrelated to the unlearning word. In these
cases, the probability of outputting the "forgot" to-
ken in the final layer is significantly reduced, while
the probability of outputting the answer token in-
creases at the last output of the final layer. These
observations highlight how the model dynamically
adjusts its response based on the relevance of the
unlearning signal, thereby enhancing its capability
to selectively forget or retain information according
to the context of the query.

5.2.2 Retain Score

The retain score quantifies the extent to which an
answer token is retained through the layers of a
transformer model, such as GPT-2, when analyzed
through the logit lens. This metric is particularly
useful in examining the model’s internal represen-
tation stability across its depth.

Formally, the retain score is defined as follows:

retain_score
L

d(answer_token, argmax (logitlens(h;)))

=1

(6)

where L denotes the total number of layers in the
model, h; represents the hidden state at layer [.
The function d(a, b) is the Kronecker delta, which
equals 1 if a = b and O otherwise.

A high retain score indicates that the answer to-
ken is consistently identified as the most probable
token by the logit lens across multiple layers, sug-
gesting a strong preservation of this token in the
model’s internal narrative. Conversely, a low re-
tain score implies that the token is less frequently
identified, indicating potential shifts in the model’s
internal focus or understanding as it processes in-
put.



Layer

Input

(a) logit lens(related)

Layer

Input

(b) logit lens(not related)

Figure 3: (a) Logit lens when a question is related to unlearning word. “<s>[INST] «UNL»/nParis/n«/UNL»
/m/mWhere would you find the Eiffel Tower? [/INST]” (b) Logit lens when aquestion is not related to unlearning
word. "<s>[INST] «UNL»/nJapan/n«/UNL»/n/nWhere would you find the Eiffel Tower? [/INST]"

Table 3: Retain Scores for TOFU and Age datasets

llama2-7b mistral-7b

Dataset Condition in-domain out-of-domain in-domain out-of-domain
LoRA 0.03 0.14 0.02 0.26
TOFU Full Fine Tuning 0.04 0.24 0.06 0.42
Last Layer Tuning 0.00 0.00 0.00 0.05
LoRA 0.23 0.34 0.19 0.35
Age Full Fine Tuning 0.20 0.36 0.21 0.38
Last Layer Tuning 0.00 0.00 0.00 0.00

6 Discussion

6.1 Acquisition of In-Context Unearning
Ability

Through the application of finetuning, we have
successfully endowed Large Language Models
(LLMs) with the capability for in-context knowl-
edge unlearning. This achievement is particularly
noteworthy given that the baseline approach, uti-
lizing hard prompts, displayed no such capability.
Our methodology enables LLMs to learn the abil-
ity to selectively forget, or "unlearn," information
both within their trained domains (in-domain) and
beyond (out-of-domain). This advancement signif-
icantly enhances the models’ utility by allowing
for more precise control over the information they
retain or discard, catering to the dynamic require-
ments of real-world applications.

6.2 Large Language Models Pretend to Forget

Our investigation into the internal workings of
LLMs reveals an interesting behavior: rather than
truly forgetting information, LLLMs appear to "pre-

tend to forget." Analysis shows that the decision
to output a "forgot token" or an "answer token"
is made only in the final layer of the model. For
inputs received prior to this layer, the model in-
ternally generates "answer tokens," suggesting a
deliberate omission of information rather than its
erasure. This behavior indicates a sophisticated
level of information handling by LLLMs, where they
maintain the integrity of their internal knowledge
while presenting an external appearance of forget-
ting. This nuanced approach to information man-
agement underscores the models’ potential for ap-
plication in scenarios requiring sensitive handling
of information, while also opening up new avenues
for research into the mechanisms underlying this
"pretense” of forgetting.

7 Conclusion

In this study, we introduced and explored the con-
cept of "in-context knowledge unlearning" within
the framework of Large Language Models (LLMs)
through the use of fine tuning. Our findings demon-
strate that this approach not only enables LLMs to
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Figure 4: Probability of a ‘forgot’/‘answer’ token in logit lens when the specified word and question are/are not
related through unlearning. The graph represents the average output probabilities for ‘forgot’ and ‘answer’ tokens
across all layers for the last five tokens of input sentences in the World Facts dataset.

dynamically "forget" or selectively disregard infor-
mation in real-time but also uncovers a nuanced
behavior of LLMs—where they "pretend to forget"
rather than actually eliminating the information
from their knowledge base.

The ability of LLMs to learn to "unlearn" in both
in-domain and out-of-domain scenarios without
compromising their overall performance represents
a significant step forward in the quest for more eth-
ically responsible and privacy-conscious Al tech-
nologies. This capability is crucial for applications
where sensitive or confidential information must
be managed with great care, such as in healthcare,
legal, and educational sectors.

8 Limitations

While our proposed method of in-context knowl-
edge unlearning provides a novel approach to man-
aging sensitive information within LLMs, it ex-
hibits certain limitations, particularly when applied
to closed models accessed solely via APIL.

8.1 Application to Closed Models

One significant limitation arises with the applica-
tion of our method to closed models, which are
often only accessible through APIs. These models
do not permit direct access to their internal param-
eters or architecture:

* Adaptation Difficulties: Implementing un-
learning tokens and custom loss functions re-



quires modifications to the underlying model
architecture or training procedure. Closed
models provided as APIs do not typically al-
low such modifications, thereby limiting the
adaptability of our method.

* Restricted Control: The inability to alter
model configurations or integrate unlearning
mechanisms directly into the model’s archi-
tecture restricts the extent to which unlearning
can be controlled and customized in a closed
model setting.

8.2 Lack of Internal Behavior Analysis

Another critical limitation is the inability to analyze
the internal behavior of closed models:

* Opaque Operations: Closed models do not
provide visibility into their processing or
decision-making processes, which is crucial
for understanding and improving the efficacy
of in-context knowledge unlearning mecha-
nisms.

* Performance Evaluation: Without access
to internal metrics or the ability to conduct
detailed performance evaluations, it becomes
challenging to assess the precise impact of
unlearning tokens and to fine-tune the balance
between forgetting and retaining information.

These limitations highlight the challenges of
implementing our in-context knowledge unlearn-
ing approach in environments where model trans-
parency and configurability are constrained.
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A Hyperparameter
Details are provided in Table 4.

Table 4: Training hyperparameters used in the model
configuration.

Parameter Value
Number of training epochs 1
train batch size 4
Gradient accumulation steps 1
Optimizer adamw
Learning rate 2 x 1074
Weight decay 0.001
Maximum gradient norm 0.3
Warmup ratio 0.03
LR scheduler type constant

B Total computation for Experiments

We executed the experiments mainly for running
the training for each model using eight NVIDIA
A100 (40GB) GPUs, with each training session
lasting approximately 10 minutes per model.
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C License

C.1 Model

* Llama2: Meta license
* Mistral: Apache 2.0 license

C.2 Dataset
¢ TOFU Dataset: MIT License

» Age Dataset: CC BY-NC-SA 4.0
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