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ABSTRACT

Contrastive language-image pre-training (CLIP) has revolutionized computer vision
by integrating natural language understanding with image analysis, enabling zero-
shot classification without prior training on specific classes. However, recent efforts
to improve the performance of frozen CLIP models through prompt tuning and
adapter mechanisms have introduced additional system complexity and training
requirements, thus undermining CLIP’s inherent efficiency in zero-shot knowledge
transfer. In this paper, we propose to address two common challenges in zero-
shot classification using CLIP: 1) the misalignment between textual and image
embeddings, and 2) the long-tailed distribution of CLIP’s training dataset. Our
approach, CLIP-Enhance, is motivated by a re-interpretation of CLIP zero-shot
classification as a clustering problem on a hypersphere using a von Mises-Fisher
mixture model. Inspired by the DINO self-supervised learning framework, we
optimize this mixture model to simultaneously improve the alignment of textual
and image embeddings as well as represent data distribution disparities between
training and evaluation datasets. Empirically, we show that jointly optimizing for
both embedding alignment and concentration via self-supervised learning improves
CLIP zero-shot classification significantly across multiple benchmark datasets. We
also show empirically how CLIP-Enhance mitigates problems (1) and (2), as well
as its robustness to limited data through a series of additional experiments.

1 INTRODUCTION

Advancements in neural network architectures (Dosovitskiy et al., 2020; He et al., 2015; Krizhevsky
et al., 2012) and the availability of large scale datasets (e.g. Imagenet (Deng et al., 2009b), COCO (Lin
et al., 2014), SA-1B (Kirillov et al., 2023), Laion (Schuhmann et al., 2022)) have produced extraor-
dinary results on supervised vision understanding tasks with closed-set assumptions (Carion et al.,
2020; Touvron et al., 2021; Kirillov et al., 2023; Girshick, 2015). Despite their success in these
scenarios, such techniques are often less effective when encountering new, unseen classes, as they
rely on annotated data and often lack the ability to attain general visual representations. Inspired by
humans’ ability to infer novel visual categories based on text descriptions, recent research focused
on multi-modal representation learning has established new possibilities for zero-shot, multi-modal
classification. In this context, zero-shot classification consists of leveraging an available multi-modal
feature representation to perform closed-set classification on an unlabelled dataset for which textual
descriptions of the classes is available.

In particular, vision-language pre-training frameworks, such as CLIP (Radford et al., 2021) and
subsequent similar work (e.g. ALIGN (Jia et al., 2021), BLIP (Li et al., 2022b), Florence (Yuan et al.,
2021)), have established themselves as methods for supervised visual representation learning. These
methods encode both image and text data to the same embedding space under the assumption that
pre-training on large-scale noisy image-caption (text) pairs allows models to learn diverse visual
concepts that are easily transferred to downstream tasks. For example, for zero-shot classification,
embeddings generated from text describing each novel class can then be compared to embeddings
generated from the images that are being classified.

While models such as CLIP represent a significant advancement in multi-modal representation
learning, using CLIP embeddings directly for zero-shot classification performs remarkably poorly
on many simple datasets such as MNIST (see Table 1). Moreover, many methods designed to use
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CLIP embeddings for few- or zero-shot classification make two tacit assumptions about the second
central moments of image and text embedding distributions which are often violated in real-world
applications (Zhang et al., 2021; Shu et al., 2022; Zhou et al., 2022c; Li et al., 2024; Guo et al.,
2023). First, they assume that embeddings for images of a given class are distributed anisotropically
around the canonical text embedding representing the reference text ‘This is an image of a [CLASS].’
In reality, the many-to-many nature of image captioning and the lack of aggregate or class-wide
terms within the contrastive loss permits ‘misalignment’ between embeddings of text describing a
given class and embeddings of images corresponding to that class. This manifests empirically as
lower-than-desired cosine similarity values between image and text embeddings within a given class.

Second, there is an assumption that the sets of vectors representing different classes are spread
across the representation space somewhat equally. In reality, CLIP’s training dataset exhibits a
long-tailed distribution, where certain images and captions occur much more frequently than others
(e.g. cats vs. elephants) (Radford et al., 2021). This can produce different central second moments
in embedding distributions for different classes (Wang & Isola, 2020). The distribution shift from a
large scale training dataset to a specific downstream task can potentially exacerbate these differences
and represents a challenge for zero-shot classification.

{

KD

Figure 1: CLIP embedding hypersphere,
showing data for “plane” (red), “cat” (green),
and “elephant” (blue) classes. Note the ini-
tial misalignment between text embeddings
(e.g. ptext, dashed lines) and the distribution
means for the image embeddings (dots). Af-
ter knowledge distillation, the new text em-
beddings (e.g. p′, solid lines) move towards
the mean image embedding. Each class also
has an embedding vector concentration κ that
CLIP-Enhance learns and which scales the fi-
nal cosine similarity calculation non-linearly.

CLIP zero-shot classification has been interpreted as clus-
tering (Radford et al., 2021) where the text embeddings
form the cluster centers. To address the above issues of
anisotropic and non-uniform embedding concentrations,
this interpretation can be extended to consider clustering
on a hyphersphere using a von Mises-Fisher (vMF) mix-
ture model (Banerjee et al., 2005), which parameterizes
each cluster by a mean direction vector and a concentration
parameter. Leveraging the invariance of CLIP’s represen-
tations, we jointly optimize both cluster mean directions
and concentration parameters via a DINO-inspired (Caron
et al., 2021) self-supervised learning (SSL) algorithm,
which we call CLIP-Enhance (Fig. 1). Our approach
also benefits from operating directly in text-prompt em-
bedding space rather than in prompt space which allows
it access to a set of finer resolution solutions than can be
achieved via prompt engineering alone.

