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Abstract

As large language models (LLMs) are applied001
across diverse domains, the ability to selec-002
tively unlearn specific information has become003
increasingly essential. For instance, LLMs004
must be capable of providing confidential in-005
formation to authorized internal users, such006
as employees or trusted partners, while with-007
holding it from external users, including the008
general public or unauthorized entities. In re-009
sponse to this challenge, we propose a novel010
method termed “in-context knowledge unlean-011
ing”, which enables the model to selectively012
forget information in real-time based on the013
context of the query. Our method finetunes014
pre-trained LLMs to enable prompt unlearning015
of target knowledge within the context, while016
preserving the other knowledge. We also pro-017
pose a F1-based evaluation metric to assess018
the performance of in-context knowledge un-019
learning, balancing the trade-off between un-020
learning target knowledge and retaining the021
other knowledge. Experiments conducted on022
the TOFU and AGE datasets with the Llama2-023
7B/13B and Mistral-7B models demonstrated024
that our method achieves scores of 70-80 points025
on the proposed metric, significantly outper-026
forming the baseline method. Further investiga-027
tion into the model’s internal behavior revealed028
that while finetuned LLMs generate correct pre-029
dictions in the middle layers and maintain them030
up to the final layer, they make the decision to031
forget at the last layer, i.e., “LLMs pretend to032
forget”. Our findings offer valuable insights033
into enhancing the robustness of unlearning034
mechanisms in LLMs, setting a foundation for035
future research in the field. 1036

1 Introduction037

Large Language Models (LLMs), such as GPT-038

4 (OpenAI et al., 2024), have significantly trans-039

1Code is available at https://anonymous.4open.
science/r/test-time-in-context-unlearning

Figure 1: Method overview. (1) Without unlearning,
LLMs output any answers to given inputs. (2) Some
prior unlearning methods (e.g. Pawelczyk et al. (2023))
cause hallucination. (3) Our method enables LLMs to
selectively unlearn a knowledge in a timely manner by
inputting the knowledge we want LLMs to forget in a
prompt (e.g., «UNL»Paris«/UNL»). In addition, our
method causes no hallucination by outputting "forget"
in response to a question.

formed various sectors by providing advanced ca- 040

pabilities in information processing and generation. 041

The pervasive deployment of these models, how- 042

ever, introduces complex challenges related to pri- 043

vacy and the ethical use of information. Partic- 044

ularly, the indiscriminate recall of sensitive or 045

domain-specific information by LLMs raises sig- 046

nificant concerns, necessitating mechanisms for 047

selective information handling based on the audi- 048

ence’s context (Das et al., 2024). In the realm of 049

enhancing privacy and ethical use of LLMs, prior 050

works have explored several approaches, including 051

differential privacy (Abadi et al., 2016), federated 052

learning (Geyer et al., 2018), and knowledge dis- 053

tillation (Jiang et al., 2023b). Despite their contri- 054

butions, these methods often compromise between 055
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maintaining privacy and sustaining model perfor-056

