
Turning Tabular Foundation Models into
Graph Foundation Models

Dmitry Eremeev
HSE University, Yandex Research
eremeev-d@yandex-team.ru

Gleb Bazhenov
HSE University, Yandex Research
gv-bazhenov@yandex-team.ru

Oleg Platonov
HSE University, Yandex Research
olegplatonov@yandex-team.ru

Artem Babenko
Yandex Research, HSE University
arbabenko@yandex-team.ru

Liudmila Prokhorenkova
Yandex Research

ostroumova-la@yandex-team.ru

Abstract

While foundation models have revolutionized such fields as natural language
processing and computer vision, their potential in graph machine learning remains
largely unexplored. One of the key challenges in designing graph foundation
models (GFMs) is handling diverse node features that can vary across different
graph datasets. While many works on GFMs have focused exclusively on text-
attributed graphs, the problem of handling arbitrary features of other types in GFMs
has not been fully addressed. However, this problem is not unique to the graph
domain, as it also arises in the field of machine learning for tabular data. In this
work, motivated by the recent success of tabular foundation models (TFMs) like
TabPFNv2 or LimiX, we propose G2T-FM, a simple framework for turning tabular
foundation models into graph foundation models. Specifically, G2T-FM augments
the original node features with neighborhood feature aggregation, adds structural
embeddings, and then applies a TFM to the constructed node representations.
Even in a fully in-context regime, our model achieves strong results, significantly
outperforming publicly available GFMs and performing competitively with, and
often better than, well-tuned GNNs trained from scratch. Moreover, after finetuning,
G2T-FM surpasses well-tuned GNN baselines. In particular, when combined with
LimiX, G2T-FM often outperforms the best GNN by a significant margin. In
summary, our paper reveals the potential of a previously overlooked direction of
utilizing tabular foundation models for graph machine learning tasks.1

1 Introduction

In recent years, foundation models have become a major breakthrough in deep learning. Foundation
models are large machine learning models that are pretrained on diverse and extensive datasets. After
this pretraining phase, they can be easily adapted to a variety of specific tasks with minimal additional
training. Well-known examples include BERT (Devlin et al., 2019) and GPT (Brown et al., 2020) in
natural language processing, as well as CLIP (Radford et al., 2021) in computer vision. Despite their

1Our source code is available at https://github.com/yandex-research/G2T-FM.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in
Advancing Graph Machine Learning.

https://github.com/yandex-research/G2T-FM


remarkable success in such areas as CV and NLP, the development of foundation models for graph
data has been less advanced. The challenges of developing graph foundation models (GFMs) stem
from the fact that graphs are not actually a single domain, but rather a way to represent data from
different domains. These domains use graphs to represent very different structures, such as social
networks, web networks, road networks, co-purchasing networks, molecules, connectomes, or even
abstract objects and their relations. Thus, successful GFMs should be able to work with graphs from
different domains representing very different objects with nodes and very different relations with
edges, which is a rather formidable task that requires overcoming many serious challenges.

Two key challenges faced by GFMs are the ability to transfer to new feature spaces and target spaces.
Graphs from different domains often have different node features and different targets, making it
difficult to design GFMs that can work across various types of graphs. Some existing GFMs restrict
themselves to text-attributed graphs (Wang et al., 2024b; He & Hooi, 2024; Liu et al., 2024), which
allows them to use pretrained text encoders. Another approach is to use simple dimensionality
reduction methods like SVD and PCA (Xia & Huang, 2024; Zhao et al., 2024a; Wang et al., 2025a;
Yu et al., 2025), which allow transforming all feature spaces to a space with a fixed predefined number
of features. However, these approaches do not allow for fully and effectively leveraging arbitrary
node features in graphs from new domains.

The challenges of transferring to new feature and target spaces are not, however, exclusive to graphs.
Tabular data — one of the most widespread data modalities in machine learning — is similar to
graph-structured data in that it does not constitute a single domain but is a way to represent data from
different domains. Thus, tabular datasets come with different feature and target spaces, so tabular
foundation models face similar issues to GFMs. While tabular foundation models are not as developed
as foundation models for language or vision, they have seen increased interest recently (Van Breugel
& Van Der Schaar, 2024), with the first successful approaches being proposed (Hollmann et al., 2023,
2025; Mueller et al., 2025; Ma et al., 2024; Qu et al., 2025). For instance, TabPFNv2 (Hollmann
et al., 2025) demonstrates strong performance in both in-context and finetuning regimes, and it has
recently gained significant attention from the community. For a more detailed background on graph
and tabular foundation models, please refer to Appendix B.

This parallel suggests that developers of GFMs can draw inspiration from tabular foundation models,
as they have to deal with many of the same challenges. In this paper, we take a first step in this
direction and show that tabular foundation models, such as TabPFNv2 (Hollmann et al., 2025) and
LimiX (Zhang et al., 2025), can be effectively adapted to graph datasets. We introduce a simple
framework named Graph-to-Table Foundation Model (G2T-FM), which transforms graph tasks into
tabular ones and solves them with a tabular foundation model. More specifically, we augment the
original features with neighborhood feature aggregations (Bazhenov et al., 2025), classical structure-
based features (node degree, PageRank, and the eigenvectors of the graph Laplacian), and learnable
structure-based encodings (Kanatsoulis et al., 2025). Then, we apply a tabular foundation model to
the constructed node representations to get predictions.

Our empirical results indicate that this straightforward framework achieves strong results in a fully
in-context regime, significantly outperforming existing publicly available GFMs and performing
competitively with, and often better than, well-tuned GNNs trained from scratch. Moreover, after
finetuning, G2T-FM surpasses well-tuned GNN baselines, with especially strong improvements
obtained when G2T-FM uses LimiX as a tabular foundation model (see Table 2). These results
highlight the potential of the proposed approach and the positive transfer brought by the usage of
foundation models.

Our main contributions are as follows:

• We identify a promising and previously overlooked direction of applying tabular foundation models
to graph machine learning.

• As a proof of concept, we introduce G2T-FM, a simple framework that uses a tabular foundation
model (TabPFNv2 and LimiX in our experiments) as the backbone of a graph foundation model.

• We show that, despite its simplicity, G2T-FM is a strong baseline for GFMs, substantially outper-
forming the existing publicly available GFMs.

• We further demonstrate that finetuned G2T-FM surpasses traditional GNNs trained from scratch.

More broadly, we hope that our work will promote the adoption of models and ideas from the tabular
domain in developing generalizable and robust graph foundation models.

2



Predictions

𝒴pred
Train 
targets

𝒴train

𝒳
Node 
features

Graph 
structure

NFA

Structure-based features

• Node Degree 

• PageRank 

• Laplacian Embeddings

PEARL

Tabular FM

Figure 1: Overview of the proposed G2T-FM framework.