In summary, this paper presents the following contribu-
tions: (1) We re-formulate CLIP zero-shot classification as
a vMF clustering problem on a hypersphere; and (2) we de-
vise an SSL algorithm to jointly optimize both vision-text
alignment in embedding space and embedding concen-
tration estimates for the resulting vMF mixture model,
addressing both anisotropic intra-class embedding distri-
butions about the mean and non-uniform inter-class em-
bedding concentrations. Together, this produces a state-of-
the-art zero-shot classification system, which we show outperforms other methods on a variety of
standard datasets. We also perform several ablation studies that show CLIP-Enhance performs well
with limited compute and data resources, and the effect of system design choices.

2 RELATED WORK

Supervised pre-training on large-scale image classification tasks (e.g. ImageNet (Deng et al., 2009b))
and transferring to downstream tasks has been widely adopted (Simonyan & Zisserman, 2014;
Girshick et al., 2014; He et al., 2022; Devlin et al., 2018; Dosovitskiy et al., 2020). However,
constructing datasets at scale is challenging due to collection and labeling costs. Recently, vision-
language pre-training (CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), BLIP (Li et al., 2022b),
Florence (Yuan et al., 2021)) has emerged as a promising alternative for visual representation learning.
Because the learned representations from CLIP and other models are general, additional work is often
required to achieve state-of-the-art performance on specific downstream tasks. These efforts largely
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fall into one of three categories depending on the compute and data resources available: fine-tuning
models, few-shot learning, and zero-shot learning. Fine-tuning CLIP or similar models uses the
general representations learned initially to jump-start learning patterns for a specific application
(Wortsman et al., 2022; Han et al., 2024; Nam et al., 2024; Mao et al., 2024; Qiu et al., 2021).
However, although fine-tuning is much more affordable than re-training large models entirely from
scratch, it still requires substantial data and compute resources.

In an effort to more fruitfully exploit CLIP’s low-cost transferability, some methods have attempted
to leverage few-shot learning to improve CLIP’s performance on specific datasets. These methods
typically either focus on prompt tuning, where text inputs are learned or modified to produce text
embeddings that better align with the corresponding image embeddings, or adapter methods, which
learn a small adapter to modify the embeddings. For example, CoOp (Zhou et al., 2022d) proposes
learning prompts for textual inputs to optimize classification in a few-shot setup, and CoCoOp (Zhou
et al., 2022a) extends CoOp by adding context to prompt learning.

While CoOp and CoCoOp address the problem in prompt token space, a second class of approaches
directly adapts the visual-text embedding space, allowing more fine-grained adjustments than prompt-
based methods resulting in superior performance. CLIP-Adapter (Gao et al., 2024) appends an
adapter module to produce adapted multi-modal features for both text and image modalities which
are better aligned, and Tip-Adapter (Zhang et al., 2021) greatly reduces training cost by constructing
a key-value cache model from the given set of labelled images in the few-shot setup. PromptKD (Li
et al., 2024) also aims to learn prompts but additionally learns a non-linear image embedding projector
to improve alignment by minimizing KL-divergence between student and teacher networks. However,
the teacher model is trained initially in a supervised manner on few-shot, labelled data. Overall, these
adaptation and prompt tuning methods often involve additional learnable parameters and still require
extra training data, which undermine the core principle of CLIP’s efficient zero-shot recognition.

In zero-shot learning, there have been few published approaches to improve CLIP’s baseline perfor-
mance. CALIP (Guo et al., 2023) proposes a parameter-free attention module, which guides visual
and textual representations to interact with each other and explore cross-modal informative features
via attention. CALIP blends image features with textual-aware signals and the textual features
with visual-guided signal for better adaptive zero-shot classification. Although they both improve
CLIP zero-shot, CLIP-Enhance and CALIP are not mutually exclusive and, in theory, may be used
simultaneously. It is still an open question as to whether or not improvements in performance due to
CALIP and CLIP-Enhance arise from the same underlying data instances.

The most directly related work to our own is TPT (Shu et al., 2022), however there are significant
differences. First, TPT optimizes prompt embeddings by minimizing the entropy among predictions
on augmented views of each individual test sample, whereas we optimize for the entire test dataset.
This allows our method to leverage additional knowledge that TPT cannot fully exploit. Second, TPT
relies on entropy minimization, while we frame the problem as knowledge distillation, which has
been demonstrated to be more effective (Caron et al., 2021). Furthermore, we formulate the clustering
task using von Mises-Fisher distributions, which accounts for the intra-class spread of embeddings,
something other methods, including TPT, cannot do. Overall, CLIP-Enhance offers several benefits
compared to other approaches in addition to higher accuracy, including the ability to adapt to the
whole dataset at hand by addressing the inference problem directly and greater ease of use due to not
having to fine-tune hyperparameters for each different dataset.

3 METHOD

In this section, we begin by establishing CLIP zero-shot classification as a clustering problem.
Next, we introduce CLIP-Enhance and show how this clustering can be modeled as a von Mises-
Fisher mixture model. Finally, we describe our self-supervised approach to distill and align the
aforementioned vMF mixture model.

3.1 ZERO SHOT CLASSIFICATION USING CLIP

In zero-shot classification, the objective is to classify a set of novel images into a set of potentially
unseen classes C = {0, 1, . . . , |C| − 1} without any prior training on those specific classes. CLIP
addresses this challenge by framing the classification task as a problem of similarity measurement
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between textual and visual feature representations, where each class descriptor δi (e.g., “Cat”,
“Elephant”) is represented by a text embedding vector. These vectors are obtained by encoding class
descriptors using CLIP’s text encoder, typically in the form of a structured prompt such as “This is
an image of a [δi]”. This process produces an embedding vector wi ∈ Rd for each class i. These
vectors are then normalized to create text-based class reference vectors ŵi = wi/∥wi∥ on the unit
hypersphere. Similarly, an image I is encoded by CLIP’s image encoder to obtain an embedding
x, which is then normalized to x̂ = x/∥x∥ on the unit hypersphere. The prediction for image I is
the class i with the largest cosine similarity si, which is given by the dot product si = ⟨ŵi, x̂⟩. We
denote by Wtext ∈ R|C|×d the matrix whose rows are ŵi. The class prediction for an image I is thus
given by argmaxi Wtextx̂.