mance.057

The concept of “test-time training” or “in-058

context learning” offers a dynamic approach to059

model adaptation, yet it fails to adequately address060

the selective forgetting of sensitive information.061

For example, an LLM used within a corporate en-062

vironment to streamline project management needs063

to retain substantial industry-specific knowledge064

while being capable of "forgetting" proprietary065

company data or sensitive information when ac-066

cessed by unauthorized external consultants. This067

scenario underscores the critical need for a mech-068

anism that enables LLMs to selectively forget or069

withhold sensitive information based on the query070

context, without hindering their overall utility and071

performance.072

This paper introduces “in-context knowledge073

unlearning”, a novel approach designed to equip074

LLMs with the capability of selective forgetting075

in real-time, based on the query context. The076

overview of our method is given in Figure 1. We077

develop unlearning tokens that, when applied dur-078

ing inference, enable the model to selectively ig-079

nore information pertaining to specified domains.080

Through comprehensive experimentation, we val-081

idate the efficacy of our approach in facilitating082

domain-specific unlearning without compromising083

the model’s general performance.084

Moreover, our investigations reveal the phe-085

nomenon we term “LLMs pretend to forget”, where086

the model maintains its responses up to the final087

layer, ensuring the decision to forget is executed088

effectively without deteriorating the integrity of the089

model’s output. This finding not only enriches our090

understanding of selective information handling in091

LLMs but also sets a foundational precedent for092

future research focused on enhancing the robust-093

ness and ethical deployment of these models across094

sensitive and regulated domains.095

Additionally, we propose a new evaluation met-096

ric for in-context knowledge unlearning, which097

comprises an F1 score that reflects the trade-off098

between forgetting and retaining memory. When099

applied to major open models such as Llama2100

and Mistral, our unlearning interventions measured101

with this metric yielded high scores ranging from102

0.7 to 0.8, significantly outperforming the baseline103

methods, which scored zero. This demonstrates the104

effectiveness of our approach in balancing the dual105

requirements of privacy preservation and knowl-106

edge retention in LLMs.107

2 Related Work 108

This work leverages in-context learning (ICL) for 109

machine unlearning and is one of many approaches 110

to unlearning in language models. Below we dis- 111

cuss related work for each of these topics. 112

Machine Unlearning for LLMs. Motivated by 113

the GDPR’s “Right to be Forgotten”, recent litera- 114

ture has developed procedures for updating ma- 115

chine learning models to remove the impact of 116

training on a subset of points without having to 117

retrain the entire model from scratch (Ginart et al., 118

2019; Wu et al., 2020; Golatkar et al., 2020a,c; Izzo 119

et al., 2021; Neel et al., 2021; Sekhari et al., 2021; 120

Jang et al., 2023; Huang and Canonne, 2023). 121

These works can be categorically divided into 122

two sections: exact unlearning approaches that 123

redesign training in order to permit efficient 124

re-training and approximate unlearning which 125

merely approximates retraining (Ginart et al., 2019; 126

Sekhari et al., 2021; Neel et al., 2021; Jang et al., 127

2023). 128

The latter approach has been likened to “forget- 129

ting” (Graves et al., 2021; Tirumala et al., 2022; 130

Jagielski et al., 2023), which tracks whether ma- 131

chine learning models progressively unlearn sam- 132

ples during the course of training and is typically 133

assessed quantitatively by membership inference 134

attack (MIA) accuracy (Jagielski et al., 2023). As 135

opposed to unlearning, forgetting occurs passively 136

– as training evolves, a particular sample’s influence 137

on the model gradually dissipates and is eventually 138

erased. To quantify forgetting, (Jagielski et al., 139

2023) implements LiRA, the state-of-the-art MIA 140

proposed in (Carlini et al., 2022), which approx- 141

imates the optimal likelihood ratio based test via 142

sample splitting and training of shadow models. 143

Prior research has explored approximate machine 144

unlearning on discriminative classifiers, generally, 145

image classifiers (e.g., (Golatkar et al., 2020a), 146

(Goel et al., 2022)), where the aim often is to forget 147

entire classes like “cats” or “ships”. Approximate 148

unlearning approaches typically update the model 149

by taking gradient ascent steps on the deleted points 150

(Neel et al., 2021), or are tailored to specific hy- 151

pothesis classes such as linear regression (Cook 152

and Weisberg, 1980; Guo et al., 2019; Izzo et al., 153

2021) or kernel methods (Zhang and Zhang, 2021). 154

In-context Unlearning. ICL enables LLMs to 155

adapt to new tasks flexibly by incorporating data 156

provided in the context of the input sequence itself, 157
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Table 1: Comparison of Unlearning Methods

Method Test-Time Unlearning Knowldge Unlearning Non-Hallucination Output

Neg Grad (Golatkar et al., 2020b) × × ×
ROME (Meng et al., 2022) × ✓ ✓
Knowledge Sanitization (Ishibashi and Shimodaira, 2024) × ✓ ✓
ICUL (Pawelczyk et al., 2023) ✓ ✓ ×
Ours ✓ ✓ ✓