2 Graph-to-Table Foundation Model

As discussed above, one of the key challenges for graph foundation models is processing node features
that can vary widely across different graphs and domains. To address this, previous approaches
primarily rely on one of the following strategies. The first is to apply dimensionality reduction
techniques, such as principal component analysis or singular value decomposition (Xia & Huang,
2024; Zhao et al., 2024a; Wang et al., 2025a; Yu et al., 2025). However, this approach can result in
the loss of information, and, although it ensures that all feature vectors share the same dimension after
reduction, it remains unclear whether these reduced features are transferable across different graphs.
The second strategy employs text encoders to process node or edge features (Wang et al., 2024b; He
& Hooi, 2024; Liu et al., 2024). This method is highly effective for text-attributed graphs (TAGs),
where the features are naturally represented as text. Nevertheless, many real-world graphs do not
include solely text features (Ivanov & Prokhorenkova, 2021; Chen et al., 2022; Robinson et al., 2024;
Wang et al., 2024a; Bazhenov et al., 2025). Using text encoders for non-text features can therefore be
highly suboptimal, as it does not leverage the nature or structure of these features. Overall, neither of
these strategies fully addresses the problem of handling diverse and heterogeneous features.

Similarly, the problem of adapting to different target spaces has also not been fully solved. Existing
approaches, such as converting node classification to link prediction or using textual descriptions
of node classes, only work with node classification tasks and not with node regression tasks, which
frequently appear in real-world applications of graph machine learning.

However, these challenges are not unique to graph machine learning, and they also arise in tabular
machine learning. Recent advances in tabular deep learning, such as the development of foundation
models like TabPFNv2 (Hollmann et al., 2025), offer promising solutions for handling diverse feature
and target spaces.

We argue that tabular foundation models can be used to create better graph foundation models, and,
in particular, they can help handle different feature and target spaces. As a proof of concept, we
introduce Graph-to-Table Foundation Model (G2T-FM) framework, which addresses the challenge
of learning on graphs with diverse and heterogeneous node features and different targets. Figure 1
provides an overview of our method.

To process heterogeneous node features, we employ a tabular foundation model like TabPFNv2 (Holl-
mann et al., 2025) or LimiX (Zhang et al., 2025). TFMs are designed for tabular data only, so to
make them applicable to graph-structured data, we introduce a graph-based preprocessing step that
encodes graph information into the node features. Our goal is to capture the information about
different aspects of the graph structure as well as the interplay between the graph structure and the
node features. Hence, the new augmented feature vector consists of the original node features and the
following graph-based components.

Neighborhood feature aggregation (NFA) Following Bazhenov et al. (2025), for each node, we
compute aggregated feature statistics over its neighbors. Namely, for each numerical feature, we
compute its mean, maximum, and minimum values over the node’s neighbors. For each categorical

3



Table 1: The key statistics of the considered graph datasets.
name # nodes # edges # features mean degree # classes homophily feature type

tolokers-2 11,758 519,000 16 88.3 2 no tabular
city-reviews 148,801 1,165,415 37 15.7 2 yes tabular
artnet-exp 50,405 280,348 75 11.1 2 no tabular
hm-prices 46,563 10,730,995 41 460.9 N/A no tabular
avazu-ctr 76,269 10,984,077 260 288.0 N/A no tabular
city-roads-M 57,073 107,104 26 3.8 N/A yes tabular
twitch-views 168,114 6,797,557 4 80.9 N/A no tabular
artnet-views 50,405 280,348 50 11.1 N/A no tabular
pubmed 19,717 44,324 500 4.5 3 yes text-based
facebook 22,470 170,823 128 15.2 4 yes text-based
amazon-ratings 24,492 93,050 300 7.6 5 no text-based
questions 48,921 153,540 301 6.3 2 no text-based
wiki-cs 11,701 215,603 300 36.9 10 yes text-based

feature, we first apply one-hot encoding and then compute the mean of the obtained binary features.
The computation of NFA uses both the graph structure and node features. This component provides
information about the features in the local neighborhood of the node, which is a valuable signal for
many graph-related tasks.

Classic structure-based features (SF) We also include basic node structural characteristics —
node degree, PageRank score, and Laplacian eigenvectors. The first two are classic node centrality
measures that indicate how “important” a particular node is. However, they do so in different ways:
the node degree captures strictly local information, while PageRank also captures global information.
Then, we compute the first K eigenvectors of the graph Laplacian and consider the corresponding
K-dimensional embeddings as additional feature vectors. Laplacian embeddings encode a node’s
position within the graph relative to other nodes. Thus, such node representations provide valuable
information that supplements the centrality measures.

Learnable structure-based encodings (PEARL) These encodings have been proposed in Kanat-
soulis et al. (2025). The basic idea of PEARL is to generate a random value for each node and
then apply a GNN using these values as node features. Such random initialization increases the
expressive power of GNNs by breaking the structural symmetries. This procedure is repeated M
times (each with new random node features) and the resulting node embeddings are averaged so that
node permutation equivariance still holds in the limit. Kanatsoulis et al. (2025) propose using this as
a learnable module, so that the encodings are trained to improve downstream performance. However,
we noticed that PEARL encodings are also useful without training, i.e., when we use a randomly
initialized GNN to obtain node embeddings. Thus, this module can produce both non-learnable and
learnable representations, where non-learnable representations do not involve parameter optimization
(training).

These new features allow us to provide the tabular foundation model with information about many
properties of the graph underlying the given dataset. We concatenate them with the original node
attributes and use the resulting augmented feature vector as an input to TFM. The resulting model
can be applied in a fully in-context regime and, as we show below, it performs on par with GNNs that
are well-tuned for a single dataset. In the finetuning regime, we jointly tune PEARL and TFM.

As a final remark, we discuss the symmetries of G2T-FM. Following Finkelshtein et al. (2025), a graph
foundation model should satisfy three natural inductive biases: (i) feature permutation invariance;
(ii) label permutation equivariance; and (iii) node permutation equivariance. In Appendix E, we
show that G2T-TabPFNv2, namely, G2T-FM with TabPFNv2 backbone, satisfies these symmetries in
distribution: its outputs depend on internal randomness, but the distribution of the outputs remains
invariant or equivariant under the corresponding permutations.

3 Experimental setup

3.1 Datasets

In our experiments, we use TabPFNv2 as one of the backbones, which imposes specific constraints
that direct our dataset selection. In particular, TabPFNv2 is suitable for both regression tasks and
multi-class classification tasks, but the latter is restricted to at most 10 classes. Additionally, it is

4



designed for small-to-medium-scale datasets, requiring no more than roughly 10,000 training samples.
As such, we select datasets that fit within these boundaries. We note that future developments in
tabular foundation models may relax these constraints and enable experiments with a broader range
of graph benchmarks.

To comprehensively assess the capabilities of our method, we construct two collections of datasets.
The first focuses on graphs with non-textual node features (our primary setting), while the second
contains well-known graph benchmarks with text-based node features. Across these datasets, our
selection covers both regression and classification tasks, and includes graphs with both homophilious
and non-homophilous structure,2 as summarized in Table 1.

Datasets with non-textual features This collection comprises eight datasets from the GraphLand
benchmark (Bazhenov et al., 2025), all featuring diverse tabular node features.3 The datasets include:
social networks artnet-exp, artnet-views, and twitch-views; a network of workers from
a crowdsourcing platform tolokers-2; a network of users of a review service city-reviews;
a co-purchasing network hm-prices; a network of devices avazu-ctr; and a road network
city-roads-M.