3.2 CLIP-ENHANCE

We aim to address two main problems. First, text embedding vectors and image embedding vectors
for a given class often have lower than desired cosine similarity. To tackle this issue, we enhance the
textual descriptors by applying knowledge distillation to the clustering process, thereby improving
accuracy. Second, CLIP’s training data exhibits a long-tailed distribution which leads to unequal
concentrations of image vectors for different semantic classes on the hypersphere. This causes cosine
similarity to perform worse as a discriminator for classes with extreme (high or low) concentrations.
Inspired by previous work on integrating SSL and vMF distributions (Govindarajan et al., 2022; Scott
et al., 2021; Karpukhin et al., 2024) we propose to address these two problems in CLIP zero-shot
classification using a von Mises-Fisher mixture model, which provides a principled and flexible
approach to modelling representations of various classes.

3.2.1 VON MISES-FISHER CLUSTERING

The von Mises-Fisher distribution is a probability distribution on the d− 1 dimensional unit hyper-
sphere in Rd. The probability density function at a vector x̂ ∈ Rd with ∥x̂∥ = 1 is given by

P (x̂; µ̂, κ) = Cd(κ) exp(κ⟨µ̂, x̂⟩),
where µ̂ is the mean direction with ∥µ̂∥ = 1, κ ≥ 0 is the concentration parameter and Cd(κ) is a
normalizing constant. Cd(κ) = κd/2−1/[(2π)d/2Id/2−1(κ)], where Iν denotes the modified Bessel
function of the first kind at order ν.

We now consider the clustering problem on the unit hypersphere using a vMF mixture model (Banerjee
et al., 2005). The parameters of the model consist of mixture weights π = (πi)i∈C , class mean
directions µ̂ = (µ̂i)i∈C and concentrations κ = (κi)i∈C for each class component. For any unit
vector x̂, the probability that x̂ belongs to class i is given by the conditional

P (y = i | x̂; µ̂,κ) = πiCd(κi) exp(κi⟨µ̂i, x̂⟩)
Σj∈CπjCd(κj) exp(κj⟨µ̂j , x̂⟩)

, (1)

assuming every class is equally likely to occur, thus we use equal mixture weights among classes, i.e
πi = 1 for all i, we get

P (y = i | x̂; µ̂,κ) =
exp

(
κi⟨µ̂i, x̂⟩+ log Cd(κi)

)
Σj∈C exp

(
κj⟨µ̂j , x̂⟩+ log Cd(κj)

) . (2)

Computing Cd(κ) exactly is intractable in high dimensions. However, Scott et al. (2021) have shown
that we can approximate log Cd(κ) up to a constant η which does not depend on κ,

log Cd(κ) ≈ Fd(κ) + η.

Here, Fd(κ) is given by the following expression which is differentiable with respect to κ

Fd(κ) =
d− 1

4
log

d− 1

2
+

√(
d− 1

2

)2

+ κ2

− 1

2

√(
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2

)2

+ κ2

+
d− 1

4
log

d− 1

2
+
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This allows us to use the following approximation of Eq. 2

P (y = i | x̂; µ̂,κ) ≈
exp

(
κi⟨µ̂i, x̂⟩+ Fd(κi)

)
Σj∈C exp

(
κj⟨µ̂j , x̂⟩+ Fd(κj)

) . (4)

We note that the vMF mixture can be parameterized by a single matrix W ∈ R|C|×d, whose rows wi

encode mean directions and concentrations for each class i as follows: µ̂i = wi/∥wi∥ and κi = ∥wi∥.
Conversely, any vMF mixture with parameters µ̂ and κ corresponds to a matrix W ∈ R|C|×d

whose rows are given by wi = κiµ̂i for each class i. Then, writing Fd(W ) = (Fd(∥wi∥))i∈C , the
probability distribution PW (x̂) over classes for the representation can be expressed compactly in
matrix form as

PW (x̂) = σ(Wx̂+ Fd(W )), (5)

where σ is the softmax activation function. We remark that if all concentration parameters are equal,
then in fact PW (x̂) = σ(Wx̂) and therefore the class with largest conditional probability is simply
given by argmaxi∈C Wx̂. Hence the extra capacity of the vMF mixture model really lies in the
possibility of selecting or learning different concentrations for each class.

3.2.2 KNOWLEDGE DISTILLATION

While normalized CLIP representations, given by rows of Ŵtext, provide crucial prior information
about mean directions of the vMF distribution for each class, they do not represent the optimal
vectors for computing image similarity, nor do they seem to encode any useful information about
concentrations of each class representations. According to our vMF mixture model interpretation,
the matrix W can encode both direction and concentration. To learn the optimal mixture model
parameters, we propose to use a knowledge distillation pipeline inspired by DINO (Caron et al., 2021).

The teacher and student vMF mixture models are parametrized by matrices Wt and Ws, respectively,
as in Eq. 5. For simplicity, we write Pt and Ps for PWt

and PWs
, respectively. We initialize all models

using the same concentration κ0 since we assume no prior in class concentrations, thus, initially
Ws = Wt = κ0Ŵtext. While we are eventually learning different concentrations for each class, by
initially fixing identical concentration for all classes, the student and teacher model’s predictions agree
with that of zero-shot CLIP (Sec. 3.1) at initialization, as noted after Eq. 5. We use the same value
for κ0 in all our experiments and this choice is briefly discussed in the implementation details § 4.3.