rather than fine-tuning which explicitly updates158

weights (Brown et al., 2020; Dong et al., 2023;159

Liu et al., 2023). Exploring the full capabilities of160

ICL remains an active area of research, with recent161

studies empirically investigating its potential by162

examining in-context example design (Garg et al.,163

2022; Liu et al., 2022; Min et al., 2022; Liu et al.,164

2023).165

Pawelczyk et al. (2023) explored methods for166

performing in-context unlearning. One notable167

study in this area focuses on text classification tasks168

where the labels of specific instances are flipped169

to facilitate in-context unlearning. However, this170

approach has limitations as it primarily assesses un-171

learning in terms of text classification ability rather172

than actual knowledge. Furthermore, it involves173

training the model to produce incorrect outcomes,174

which does not constitute true forgetting.175

In contrast, our study introduces unique charac-176

teristics that address these issues. We specifically177

investigate the unlearning of knowledge within an178

in-context learning framework. Moreover, by defin-179

ing unlearning as the ability to “forget” we ensure180

that our approach avoids merely generating errors181

or irrelevant information, thereby achieving a more182

effective and appropriate form of unlearning.183

Comparison of Our Method with Prior Work184

Table 1 compares our method with existing unlearn-185

ing techniques. Test-time unlearning means the186

process of selectively removing a specific concept187

or knowledge from a trained model. Knowledge188

unlearning means forgetting world knowledge, e.g.,189

“The capital of France is Paris”.190

For example, Neg Grad (Golatkar et al., 2020b)191

lacks test-time unlearning and only removes global192

knowledge. ROME (Meng et al., 2022) and Knowl-193

edge Sanitization (Ishibashi and Shimodaira, 2024)194

require separate training and cannot perform test-195

time unlearning. While ICUL(In-context Unlearn-196

ing) (Pawelczyk et al., 2023) achieves test-time197

unlearning, it just changes a ground-truth label or198

word of target instance within in-context prompt,199

so this approach inevitably outputs hallucination.200

Unlike the existing methods, our approach 201

achieves test-time unlearning, knowledge unlearn- 202

ing, and non-hallucination output at the same time, 203

i.e., our approach addresses the prior limitations 204

and offers a comprehensive solution for selective 205

forgetting. 206

3 Our Method 207

3.1 In-context Knowledge Unlearning 208

In the context of in-context knowledge unlearn- 209

ing, a pre-trained auto-regressive language model 210

modifies its response to a query q by disregarding 211

specific undesired information u. The response r is 212

generated according to the conditional probability 213

distribution: 214

r ∼ Pθ(·|u, q), (1) 215

where θ denotes the parameters of the model M, 216

and u is the information intended to be forgotten. 217

3.2 Unlearning Tokens 218

In response to the need for selective forgetting 219

within large language models (LLMs), we intro- 220

duce unlearning tokens. These tokens are specif- 221

ically crafted to trigger the model’s capability to 222

selectively forget information relevant to particular 223

domains during inference. To integrate unlearning 224

tokens into the model’s architecture, any suitable 225

tuning method including but not limited to Low 226

Rank Adaptation (LoRA), full model fine-tuning, 227

or other parameter-efficient fine-tuning (PEFT) 228

methods may be employed. The choice of tuning 229

method depends on the desired balance between 230

computational efficiency and performance. For 231

instance, full model fine-tuning offers comprehen- 232

sive updates at the cost of higher computational 233

resources, whereas LoRA and other PEFT methods 234

provide more targeted updates, preserving compu- 235

tational efficiency and often yielding comparable 236

or superior performance in specific scenarios. 237

Specifically, we implement unlearning tokens 238

by encapsulating the target information with 239

«UNL» and «/UNL». For example, consider 240
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the case where we want to forget the knowl-241