Datasets with text-based features This collection includes five classical graph datasets where node
features are derived from textual descriptions: a network of users of a question-answering website
questions (Platonov et al., 2023b); a citation network pubmed (Yang et al., 2016); a social network
facebook (Rozemberczki & Sarkar, 2020); a co-purchasing network amazon-ratings (Platonov
et al., 2023b); and a network of Wikipedia pages wiki-cs (Mernyei & Cangea, 2020).

While specialized graph foundation models may yield better results for text-attributed graphs, includ-
ing these datasets allows us to test the generalization of our approach. Also, we explicitly exclude
datasets with bag-of-words (BoW) node features, as BoW is less relevant to modern text processing,
while introducing additional challenges like high-dimensionality and sparsity.

For all datasets, we employ a standardized data splitting protocol, allocating 10% of the nodes to
training, 10% to validation, and the remaining 80% to testing. For the GraphLand datasets, we use
the official RL (random low) splits. For the remaining datasets, we employ the random stratified
splitting, which ensures consistent class distributions across the splits. All the experiments are run
in a transductive setting, which is standard for node property prediction in the graph domain. For
binary classification tasks, we report average precision. For multiclass classification tasks, we report
accuracy. For regression tasks, we report R2. For all metrics, higher is better.

3.2 Methods

In our experiments with G2T-FM, we adopt TabPFNv2 (Hollmann et al., 2025) and LimiX (Zhang
et al., 2025) as backbone models. We refer to these models as G2T-TabPFNv2 and G2T-LimiX
respectively. For comparison, we also evaluate the following baseline methods.

First, we include traditional supervised baselines trained from scratch for each dataset. These
include four classic GNNs: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), and neighborhood-attention Graph Transformer (GT) (Shi et al.,
2021).4 For all GNNs, we use the modifications from Platonov et al. (2023b) that augment GNNs
with residual connections (He et al., 2016), layer normalization (Ba et al., 2016), and MLP blocks,
which often significantly improve their performance. For the GraphLand datasets with tabular features,
we also use LightGBM+NFA as a strong baseline — which is a popular implementation of gradient-
boosted decision trees (Ke et al., 2017) with input features augmented with graph neighborhood
information via NFA (Bazhenov et al., 2025). The implementation of these models closely resembles
that from GraphLand (Bazhenov et al., 2025) in terms of both model architecture and hyperparameter
tuning, see Appendix C for more details.

Second, we employ several publicly available graph foundation models. Despite significant interest
in developing GFMs recently, most of the research is focused exclusively on text-attributed graphs

2A graph is called homophilous if its edges tend to connect nodes with similar labels, see Newman (2003);
Platonov et al. (2023a); Mironov & Prokhorenkova (2024) for details.

3By tabular features, we mean a mixture of numerical and categorical features with different distributions.
4Neighborhood-attention GT uses only local attention to a node’s neighbors, in contrast to graph transformers

with global all-to-all attention.

5



Table 2: Evaluation results on datasets with tabular features (datasets from the GraphLand benchmark
under the RL (random low) data split). For each column, we highlight first, second, and third best
results with a color.

tolokers-2 city-reviews artnet-exp hm-prices avazu-ctr city-roads-M twitch-views artnet-views AR
LightGBM+NFA 56.34± 0.06 78.53± 0.01 46.13± 0.03 70.84± 0.04 31.71± 0.01 61.18± 0.03 60.14± 0.01 56.10± 0.02 5.38
GCN 56.27± 0.29 77.81± 0.14 44.86± 0.34 68.02± 0.40 32.00± 0.15 58.82± 0.24 75.51± 0.05 56.03± 0.24 6.25
GraphSAGE 54.43± 0.32 78.17± 0.09 45.14± 0.34 70.00± 0.70 31.44± 0.15 59.44± 0.26 66.29± 0.31 49.32± 0.86 7.12
GAT 57.41± 0.80 77.74± 0.20 45.06± 0.49 72.07± 1.16 32.63± 0.16 59.86± 0.19 72.89± 0.25 53.60± 0.23 5.12
GT 56.98± 0.53 77.34± 0.20 46.41± 0.68 69.44± 0.89 31.11± 0.47 59.55± 0.27 72.13± 0.13 53.37± 0.43 6.62

OpenGraph (ICL) 40.38± 1.13 59.09± 0.72 15.16± 0.83 N/A N/A N/A N/A N/A 11.00
AnyGraph (ICL) 28.75± 3.56 63.71± 1.45 12.84± 0.93 N/A N/A N/A N/A N/A 12.33
TS-GNN (ICL) 38.54± 0.94 43.46± 5.17 20.44± 1.05 N/A N/A N/A N/A N/A 11.33
GCOPE (FT) 28.81± 1.28 67.16± 0.98 14.92± 1.56 N/A N/A N/A N/A N/A 11.33

G2T-TabPFNv2 (ICL) 60.42± 0.27 77.46± 0.10 45.84± 0.03 66.68± 0.09 26.38± 0.07 60.47± 0.04 70.00± 0.06 58.75± 0.15 6.38
G2T-TabPFNv2 (FT) 57.65± 1.92 79.12± 0.21 47.31± 0.59 71.05± 0.91 28.52± 0.43 63.08± 0.28 74.06± 0.16 60.29± 0.13 3.62
G2T-LimiX (ICL) 61.48± 0.30 77.72± 0.54 48.43± 0.18 74.96± 0.06 32.39± 0.14 64.53± 0.07 71.08± 0.07 60.95± 0.10 3.12
G2T-LimiX (FT) 61.17± 0.49 80.13± 0.05 49.88± 0.13 76.32± 0.17 33.94± 0.34 65.87± 0.10 73.16± 0.40 62.12± 0.10 1.38

Table 3: Evaluation results on datasets with text-based features. For each column, we highlight first,
second, and third best results with a color.

pubmed facebook amazon-r. questions wiki-cs AR
GCN 85.46± 0.18 91.26± 0.19 41.43± 0.46 15.42± 0.63 81.74± 0.20 5.60
GraphSAGE 86.04± 0.26 91.12± 0.21 40.07± 0.50 16.55± 0.61 81.50± 0.26 6.00
GAT 84.81± 0.22 92.61± 0.20 40.67± 0.53 16.75± 0.63 82.25± 0.26 4.20
GT 84.95± 0.18 91.71± 0.21 41.56± 0.38 14.03± 0.86 82.54± 0.20 5.00

OpenGraph (ICL) 70.30± 2.67 75.27± 5.05 29.36± 1.24 3.77± 0.65 75.66± 0.39 10.80
AnyGraph (ICL) 65.31± 6.26 61.17± 8.64 33.49± 3.44 4.27± 0.66 65.17± 2.51 11.00
TS-GNN (ICL) 64.41± 5.11 77.87± 2.73 43.00± 0.13 5.00± 0.48 46.25± 9.77 9.60
GCOPE (FT) 79.35± 0.70 85.08± 0.17 39.90± 0.43 6.59± 0.43 59.13± 1.20 9.60