Given an image I , we generate a set of diverse student views v ∈ V , by repeatedly copying and
applying different augmentaiton such as random resized cropping to the image I . Similarly, we
create a single teacher view It. For each student view v ∈ V , the CLIP vision encoder provides a
normalized representation x̂v; likewise, for the teacher, x̂t for It. These embedding vectors are then
fed to the student and teacher models, which produce outputs Ps(x̂v) and Pt(x̂t), respectively.

In our context, both the student and the teacher act on representations obtained from CLIP’s vision
encoder, whose parameters are frozen. The student model is trained to minimize the Kullback-Leibler
divergence between a subset of predictions on its most confident views V conf ⊆ V and the teacher’s
prediction on It. More precisely, given a single image I ∈ D, student parameters Ws are updated
using stochastic gradient descent with respect to the following loss function:

ℓKD(I;Ws) =
∑

v∈V conf

KL(Pt(x̂t)∥Ps(x̂v)), (6)

where V conf represents the a set of highly confident views with smallest entropy H(Ps(x̂v)), as in
TPT (Shu et al., 2022). At the end of each epoch, the teacher parameters Wt are updated using
the student parameters Ws through an exponential moving average (EMA) with ratio α. While in
DINO (Caron et al., 2021) predictions are centered and sharpened to avoid representation collapse,
we do not rely on these practices in CLIP-Enhance, possibly because the embeddings from the CLIP
text encoder provide a strong initialization.

3.2.3 CLIP-ENHANCESYSTEM OVERVIEW

We briefly describe here all the steps of our zero-shot approach to classification with CLIP as
presented in Alg. 1. We assume we have access to class descriptors δi for classes i ∈ C and we are
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Figure 2: CLIP-Enhance for zero-shot image classification. CLIP’s frozen image encoder generates
embeddings for an input image and its augmented views, which are fed to the teacher and student vMF mixture
model, respectively. We compute loss by summing KL divergences between teacher and top-k student predictions,
filtered based on entropy. We train only the student model per step, updating the teacher via exponential moving
average (EMA) per epoch.

given a (balanced) dataset D of unlabeled images. We first use the CLIP text encoder to compute the
matrix Ŵtext ∈ R|C|×d whose rows represent our initial class reference directions. This matrix Ŵtext
serves as an initialization for the student and teacher vMF mixture model Ws and Wt, respectively.
We then perform our knowledge distillation using the dataset D as presented in § 3.2.2 and illustrated
in Fig. 2. Finally, the resulting teacher model is used for inference. Each image is represented as an
embedding vector using CLIP, x̂, whose class conditional probabilities under the teacher vMF mixture
model are given by PWt

(x̂) (Eq. 5). The predicted class is the one with maximum probability.

Algorithm 1 CLIP-Enhance
1: Require: Pre-trained model CLIP, class descriptions δi for each class in C, dataset D
2: Output: List of predicted labels Y
3: Wtext[i]← CLIPtext(“This is an image of [δi]”)
4: Wt ← KD(Wtext, D) ▷ Knowledge distillation (§3.2.2 & Alg. 2)
5: for I in D do ▷ Inferring over the data set D
6: x̂← x

∥x∥ ; x← CLIPimage(I)

7: Y [I]← argmaxi∈C PWt
(x̂)[i] ▷ Prediction from vMF mixture model (Eq. 5)

8: end for
9: return Y

4 EXPERIMENTS

Our primary hypothesis is that CLIP-Enhance improves classification accuracy in the zero-shot
setting compared to state-of-the-art algorithms. To test this, we evaluate performance over a variety
of datasets, many of which are commonly used in other zero-shot or few-shot settings (Radford et al.,
2021; Gao et al., 2024; Guo et al., 2023; Zhou et al., 2022c;b; Shu et al., 2022). These datasets
cover different sets of problems faced in image classification, such as general image classification
(ImageNet, CIFAR10, CIFAR100,Caltech101) where the task is to classify images into a large number
of classes that are easily differentiable to most humans, as well as datasets designed for fine-grained
classification (FGCV-Aircraft, Food101, MNIST, Flowers102,StanfordCars, OxfordIIITPets), where
the classifier must distinguish between sub-categories of common objects which are typically hard
to differentiate with text (e.g., A-320 vs. A-321 aircraft). Finally, we also test on datasets that may
be considered out-of-distribution for CLIP (Image-net-Sketch, EUROSAT, SUN397). We compare
against several strong baselines, including TPT (Shu et al., 2022), CALIP (Guo et al., 2023), and CLIP

6
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Algorithm 2 vMF Mixture Model Knowledge Distillation KD(Wtext, D)

1: Require: Text class reference matrix Wtext, dataset of images D, initial concentration κ0,
2: Require: Number of epochs E, number of views V , learning rate η
3: Output: Optimized teacher model parameters Wt

4: Wt,Ws ← κ0Ŵtext ▷ Initialize student, teacher vMF mixture models (§3.2.2)
5: for e in E do
6: for batch B in D do
7: L = 0
8: for I in B do
9: It ← I , Iv ∼ Transform(I) for v ∈ V ▷ Create views using random transform

10: x̂t ← CLIPimage(It), x̂v ← CLIPimage(Iv) for v ∈ V ▷ Encode images using CLIP
11: Pt ← PWt(x̂),Ps,v ← PWs(x̂v) for v ∈ V ▷ Compute predictions using Eq. 5
12: Hs,v ← −

∑
i∈C Ps,v logPs,v ▷ Compute and sort entropy of student’s predictions

13: V conf ← top 10% of views v with smallest Hs,v ▷ Select most confident views
14: L←

∑
v∈V conf KL(Pt∥Ps,v) ▷ Accumulate loss over the batch

15: Ws ←Ws − η∇Ws
L ▷ Gradient update of student parameters

16: end for
17: Wt ← αWt + (1− α)Ws ▷ Update teacher using exponential moving average
18: end for
19: end for
20: return Wt

zero-shot (Radford et al., 2021). These approaches, similar to CLIP-Enhance, are truly zero-shot in
that they require no external information apart from the textual description of classes to classify the
images.