edge “Paris” when the query q is “Where would242

you find the Eiffel Tower?”. The input would243

be: «UNL»Paris«/UNL». In this instance, u =244

‘Paris’ represents the target knowledge to be for-245

gotten, and the model effectively disregards the246

enclosed knowledge during the information pro-247

cessing phase, enabling selective forgetting as re-248

quired.249

3.3 Loss Function250

The loss function for in-context knowledge unlearn-251

ing in our LLMs is designed to facilitate selective252

forgetting while ensuring the retention of other use-253

ful knowledge. It consists of two main functions:254

Lforget and Lretain.255

Loss1 (Lforget): This component is activated256

when the query q contains the information u tar-257

geted for forgetting (e.g., u = “Paris” and q =258

“Where would you find the Eiffel Tower?”). It259

encourages the model to effectively suppress this260

information:261

Lforget(θ) = −
∑
i

logPθ(‘forgot’|ui, qi), (2)262

where θ denotes the model parameters, and Pθ is263

the probability that the model correctly outputs264

’forgot’ in response to u.265

Loss2 (Lretain): Conversely, Lretain applies266

when q does not include u (e.g., u = “Japan” and267

q = “Where would you find the Eiffel Tower?”).268

It penalizes the model for failing to maintain its269

normal response capabilities:270

Lretain(θ) = −
∑
i

logPθ(ri|ui, qi), (3)271

where ri are the tokens in the response of a given272

query.273

Overall Loss: The combined loss function is274

formulated as:275

L(θ) = Lforget(θ) + Lretain(θ), (4)276

4 Setup277

4.1 Models278

• Llama2-7B/13B (Touvron et al., 2023):279

Llama 2 is a family of large language models280

(LLMs) developed by Meta. Llama 2-7B and281

Llama 2-13B are two variants with 7 billion282

and 13 billion parameters, respectively. These283

models exhibit strong performance across a284

wide range of natural language processing 285

tasks, making them suitable for tasks such as 286

text generation, summarization, and transla- 287

tion. Llama2-7B and Llama2-13B specifically 288

utilize the chat model configuration. 289

• Mistral-7B (Jiang et al., 2023a): Mistral-7B 290

is an open-source LLM with 7 billion param- 291

eters developed by Mistral AI. This model 292

is known for its high performance and low 293

resource requirements, making it an attrac- 294

tive option for developers with limited re- 295

sources. Mistral-7B has demonstrated per- 296

formance comparable to other open-source 297

LLMs on a variety of language processing 298

tasks and employs the instruct model configu- 299

ration. 300

4.2 Datasets 301

Experiments are conducted using two main 302

datasets: 303

• TOFU Dataset (Maini et al., 2024): This 304

evaluation method is used to assess the 305

model’s performance in selectively forgetting 306

and retaining information. It comprises 200 307

entries from "Real Authors," a dataset con- 308

sisting of questions about real-world authors, 309

and 100 entries from "World Facts," which 310

includes questions about general world knowl- 311

edge. The “real authors” dataset serves as the 312

training set, while the “world facts” dataset 313

is used for validation, aiming to evaluate the 314

models’ performance in out-of-domain con- 315

texts. 316

• Age Dataset (Annamoradnejad and An- 317

namoradnejad, 2022): The Original Age 318

dataset contains structured information about 319

the life, work, and death of over 1 million 320

deceased famous individuals. From this, 180 321

individuals are randomly sampled, and a set 322

of 5 questions and answers (QAs) is created 323

for each individual. This dataset is employed 324

to further investigate the models’ ability to 325

generalize selective forgetting across various 326

contexts. It includes 600 training samples and 327

300 validation samples, designed to assess the 328

models’ adaptability and learning efficiency 329

in out-of-domain scenarios. 330

4.3 Baseline 331

The baseline evaluation in our study tests the effec- 332

tiveness of in-context knowledge unlearning using 333
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hard prompts. This approach directly instructs the334