G2T-TabPFNv2 (ICL) 88.80± 0.25 90.56± 0.12 40.63± 0.19 16.49± 0.16 76.61± 0.57 6.60
G2T-TabPFNv2 (FT) 90.46± 0.11 91.73± 0.28 44.71± 0.32 19.07± 0.53 79.70± 0.31 3.00
G2T-LimiX (ICL) 88.96± 0.18 91.29± 0.14 44.10± 0.16 15.31± 0.77 79.99± 0.28 4.80
G2T-LimiX (FT) 89.91± 0.48 92.16± 0.18 45.67± 0.35 20.19± 0.30 82.24± 0.31 1.80

(as discussed above), so we were able to find only a few openly available models that support
node property prediction in graphs with arbitrary node feature spaces. Specifically, we employ
AnyGraph (Xia & Huang, 2024), OpenGraph (Xia et al., 2024), and TS-GNN (Finkelshtein et al.,
2025), which are used in the in-context learning (ICL) regime, as well as GCOPE (Zhao et al.,
2024a), which is used in the finetuning (FT) regime. For all these methods, we use the original
implementations provided by the authors. Further, we were only able to evaluate these methods on
datasets with node classification tasks, as none of them support node regression.5

For all the methods, we run experiments 10 times (5 times for GFMs from prior literature) and
report the mean and standard deviation of the model performance, since the results are affected by
stochasticity during model training and inference: some of the considered baselines have stochastic
inference by design, while others require training or finetuning with different random states.

4 Experimental results

Table 2 contains the evaluation results on graph datasets with tabular features, and Table 3 contains
the additional results on datasets with text-derived features. In addition to the results on individ-
ual datasets, we also report the average ranks (AR). Below, we summarize and discuss our key
observations.

Observation 1 In our evaluation, the existing publicly available graph foundation models
perform substantially worse than well-tuned traditional GNNs trained from scratch.

This observation holds true across both collections of datasets we evaluated. The sole exception we
identified is the performance of TS-GNN on the amazon-ratings dataset, where it surpassed the

5While TS-GNN in theory supports node regression, its current official implementation, to the best of our
knowledge, does not allow running experiments for regression tasks.

6



GNNs trained from scratch. In all other cases, the performance of the existing GFMs was significantly
lower than that of our GNN baselines.

While many GFM publications report outperforming traditional GNNs, our findings suggest otherwise.
We hypothesize that this discrepancy stems from several key differences in the evaluation protocol.
First, unlike some GFM studies that focus on few-shot benchmarks, we use different datasets and
larger training splits (10%/10%/80%) that allow GNNs to be trained effectively from scratch. Second,
we ensure our GNN baselines are highly competitive by performing a thorough hyperparameter
optimization and using the GNN architectures from Platonov et al. (2023b) that include established
performance-enhancing features like residual connections and normalization (Luo et al., 2024, 2025),
which are often absent in simpler baselines.

Observation 2 On datasets with tabular features, G2T-FM evaluated in the in-context learning
mode performs competitively with, and often better than, traditional GNNs trained from scratch.

In particular, in terms of the average rank on datasets with tabular features, G2T-LimiX outperforms
all baselines trained from scratch, while G2T-TabPFNv2 performs on par with them. Results of G2T-
FM on individual datasets are also strong. For example, on tolokers-2, artnet-exp, hm-prices,
city-roads-M, and artnet-views, G2T-LimiX surpasses all traditional baselines, often by more
than two percentage points.

At the same time, in-context performance of both G2T-TabPFNv2 and G2T-LimiX on datasets with
text-based features is less impressive. In particular, G2T-TabPFNv2 is outperformed by all traditional
GNNs. We attribute this to TFMs being trained on tabular data: non-tabular features appear to be
out-of-domain, and good performance therefore requires adaptation via finetuning.

Observation 3 After finetuning, G2T-FM outperforms on average all traditional baselines
trained from scratch on both collections of datasets with G2T-LimiX achieving especially strong
improvements.

On datasets with tabular features, G2T-LimiX achieves not only the best average rank, but also
the best results on six out of eight datasets, often yielding notable improvements of more than two
percentage points compared to the best GNN result.

On datasets with text-based features, finetuned G2T-FM is also strong. In particular, G2T-LimiX
achieves the best average rank and often brings noticeable improvements over traditional GNNs.
We note, however, that specialized models that process raw text more directly may achieve higher
accuracy on text-attributed graphs. Though, comparing against such models is outside the scope of
this work.

Finally, we refer to Appendix D for the ablation analysis. Our results show that the gains of G2T-FM
come from the synergy between the TFM backbone and our graph-to-table components.

5 Conclusion

In this work, we have shown that tabular foundation models can be successfully employed for solving
graph problems since they are able to process heterogeneous feature and target spaces. To show
this, we proposed a simple G2T-FM framework, which converts a graph task into a tabular task by
augmenting the initial features with graph information, and then applies a tabular foundation model.
Our empirical results show the strong performance of G2T-FM. In particular, G2T-LimiX outperforms
all well-tuned GNN baselines in terms of the average rank even in the in-context learning regime.
After finetuning, G2T-LimiX achieves the best results on most of the datasets, often outperforming the
best GNN by a significant margin. Our approach is simple, but it shows the potential of creating truly
generalizable GFMs that can achieve strong results across diverse tasks and real-world applications of
graph machine learning. Importantly, G2T-FM can be combined with any tabular foundation model.
Thus, future advancements in TFMs can be easily transferred to the graph ML domain. Despite its
strong performance, G2T-FM framework is only a first step towards utilizing models and ideas from
the tabular domain for developing GFMs. Hence, our work has several noteworthy limitations that
we discuss in Appendix A.

7



References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

Gleb Bazhenov, Oleg Platonov, and Liudmila Prokhorenkova. GraphLand: Evaluating graph machine
learning models on diverse industrial data. Advances in Neural Information Processing Systems,
2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Jiuhai Chen, Jonas Mueller, Vassilis N Ioannidis, Soji Adeshina, Yangkun Wang, Tom Goldstein, and
David Wipf. Does your graph need a confidence boost? convergent boosted smoothing on graphs
with tabular node features. In International Conference on Learning Representations, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Vid Kocijan, Federico Lopez, Jan Eric Lenssen, and Jure Leskovec. KumoRFM: A
foundation model for in-context learning on relational data, 2025.

Ben Finkelshtein, İsmail İlkan Ceylan, Michael Bronstein, and Ron Levie. Equivariance everywhere
all at once: A recipe for graph foundation models. arXiv preprint arXiv:2506.14291, 2025.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from natural
language. CoRR, 2024.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Transformer
That Solves Small Tabular Classification Problems in a Second. International Conference on
Learning Representations (ICLR), 2023.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. From tables to time: How tabpfn-v2
outperforms specialized time series forecasting models. arXiv preprint arXiv:2501.02945, 2025.

Sergei Ivanov and Liudmila Prokhorenkova. Boost then convolve: Gradient boosting meets graph
neural networks. In International Conference on Learning Representations, 2021.