4.1 DATASETS

We evaluate CLIP-Enhance on a total of 15 datasets: CIFAR10 (Krizhevsky et al., 2009), CI-
FAR100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009a), DTD (Cimpoi et al., 2014),
EuroSAT (Helber et al., 2018; 2019), Food101 (Bossard et al., 2014), Flower102 (Nilsback & Zisser-
man, 2008), FGVC-Aircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010), MNIST (LeCun et al.,
2010). UCF101 (Kay et al., 2017), Caltech101 (Li et al., 2022a) OxfordPetsIIIT (Parkhi et al., 2012),
Stanford-Cars (?) Imagenet-sketch (Wang et al., 2019) We follow the standard zero-shot evaluation
protocols outlined in the original CLIP paper (Radford et al., 2021).

4.2 ZERO-SHOT BASELINES

We compare CLIP-Enhance against other state-of-the-art zero-shot methods, CALIP (Guo et al.,
2023) and TPT (Shu et al., 2022), as well as CLIP zero-shot (Radford et al., 2021) (§3.1). These
methods require no additional information, apart from text labels for classes. CALIP (Guo et al.,
2023) proposes an image-text integrated attention module in CLIP’s transformer backbone, such
that both image and text attention masks are functions of both image and text features. TPT (Shu
et al., 2022) proposes, for each sample I ∈ D, to learn an adaptive prompt at test time. First, a mini
batch of embeddings {x1, x2...xn} is obtained by encoding n randomly augmented views of image
I , and the average entropy across the views whose predictions are most confident is minimized via
single step of gradient descent. Predictions are then made using the adapted prompt by averaging the
predictions from high-confidence views.even though TPT works under the Test time paradigm i.e it
evaluates and optimizes its prediction one image it still falls under the zero-shot classification.

4.3 IMPLEMENTATION DETAILS

We use CLIP’s available base model1, and use an RN50 backbone for the vision encoder, due to its
light weight, ease of implementation, and widespread use among other state-of-the-art systems. For
CLIP-Enhance, following Radford et al. (2021), we resize all test images to 224× 224 resolution

1https://github.com/openai/CLIP

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Classification Accuracy in % (↑) of various CLIP zero-shot image classification methods.
We report the results for the baselines (CLIP ZS (Radford et al., 2021), CALIP (Guo et al., 2023),
TPT (Shu et al., 2022)) from the original papers. The best method for a given dataset is in bold.

Method C-10 C-100 MNIST Fl-102 SUN397 DTD EUROSAT FGVCA Food101 UCF101 Ctech Pets S-Cars ImageNet I-Sketch
CLIP ZS 71.3 40.8 55.8 65.8 58.5 41.5 37.5 17.1 77.3 58.84 85.88 83.57 55.70 60.3 33.37
CALIP N/A N/A N/A 66.4 58.6 42.4 38.9 17.8 77.4 61.72 87.71 86.21 56.27 60.6 35.6
TPT N/A N/A N/A 62.7 61.4 40.8 28.7 17.6 74.9 60.82 87.02 84.49 58.46 60.7 35.09
CLIP-Enhance 80.3 46.4 65.0 67.3 59.6 43.3 39.4 18.3 81.6 65.71 86.4 85.53 56.7 61.4 36.1

and use a batch size of 512. We run CLIP-Enhance for only 20 epochs, and use α = 0.99 in the
EMA weight update for all experiments across all datasets. We use 64 views and for entropy filtering
we select the top 10% most confident views (views with the lowest entropy). We found that using
the identity augmentation for the teacher model and using only random-resized-crop transformation
with scale ranging from 0.6 to 0.8 for the student model lead to the best performance. In all our
experiments, we run CLIP-Enhance (Alg. 1) on the test set.

For the initial concentration value, we use the same value κ0 = 3000 for all experiments. Recall
from Eq. 4 that each logit takes the form κc + Fd(κ) where c ∈ [−1, 1] is the cosine similarity.
Empirically we observe that cosine similarities between text embeddings and image embeddings with
CLIP typically vary in the range [0.2, 0.4], which corresponds to angles in degrees in [66◦, 78◦]. Our
choice κ0 is the unique value that ensure that κ0 cos(68

◦) ≈ F1024(κ), ensuring that both terms in
the logit have roughly the same magnitude. Moreover, we empirically find that direct estimation of
concentration of representations of images for various classes in CIFAR-10 range between from 4000
to 6000, which makes our choice of κ0 look like a low concentration in comparison. In addition, we
include results for other values of κ0 in Appendix A.2.