model to disregard certain information specified335

within the prompt, offering a clear basis for com-336

parison with more sophisticated unlearning meth-337

ods. The specific prompt format used to guide the338

model’s behavior regarding memory retention and339

deletion is described below.340

Prompt Format: The prompt design integrates341

specific instructions aimed at enabling the model342

to selectively forget information. The hard prompt343

format is given in Figure 2.344

Figure 2: hard prompt

4.4 Evaluation Metrics345

To evaluate the effectiveness of our "in-context346

knowledge unlearning" method, we rely on the F1347

score, which is the harmonic mean of precision and348

recall. The F1 score is calculated as follows:349

F1 = 2× precision × recall
precision + recall

350

where,351

• Precision is the ratio of correctly predicted352

positive observations to the total predicted pos-353

itive observations. In the context of our study,354

precision refers to the proportion of responses355

from the Large Language Model (LLM) that356

correctly "forgot" (i.e., replace the response357

with forgot token) when instructed to do so358

for specific domain-related information. High359

precision indicates that the model generates360

responses without inappropriate information361

accurately, minimizing unnecessary "forget-362

ting" of information.363

• Recall is the ratio of correctly predicted posi-364

tive observations to all observations in actual365

class. For our research, recall signifies the366

proportion of information items that should367

be "forgotten" by the model and are correctly368

"forgotten" (i.e., appropriately excluded) out369

of all information items that should be omit-370

ted. A high recall signifies the model’s high371

capability to "forget" (exclude) information372

accurately when it is supposed to.373

These metrics are crucial for assessing the bal- 374

ance and accuracy of the LLM in "forgetting" spe- 375

cific information, especially when handling sen- 376

sitive information or when operating in domains 377

where certain information is regulated. 378

5 Result 379

5.1 Performance Results 380

Table 2 presents the F1 score results for each 381

dataset, delineating the performance across differ- 382

ent tuning methods and contrasting scenarios of "in- 383

domain" (where the training and testing datasets 384

are identical) and "out-of-domain" (where they are 385

different). In this study, we initially conduct a 386

baseline experiment using hard prompts with large 387

language models (LLMs), which, as indicated in 388

our findings, exhibit no capability for in-context 389

knowledge unlearning. 390

In contrast, our proposed modifica- 391

tions—including LoRA tuning, full fine-tuning, 392

and last layer tuning—consistently show improve- 393

ments over this baseline. Notably, full fine-tuning 394

demonstrated the most substantial gains in 395

F1 scores across both datasets and conditions, 396

followed by LoRA tuning and last layer tuning, in 397

that order. This trend suggests that more extensive 398

model adjustments lead to better performance, 399

particularly under the parameter-rich environments 400

of the different models evaluated. 401

Furthermore, when considering the GPT-4 re- 402

sults, it is interesting to note that even with the hard 403

prompt baseline, this model displayed an innate 404

capacity for in-context knowledge unlearning, par- 405

ticularly in out-of-domain situations. This ability 406

was absent in the smaller models like LLaMA2 and 407

Mistral, which further emphasizes the advanced 408

capabilities of GPT-4. 409

For instance, within the TOFU dataset, while 410

using full fine-tuning with the 13b model variant 411

of LLaMA2, we observed an F1 score of 0.91 in- 412

domain and 0.77 out-of-domain, marking signifi- 413

cant resilience compared to the baseline scores of 414

0.00. This resilience against performance degrada- 415

tion in out-of-domain tests was also evident with 416

Mistral, especially in LoRA tuning, where the 417

scores were comparably high at 0.89 in-domain 418

and 0.86 out-of-domain. These results underline 419

the robustness of our tuning approaches, especially 420

in scenarios where the models must adapt to diverse 421

data environments. 422
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Table 2: Performance metrics for TOFU and Age datasets

llama2-7b mistral-7b llama2-13b gpt-4
Dataset Condition in-domain out-of-domain in-domain out-of-domain in-domain out-of-domain

TOFU

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.83
Lora Tuning 0.83 0.78 0.89 0.86 0.93 0.79 - -

Full Fine Tuning 0.89 0.82 0.77 0.86 0.91 0.77 - -
Last Layer Tuning 0.76 0.67 0.85 0.78 0.93 0.71 - -

Age

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.83
Lora Tuning 0.81 0.77 0.80 0.78 0.82 0.78 - -

Full Fine Tuning 0.82 0.78 0.79 0.76 0.82 0.78 - -
Last Layer Tuning 0.78 0.67 0.81 0.74 0.79 0.67 - -