Charilaos Kanatsoulis, Evelyn Choi, Stefanie Jegelka, Jure Leskovec, and Alejandro Ribeiro. Learn-
ing efficient positional encodings with graph neural networks. In The Thirteenth International
Conference on Learning Representations, 2025.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information
Processing Systems, 30, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations (ICLR), 2017.

8



Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. GraphFM: A scalable framework for
multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns for
node classification. Advances in Neural Information Processing Systems, 37, 2024.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Can classic gnns be strong baselines for graph-level tasks?
simple architectures meet excellence. In International Conference on Machine Learning. PMLR,
2025.

Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Hamidreza Kamkari, Alex Labach, Jesse C
Cresswell, Keyvan Golestan, Guangwei Yu, Maksims Volkovs, and Anthony L Caterini. TabDPT:
Scaling Tabular Foundation Models on Real Data. arXiv preprint arXiv:2410.18164, 2024.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Mikhail Mironov and Liudmila Prokhorenkova. Revisiting graph homophily measures. In The Third
Learning on Graphs Conference, 2024.

Andreas C Mueller, Carlo A Curino, and Raghu Ramakrishnan. MotherNet: Fast Training and
Inference via Hyper-Network Transformers. In The Thirteenth International Conference on
Learning Representations, 2025.

Mark EJ Newman. Mixing patterns in networks. Physical Review E, 67(2), 2003.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Character-
izing graph datasets for node classification: Homophily-heterophily dichotomy and beyond.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 523–548. Curran Associates,
Inc., 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
01b681025fdbda8e935a66cc5bb6e9de-Paper-Conference.pdf.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: are we really making progress? In
International Conference on Learning Representations, 2023b.

Jingang Qu, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. TabICL: A Tabular
Foundation Model for In-Context Learning on Large Data. In International Conference on
Machine Learning, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763, 2021.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep
learning on relational databases. Advances in Neural Information Processing Systems, 37:21330–
21341, 2024.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 1325–1334, 2020.

Ivan Rubachev, Akim Kotelnikov, Nikolay Kartashev, and Artem Babenko. On finetuning tabular
foundation models. arXiv preprint arXiv:2506.08982, 2025.

Yangyi Shen, Jincheng Zhou, Beatrice Bevilacqua, Joshua Robinson, Charilaos Kanatsoulis, Jure
Leskovec, and Bruno Ribeiro. Zero-shot generalization of gnns over distinct attribute domains. In
Forty-second International Conference on Machine Learning, 2025.

9

https://proceedings.neurips.cc/paper_files/paper/2023/file/01b681025fdbda8e935a66cc5bb6e9de-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/01b681025fdbda8e935a66cc5bb6e9de-Paper-Conference.pdf


Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, pp. 1548–1554, 2021.

Yifei Sun, Yang Yang, Xiao Feng, Zijun Wang, Haoyang Zhong, Chunping Wang, and Lei Chen.
Handling feature heterogeneity with learnable graph patches. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pp. 1313–1324, 2025.

Boris Van Breugel and Mihaela Van Der Schaar. Why tabular foundation models should be a research
priority. In International Conference on Machine Learning. PMLR, 2024.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Minjie Wang, Quan Gan, David Wipf, Zhenkun Cai, Ning Li, Jianheng Tang, Yanlin Zhang, Zizhao
Zhang, Zunyao Mao, Yakun Song, et al. 4dbinfer: A 4d benchmarking toolbox for graph-centric
predictive modeling on relational dbs. Advances in Neural Information Processing Systems, 37,
2024a.

Shuo Wang, Bokui Wang, Zhixiang Shen, Boyan Deng, et al. Multi-domain graph foundation models:
Robust knowledge transfer via topology alignment. In Forty-second International Conference on
Machine Learning, 2025a.

Zehong Wang, Zheyuan Zhang, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph foundation
model with transferable tree vocabulary. Advances in Neural Information Processing Systems, 37:
107403–107443, 2024b.

Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
arXiv preprint arXiv:2505.15116, 2025b.

Lianghao Xia and Chao Huang. AnyGraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024.

Lianghao Xia, Ben Kao, and Chao Huang. OpenGraph: Towards open graph foundation models. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 2365–2379, 2024.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. Samgpt: Text-free graph
foundation model for multi-domain pre-training and cross-domain adaptation. In Proceedings of
the ACM on Web Conference 2025, pp. 1142–1153, 2025.

Xingxuan Zhang, Gang Ren, Han Yu, Hao Yuan, Hui Wang, Jiansheng Li, Jiayun Wu, Lang Mo,
Li Mao, Mingchao Hao, Ningbo Dai, Renzhe Xu, Shuyang Li, Tianyang Zhang, Yue He, Yuanrui
Wang, Yunjia Zhang, Zijing Xu, Dongzhe Li, Fang Gao, Hao Zou, Jiandong Liu, Jiashuo Liu,
Jiawei Xu, Kaijie Cheng, Kehan Li, Linjun Zhou, Qing Li, Shaohua Fan, Xiaoyu Lin, Xinyan
Han, Xuanyue Li, Yan Lu, Yuan Xue, Yuanyuan Jiang, Zimu Wang, Zhenlei Wang, and Peng Cui.
Limix: Unleashing structured-data modeling capability for generalist intelligence, 2025. URL
https://arxiv.org/abs/2509.03505.

Xiyuan Zhang and Danielle Maddix Robinson. Mitra: Mixed synthetic priors for
enhancing tabular foundation models. https://www.amazon.science/blog/
mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models,
2025.

Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one for all: A
simple yet effective method towards cross-domain graph pretraining. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4443–4454, 2024a.

Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, and Zhiyong Feng. Fug:
Feature-universal graph contrastive pre-training for graphs with diverse node features. Advances in
Neural Information Processing Systems, 37:4003–4034, 2024b.

10

https://arxiv.org/abs/2509.03505
https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models
https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models


A Limitations and future work

Despite its strong performance, the proposed G2T-FM framework is only a first step towards utilizing
models and ideas from the tabular domain for developing truly generalizable GFMs. Hence, our work
has several noteworthy limitations that suggest future research directions.

First, the present version of G2T-FM uses only basic methods for processing graph structures.
Future research can bring more graph-specific components into the framework, such as more complex
aggregation mechanisms (including learnable and multi-hop aggregations) and cross-graph pretraining.
We believe these extensions could enable the model to better capture graph-specific information and
transfer knowledge across different graphs.

Second, G2T-FM inherits several restrictions from its TFM backbone. In particular, when endowed
with TabPFNv2, G2T cannot handle classification datasets with more than 10 classes, and its training
set size is limited to at most 10,000 samples. These limitations currently make it difficult to apply
G2T-FM to large-scale datasets. However, future research on tabular foundation models can alleviate
these limitations and the new TFMs can be directly used within the G2T-FM framework.

B Background

B.1 Graph foundation models for node classification

Graph foundation models (GFMs) have recently gained significant attention in the field of graph
machine learning. The main purpose of GFMs is to enable effective transfer of knowledge across
different graph datasets. In other words, they aim to learn knowledge from a variety of graph tasks
that can be successfully applied to other graphs.