4.4 PERFORMANCE ANALYSIS

Table 1 presents our main results. We observe that CLIP-Enhance significantly enhances zero-shot
classification performance compared to CLIP zero-shot for all data sets, particularly on CIFAR10,
MNIST, UCF101 and Food101. We hypothesize that this is because the text descriptions of the classes
in these datasets are better differentiated in embedding space, possibly due to being more prevalent
within CLIP’s training data. We can clearly see that CLIP-Enhance outperforms CLIP zero-shot on all
datasets, including Imagenet. We also compare against CALIP (Guo et al., 2023), where again we find
our approach performs better in all except two Caltech and OxfordIIITpets where CALIP outperforms
both our CLIP-Enhanceand TPT. However, we note that CALIP, which proposes fusing multi-modal
attention modules for inference, is actually complementary to our method and that both methods
could, in theory, be combined. Furthermore, our knowledge distillation approach also improves over
the online test-time adaptation setup of TPT (Shu et al., 2022) though TPT outperorms us on the
texture classification dataset, SUN397, Caltech101, and Stanford Cars. We hypothesize part of our
advantage over TPT is due to our ability to operate directly in embedding space rather than prompt
space, which may give CLIP-Enhance more fine-grain control over model parameters. Overall, the
consistent, and at times significant, enhancement of zero-shot classification performance across a
large number of varied datasets establishes the effectiveness and generalizability of CLIP-Enhance.

5 ADDITIONAL ANALYSIS AND ABLATION STUDIES

To provide additional support for modeling the zero-shot clustering problem as a vMF mixture model
CLIP-Enhance as well as some of our design choices, we conduct several additional experiments
(§5.1) and ablation studies (§5.2,5.3) on a benchmark of 7 data sets including Flowers102 (Nilsback &
Zisserman, 2008), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), CIFAR10 (Krizhevsky
et al., 2009), CIFAR100 (Krizhevsky et al., 2009), MNIST (LeCun et al., 2010), FGVC-Aircraft (Maji
et al., 2013), and Food101 (Bossard et al., 2014). Overall, we demonstrate the importance of our vMF
mixture model formulation in improving the performance. Furthermore, we empirically show that
CLIP’s image-text embeddings are mis-aligned and there is a re-alignment of vectors occurring during
training that leads to better performance. Additionally, our experiments establish that CLIP-Enhance
is remarkably robust to data availability.
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Table 2: Alignment in degrees (↓) between text and image embeddings, averaged across all classes
of a dataset, before and after training with CLIP-Enhance.

Method C-10 C-100 MNIST F-102 DTD FOOD101 FGVC
CLIP ZS 78.9◦ 78.9◦ 77.4◦ 73.1◦ 74.2◦ 72.5◦ 73.8◦

CLIP-Enhance 78.5◦ 78.7◦ 76.1◦ 72.9◦ 74.1◦ 72.1◦ 73.8◦

5.1 INCREASED ALIGNMENT THROUGH KNOWLEDGE DISTILLATION

In this section, we make a first step towards providing empirical evidence for our claim from the
introduction about the anisotropic character of the distribution of image embeddings around the
average text embedding for a given class. Specifically, we compute a metric we call ‘alignment’,
which measures how image representations for each class are aligned with the corresponding reference
vector. More precisely, given a matrix W ∈ RC×d and a class i in a dataset D, we compute the
average cosine similarity between the row wi – which is our reference direction for class i – and
each normalized representations of images in that class. By linearity of the dot product, this is equal
to the cosine between the mean direction µi of image representations for class i with the row wi of
W , whose corresponding angle we denote by αi. Finally the alignment of W on D is obtained by
averaging angles αi over classes i.

In Table 2, we report for each dataset the alignment for CLIP Zero-Shot using Ŵtext and for CLIP-
Enhance using the matrix Wt learned from Ŵtext using Algo 1. We observe that while the alignment
may seem low in all cases given the high dimensionality (d = 1024) of representations, our knowledge
distillation method consistently improves the initial alignment of CLIP zero-shot given by embbedings
of text descriptions. Although, the absolute difference in degree is relatively small, this seems
significant given the high dimension of the representations. This therefore seems to indicate that
on average the image representations of each class are distributed closer to the directions learn
by CLIP-Enhance than to initial representations obtained from class descriptions. This increased
alignment explains partly the performance improvement obtained by CLIP-Enhance.

5.2 LEARNING CLASS CONCENTRATIONS MATTERS

In this section we aim to showcase the importance of learning concentration parameters κi for each
class along with the reference directions wi. To do so, we modify our CLIP-Enhance approach by
constraining each row to norm 1 and compare the results with our approach. Concretely, we modify
Algo 2 by initializing Ws and Wt simply to Ŵtext, we normalize rows of Ws after each gradient
update and proceed similarly after each update of Wt through exponential moving average. As noted
after Eq. 6, this normalization process which leads to constant concentrations across classes somehow
removes the vMF mixture model component of our approach. Results are presented in Table 3 where
performance of this constrained version of our approach are showcased in the “CLIP-Enhance w/o
vMF” row.

While this constrained version of our approach does improve slightly on the initial CLIP zero-shot,
when comparing with CLIP-Enhance’s performance we concur that learning concentrations matters a
lot and that concentration parameters are crucial in our approach. The advantage of the extra capacity
of the vMF mixture model is particularly clear on CIFAR10, CIFAR100 and MNIST. Further, in
table 3 we also showcases the performance gain achieved due to multiview ensebling evaluation. we
observe that XXX

5.3 AFFECT OF LIMITED DATA

Here in table 4, we explore the influence of data availability on CLIP-Enhance’s performance, as data
set size is known to play a significant role in the success of SSL approaches (Kaplan et al., 2020). We
keep all the parameters and implementation details the same as in earlier experiments (Alg. 1 and
§4.3) except we only use 100%, 50%, 10%, and 0% (representing CLIP zero-shot) of the data for
knowledge distillation (Alg. 1, Line 4). We observe a drop in performance when using 50% of the
test data as compared to 100% test data availability, though not all data sets are affected equally. For
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Table 3: Ablation study of CLIP-Enhance. “CLIP ZS” refers to the CLIP model without any zero-shot
training, “CLIP-Enhance w/o vMF” refers to the CLIP model with self-supervised training without
using vMF mixture model, and “CLIP-Enhance” refers to the proposed variant of CLIP with self-
supervised training using vMF mixture model.