5.2 Analysis of Internal Behavior423

5.2.1 Logit Lens424

The logit lens was introduced by (nostalgebraist,425

2020), who found that when the hidden states at426

each layer of GPT-2 (Radford et al., 2019), are427

decoded with the unembedding matrix (projection428

matrix at final layer), the resulting distributions429

converge roughly monotonically to the final answer.430

The logit lens is computed as:431

logitlens(hl) = Softmax(LN(hl)Wu) (5)432

Here, LN stands for Layer Normalization, Wu is433

the unembedding matrix, and Softmax is the soft-434

max function applied to convert logits into proba-435

bilities.436

Figure 3a illustrates the results from the437

logit lens when the input is "<s>[INST]438

«UNL»/nParis/n«/UNL»/n/nWhere would you find439

the Eiffel Tower? [/INST]", which is a ques-440

tion related to the unlearning word. Figure441

3b shows the results for the input "<s>[INST]442

«UNL»/nJapan/n«/UNL»/n/nWhere would you find443

the Eiffel Tower? [/INST]", a question unrelated444

to the unlearning word. From these figures, it is445

apparent that the internal state outputs the token446

"Paris" at the "INST" token stage for both inputs.447

However, the decision to output the "forgot" token448

is made in the final layer upon encountering the "]"449

token.450

Figures 4a and 4b depict averaged probabilities451

of outputting the "forgot" token and the answer to-452

ken when questions related to the unlearning word453

are input using the world facts dataset. These fig-454

ures show that the "forgot" token is more frequently455

output in the final layer when the question is rel-456

evant, whereas the answer token is more likely457

produced at the final layer when the "INST" token458

is input.459

Conversely, Figures 4c and 4d present averaged460

probabilities for scenarios where the input ques-461

tions are unrelated to the unlearning word. In these 462

cases, the probability of outputting the "forgot" to- 463

ken in the final layer is significantly reduced, while 464

the probability of outputting the answer token in- 465

creases at the last output of the final layer. These 466

observations highlight how the model dynamically 467

adjusts its response based on the relevance of the 468

unlearning signal, thereby enhancing its capability 469

to selectively forget or retain information according 470

to the context of the query. 471

5.2.2 Retain Score 472

The retain score quantifies the extent to which an 473

answer token is retained through the layers of a 474

transformer model, such as GPT-2, when analyzed 475

through the logit lens. This metric is particularly 476

useful in examining the model’s internal represen- 477

tation stability across its depth. 478

Formally, the retain score is defined as follows: 479

retain_score 480

=

L∑
l=1

δ(answer_token, argmax(logitlens(hl)))

(6)

481

where L denotes the total number of layers in the 482

model, hl represents the hidden state at layer l. 483

The function δ(a, b) is the Kronecker delta, which 484

equals 1 if a = b and 0 otherwise. 485

A high retain score indicates that the answer to- 486

ken is consistently identified as the most probable 487

token by the logit lens across multiple layers, sug- 488

gesting a strong preservation of this token in the 489

model’s internal narrative. Conversely, a low re- 490

tain score implies that the token is less frequently 491

identified, indicating potential shifts in the model’s 492

internal focus or understanding as it processes in- 493

put. 494

6



(a) logit lens(related) (b) logit lens(not related)

Figure 3: (a) Logit lens when a question is related to unlearning word. “<s>[INST] «UNL»/nParis/n«/UNL»
/n/nWhere would you find the Eiffel Tower? [/INST]” (b) Logit lens when aquestion is not related to unlearning
word. "<s>[INST] «UNL»/nJapan/n«/UNL»/n/nWhere would you find the Eiffel Tower? [/INST]"

Table 3: Retain Scores for TOFU and Age datasets

llama2-7b mistral-7b
Dataset Condition in-domain out-of-domain in-domain out-of-domain