In this work, we primarily focus on node-level tasks such as node classification and node regression.
While many GFMs are limited to text-attributed graphs (TAGs) (Wang et al., 2024b; He & Hooi,
2024; Liu et al., 2024), they are not truly general as graphs in many domains involve non-textual
features. Therefore, we specifically discuss methods applicable to graphs with arbitrary numerical
and categorical node features which frequently appear in various real-world industrial applications.

In the following sections, we review the key design choices and considerations in the development of
GFMs. In particular, we focus on pretraining objectives and data, as well as how GFMs handle graph
structure and node features. For further details, see the survey by Wang et al. (2025b).

Pretraining objective Some graph foundation models use self-supervised learning (SSL) objectives
to guide their pretraining process (Zhao et al., 2024a; Yu et al., 2025; Wang et al., 2025a), whereas
others employ supervised learning strategies (Lachi et al., 2024; Finkelshtein et al., 2025). Notably,
several works (Xia et al., 2024; Xia & Huang, 2024) reduce the node classification task to link
prediction. Specifically, for each label in a downstream task, they create a virtual node that is
connected to all training nodes of that class. Node classification thus becomes a task of predicting
links to those virtual class nodes, for which the models are pretrained.

Pretraining data Collecting a sufficiently diverse collection of datasets for pretraining GFMs
remains a significant challenge. To address this, some studies (Fey et al., 2025; Lachi et al., 2024;
Xia et al., 2024) incorporate synthetic data — either together with real-world data or as an alternative.
This includes the use of simple random graph models like stochastic block models (Lachi et al.,
2024), as well as synthetic graphs generated by large language models (Xia et al., 2024). However,
the majority of graph foundation models rely primarily on real-world datasets for pretraining. The
number of datasets used for this purpose varies from as few as one graph (Finkelshtein et al., 2025),
to more moderate collections of 2–10 datasets (Zhao et al., 2024a; Wang et al., 2025a), and up to
several dozens in some studies (Xia & Huang, 2024; Lachi et al., 2024).

Handling features One of the key challenges for graph foundation models is handling heteroge-
neous features that can vary significantly across different datasets. Some approaches address this by
focusing exclusively on text-attributed graphs (TAGs), sometimes additionally converting non-textual
features to text, and then applying a text encoder (Wang et al., 2024b; He & Hooi, 2024; Liu et al.,
2024). Methods aiming to deal with arbitrary features often rely on simple dimensionality reduction
techniques such as SVD or PCA to obtain feature embeddings (Xia & Huang, 2024; Zhao et al., 2024a;

11



Wang et al., 2025a; Yu et al., 2025). There are alternatives, such as learning dimension encoding
modules that produce feature transformations (Zhao et al., 2024b), learning graph patches (Sun et al.,
2025) or replacing node attribute values with their statistical dependencies (Shen et al., 2025), but
these appear less common. We also highlight Finkelshtein et al. (2025), which constructs separate
embeddings for each (node, feature) pair, enabling a more fine-grained representation of feature
information.

Handling structure Handling the structure is more straightforward, as graph neural networks
are particularly well-suited for this task, and they are inherently capable of processing arbitrary
graph structures. Consequently, many GFMs simply adopt GNNs as their backbone to handle graph
structure (Zhao et al., 2024a; Finkelshtein et al., 2025; Yu et al., 2025; Wang et al., 2025a). In addition
to GNN-based approaches, some methods use matrix decomposition techniques such as SVD applied
to graph-derived matrices (for example, the normalized adjacency matrix or the sum of its powers),
to encode structural information (Xia et al., 2024). However, while GNNs can in principle operate on
any graph, their performance may still be limited due to varying graph structures. To address this,
some works implement additional mechanisms specifically designed to handle structural differences
(Yu et al., 2025; Wang et al., 2025a).

B.2 Limitations of existing GFMs

Focus on text-attributed graphs Many existing graph foundation models are specifically designed
for text-attributed graphs, where nodes or edges have associated textual information (Wang et al.,
2024b; He & Hooi, 2024; Liu et al., 2024). These models typically leverage large language models
or other text encoders to process textual attributes, integrating natural language representations
with graph structures. While this approach can be effective for certain domains such as academic
networks or knowledge graphs, it limits the applicability of GFMs across a broader range of graphs
where such text attributes are not available. For instance, for graphs representing transportation
networks, biological networks, or transaction networks (commonly used for fraud detection tasks),
which often come with rich numerical and categorical features, the reliance exclusively on textual
information restricts the model’s usability and effectiveness. As a result, many current GFMs may
not generalize well to graphs with non-textual attributes, hindering their adoption across diverse
real-world scenarios.

Limited support for regression tasks Most publicly available GFMs are designed and evaluated
on classification tasks, where the goal is to predict categorical labels for nodes, edges, or entire
graphs. To date, no popular GFMs, aside from TS-GNN (Finkelshtein et al., 2025), support regression
tasks, where the output is a continuous value rather than a class label. This is a substantial limitation
because many important graph-based applications require regression instead of classification. The
lack of support for regression tasks reduces the practical applicability of current GFMs and highlights
an important area for future research.

Misleading use of the “zero-shot” term Some recent studies on graph foundation models have
described their methods as operating in a “zero-shot” setting (Xia & Huang, 2024; Xia et al., 2024).
Typically, these approaches introduce virtual nodes that represent target classes and connect them to
the corresponding real nodes with known class labels. Then, the node classification problem reduces
to predicting links between the test nodes and the appropriate virtual nodes. This process makes
it possible to perform evaluation on unseen graphs without additional finetuning. While inventive
and interesting, this technique does not truly realize zero-shot learning. Strictly speaking, zero-shot
learning means that no labeled examples of the target classes are available during evaluation. However,
the described method requires labeled nodes to be connected to virtual class nodes for effective link
prediction. Therefore, the correct term for this setup should be “in-context learning”, since evaluation
does not involve further finetuning but still depends on access to labeled training samples. This
inconsistency in terminology may lead to misleading comparisons with baseline approaches. For
instance, the aforementioned studies (Xia & Huang, 2024; Xia et al., 2024) compare their “zero-shot”
performance against the one-shot and five-shot results of other baselines, yet they do not clearly
report the number of training samples used in “zero-shot” evaluation of the proposed method, which
makes the comparison harder to interpret.

12



B.3 Tabular foundation models

The field of tabular foundation models (TFMs) was pioneered by the TabPFN model (Hollmann
et al., 2023) that was designed to address any tabular problem off-the-shelf. TabPFN employs a
transformer-like architecture and works in the in-context learning regime, with the entire downstream
training set serving as the prompt. The pretraining of TabPFN was performed on a large number
of synthetic datasets designed to mimic typical tabular tasks. The more recent model, TabPFNv2
(Hollmann et al., 2025), employs a more powerful backbone architecture, pretraining on a broader
spectrum of synthetic datasets, and advanced techniques of data preprocessing. Nowadays, new TFMs
are emerging regularly (Mueller et al., 2025; Ma et al., 2024; Qu et al., 2025; Zhang & Robinson,
2025; Zhang et al., 2025), and their success is exploited beyond the domain of pure tabular tasks, e.g.,
for time series forecasting (Hoo et al., 2025). In our work, we demonstrate that TFMs can also serve
as a core building block for graph foundation models.