CLIP Variant C-10 C-100 MNIST F-102 DTD FOOD101 FGVC
CLIP ZS 71.3 40.8 55.8 65.8 41.5 77.3 17.1
CLIP-Enhance w/o vMF 74.5 42.7 57.7 67.0 41.5 77.8 17.6
CLIP-Enhance w/o Ensembling 79.6 45.8 65.1 67.3 42.8 80.2 17.9
CLIP-Enhance 80.3 46.4 65.0 67.3 43.3 81.6 18.3

Table 4: Effect of varying data availability on CLIP-Enhance.
Data avail. C-10 C-100 MNIST F-102 DTD FOOD101 FGCV

0% 71.3 40.8 55.8 65.8 41.5 77.3 17.1
10% 78.2 41.5 57.8 66.8 41.5 79.8 17.2
50% 78.9 42.6 57.9 66.9 41.6 80.5 17.3
100% 80.3 46.4 64.9 67.3 43.3 81.6 18.3

example, MNIST and CIFAR100 exhibit significant decreases in accuracy while most other data sets
remain much less affected. Overall, we see that CLIP-Enhance can still improve performance given
even a small fraction of the data, and in some cases, such as C-10 and FOOD101, improvements can
be significant.

6 CONCLUSION AND LIMITATIONS

This paper proposes a novel method, CLIP-Enhance, for improving CLIP zero-shot classification,
by reformulating it as von Mises-Fisher mixture model. CLIP-Enhance leverages CLIP’s invariant
representation space to optimize this von Mises-Fisher mixture model in order to mitigate inherent
misalignment between embedding vectors of different data modalities as well as model the non-
uniformity of embedding concentrations between different classes. We show the relative efficacy of
CLIP-Enhance compared to standard CLIP zero-shot classification as well as other state-of-the-art
methods on a number of standard datasets. We also show that CLIP-Enhance provides performance
gains even under constrained conditions, where only a small fraction of the test set is available or
training is conducted over a small number of epochs.

While providing a significant improvement over CLIP zero-shot, CLIP-Enhance does have some
limitations. Perhaps the most obvious, and the most widely shared limitation amongst all CLIP
fine-tuning, prompt engineering, adapter, or post-processing methods is that we are limited by
the quality of CLIP’s original representation space. First, the relatively poor performance of our
initialization using representations of class descriptions may impede our knowledge distillation step.
Second, the quality of CLIP image representations may limit the performance that methods like
CLIP-Enhance can achieve. Additionally, although we show improvements even with small amounts
of data, CLIP-Enhance still does significantly better when given access to more data, and it is likely
that this tradeoff could be further improved. We see a similar trend with epochs trained, where longer
training runs provide better performance. Possibly, performing knowledge distillation with a small
amount of data on which the initial vMF classifier shows better accuracy would lead to interesting
results, but this would require an efficient proxy for the uncertainty of multi-modal models like CLIP.
Overall, zero-shot classification in this context remains a very challenging task.

In future work we plan to investigate extensions to few-shot learning as well as exploring a greater
number of SSL algorithms which may further close the gap between zero-shot CLIP-Enhance and
linear probe classifiers trained on the full dataset. It may also be possible to use the output of
algorithms like CLIP-Enhance to evaluate or improve the CLIP’s representation space, creating a
closed-loop system, though this possibility has yet to be seriously explored.
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A APPENDIX

A.1 SUPERVISED BASELINES:

In 5 we evaluate the performance of supervised baselines including image-center clustering and
a linear probe, These supervised baselines establish classification upper bounds for the particular
dataset, indicate the extent to which the data is easily separable, and generally give some insight
into the difficulty of the dataset. We establish an upper bound for classification performance using a
linear probe, which are widely regarded as a strong baseline for assessing the potential of pre-trained
representations for a specific task, especially in scenarios with limited data available for training the
classifier (e.g., zero-shot learning) (Tian et al., 2020).

Next, we perform classification using image mean clustering, where cluster directions are computed
by averaging the image embeddings belonging to each class within the dataset. These image cluster
directions are then used to classify the test set. the aim of this is to establish the magnitude of
alignment error, which refers to the discrepancy in image embeddings and textual embeddings
describing the same image, do not point in the same direction. this also co-relates with lower
alignment within text embedding vector and image embedding vectors. for example in MNIST where
its hard to differentiate the image of digits through a textual description on a image of digit ( image
of number five vs image of number four) , we see a huge performance gain when using Image mean
cluster center but in Datasets such as Food101 , CIFAR100 where the classes are quite different even
in the text domain( apple pie vs hot dog, CAT vs DOG). Finally, we also explore non-linear decision
boundaries, by studying the performance of K nearest neighbours, where classification is done by
finding the most common class among the K nearest neighbours( Top K neighbours with the highest
cosine similarity).

Table 5: Performance of CLIP-Enhance compared to vanilla CLIP zero-shot and supervised baselines.
Group Method C-10 C-100 MNIST F-102 DTD FOOD101 FGCV

CLIP zero-shot 71.3 40.8 55.8 65.8 41.5 77.3 17.1

Oracles
KNN 82.3 55.7 96 71.3 61.7 79.5 29.8

Image Center 77.1 51.1 78.4 90.8 61.5 78.7 32.3
Linear Probe 86.7 63.6 95.6 85.6 65.8 85.1 33.8

Ours CLIP-Enhance 80.3 46.4 65.0 67.3 43.3 81.6 18.3

A.2 DIFFERENT VALUES FOR INITIAL CONCENTRATION κ0

In this section, we provide some results on the impact of different choices for the initial concentration
parameter κ0. Results from κ0 = 500 and κ0 = 5000 are provided in Table 6 along with the results
of the value we used everywhere else in the paper, namely κ0 = 3000. Building on the discussion
in § 4.3 regarding the choice of κ0, we further illustrate in Figure 3 how increasing κ0 reduces
the contribution of the normalization term to the logit score. This observation provides insight
into the observed performance degradation: as the model increasingly relies on the normalization
component rather than the image data for prediction its performance declines, around the κ0 = 2000
the contribution reaches close to zero and we observe that model accuracy drop near the values
obtained by our model without Vmf formulation as discusess in section § 5.2 . Additionally, we
observed that larger values of κ0 result in numerical instability during training in our setup, leading
to a significant drop in performance.
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Figure 3: Contribution by the Normalization term as seen in equation 5 towards the whole logit term,
As the Fd(W ) decrease with the increase of Kappa we first observe a decrease in contribuiton which
later flip as the normalization term starts becoming negative.