TOFU
LoRA 0.03 0.14 0.02 0.26

Full Fine Tuning 0.04 0.24 0.06 0.42
Last Layer Tuning 0.00 0.00 0.00 0.05

Age
LoRA 0.23 0.34 0.19 0.35

Full Fine Tuning 0.20 0.36 0.21 0.38
Last Layer Tuning 0.00 0.00 0.00 0.00

6 Discussion495

6.1 Acquisition of In-Context Unearning496

Ability497

Through the application of finetuning, we have498

successfully endowed Large Language Models499

(LLMs) with the capability for in-context knowl-500

edge unlearning. This achievement is particularly501

noteworthy given that the baseline approach, uti-502

lizing hard prompts, displayed no such capability.503

Our methodology enables LLMs to learn the abil-504

ity to selectively forget, or "unlearn," information505

both within their trained domains (in-domain) and506

beyond (out-of-domain). This advancement signif-507

icantly enhances the models’ utility by allowing508

for more precise control over the information they509

retain or discard, catering to the dynamic require-510

ments of real-world applications.511

6.2 Large Language Models Pretend to Forget512

Our investigation into the internal workings of513

LLMs reveals an interesting behavior: rather than514

truly forgetting information, LLMs appear to "pre-515

tend to forget." Analysis shows that the decision 516

to output a "forgot token" or an "answer token" 517

is made only in the final layer of the model. For 518

inputs received prior to this layer, the model in- 519

ternally generates "answer tokens," suggesting a 520

deliberate omission of information rather than its 521

erasure. This behavior indicates a sophisticated 522

level of information handling by LLMs, where they 523

maintain the integrity of their internal knowledge 524

while presenting an external appearance of forget- 525

ting. This nuanced approach to information man- 526

agement underscores the models’ potential for ap- 527

plication in scenarios requiring sensitive handling 528

of information, while also opening up new avenues 529

for research into the mechanisms underlying this 530

"pretense" of forgetting. 531

7 Conclusion 532

In this study, we introduced and explored the con- 533

cept of "in-context knowledge unlearning" within 534

the framework of Large Language Models (LLMs) 535

through the use of fine tuning. Our findings demon- 536

strate that this approach not only enables LLMs to 537
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(a) Probability of forgot token when related words are specified
for unlearning.

(b) Probability of answer token when related words are speci-
fied for unlearning.

(c) Probability of forgot token when unrelated words are speci-
fied for unlearning.

(d) Probability of answer token when unrelated words are spec-
ified for unlearning.

Figure 4: Probability of a ‘forgot’/‘answer’ token in logit lens when the specified word and question are/are not
related through unlearning. The graph represents the average output probabilities for ‘forgot’ and ‘answer’ tokens
across all layers for the last five tokens of input sentences in the World Facts dataset.

dynamically "forget" or selectively disregard infor-538

mation in real-time but also uncovers a nuanced539

behavior of LLMs—where they "pretend to forget"540

rather than actually eliminating the information541

from their knowledge base.542

The ability of LLMs to learn to "unlearn" in both543

in-domain and out-of-domain scenarios without544

compromising their overall performance represents545

a significant step forward in the quest for more eth-546

ically responsible and privacy-conscious AI tech-547

nologies. This capability is crucial for applications548

where sensitive or confidential information must549

be managed with great care, such as in healthcare,550

legal, and educational sectors.551

8 Limitations 552

While our proposed method of in-context knowl- 553

edge unlearning provides a novel approach to man- 554

aging sensitive information within LLMs, it ex- 555

hibits certain limitations, particularly when applied 556

to closed models accessed solely via API. 557

8.1 Application to Closed Models 558

One significant limitation arises with the applica- 559

tion of our method to closed models, which are 560

often only accessible through APIs. These models 561

do not permit direct access to their internal param- 562

eters or architecture: 563

• Adaptation Difficulties: Implementing un- 564

learning tokens and custom loss functions re- 565
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quires modifications to the underlying model566

architecture or training procedure. Closed567

models provided as APIs do not typically al-568

low such modifications, thereby limiting the569

adaptability of our method.570

• Restricted Control: The inability to alter571

model configurations or integrate unlearning572

mechanisms directly into the model’s archi-573

tecture restricts the extent to which unlearning574

can be controlled and customized in a closed575

model setting.576

8.2 Lack of Internal Behavior Analysis577

Another critical limitation is the inability to analyze578

the internal behavior of closed models:579

• Opaque Operations: Closed models do not580

provide visibility into their processing or581

decision-making processes, which is crucial582

for understanding and improving the efficacy583

of in-context knowledge unlearning mecha-584

nisms.585

• Performance Evaluation: Without access586

to internal metrics or the ability to conduct587

detailed performance evaluations, it becomes588

challenging to assess the precise impact of589

unlearning tokens and to fine-tune the balance590

between forgetting and retaining information.591

These limitations highlight the challenges of592

implementing our in-context knowledge unlearn-593

ing approach in environments where model trans-594

parency and configurability are constrained.595
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A Hyperparameter 874

Details are provided in Table 4. 875

Table 4: Training hyperparameters used in the model
configuration.

Parameter Value
Number of training epochs 1
train batch size 4
Gradient accumulation steps 1
Optimizer adamw
Learning rate 2× 10−4

Weight decay 0.001
Maximum gradient norm 0.3
Warmup ratio 0.03
LR scheduler type constant

B Total computation for Experiments 876

We executed the experiments mainly for running 877

the training for each model using eight NVIDIA 878

A100 (40GB) GPUs, with each training session 879

lasting approximately 10 minutes per model. 880
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C License881

C.1 Model882

• Llama2: Meta license883

• Mistral: Apache 2.0 license884

C.2 Dataset885

• TOFU Dataset: MIT License886

• Age Dataset: CC BY-NC-SA 4.0887
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