C Implementation details

In this section, we describe our main implementation choices. Additional information and the full
code are available in our repository.

C.1 G2T-FM

Finetuning For the finetuning experiments, we follow the procedure outlined by Rubachev et al.
(2025). Rather than using parameter-efficient finetuning, we opt for full model finetuning, as previous
work indicates this yields better performance. We search for the optimal learning rate over the
logarithmic grid of 10 values, ranging from 5× 10−6 to 5× 10−4.

PCA On certain datasets, specifically, city-reviews and avazu-ctr, applying G2T-FM directly
on the original features results in out-of-memory errors. To address this, we apply principal component
analysis (PCA) to reduce the feature dimensionality. PCA is performed separately on the original
features and the neighborhood feature aggregations.

PEARL For the GNN backbone within PEARL, our implementation is based on the GraphLand
implementation (Bazhenov et al., 2025). However, we remove layer normalization and residual con-
nections, based on preliminary experiments that showed improved results without these components.

For the in-context learning experiments, we utilize a randomly initialized PEARL model whose
weights are shared across all datasets. Interestingly, even without explicit training, this untrained
PEARL model still produces useful representations for some datasets, as demonstrated in our ablation
studies (Appendix D). For the finetuning experiments, we jointly finetune PEARL and the TFM
backbone.

Label shuffling To ensure that our framework is equivariant to permutations of class labels in
multiclass classification tasks, we employ a label shuffling procedure. During each forward pass,
class numerical labels are randomly shuffled, so that the average predictions remain independent of
the original numerical label assignment.

C.2 GNNs and LightGBM

GNNs Our GNN setup closely follows the architecture and hyperparameter optimization procedure
from GraphLand (Bazhenov et al., 2025), with two main differences. First, we introduce early
stopping with a patience of 100 steps to accelerate training. Second, we use unified hyperparameter
search spaces for both feature and target preprocessing, rather than dataset-specific spaces used
in GraphLand. See our code for more details. Note that this latter modification only affects the
preprocessing hyperparameters, while the search grids for learning rate and dropout remain identical
to those in GraphLand.

PEARL integration In the ablation studies described in Appendix D, we evaluate the effect of
integrating PEARL with both GNN and LightGBM models. For GNNs, we concatenate PEARL
outputs with the initial node features, and train the combined model end-to-end. For LightGBM, due

13

https://github.com/yandex-research/G2T-FM


Table 4: Ablation of the components of G2T-FM. SF stands for Structure-based Features, which
include degree, PageRank, and Laplacian eigenvectors.

tolokers-2 city-reviews artnet-exp hm-prices avazu-ctr city-roads-M twitch-views artnet-views AR
G2T-TabPFNv2 (ICL) 60.42± 0.27 77.46± 0.10 45.84± 0.03 66.68± 0.09 26.38± 0.07 60.47± 0.04 70.00± 0.06 58.75± 0.15 5.88

w/o NFA (ICL) 60.28± 0.34 76.98± 0.08 43.57± 0.13 62.90± 0.09 25.54± 0.33 58.68± 0.23 69.61± 0.05 58.86± 0.22 7.62
w/o SF & PEARL (ICL) 56.17± 0.12 76.87± 0.02 45.90± 0.01 67.22± 0.03 26.78± 0.02 60.08± 0.01 58.94± 0.06 55.30± 0.02 7.88
w/o SF (ICL) 57.48± 0.18 77.07± 0.02 45.92± 0.02 67.11± 0.03 26.73± 0.01 60.01± 0.07 67.80± 0.02 56.23± 0.03 6.88
w/o PEARL (ICL) 60.56± 0.32 77.47± 0.10 45.84± 0.03 66.81± 0.06 26.33± 0.09 60.53± 0.03 65.30± 0.07 58.36± 0.24 6.12

G2T-TabPFNv2 (FT) 57.65± 1.92 79.12± 0.21 47.31± 0.59 71.05± 0.91 28.52± 0.43 63.08± 0.28 74.06± 0.16 60.29± 0.13 2.25

w/o NFA (FT) 59.75± 0.76 78.61± 0.21 45.10± 0.35 67.10± 0.74 25.98± 0.99 61.40± 0.44 73.28± 0.15 59.93± 0.18 5.38
w/o SF & PEARL (FT) 57.19± 1.15 78.68± 0.18 47.05± 0.39 71.19± 0.61 27.99± 0.36 62.67± 0.17 60.98± 0.14 57.02± 0.45 5.25
w/o SF (FT) 57.44± 0.48 78.61± 0.13 47.17± 0.40 71.77± 0.53 28.31± 0.58 59.72± 0.70 73.10± 0.21 58.29± 0.10 4.62
w/o PEARL (FT) 60.18± 0.49 79.18± 0.21 47.57± 0.43 70.64± 0.83 28.19± 0.31 63.28± 0.25 66.90± 0.19 60.26± 0.12 2.88

Table 5: Comparison of G2T-FM against the baselines that are enhanced with the same components
as G2T-FM. M stands for Modified and means that we add NFA, classic structure-based features, and
PEARL encodings to their features.

tolokers-2 city-reviews artnet-exp hm-prices avazu-ctr city-roads-M twitch-views artnet-views AR
LightGBM+NFA 56.34± 0.06 78.53± 0.01 46.13± 0.03 70.84± 0.04 31.71± 0.01 61.18± 0.03 60.14± 0.01 56.10± 0.02 5.75
GCN 56.27± 0.29 77.81± 0.14 44.86± 0.34 68.02± 0.40 32.00± 0.15 58.82± 0.24 75.51± 0.05 56.03± 0.24 7.75
GraphSAGE 54.43± 0.32 78.17± 0.09 45.14± 0.34 70.00± 0.70 31.44± 0.15 59.44± 0.26 66.29± 0.31 49.32± 0.86 8.62
GAT 57.41± 0.80 77.74± 0.20 45.06± 0.49 72.07± 1.16 32.63± 0.16 59.86± 0.19 72.89± 0.25 53.60± 0.23 5.75
GT 56.98± 0.53 77.34± 0.20 46.41± 0.68 69.44± 0.89 31.11± 0.47 59.55± 0.27 72.13± 0.13 53.37± 0.43 8.38

LightGBM+NFA (M) 57.16± 0.70 78.68± 0.04 45.57± 0.19 70.25± 0.14 31.31± 0.08 60.86± 0.16 65.17± 0.04 57.53± 0.04 5.88
GCN (M) 58.71± 0.45 77.07± 0.27 43.44± 0.32 70.73± 0.26 31.10± 0.22 57.91± 0.22 77.11± 0.09 56.14± 0.24 7.62
GraphSAGE (M) 59.59± 0.51 77.95± 0.09 44.31± 0.53 70.50± 0.47 31.51± 0.41 59.66± 0.09 75.93± 0.19 55.39± 0.32 6.12
GAT (M) 57.76± 0.70 77.47± 0.14 44.36± 0.50 72.46± 0.49 31.97± 0.23 59.57± 0.43 77.20± 0.18 56.51± 0.35 4.88
GT (M) 58.79± 0.76 76.43± 0.10 43.03± 0.60 71.84± 0.64 29.86± 0.67 59.85± 0.41 76.15± 0.11 56.39± 0.31 6.75

G2T-TabPFNv2 (ICL) 60.42± 0.27 77.46± 0.10 45.84± 0.03 66.68± 0.09 26.38± 0.07 60.47± 0.04 70.00± 0.06 58.75± 0.15 6.62
G2T-TabPFNv2 (FT) 57.65± 1.92 79.12± 0.21 47.31± 0.59 71.05± 0.91 28.52± 0.43 63.08± 0.28 74.06± 0.16 60.29± 0.13 3.88

to the challenge of end-to-end training with PEARL, we use the outputs from the same randomly
initialized PEARL as in our G2T-FM (ICL) experiments.