Table 6: Effect of varying κ0 on CLIP-Enhance.
κ0 C-10 C-100 MNIST F-102 FOOD101
1000 78.7 43.5 56 65.8 78.4
2000 75.6 43.1 57.7 67.1 78.1
3000 80.3 46.4 64.95 67.3 81.6
4000 79.7 46.2 64.8 66.3 78.4
5000 79.8 46.1 53.1 11.3 76

A.3 HOW CLIP-ENHANCEIMPROVES PERFORMANCE

In Figure 4, we illustrate the performance of different prediction models:(1) CLIP’s native zero-shot
classifier, (2) a simple SSL linear classifier trained using our SSL approach, and (3) our proposed
CLIP-Enhancemodel.

Examining the confusion matrix for CLIP ZS, we observe a tendency to over predict certain classes,
such as cars and birds, while significantly under predicting others, including frogs, trucks, and deer.
We hypothesize that this behavior arises from data imbalance in CLIP’s training dataset, where certain
classes are overrepresented, causing the model to favor them even during inference.

In contrast, the linear classifier model , which is learns a simple unconstrained classification matrix W
through our SSL process, improves the accuracy considerably , thus showcasing the our SSL’s ability
to align the modalities. Finally, our CLIP-Enhance model shows a more uniform prediction accuracy
across classes. Previously underrepresented classes, such as frogs , are predicted more frequently,
while overrepresented classes, like cars, are predicted less often. This suggests that CLIP-Enhance

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 4: The figure illustrates the evolution of the confusion matrix on the CIFAR10 dataset,
comparing CLIP’s zero-shot classification with our CLIP-Enhanceapproach. The top bar plot displays
the total class-wise predictions made by each model, while the right-side bar plot depicts the class-
wise accuracy. We evaluate three models: (1) CLIP’s native zero-shot classifier, (2) a simple SSL
linear classifier trained using our SSL approach, and (3) our proposed CLIP-Enhancemodel.

effectively mitigates class imbalance, by learning a lower concentration Kappa (ref table 7for these
underrepresented classes such as deer and frog.

CIFAR-10 Class Learned Concentration
Plane 3032.22
Car 3046.86
Bird 3070.32
Cat 3058.59
Deer 2964.84
Dog 3073.23
Frog 2951.67
Horse 3032.22
Ship 3032.22
Truck 3023.43

Table 7: Learned concentration values for CIFAR-10 classes by our CLIP-Enhance

A.3.1 REDEFINING ALIGNMENT

CLIP’s training objective aims at a relative alignment of captions embeddings with embeddings of
their corresponding image embeddings (Radford et al., 2021). More precisely, for a random batch
from CLIP’s training dataset, the symmetric cross entropy is minimized when 1): every caption
embedding is more are aligned (larger cosine similarity) with its corresponding image embedding
than with any other image embedding 2) every image embedding is more are aligned (larger cosine
similarity) with its corresponding caption embedding (positive pair) than with any other caption
embedding (negative pairs). Moreover, since “a temperature parameter which controls the range
of the logits in the softmax is directly optimized during training” – which would appear to take
approximately the value exp(τ) = 100 [1], which is the maximal value allowed during training
to prevent instability (Radford et al., 2021) – a small difference between the cosine similarity of
a positive pair compared to negative pairs leads to cross entropy loss which is roughly zero. For
instance, for the training batch size (b = 32, 768), a positive cosine similarity of 0.5 = cos(60◦) for
negative cosine similarities of 0.225 ≈ cos(77◦) obtains a cross entropy loss (when logits are scaled
by 100) which is smaller than the smallest representable number (with Pytorch, Float32).

Hence, CLIP’s training does not aim at aligning text embeddings and their corresponding images in the
sense that the angle between them is small (cosine almost 1). On the contrary, in CLIP’s multimodal
embedding space, the angle between a text representation and its corresponding image representation
can be as large as 60◦ (cosine 0.5) as long as negative pairs are less aligned, namely with an angle
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larger than 77◦. Therefore, we conclude that the quality of CLIP’s multimodal embeddings really
resides in their RELATIVE alignment, not in the actual alignment of positive pairs, an observation
that is also supported by (Liang et al., 2022).

Furthermore, we consider that this relative alignment highly depends on the training distribution.
When leveraging these representations for a downstream classification task, we aim at a relative
alignment of text-based class reference embeddings with respect to the image distribution. A specific
balanced classification task like CIFAR10 is expected to differ greatly from the long tail distribution
of CLIP’s training dataset, resulting in a poor relative alignment. Our approach aims at adapting in
an unsupervised manner the initial text-based class reference embeddings to improve their relative
alignment on the image dataset. By endowing each class reference with a concentration parameter and
formulating the classification problem as a von Mises–Fisher mixture model, our approach achieves
this goal as reflected by the improved accuracy. 2

2[1] CLIP’s official git repository. API. url:https://github.com/openai/CLIP.
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