D Ablation

In our ablation study, we focus on G2T-TabPFNv2, selecting it as the representative model because
TabPFNv2 is a widely adopted and well-established tabular foundation model.

G2T-FM components First, we provide an ablation of the G2T-FM components by removing them
from G2T-FM and comparing performance. Table 4 shows the results of this ablation, from which
we conclude that all the components are critical for the performance of G2T-FM. In particular, the
following observation holds.

Observation 4 Neighborhood feature aggregation (NFA) and classic structure-based features
(SF) improve the overall performance of G2T-FM, while PEARL allows one to drastically
improve performance in rare cases where standard augmented features are not sufficient.

Augmenting baselines with the same components Second, one may argue that the performance
improvements of G2T-FM come solely from the fact that it employs augmented features that are not
accessible to the GNN and LightGBM baselines. To verify this, we provide the baselines with exactly
the same features as G2T-FM. The results are presented in Table 5.

Observation 5 While some improvements achieved by G2T-FM can be explained by its access
to the features that are not used by traditional GNNs, G2T-FM shows strong performance even
against the enhanced baselines. In particular, on some datasets it outperforms all other methods
by a wide margin.

14



Summary To sum up, the gains of G2T-FM come from the synergy between the TFM backbone
and our graph-to-table components. The ablations show that removing any component degrades the
performance, and providing the baselines with the same augmented features does not close the gap.
Hence, both the backbone and the proposed components are necessary for the strong performance.

E Symmetries: equivariance and invariance

For graph problems, it is typically assumed that node IDs can be relabeled, feature columns can be
reordered, and class IDs can be renamed without changing the underlying task. Hence, a model
should not depend on these arbitrary choices. This motivates three symmetries for graph foundation
models, as advocated in Finkelshtein et al. (2025): (i) feature permutation invariance; (ii) label
permutation equivariance; and (iii) node permutation equivariance.

Formally, let G be a group acting on inputs X and outputs Y . A mapping f : X → Y is G-equivariant
if f(g ·x) = g ·f(x) for all g ∈ G, x ∈ X . It is G-invariant if f(g ·x) = f(x) for all g. In our
context, relevant groups include node permutations S|V |, feature (column) permutations Sd, and label
permutations S|C|. Here, Sn denotes the symmetric group on a set of n elements (i.e., the group of
all permutations), |V | is the number of nodes, d is the number of features, and |C| is the number of
classes.

Modern models may also include stochastic components (e.g., random positional encodings (Kanat-
soulis et al., 2025)). In such cases, one may require symmetries to hold in distribution: after
the relevant permutation, the distribution of outputs is unchanged (for invariance) or transformed
accordingly (for equivariance), even if a single stochastic realization is not exactly symmetric.

Below, we discuss the symmetries of G2T-FM. In particular, we show that all components added to
TFM are equivariant in distribution, so the resulting symmetries of G2T-FM depend on the symmetries
of the TFM backbone. As an example, we analyze the symmetries of TabPFNv2.

G2T-FM components The symmetries of G2T-FM rely on the symmetries of the chosen TFM.
Let us show that if the TFM has feature permutation invariance, label permutation equivariance and
sample permutation equivariance (in distribution), then G2T-FM also has all the desired symmetries.
Indeed, G2T-FM employs several components: NFA, PEARL, and simple structure-based features
(degree, PageRank, Laplacian eigenvectors). NFA is node- and feature-equivariant. Structural features
such as node degree, PageRank, and Laplacian eigenvectors are all node-equivariant by construction.
The PEARL framework, which we also use, is node-equivariant in distribution. The combination of
these components makes G2T-FM node permutation equivariant in distribution. Thus, all the desired
symmetries are preserved.

TabPFNv2 backbone TabPFNv2 is sample permutation equivariant and feature permutation invari-
ant in distribution. This property holds because the model applies random positional encodings to its
input features. As these encodings are sampled independently and identically, the output distribution
is unaffected by the order of the feature columns. By default, TabPFNv2 is not label permutation
equivariant. However, this can be achieved with a simple modification that we incorporate into our
implementation. Specifically, during each forward pass, we randomly permute the ordinal encodings
assigned to the class labels. This procedure ensures that the model becomes label permutation
equivariant in distribution.

F Additional Details

F.1 Computational Resources

Every individual experiment with fixed dataset and method required only a single Tesla A100 80GB
GPU. We employed several GPUs from internal cluster to run experiments in parallel (for example,
by assigning experiments for different datasets to different GPUs). The longest experiment took 16
hours to complete. Overall, our main experiments required 953 GPU-hours.

15



F.2 Datasets

We employ PyG (Fey & Lenssen, 2019) to access all datasets except for the GraphLand. To access
GraphLand datasets we use the official repository https://github.com/yandex-research/
graphland. We were unable to find licenses for the pubmed dataset. However, we cite the original
paper, where this dataset was introduced. To the best of our knowledge, the amazon-ratings,
questions and wiki-cs datasets are under an MIT license, the facebook dataset is under GNU
license, while the GraphLand datasets are under Apache 2.0 license.

16

https://github.com/yandex-research/graphland
https://github.com/yandex-research/graphland


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction clearly reflect the
content of paper, and are supported by the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

17



Justification: Our work does not contain any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe all needed information in Section 3 and Appendix C. We also
release the code to make our experiments reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18



Answer: [Yes]
Justification: We release the code and use publicly available datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe all needed information in Section 3 and Appendix C. We also
release the code to make our experiments reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run our experiments with several random seeds and report mean and
standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe compute resources in Appendix F.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper for all used datasets. The corresponding licenses are
provided in Appendix F.2.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our repository is well-documented and contains a license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

22



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Graph-to-Table Foundation Model
	Experimental setup
	Datasets
	Methods

	Experimental results
	Conclusion
	Limitations and future work
	Background
	Graph foundation models for node classification
	Limitations of existing GFMs
	Tabular foundation models

	Implementation details
	G2T-FM
	GNNs and LightGBM

	Ablation
	Symmetries: equivariance and invariance
	Additional Details
	Computational Resources
	Datasets


